
rsta.royalsocietypublishing.org

Research
Cite this article: Basu A, Chakrabarti BK.
2018 Hydrodynamic descriptions for surface
roughness in fracture front propagation. Phil.
Trans. R. Soc. A 377: 20170387.
http://dx.doi.org/10.1098/rsta.2017.0387

Accepted: 6 August 2018

One contribution of 15 to a theme issue
‘Statistical physics of fracture and
earthquakes’.

Subject Areas:
statistical physics

Keywords:
hydrodynamics, fracture front propagation,
scaling

Author for correspondence:
Abhik Basu
e-mail: abhik.basu@saha.ac.in;
abhik.123@gmail.com

Hydrodynamic descriptions for
surface roughness in fracture
front propagation
Abhik Basu1 and Bikas K. Chakrabarti1,2

1Condensed Matter Physics Division, Saha Institute of Nuclear
Physics, Kolkata 700064, India
2S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India

AB, 0000-0003-1048-6385

Fracture is ubiquitous in a crystalline material.
Inspired by the observed phenomenological
similarities between the spatial profile of a fractured
surface and velocities in hydrodynamic turbulence,
we set up a hydrodynamic description for the
dynamics of fracture surface propagation mode I or
opening fracture front. We consider several related
continuum hydrodynamic models and use them
to extract the similarities between the profile of a
fractured surface and velocities in hydrodynamic
turbulence. We conclude that a fractured surface
should be generically self-similar with an underlying
multifractal behaviour.

This article is part of the theme issue ‘Statistical
physics of fracture and earthquakes’.

1. Introduction
Fracture in crystalline media is a commonly observed
phenomenon. It is now believed that profiles of fracture
surfaces generically display robust universal scaling
properties strongly reminiscent of fractal surfaces [1,2].
These in turn are visually similar to the velocity profiles
observed in hydrodynamic turbulence [3]. Recent
experimental studies [4] made quantitative estimates of
the universal power laws in crack roughness statistics.
These external similarities have led to the search for
any deeper connections between the two apparently
distant phenomena of fracture in crystalline media
and hydrodynamic turbulence. A general hydrodynamic
description of a fracture surface that directly brings
out the underlying connections with hydrodynamic
turbulence is lacking to date.

2018 The Author(s) Published by the Royal Society. All rights reserved.
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Hydrodynamic approaches to condensed matter systems with slow modes and conserved
densities have the advantages of being generic, i.e. independent of many microscopic details
which appear as phenomenological parameters in the theory [5]. These are particularly well
suited to extract the universal features in the long time, long wavelength limit [5]. Hydrodynamic
theories for fluids have a long history of applications in driven systems (e.g. [6]). More recently,
smooth particle hydrodynamics, a numerical method based on hydrodynamic approaches (e.g. [7])
have been applied to the various aspects of the fracture problem in mechanics, see [8] for
recent applications. In this work, we set up the noisy continuum equations of motion for
fracture surface propagation in the hydrodynamic limit. We focus on mode I or opening fracture
front, where a tensile stress is applied normal to the plane of the crack. We consider several
hydrodynamic models related to hydrodynamic turbulence. We show that in different limits
the model equations formally resemble a range of well-known stochastically driven dynamical
equations describing a moving Kardar–Parisi–Zhang surface (KPZ) [9] see also [10] with
quenched disorder, passive scalar turbulence [11], magnetohydrodynamic (MHD) turbulence [12]
and binary fluid turbulence [13]. We interpret the phenomenological similarities between a
fracture surface and hydrodynamic surface in terms of these formal mathematical resemblances
between the respective dynamical equations. The remainder of this article is organized as
follows. In §2, we construct the equations of motion. We then analyse these equations and make
correspondence with various models of hydrodynamic turbulence in §3. We finally conclude
in §4.

2. Equations of motion
A opening fracture front in a crystalline medium starts propagating when the applied
force exceeds a critical threshold that depends non-universally on the specific system under
consideration. We begin by noting the generic experimentally observed feature that in a
propagating fracture surface, not only there is a generic overall propagation along the direction of
the applied force, also the fracture surface fluctuates normally to itself; see figure 1 for a schematic
diagram of a moving opening fracture front.

We now consider the equations of motion of a mode I fracture front. We are interested in a
long wavelength description in which a crystalline medium is described as a continuum elastic
medium parametrized by the elastic constants. Now consider an elastic medium with a fracture
surface in it. The instantaneous location of the fracture surface is given by the local distortion field
u(x, t), which are resolved into components along and perpendicular to the direction of fracture
propagation x‖; see figure 2 for a schematic geometry of the fracture surface.

Let us consider a propagating crack front (tip) and the corresponding equation for vmat of a
small volume moving with the crack front. While the crack front moves on average with respect
to the laboratory frame, in mode I or opening fracture front, the materials move in a direction
normal to the fracture plane with a velocity vmat. Thus, vmat is different from the average front
velocity. From Newton’s second law of motion, the momentum density (ρvmat)/t follows:

ρ
∂vmat

∂t
= fv , (2.1)

where fv is the total force density including the external tensile stress, ρ is the local mass density
at the crack front, assumed to be a constant for an incompressible material. In the steady state,
the fracture front propagates essentially due to the longitudinal component of elastic restoring
and other internal forces, but its motion gets hindered due to friction. On average, the friction
balances the internal forces:

〈ζv〉 = 〈Fint〉, (2.2)

where 〈· · · 〉 refers to averaging over the noises (thermal and quenched; see below) in the system.
Here, ζ is the friction coefficient. Here, v = (v‖, v⊥) is the local velocity of the fracture front. It is
observed that as the external tensile stress exceeds a threshold, the fracture front starts moving,
and the in-plane fracture front velocity v‖ has a non-zero average (above the threshold of the
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Figure 1. Schematic picture of amovingmode I or opening fracture frontmoving in the x‖ (longitudinal) direction. The external
pulling forces or tensile stress are applied are applied on each leaf in the x⊥ (transverse) direction. For simplicity of presentation,
we have shown x⊥ to be single component; in three dimensions x⊥ has two components, both in the directions normal to the
direction of fracture front propagation. In the steady state, these are balanced by the normal component of the elastic restoring
forces and other internal forces in each leaf. The net restoring force along the longitudinal direction is responsible for themotion
of the fracture front, when it exceeds a threshold. We treat the angleψ to be a constant. (Online version in colour.)

x||

u||

x^

fracture plane

x^
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(a) (b)

Figure 2. Definitions of (a) longitudinal displacement u‖ (top view) and (b) transverse displacement u⊥ (front view); u⊥
represents local distortions from the undistorted position (i.e. the fracture plain) in directions normal to the fracture plane and
is a two-dimensional vector in a three-dimensional system. (Online version in colour.)

pulling force). The internal forces include elastic forces, thermal noises and stochastic pinning
forces (quenched disorders); the latter models the local defects in the underlying crystalline
medium that acts as pinning centres for the fracture front.

The elastic restoring forces for a crystal in equilibrium originate from an elastic free energy. In
order to simplify the presentation, we consider a single elastic constant A and assume an elastic
free energy Fel = 1

2
∫

ddxAu2
ij, where uij = (∂iuj + ∂jui)/2 is the elastic strain tensor. Noting that the

elastic stress tensor σ el
ij is thermodynamic conjugate to uij [14], we have for the elastic stress tensor

σ el
ij = δFel/δuij = Auij [14],1 for an elastic medium in thermal equilibrium. The corresponding

elastic force density is then given by Finti = ∇jσ
el
ij = A∇2ui, such that 〈Finti〉 = 0. At the threshold

of crack formations, the system is out of the elastic regime and also out of equilibrium. Thus, the
equilibrium for the force density must be supplemented by nonlinear terms, which may not be
obtained from a free energy. Furthermore, 〈v‖〉 ∼ 〈Fint‖〉 �= 0 for a propagating crack front moving
along the x‖-direction. The velocity of the local distortion by the definition ∂u/∂t = v. We now
resolve u as u = (u‖, u⊥), where u‖ and u⊥ are the components of u parallel and perpendicular to
the direction of fracture propagation x̂‖. We set friction coefficient ζ to unity for simplicity. The

1We implicitly assume, in terms of the Maxwell model relating stresses with strain-rates, a large viscoelastic time-scale that is
appropriate for a solid material.
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general equation of motion for the fracture surface profile given by u is given by

∂u
∂t

= Fint. (2.3)

Here, Fint generically contains nonlinear terms whose forms may be fixed by symmetry
considerations: all terms that are invariant under the symmetries of the system should be present.
Note that the applied force F, say along the x̂‖-direction, clearly distinguishes +x̂‖ from −x̂‖.
Thus, no invariance is expected under x‖ → −x‖. There is no global rotational invariance due to
the anisotropy introduced by the applied force. However, in the transverse (d − 1) dimensions,
rotational invariance should hold. Considering the hydrodynamic limit and retaining up to the
quadratic order nonlinear terms in u, the equations of motion of u‖ and u⊥ are of the generic form

∂u‖
∂t

= B‖
∂u‖
∂x‖

+ A∇2u‖ + B̃‖∇⊥ · u⊥ + F‖ + θ‖(x‖, x⊥)

+ λ‖,1

(
∂u‖
∂x‖

)2
+ λ‖,2

(
∂u‖
∂x⊥,m

)2
+ λ‖,3

(
∂u⊥m

∂x⊥,m

)2
+ λ‖,4(∇⊥ × u⊥)2 + f‖ (2.4)

and

∂u⊥
∂t

= B⊥
∂u⊥
∂x‖

+ B̃⊥
∂u‖
∂x⊥

+ A∇2u⊥ + θ⊥(x‖, x⊥) + λ⊥,1
∂u‖
∂x⊥,m

∂u⊥m

∂x⊥
+ λ⊥,2

∂u‖
∂x⊥,m

∂u⊥
∂x⊥,m

+ λ⊥,3
∂u‖
∂x⊥

∂u⊥m

∂x⊥,m
+ λ⊥,4

∂u‖
∂x‖

∂u⊥
∂x‖

+ f⊥. (2.5)

In equations (2.4) and (2.5), stochastic functions f and θ are thermal noise and quenched disorder,
respectively. Here, only the most relevant terms in the hydrodynamic limit are included in
(2.4) and (2.5). Furthermore, phenomenological parameters λ‖,1, λ‖,2, λ‖,3, λ‖,4, λ⊥,1, λ⊥,2, λ⊥,3, λ⊥,4
are the leading nonlinear coefficients, all of which have same scaling dimensions. Different
parameters correspond to coupling between different modes. For systems with no handedness,
the λ‖,4-term should vanish. These nonlinear terms cannot be obtained from a free energy, but
generically exist near a fracture front (see discussions above). Parameters B‖, B̃‖, B⊥, B̃⊥ set the
speed of the propagating modes, or the growth rate of linearly unstable long wavelength modes,
which may be generically present in the system. Stochastic functions θ⊥, θ‖ are the quenched
noises, f‖, f⊥ are the thermal noises, x‖, x⊥ are longitudinal and transverse coordinates. Quenched
disorders θ⊥, θ‖ and thermal noises f‖, f⊥ are all assumed to be zero-mean, Gaussian-distributed
with variances

〈f‖(x, t)f‖(0, 0)〉 = 2D‖Tδ(x)δ(t), (2.6)

〈f⊥ i(x, t)f⊥ j(0, 0)〉 = 2D⊥Tδ(x)δ(t)δij, (2.7)

〈θ‖(x)θ‖(0)〉 = 2D̃‖δ(x) (2.8)

and 〈θ⊥i(x)θ⊥j(0)〉 = 2D̃⊥δ(x)δij. (2.9)

For an equilibrium system parameters D‖ and D⊥ which appear the variances of the thermal
noises are fixed by the fluctuation dissipation theorem (FDT) [14] and are proportional to the
kinetic coefficients (set to unity here) in equations (2.4) and (2.5), but are independent of the
thermodynamic parameters like the elastic constants and temperature T. For an out of equilibrium
system, there is no FDT and D‖ and D⊥ are formally to be treated as free parameters in our
hydrodynamic theory. We expect them to depend on the microscopic model parameters as
well as the conditions of the experiments; we are however unable to comment on any precise
dependences. Formally, equations (2.4) and (2.5) describe time evolutions of the distortions in the
longitudinal and transverse directions. Notice that equations (2.4) and (2.5) are all invariant under
constant shifts u‖ → u‖ + u0

‖, u⊥ → u⊥ + u0
⊥. This is consistent with the definition of u as the

local distortions of the elastic medium. Equations (2.4) and (2.5) together provide the dynamical
descriptions of the distortions u‖ and u⊥.
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3. Analysis of the model equations
Notice that 〈

∂u‖
∂t

〉
= F‖ +

〈
λ‖,1

(
∂u‖
∂x‖

)2
〉

+ λ‖,2

〈(
∂u‖
∂x⊥,m

)2
〉

+ λ‖,3

〈(
∂u⊥m

∂x⊥,m

)2
〉

+ λ‖,4〈(∇⊥ × u⊥)2〉. (3.1)

Thus, 〈u‖〉 grows in time, consistent with the picture of a moving crack front moving along
the x‖-direction. The growth rate depends linearly upon F‖ and receives nonlinear fluctuation
corrections. By contrast, 〈∂tu⊥〉 = 0, due to the linearity of equation (2.5) in u⊥, in agreement with
the interpretation of u⊥ as the transverse fluctuations that is bounded in time. Here, 〈..〉 implies
averages over the distribution of the noises (both thermal and quenched). Physically interesting
quantities include the spatio-temporal scaling of the correlation function of the longitudinal and
transverse fluctuations

C‖(r, t) = 〈u‖(r, t)u‖(0, 0)〉 (3.2)

and

C⊥(r, t) = 〈u⊥(r, t) · u⊥(0, 0)〉, (3.3)

where r = (x‖, x⊥). Recent experimental findings suggest that C⊥ scales with spatial separations
r [4]. Equivalently, one measures the widths of the fluctuations

w‖(t) =
√

〈u2
‖〉 − 〈u‖〉2 (3.4)

and

w⊥(t) =
√

〈u2
⊥〉, (3.5)

which may be obtained from the knowledge of C‖ and C⊥. At the onset of crack propagation,
w‖(t) ∼ tβ‖ , w⊥(t) ∼ tβ⊥ and w‖ ∼ Lα‖ , w⊥ ∼ Lα⊥ ; here L is the system size. Here, we implicitly
assumed isotropic spatial scaling of C‖(r, t) and C⊥(r, t). However, given obvious anisotropy (x‖
being the special direction), anisotropic spatial scaling is entirely possible. We however restrict
ourselves to isotropic scaling for simplicity.

In the spirit of the well-known phenomenological Ginzburg–Landau approaches to
universality near second-order phase transitions in equilibrium systems, these phenomenological
parameters are formally treated as free parameters. Equations (2.4) and (2.5) are very general
and do not correspond to any specific experimental realizations. Indeed, variation of these
parameters should correspond to tuning experimental control parameters and/or microscopic
material parameters. It is instructive to first consider the mode structure of the linearized versions
of equations (2.4) and (2.5) in two dimensions (2d) (figure 2), for which the transverse component
of u is u⊥, just one-component quantity, u = (u‖, u⊥). The dispersion relation reads

ω=
[(B‖ + B⊥)q‖ − 2iAq2 ±

√
(B‖ − B⊥)q2

‖ + B̃‖B̃⊥q2
⊥]

2
, (3.6)

where q = (q‖, q⊥) is the wavevector, q‖ is the component of q along the direction of crack
propagation and q⊥ is the normal component; ω is the frequency. Thus, for B̃‖B̃⊥ > 0 there are
underdamped propagating modes at O(q), where as for B̃‖B̃⊥ < 0, there are linear instabilities at
O(q) (e.g. [15]). We do not know the sign of B̃‖B̃⊥ > 0 a priori for a fracture front. However, given
the absence of any experimental indications of unstable growth of fluctuations at the fracture
surface, we neglect the possibility of linear instability and proceed further assuming linearly
stable systems.

The nonlinear terms and the quenched noise rule out any exact treatment of the problem.
Instead we take different limits and compare with the known results from the existing models.
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(a) Different limits of the model
(i) Quenched Edward–Wilkinson equation

At the simplest level of analysis, we drop all nonlinear terms. Distortion components u‖ and u⊥
then follow the following linear equations:

∂u‖
∂t

= B‖
∂u‖
∂x‖

+ B̃‖∇⊥ · u⊥ + A∇2u‖ + F‖ + θ‖(x‖, x⊥) + f‖ (3.7)

and
∂u⊥
∂t

= B⊥
∂u⊥
∂x‖

+ B̃⊥∇⊥u‖ + A∇2u⊥ + θ⊥ + f⊥. (3.8)

Equations (3.7) and (3.8) remain coupled at the linear level through the spatial first derivative
cross terms, corresponding to a dispersion relation given by (3.6). Even with linear stability,
(3.6) does not allow for a simple decoupling of (3.7) and (3.8) into two linear equations for
arbitrary q‖ and q⊥. We now make further simplifying approximation and set B̃‖ = 0 = B̃⊥,
which implies that the spatial variations of u‖ along x⊥ direction does not affect the local
distortion of u⊥ and vice versa. This approximation decouples equations (3.7) and (3.8). The
individual wave-like terms in (3.7) and (3.8) can be absorbed separately by going to the
respective comoving frames, which make both (3.7) and (3.8) take the standard form of the
linear Edward–Wilkinson (EW) equation with quenched disorder [16], that is studied extensively
in the literature, shows roughening phenomena that is controlled by the quenched disorder.
Given the fact that linear equations (3.7) and (3.8) are essentially coupled generalizations of
the standard quenched EW equation, the former equations should also display roughening
phenomena. In the special limit B̃‖ = 0, u‖ follows the standard quenched EW equation (after
removing the B‖-term by comoving). The statistical properties of u‖ are known in this limit [16].
In this limit, the dynamics of u⊥ as given by (3.8) clearly has u‖ in it through B̃⊥-term.
The latter contribution may be interpreted as an additional additive noise with a statistics
determined by the quenched EW equation. This is going to alter the statistics of roughening
of u⊥ from its EW limit (B̃⊥ = 0). Consider now the general case, in the where none of B̃‖
and B̃⊥ vanish. In the comoving frame of u⊥, the B⊥-term in (3.8) disappears, and the u‖-
fluctuations in this frame are primarily wave-like, leading to make them subdominant to the
corresponding u⊥ fluctuations. This is expected to make the B̃⊥-term in (3.8) irrelevant in a
scaling sense [17]. This should then restore the standard quenched EW scaling for u⊥ [16]. Similar
arguments yield the same quenched EW scaling for u‖-fluctuations. Overall thus, our discussions
here are consistent with the observed roughness of the transverse fluctuations in a moving
fracture front.

(b) Quenched Kardar–Parisi–Zhang equation
In the next step, we set couplings B̃‖, λ‖,, λ‖,4 to zero, rescale x⊥ and x‖ to make λ‖,1 = λ‖,2, absorb
the propagating wave (the B‖-term) by co-moving, or equivalently by a Galilean transformation.
Then identifying u‖ with a height h, we obtain

∂h
∂t

= A∇2h + λ‖,1

(
∂h
∂xm

)2
+ θ‖ + f‖. (3.9)

This is the usual quenched KPZ equation [16,18,19]. It was expected that the scaling of the
roughening transition equation (3.9) should be in the same universality class as the quenched EW
equation, since the KPZ nonlinearity that is formally absent in the quenched EW equation should
be automatically generated in the latter due to the highly non-trivial dependence of the quenched
disorder on h [18,19]. However, several detailed studies indicated that the universal properties
of the roughening transition in the quenched KPZ equation are different from those in the
quenched EW equation [16,18,19]. Dimensional arguments as reported in [18,19] yield exponents
α‖ = (4 − d)/4, β‖ = (4 − d)/(4 + d) in d-dimensions. In this limit, the dynamics of u⊥ as given by
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equation (2.5) is driven by u⊥ that appears as a multiplicative noise, whose statistics is determined
by the quenched KPZ equation. Note that, regardless of the nature of the solutions, the structure
of equation (2.5) ensures that 〈∂u⊥/∂t〉 = 0. This follows from the fact that (a) equation (2.5) is
linear in u⊥ implying invariance under u⊥ → −u⊥. Thus, 〈u⊥〉 should be bounded, unlike 〈u‖〉,
which continuously grows, reflecting the average motion of the crackfront in the longitudinal
direction. We are interested in the scaling of u⊥. As in (3.7) and (3.8), notice that with B‖ �= B⊥,
wave terms in both (2.4) and (2.5) cannot be removed. Equivalently, there is no frame where both
the waves vanish.

Notice the formal similarity (in the mathematical structure) of equation (2.4) the Navier–Stokes
equation for fluid flows and the Burgers equation for pressureless fluids (related to the KPZ
equation). Then, in analogy with the studies on fluid turbulence and depinning of contact lines,
for sufficiently large applied force F‖ above the threshold of depinning, u‖(x, t) is turbulent, i.e.
the equal-time correlator 〈[u‖(x, t) − u‖(x′, t)]2〉 scale qualitatively similarly with the same for the
velocity in fluid turbulence. Thus, u‖(x, t) should be a long-range field. Now in the limit, when u‖
is autonomous, it appears as a long-range noise in the equation for u⊥(x, t). For simplicity, set the
quenched disorder θ⊥(x‖, x⊥) to zero.

∂u⊥
∂t

= B⊥
∂u⊥
∂x‖

+ A∇2u⊥ + λ⊥,1
∂u‖
∂x⊥,m

∂u⊥m

∂x⊥
+ λ⊥,2

∂u‖
∂x⊥,m

∂u⊥
∂x⊥,m

+ λ⊥,3
∂u‖
∂x⊥

∂u⊥m

∂x⊥,m
+ λ⊥,4

∂u‖
∂x‖

∂u⊥
∂x‖

+ f⊥. (3.10)

In that limit, we draw analogy with the well-known passive scalar problem of fluid turbulence,
where a scalar field c (smoke density, local temperature) is advected by a turbulent velocity
field:

∂c
∂t

+ v · ∇c = Dc∇2c + θc. (3.11)

Here, v is an incompressible velocity field, Dc is the diffusivity and θc is a conserved noise [20–
26] Equation (3.11) has been studied in details and is found to show turbulent-like behaviour.
It is known that all even-order equal-time structure functions Sp(r) = 〈[c(x + r, t) − c(x)]2p〉 ∼ rζp ,
where ζp is a nonlinear function of p. This is known as multiscaling in the turbulence literature [3].
Drawing on the formal similarities between v in (3.11) and spatial gradients of u‖ in (3.10), we
expect u⊥(x, t) to be long-range as well, i.e. it should also show turbulent behaviour. So far we
have ignored the quenched disorder θ⊥, which is another source of randomness that is independent
of time. Averaging over the distribution of θ⊥ should yield the experimentally accessible scaling
of the correlation function of u⊥. Given that u⊥-correlators in (3.10) generically display long-
range correlations, it can be reasonably claimed that quenched-disorder averaged correlator of
u⊥ also displays long-range behaviour, or turbulence like scaling. In the special limit B̃‖ = 0 =
B̃⊥, noting that the naive scaling dimensions of u‖ and u⊥ should be same (this can be argued
from simple power counting reasons), simple extension of the dimensional arguments of [18,19]
suggests α‖ = α⊥ and β‖ = β⊥. For other choices of B̃‖, B̃⊥ the scaling exponents of u‖ should
stay unchanged following the arguments we have given in the previous subsection. However,
the exponents α⊥, β⊥ should change. The precise values of these scaling exponents cannot be
obtained easily from dimensional arguments.

(c) The general case
Now, the above argument rests on the assumption of u‖(x, t) being autonomous, which in general
is not true. When the other couplings, e.g. λ‖3 , are non-zero, u‖ should still become rough when F‖
exceeds a threshold, which may now depend on the additional coupling constants. Again ignore
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the quenched disorders for simplicity. Variable u‖ now follows the equation:

∂u‖
∂t

= B‖
∂u‖
∂x‖

+ A∇2u‖ + F‖ + λ‖,1

(
∂u‖
∂x‖

)2
+ λ‖,2

(
∂u‖
∂x⊥,m

)2

+ λ‖,3

(
∂u⊥m

∂x⊥,m

)2
+ λ‖,4(∇⊥ × u⊥)2 + f‖, (3.12)

with u⊥ still follows (3.10). We now notice the similarities between the pair of equations (3.12) and
(3.10), and those which govern binary fluid turbulence [11], or magnetohydrodynamic (MHD)
turbulence [12]. For instance, the MHD equations for the velocity v and the magnetic field b are
given by

∂v
∂t

+ λ1v.∇v = −∇p
ρ

+ λ2
(∇ × b) × b

4πρ
+ ν∇2v + fv (3.13)

with ∇.v = 0 since we consider an incompressible fluid; and Ampère’s law for a conducting fluid
becomes

∂b
∂t

+ λ3v.∇b = λ3b.∇v + η∇2b + fb, (3.14)

which is to be supplemented by Maxwell’s equation ∇.b = 0. Here, λ1, λ2, λ3 are the nonlinear
coupling constants. A pair of equations for scalar c and velocity v having formally similar
structures as the MHD equations (3.13) and (3.14) govern the dynamics of binary fluid turbulence.
It is well known that both binary fluid and MHD turbulence display turbulence-like behaviour
for sufficiently strong external forces. In fact all the relevant dynamical variables v, b and c display
multiscaling [13,27]. With that analogy in mind, it may be concluded that both u‖ and u⊥ should
display turbulence-like behaviour. Thus, it is reasonable to expect that even with the couplings
with u⊥, u‖ should show turbulent-like behaviour for sufficiently large F‖. This in turn should
imply, via the coupling of u⊥ with u‖ in equation (2.5) that u⊥ should show turbulent behaviour
for sufficiently large pulling forces. Then again with the quenched disorders included, both u‖
and u⊥ should continue to display multiscaling that generalizes the scaling displayed by w‖ and
w⊥: Our specific suggestions include measurements of

Su‖ (r) = 〈[u‖(x + r, t) − u‖(x, t)]n〉 ∼ rζ
‖
n (3.15)

and
Su⊥ (r) = 〈[|u⊥(x + r, t) − u⊥(x, t)|n]〉 ∼ rζ

⊥
n , (3.16)

with ζ ‖
n and ζ⊥

n being nonlinear functions of n that are expected to depend on the distributions
of the quenched disorder θ‖ and θ⊥. These scaling behaviours connect the phenomenon of
fracture with hydrodynamic turbulence. Analytical enumeration of these exponents remain
elusive till today. We expect high-resolution numerical simulations should be able to measure
these exponents accurately. Any extension of the dimensional arguments of [18,19] becomes
difficult due to the presence of several nonlinearities having the same naive scaling dimensions.
Studying how these different nonlinear terms that are equally relevant in a scaling sense affect the
scaling exponents remains a challenging theoretical task. Nonetheless, we can make the following
general comments: (i) both the longitudinal and transverse components of the local displacements
in a fracture front should be multifractal or display multiscaling, akin to the velocity field in
hydrodynamic turbulence. (ii) We suggest experimental measurements of scaling by the structure
function of u‖ and u⊥ as defined above in (3.15) and (3.16). (iii) We expect the different nonlinear
coupling constant in the dynamical equations (2.4) and (2.5) to be functions of the microscopic
parameters that characterize different materials. Thus, controlled experiments with different
materials should help delineate different universality classes.

4. Summary and outlook
In this work, we have proposed several related hydrodynamic models for fracture surface
propagation in mode I or opening fracture front. We show that different specific limits of our
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model equations resemble well-known dynamical models with quenched disorder, e.g. quenched
EW equation or quenched KPZ equation. By drawing analogy with the hydrodynamic models for
a hosts of hydrodynamic phenomena ranging from passive scalar turbulence to binary fluid and
MHD turbulence, we argue that the spatial profile for the local distortion field u in a moving
fracture surface should display multiscaling or equivalently multifractal, akin to the velocity
profiles in hydrodynamic turbulence. Since the stress σij should have complex dependences on
the strain uij (possibly in a nonlinear manner for fracture), multifractality for u naturally indicates
multifractal behaviour for the local stress, although the multifractality of uij is not expected to
be simply related to the multifractality of σij. It will thus be interesting to study the scaling
behaviours of the correlation or structure functions of the stress as well and investigate how that
correlate with the observed universality of the fracture fronts.

Our model equations contain several phenomenological coupling parameters, e.g.
B‖, B̃‖, B⊥, B̃⊥, λ‖,1, λ‖,2, λ‖,3, λ‖,4, λ⊥,1, λ⊥,2, λ⊥,3, λ⊥,4, all of which are assumed to be free
parameters in our model equations. For actual samples, these phenomenological parameters
should depend upon the microscopic structure (e.g. the crystal structure) and microscopic
interactions between the crystalline material and the fracture forces, which may be studied
in terms of atomistic descriptions. Given the dependence of the macroscopic behaviour on
the coupling constants as elucidated above, we expect different materials and/or different
forcing mechanisms should yield macroscopically different fracture surface profiles. Detailed
quantitative studies, perturbative analytical or numerical, along those lines by using our model
equations should be welcome. Similar to fluid turbulence and other related systems, it is expected
that the multifractal behaviour of u should be independent of the precise numerical values of the
various parameters introduced above, which is the essence of universality here. It is however
possible that different dimensionless ratios of the model parameters actually classify the different
universality classes of fracture fronts, something we are unable to comment on from the analysis
above. More detailed calculations or numerical studies of the relevant models should be able to
shed light on this. In our analyses, we have neglected the possibilities of multiplicative quenched
disorders that are known to generate new universal properties close to some experimental
results [18,19,28,29]. It will be interesting to see how such disorders may affect our analyses above.
It will also be interesting to see how our analysis here can be extended to other modes of fracture
front, e.g. mode II and mode III.
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