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We review the developments of the statistical physics of fracture and earthquake over the last
four decades. We argue that major progress has been made in this ¯eld and that the key

concepts should now become integral part of the (under-) graduate level text books in condensed

matter physics. For arguing in favor of this, we compare the development (citations) with the
same for some other related topics in condensed matter, for which Nobel prizes have already

been awarded.
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1. Introduction

When we decided in 1981, working from Kolkata, to investigate the statistical

physics of fracture in disordered solids, our colleagues in statistical physics had not

been very kind to us. Studies on renormalization group theory of critical phenomena

were at their peak (Nobel prize to Keneth Wilson the following year), while the

mechanical engineering friends took pity on us as, though not complete, most were

assumed to be reasonably understood (from continuum mechanics discussed in

standard engineering text books).

Our motivation had been somewhat ambitious. Skal and Shklovskii1 in 1975 and

de Gennes2 the following year had already forwarded their node-link-blob model of

percolation clusters in disordered solids and analyzed the scaling behavior of their

(classical) linear responses like electrical conductivity or elasticity. We intended to

extend these studies for nonlinear (and irreversible) responses, like fuse, (dielectric)
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breakdown or fracture of disordered solids. We of course realized the major di±culty

of the problem to come from the extreme nature of the breakdown statistics: Unlike

the linear responses which get a®ected by all the defects (with self averaging sta-

tistics), the breakdown phenomena get nucleated around the \weakest" defect (in-

ducing extreme statistics).

Extending the study of the statistical physics of fracture to earthquake statistics

had been natural, though more involved and formidable. Detailed reviews of these

developments have been published in review papers and books, some of which have

been referred to in this account as well as in appropriate places. This account tries to

capture those developments since early 1980s, in which my colleagues and I have

been involved.

2. Short Story of the Past: From da Vinci to de Gennes and Mott

Fracture or breakdown studies might be the oldest physical science studies, which

still remain intriguing and very much alive. Leonardo da Vinci, more than 500 years

ago, observed that the tensile strengths of nominally identical specimens of iron wire

decrease with increasing length of the wires (see e.g., Ref. 3 for a recent discussion).

This is the manifestation of the extreme statistics of failure (bigger sample volume

can have larger defects due to cumulative °uctuations where failures nucleate and

induce lower strength of the sample). Similar observations were made by Galileo

Galilei more than 400 years ago: \From what has already been demonstrated, you

can plainly see the impossibility of increasing the size of structures to vast dimensions

either in art or in nature; likewise, the impossibility of building ships, palaces, or

temples of enormous size in such a way that their oars, yards, beams, iron-bolts, and,

in short, all their other parts will hold together; nor can nature produce trees of

extraordinary size because the branches would break down under their own weight;

so also it would be impossible to build up the bony structures of men, horses, or other

animals so as to hold together and perform their normal functions if these animals

were to be increased enormously in height; for this increase in height can be

accomplished only by employing a material which is harder and stronger than usual,

or by enlarging the size of the bones, thus changing their shape until the form and

appearance of the animals suggest a monstrosity".4

For the next 300 years, we did not see major developments in the context of such

problems. In 1921, Alan Arnold Gri±th of the Royal Aircraft Establishment (UK)

estimated how the crack nucleation stress for an otherwise pure material decreases

with the dimension of the single defect in the brittle limit (when the stress–strain

relationship remains linear until breaking; inducing the elastic energy density to

grow with the square of the stress).5 This energy balance theory for brittle crack

nucleation, obtained by equating the lost elastic energy (proportional to the crack

volume) with the surface energy (proportional to the crack surface area) of the

additional surface created by further opening up of the defect or micro-crack, led to a

precise estimation of the breaking strength or stress of the brittle solid, decreasing
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with inverse square root of the size or length of the size or length of the crack or defect

in the direction perpendicular to the stress. This led to a major development in the

study of the mechanics of brittle fracture.

Subsequently, in 1926, Frederick Thomas Pierce6 from the British Cotton In-

dustry Research Association in Manchester discovered what is known today as the

Fiber Bundle model, a fantastically rich and elegant model to capture the fracture

dynamics in composite materials. In this model, a large number of parallel Hooke-

springs or ¯bers are clamped between two horizontal platforms; the upper one helps

the hanging bundle while the load hangs from the lower one. The springs/¯bers are

assumed to have identical spring constants though their breaking strengths are as-

sumed to be di®erent. Once the load per ¯ber exceeds its own threshold, it fails and

this extra load is shared by the surviving ¯bers. If the platforms are rigid, there is no

local deformation around a failed ¯ber (and no stress concentration around the defect

created) and load is shared equally by all the surviving ¯bers. Obviously, such a

°uctuation-less model allows several features of its failure dynamics analytically. This

was ¯rst indicated7 byHenryDaniels from theWool Industries ResearchAssociation in

Leeds, in 1945. Study of thesemodels led to important developments, though they were

practically con¯ned to structural engineers for ¯tting the material failure data. Phy-

sicists did not notice, rather were unaware of, these models until late '80s or early '90s.

2.1. Fracture propagation

Nevill Mott8 of the Cambridge University, in 1948, extended the energy balance

method of Gri±th to include the crack propagation energy. This energy (kinetic

energy of propagation), along with the energy of the newly opened up surfaces,

should balance the elastic energy lost due to the crack propagation. The crack ve-

locity, which had been zero in Gri±th theory, starts growing with the length of the

crack and approaches the sound velocity in the solid corresponding to elastic mod-

ulus of the released elastic energy. This led to an extensive literature on the growth of

brittle cracks. Particularly, the morphology of the crack surfaces (out of plane) was

claimed to be universal and the crack dynamics was characterized as a dynamical

critical phenomena (see Ref. 9 for an early review). Much was studied later on the in-

plane growth of the crack, starting with the nice experiment from the Oslo group10

(see also Ref. 11).

2.2. Extreme statistics & distributions

It is natural to expect that for randomly disordered solids, the linear response to

stresses or ¯elds, like those given by the elastic moduli, or the electrical conductivity

(of random resistor networks), will have self-averaging property ensuring that the

(con¯gurationally) averaged elastic moduli and conductivity are de¯ned in the

thermodynamic limit (unlike in quantum cases; e.g., the nonself-averaging conduc-

tivity due to Anderson localization). It is obvious, however, that the same would not

be true for (even classical) nonlinear and irreversible breakdown properties of

Story of the Developments in Statistical Physics
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disordered solids. The stressed solid sample would survive (not break or fail) only if

all the microscopic defects (due to disorder) survive under the stress, indicating that

the fracture or breakdown strength of the solid would be determined by the weakest

or extremely vulnerable defect in it.

As indicated already, the above-mentioned studies following Gri±th-like energy

balance concept, had limitations on several counts. The assumption of brittleness of

the solid, or linearity in stress–strain relation up to the breaking point, had been one.

More serious had been the assumption of a single or dominant defect in the entire

solid volume. We discussed earlier (in the context of Gri±th law), the strength of a

solid with one isolated defect (or a dominant defect in an otherwise elastically

homogeneous solid, having nonoverlapping stress released regions of the other

microscopic defects) decreases with the defect size (inversely with the square-root of

the defect length in the direction perpendicular to the stress, in a brittle solid).

In presence of random generic defects in a solid, even brittle ones, the stress

released regions of the defects overlap and do not allow a straightforward generali-

zation. In a randomly disordered solid, therefore the probability of a larger defect due

to con¯gurational °uctuation increases with the volume of the sample. As the sur-

vival of the sample under stress means then survival of the weakest one in the sample,

with increasing volume (with nominally identical microscopic defect concentration)

the fracture or breakdown strength of the solid sample decreases.

Because of the possibility of the existence of bigger or weaker defects coming from

statistical °uctuations of overlapping neighboring micro-defects, the e®ective

strength of the solid decreases with increasing volume, even for nominally identical

composition and elastic behavior. This cumulative growth of micro-defect °uctua-

tions, as captured in the \distribution tail" argument of Ilya Lifshitz,12 induces

extreme statistics of the failure behavior of solids: the cumulative failure probability

of such a solid increases to unity as the stress grows at a ¯xed volume or as the

volume grows, at any ¯xed nonvanishing stress.

This nonself-averaging statistics of the breakdown of solids are well captured in

di®erent limits by the extreme statistics of Waloddi Weibull13 and Emil Gumbel.14

Microscopic derivations of these results came much later (see the next section) and

phenomenologically they were ¯tted to the celebrated extreme statistics of Weibull

and Gumbel (see Ref. 15, published in early 1985, and Ref. 16 for an approximate

microscopic theory, using percolation statistics, to derive these extreme statistics of

breakdown in solids, employing the °uctuation model sketched in the earlier para).

Obviously, equating the failure probability to unity, one would get from both the

distributions, fracture strength decreasing with the increasing volume of the sample.

In early winter of 1985, the author was visiting Oxford and gave a talk essentially

based on the report made in Ref. 15. Phil Duxbury, who just ¯nished his Ph.D., and

moved to the US for Post Doc, was among the audience. He immediately realized and

asked for a more precise argument to justify the decreasing failure strength with

sample volume. Soon, with Paul Leath and others, he made a beautiful argument

using the Lifshitz tail argument to estimate the dominant defect size and the
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consequent decrease in fracture strength with volume of the sample using the Gri±th

kind of argument to relate the decreasing strength of a solid with increasing defect

size.17

3. Statistical Physics of Fracture: Mandelbrot and Others

3.1. Fracture surface roughness

As discussed in Sec. 2.1, Mott initiated the study of fracture propagation in solids

and studied the propagation velocity (terminal value) in brittle solids. Such calcu-

lations assume that the excess of the released elastic energy over the crack surface

energy (taking °at surface structure) goes to the velocity dependent kinetic energy of

the crack-tip. However, the roughness of the crack surfaces were too prominent to

neglect, and there were even conjectures that crack propagation is more like a tur-

bulent motion (rather than streamline) and the fracture surface roughness captures

this frozen turbulence in crack propagation.

Benoit Mandelbrot and colleagues ¯rst analyzed18 in 1984 the observed roughness

of di®erent fractured surfaces and suggested a scale-free fractal behavior. They

measured the growth of out-of-plane °uctuation of the fractured surfaces for several

steel samples, by de¯ning the average °uctuation in the surface heights at di®erent

distances of separation on the fracture propagation plane, and found that on average

the °uctuations in heights grow with the distance of separation along the plane and

follow a power law (do not follow a scale-dependent functional form like exponential

or similar) with an universal value of the power (exponent). This observation of

universality, together with the later extensive ones, con¯rmed the existence of crit-

ical behavior and statistics in fracture and breakdown phenomena. This opened up

the investigations of critical phenomena in fracture and breakdown.

3.2. Fracture of disordered solids: Percolation models

When Purusattam Ray joined me in 1984 for his Ph.D. research, I found him bold

enough to take up the challenge of exploring the origin of extreme statistics of

fracture and breakdown in lattice statistical percolation models of disordered solids.

Though the nature of challenge was not realized immediately, the prospect of any

success in the limited period of Ph.D. research was not clear and looked rather

frightening! The idea was ¯rst to extend the percolation scaling theories of random

resistor networks or elastic networks of Skal–Shklovskii1 and de Gennes2 for linear

responses like conductivity and elastic moduli, to that for electrical (fuse or dielec-

tric) breakdown and fracture of percolating networks. The next step of (o®-lattice)

molecular dynamic simulation of such elastic networks appeared already a formi-

dable and distant goal, if at all achievable in any reasonable time frame with the

computing facilities available that time to us! However, the spirit of Purusattam was

indominable and that encouraged us a lot.

Story of the Developments in Statistical Physics
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As mentioned already, observation of Mandelbrot et al.18 encouraged the view

supporting the existence of critical phenomena in breakdown dynamics. We therefore

proceeded with the node–link–blob model of of the incipient critical percolation

cluster proposed by Skal-Shklovski and de Gennes (see e.g., Ref. 19) to estimate the

scaling behavior of the fracture stress, as the percolation threshold is approached, of

a ¯xed sized sample (large but ¯nite, to avoid the failure at vanishing stress, due to

the presence of the extremely week defects in the sample). Here, one could assume

that the vulnerable defect size would be given by the percolation correlation length,

while the elastic modulus would have the power law behavior already established in

the node–link–blob model.19 One could also utilize the fractal dimension of the

percolating backbone to ¯nd the scaling behavior of the surface energy density for

calculating the fracture stress in the Gri±th model.15,16,20 Indeed, Purusattam

achieved already the molecular dynamic simulation of Lennard–Jones systems of

randomly dilute solid initially on square lattice and with interaction cut-o® beyond a

distance of 1.6 lattice constant and up to a modest system size of 400 atoms.20

Though the general trend of decreasing fracture strength with increasing concen-

tration of initial lattice (site) dilution could be seen, results for bigger system sizes

were needed for any reasonable analysis.

The paper however attracted attention of several important groups. Dietrich

Stau®er, in particular, invited us to extend this molecular dynamic study of fracture

in disordered lattices near percolation threshold. Rede¯ning on triangular lattices (to

avoid the shear instabilities) and parallelizing the simulation program, we were

allowed to utilize for more than seven/eight months the Vector computing facilities

in Germany available to him that time (using remote log-in and job submissions, etc.,

through telephone from his o±ce in Cologne!). The results of this study,21 for system

size up to 4225 atoms, clearly demonstrated that, at ¯xed system size, the fracture

stress monotonically decreases with increasing dilution concentration and tends to

vanish at the percolation threshold. Also, at any ¯xed dilution concentration, the

fracture stress decreases with increasing system size (as the consideration of extreme

statistics would suggest). This con¯rmation was very intriguing and led to important

investigations later. It was clear, however, the o®-lattice molecular dynamic simu-

lations for disordered elastic networks, undergoing large local deformations for the

nucleation and propagation of fracture would soon become formidable as the system

size is increased further to check the scaling behaviors.

Hans Herrmann from Cologne and his collaborators immediately introduced22 the

random fuse networks, where the local failures or fuses of any lattice bond would

induce modi¯cations in the current distributions to keep the total current through

the network conserved. This would induce further fuse at the hot spots and the

breakdown would proceed. Since the lattice remains intact (no o®-lattice simulations

were required), the computations became much simpler and universalities in

breakdown phenomena could be immediately checked. When we were struggling so

hard with the molecular dynamic simulations to extract the universal features of the

breakdown, the fuse model22 proposed by de Arcangelis et al. clearly indicated a
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much softer way to proceed. The paper came to Stau®er for refereeing, and he made

important comments (including some on the earlier studies) on the manuscript,

which were accommodated in the published version. The model became an instant

success in this ¯eld of investigating critical behavior of breakdown. It was like the

success of the lattice-gas model over that of the extensive analytical and numerical

(including molecular dynamic simulation) studies in the 1940–60s to establish the

Ising universality class of the liquid–gas transition at the critical point. We were

indeed awestruck, though chose to continue our molecular dynamic studies of

fracture in randomly disordered solids for some more time! Later, my student

Subhrangshu Sekhar Manna studied the statistical di®erence, if any, between the

minimum gap (number of dielectric bonds) and the breakdown voltage (number of

broken bonds on the breakdown path) in the case of dielectric breakdown in the lattice

model of random conductor insulator mixtures.23 Among others, this study also trig-

gered several brilliant experimental investigations on the breakdown behavior of

random resistor networks. In particular, Lucien Gilles Benguigui of Technion per-

formed a series of experiments by employing light-emitting diodes for insulators in

random conducting networks under large voltage gradient. The failure path could be

made visible by the lighted diodes (e.g., Refs. 24 and 25, see also Ref. 16).

It is worth noting, however, that Purusattam and coauthor26 showed that per-

colation-like mode of breaking (rather than nucleation-like breaking) dominates as

one increases disorder. Recently, Shekhawat et al.27 claimed from their renormali-

zation group study that the avalanche behavior seen in the fuse model is unstable for

¯nite disorder and °ows to nucleating failure in large system size limit. A percolation-

like failure mode can be seen for very high disorder limit.28

Anyway, going back to late 1980s, on invitation from one of the editors, I wrote a

mini-review29 on these developments on fracture and breakdown in disordered solids.

The journal itself broke down and quickly disappeared! However, when David

Bergman (Tel Aviv) and David Stroud (Ohio) wrote their review on Physical

Properties of Macroscopically Inhomogeneous Media in Vol. 46 of the Solid State

Physics (Academic Press, 1992), they noted (in pp. 264–267) my mini-review as an

\authoritative" one and suggested for a detailed one in the same series. I came to

know of it much later, and then planned immediately and wrote together with

Benguigui, the book Statistical Physics of Fracture & Breakdown in Disordered

Systems16 which was published from Oxford University Press in 1997. Muhammad

Sahimi (Southern California) developed further these scaling studies for disordered

solids in a series of papers during this period and reviewed all these results in a major

compendium30 in 2003. Somehow, the choice of timing of the both these books was

somehow wrong. The major developments in the statistical physics of fracture in

Fiber Bundle models started getting settled a little later!

Story of the Developments in Statistical Physics
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3.3. Fiber bundle model & its statistics

As mentioned in the Introduction (Sec. 1), the ¯ber bundle model was introduced by

Pierce6 in 1926 as a model to understand the strength of composite materials. The

model is deceptively simple: the bundle consists of a macroscopically large number of

parallel hook springs of identical length and, for simplicity, each having identical

spring constants. They have however di®erent breaking stresses. All these springs

hang, say, from a rigid horizontal platform. The load hangs from a lower horizontal

platform, connected to the lower ends of the springs. This lower platform can be

assumed to be absolutely rigid when the load at any point of time is shared equally,

irrespective of how many ¯bers or springs have broken and where, by all the sur-

viving ¯bers (equal load-sharing model). The lower platform can also be assumed to

have ¯nite rigidity, so that local deformation of the platform occurs wherever springs

fail and the surviving neighbor ¯bers have to share larger fraction of that transferred

from the failed ¯ber. Extreme case is that of local load-sharing model, where load of

the failed spring or ¯ber is shared (usually equally) by the surviving nearest neighbor

¯bers. As may be guessed, the failure dynamics of the equal load-sharing model

is easier to formulate and analyze. In fact, the strength of such a solid was ¯rst

estimated by Daniels7 in 1945.

In spite the elegance of the model and many profound features, the model did not

catch the attention of physicists until late '80s in the last century, when Didier

Sornette noted some other attractive features of the equal load-sharing ¯ber bundle

model.31 Later, when Purusattam explained to us in early 1998 about their intriguing

mean-¯eld study in Gene Stanley's group in Boston on the possible ¯rst order

transition behavior of fractures in ¯ber bundle models,32 we were taken by surprise!

Starting a little earlier, when Srutarshi Pradhan joined me for his Ph.D. research,

we started to explore some simple yet nontrivial versions of the equal load-sharing

model. Though these versions were not of much practical interest, say, to the engi-

neers, they were expected to allow us making more precise formulation and analysis

of some universal features of its breaking dynamics. The simplest such ¯ber bundle

model assumed that the strength of the ¯bers in the bundle are uniformly distrib-

uted, starting from zero to a normalized maximum. It was then easy to set up a

simple recursive equation for the breaking dynamics: when the bundle is loaded with

an external load, all the ¯bers having strength up to that value of the load per ¯ber

break and surviving fraction would be given simply by the di®erence of this load per

¯ber from the strength of the strongest ¯ber (normalized to unity). However, due to

the breaking of these ¯bers, the load per surviving ¯ber increase exactly by the

inverse of the ¯ber fraction broken in the earlier step. This increased load per ¯ber

will induce failure of a further fraction of bonds, and the surviving fraction of ¯bers at

this stage will again be given by the di®erence of this (increased) load fraction per

¯ber from unity (normalized highest strength). This gives a simple nonlinear re-

cursion relation for the surviving fraction of ¯bers at any stage or time (as the

updated load per ¯ber at any time is given by the inverse of the surviving ¯ber

B. K. Chakrabarti
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fraction of the earlier step or time). If there is a ¯xed point of the relation at any

nonzero fraction of ¯bers, then the bundle does not fail under that load (initially

hanged from the lower platform of the bundle), and the runaway dynamics otherwise

indicates failure of the bundle. The model was straightforward and the calculations

(even the naturally emerging critical behavior of its dynamics) was so simple that we

¯rst thought, this must be known already! Srutarshi made an extensive search and

could not ¯nd. Just around that time, we received the acceptance of one of our paper

on the numerical studies on precursors of criticality in some Self-Organized-Criti-

cality Models in Physical Review E. We then made an odd request to the editor to

allow us to accommodate a brief section giving some calculations in a ¯ber bundle

model, where such precursors can also be seen analytically, and also added that in its

title! Surprisingly, the editor readily agreed and we got the ¯rst publication of this

model and its charmingly simple recursion relation capturing the breaking dynam-

ics.33 My student Pratip Bhattacharyya noted several intriguing features in the

structure of the recursion relations in the model and a series of studies were made in

the following years (see e.g., Ref. 34).

It was clearly demonstrated in a series of papers (starting with Ref. 33, see e.g.,

Ref. 35 for a review) that although there occurs a discontinuous jump in the value of

the surviving ¯ber fraction across the critical load, it does not signify any ¯rst-order

transition. This is because, the failure time, breakdown susceptibility (given by the

ratio of the fraction of failed ¯bers and marginal increase in the external load), etc.,

diverge at the critical load on the bundle (with mean ¯led like exponent values; due to

suppression of load °uctuations among the ¯bers in this equal load-sharing model).

The scaling forms of the relaxation time were later extensively studied in Ref. 36.

Unlike in the brittle fractures, where essentially a single (weakest) crack chooses

to nucleate and propagate throughout the sample (as in the ¯ber bundle model with

local load-sharing), incremental failures throughout the sample, giving rise to ava-

lanches, occur in such equal load-sharing ¯ber bundle models. With uniform distri-

bution of the ¯ber strengths, as discussed above, the power law exponent value for

the size distribution of the avalanches was already argued precisely by Per Hemmer

and Alex Hansen from Trondheim in their classic paper37 in 1992. This universal

value of the avalanche size distribution clearly ¯tted the critical nature of the

breakdown statistics in the equal load-sharing ¯ber bundle model (see e.g., Refs. 35

and 38).

When Srutarshi joined the Trondheim group for his post-doctoral work, they

together essentially established analytically the structures of the pre-failure and

post-failure dynamics of the equal load-sharing ¯ber bundle models (mostly discussed

in Ref. 35). Some of the intriguing signatures of dynamic precursors in the statistics

of an over-loaded ¯ber bundle were discovered later (see e.g., Ref. 38 for discussions

on them).

My student Amit Dutta, together with his student in the Indian Institute of

Technology, Kanpur, studied the ¯ber bundle model with discontinuities in the
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threshold distribution.39 They found universal critical exponents, except for the

avalanche sizes, which show nonuniversal statistics.

The ¯ber bundle model is a so-called toy model. Though it captures the essential

dynamical feature of load sharing following a failure and the subsequent dynamics, it

lacks many other realistic features of fracture in solids. It has therefore received more

than its fair share of criticism in its early physics-entry stages mainly from the

referees (who could eventually be overruled in most cases). However, it is worth

noting that it is the simplicity of the model that gives rise to immense °exibility and

hence could be applied to diverse topics such as power-grid networks, failures in ice

blocks, tra±c jams and of course fracture of disordered solids. Such advantages of

°exibility and potential for diverse applications were exploited in many cases. Par-

ticularly, in Ref. 40, a limiting strength for the system under uniform loading but

nonuniform load sharing was derived. Although not directly applicable to fracture, in

other systems such as power grids, nonuniform load sharing could be interesting.

The main di®erence between the ¯ber bundle model and other models of fracture

(e.g., fuse model) is that in ¯ber bundle model, the range of load redistribution is also

a parameter at hand. While the critical behavior in the equal load-sharing model

(mean ¯eld limit) was mostly studied, the local load-sharing rule,41,42 gives nucle-

ation-driven extreme statistics (a crossover occurs near the percolation threshold,

when these two rules are mixed; see discussions in Sec. 4.2 following the Ref. 56). In

Ref. 43, a full-phase diagram in range of redistribution and strength of disorder was

estimated and presented. This shows the various modes of failures observed in the

model over the years in di®erent parts of the phase diagram.

4. Statistical Physics of Earthquakes: Omori and Gutenberg–Richter

That earthquakes are large scale dynamical breaking phenomena, occurring due to

the stick-slip kind of failure at the Earth-crust interface with the slowly moving

tectonic plates, had been known for a long time. Two major power laws in the

statistics of earthquakes had clearly indicated the possibility of criticality in their

dynamics. Long ago in 1895, Fusakichi Omori of the Tokyo University suggested

that the rate of the aftershock counts decreases inversely with time elapsed since the

main shock at any epicentre.44 Utsu later modi¯ed that law saying that the rate of

aftershocks decrease inversely with a power of the time plus an adjustable constant

and the power is close to unity45 and varies in the range 0.7–1.5. Beno Gutenberg and

Charles Francis Richter, both from Caltech, in 1956 proposed a law saying that the

logarithm of the number of earthquakes of a particular magnitude or more, occurring

in a given region and time period decreases linearly with that particular magnitude.

Equating the log of the energy released in an earthquake linearly with its magnitude

(as often con¯rmed in underground nuclear blasts of known energy and the conse-

quent seismic magnitudes), one gets a power law relation between the earthquake

frequency and the energy released. More speci¯cally, the number of earthquake
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events releasing a particular amount of energy or more, in any area or period,

decreases with an inverse power of that particular energy.46

4.1. Burridge–Knopo® model and its statistics

As mentioned earlier, these scale-free form (power laws with universal values of the

exponents) of the earthquake statistics immediately indicated the possible role of

the underlying critical phenomena in the dynamics. One of the earliest and so far the

most successful model for earthquakes was proposed47 by Robert Burridge

(University of Cambridge) and Leon Knopo® (University of California, Los Angeles),

in 1967 (see also Ref. 48 for a detailed discussion on the model). One takes a chain of

a large number of wooden blocks connected by Hook springs placed on a rough

horizontal table. One end of the chain is free and the other end is pulled horizontally

by a motor. The rough surface contacts between the wooden blocks and the table top

would mimic di®erent portions of the Earth's crust and the tectonic plates. The plate

motion (in a reverse way) is captured essentially by the motion of the chain induced

by the motor pull. Though the motor pull would be uniform, the chain would have

stick-slip type motion; as the static friction force is higher than while in relative

motion (essential source of nonlinearity in the dynamics of the otherwise harmonic

chain), di®erent number of blocks will slip (di®erent amounts of elastic energy of the

inter-block springs will be released) at di®erent points of time. A motion picture of

the block positions would allow calculations of elastic energies of the inter-block

springs and thereby of the entire chain or \train" as the dynamics progresses from an

initial \charging" state to a steady one. The decrease in the number of bursts with

increase in the amount of energy released in those bursts clearly indicated a power

law, as suggested by the Gutenberg–Richter law.

James Langer (University of California, Santa Barbara) and collaborators, in a

series of papers published over a decade starting mid '80s, formulated a simple

version of the Burridge–Knopo® model using numerical tricks. Here, the equation of

motion of each block has a part of the forces coming from the relative displacements

of the neighboring blocks connected by Hook springs and a nonlinear part depending

on the relative velocity of the block compared to the table top. Extensive simulations

indeed showed the Gutenberg–Richter like behavior of the (elastic) energy burst

statistics. A summary of their results were published49 in a nice review in 1994.

Hikaru Kawamura of the Osaka University and Takahiro Hatano of the Tokyo

University and their collaborators made extensive simulation studies on a similar

numerical version of the Burridge–Knopo® model, with more realistic friction forces,

etc. It may be mentioned here that none of these model studies could reproduce the

Omori law for aftershocks. A review of those studies and of other statistical physics

models was published along with us in an extensive review on the statistical physics

of earthquake dynamics in 2012 in Reviews of Modern Physics.50

In the summer of 2012, Soumyajyoti, Purusattam and I were attending a fracture

meeting in the SINTEF Petroleum Research, Trondheim, organized by Srutarshi.
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One evening, during a discussion in the guest house there, Soumyajyoti and

Purusattam came to a novel computationally simpler Burridge–Knopo® type model,

where the block motions are discretized (by the lattice structure of the underlying

table) and more importantly, the di±cult-to-handle nonlinear friction force is

replaced by random (threshold type) pinning forces. Though, no analytic calculation

could be done, Soumyajyoti, on return to Kolkata, made extensive numerical

studies and the results showed extremely encouraging features in the avalanche

statistics: both the Gutenberg–Richter law as well as the Omori law were repro-

duced51 (see also Ref. 52).

4.2. Self-organized criticality: Bak and others

The power laws in the distribution functions observed in nature, like the above-

mentioned Omori or Gutenberg–Richter laws and the universal values of those

powers, clearly indicate the presence of some kind of self-similarities or scale-

independent features in such complex dynamics. Such self-similarities keep the power

invariant, like the fractal dimensionality of the e®ective space of dynamics. The

distribution function may, if we wish, be viewed as an e®ective \volume" in such a

self-similar (fractal) space (geometry) and it varies with the event size (viewed as

some e®ective inverse \length"). In any geometry, the power law relation between

the length and volume follows naturally. Changes in the length scale would result in

the change in the volume (in that embedding geometry) by a corresponding power

law, with the power given by the (fractal) dimension of the space or geometry. These

observations therefore clearly indicate the role of critical phenomena in earthquake

statistics. However, in the cases of liquid–gas or ferromagnet–paramagnet phase

transitions, where criticality occurs at speci¯c points, the systems need to be brought

to the critical point by tuning externally the (thermo-) dynamic parameters like

temperature, etc. Here, in the example of the earthquake we are considering, the

system seems to be self-tuned to criticality!

Per Bak (from Copenhagen) and collaborators proposed in 1987 a toy model,

called the sand pile model, which dynamically evolves towards such a self-organized

critical state and continues its dynamics there without any tuning.53 Imagine a

horizontally placed square lattice of ¯nite but large size (having boundaries), where

on any randomly chosen site one throws unit height (sand grain). The process of

throwing heights on randomly chosen sites of the lattice (adding sand to the pile goes

on at a constant but slow rate, much slower than the dynamics for local failure or

toppling discussed next). The dynamics of (local) failure is such that if the height at

any site becomes four at any time, the site topples (height becomes zero at that site)

and four of its neighbors receives one unit of height each. If that causes the height of

any of the neighbors to become equal to four, that site topples in the next time unit

and four of its neighbors (including the neighbor whose toppling caused its own)

receive a unit each. This happens everywhere, except for sites on boundary, where

the share of the height for the neighbor(s) beyond the boundary leaves the system
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(the total mass or height at any time leaving the system contributes to the size of the

avalanches). Needless to say, although the (input) addition of sand grains or heights

to the system occurs at a constant rate, the (output) rate of mass or height ejections

from the system occurs in bursts or through avalanches. Numerical studies show that

after some initial \charging" period, when the average height at any site reaches

about 2.1 (for square lattice and with 4 as the threshold height at any site, as in the

example above), the dynamics stabilize to a self-organized critical state where the

avalanche frequencies decrease with its mass or size following an universal power law

with an exponent value around 1.3 (independent of the lattice or threshold details).53

Several extensions of the model were proposed immediately afterwards to make the

model more realistic. However, they all led to the same universality class for the

critical behavior of their statistics.

Subhrangshu studied a novel stochastic version of the toppling dynamics in a

computationally e±cient version of the model, where the threshold height becomes 2

and after the site topples, two neighbors are chosen randomly of the four neighbors,

and they get one unit of height. If any of these two chosen neighboring sites had one

unit of height earlier, that site also topples in the next instant, and so on. I was visiting

Forschung Zentrum Julich in the summer of 1990, where Subhrangshu explained the

model and its results to me. Because of the stochastic nature of failed load (height)

sharing and the stable values of load or height at any point having binary values (0 or

1), computationally the model had beenmuchmore e±cient and the numerical results

seemed to suggest a new universality class.54 The model, now known as Manna model,

has since been extensively studied and a new (Manna) universality class for such

dynamical critical phenomena is more or less established. A more realistic version of

the model for earthquake was proposed by Olami et al.,55 where each time a toppling

occurs at any site, the entire load (force) is not shared by the neighbors, but a fraction

is assumed to be lost and dissipated locally. As mentioned earlier (see Sec. 3.5) early in

2012, Soumyajyoti discovered a brilliant version of a two-dimensional ¯ber bundle

model with local load sharing, which was shown to possess interesting self-organized

critical behavior. In the model, a horizontally held two-dimensional network of hook

springs, having random breaking thresholds, is pulled downwards from a central site

at a constant rate using a motor. As with time more and more ¯bers break, they

immediately join the pulling string leaving the springs beyond the periphery of the

central defect patch una®ected. All the springs on the growing periphery of the central

broken patch share equally the constantly growing central pulling force. This dy-

namic equilibrium has interesting critical statistics of failure56 (see also Ref. 52),

particularly because there was no externally imposed dissipation scale, but dissipation

came from the increase of the e®ective system size.

Such models therefore provide natural and generic ways of explaining the

Gutenberg–Richter type universal behavior of the released energy bursts or ava-

lanches in earthquakes. One may note, as such, these models cannot distinguish

between the main shock and aftershocks and therefore they do not capture at all any

Omori type behavior of the aftershocks.
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4.3. Two-fractal overlap model

As discussed in Sec. 3.1, the fracture surfaces have well-established self-similar ge-

ometries and resultant scaling properties. As earthquakes occur due to the slips of the

rough crust surface over the moving tectonic plate surface, one can model the

earthquake time series by counting the changes in the measure of the overlaps of two

fractal surfaces, as one of them moves with a ¯xed velocity over the other. One can

assume that the elastic energy stored during sticking period in the interfacial con-

tacts between the crust and creeping tectonic plate (measured by the overlaps) gets

released as slip occurs. The time series of these energy bursts are then given by the

time series of the overlaps between two fractals, as one moves with constant velocity

over the other. This maps the entire earthquake dynamics into a geometric model of

¯nding the two-fractal (mass) overlap time series. Analytical results for the simplest

two Cantor set overlap series showed not only the Gutenberg–Richter type law, but

also a built-in Omori law57 (see also Refs. 50 and 52 for details). Indeed, Srutarshi

started his research career with study of \two-fractal overlap model", as part of

his Post MSc project and later published a detailed numerical study on it with

Purusattam and others.58

5. Comparison of Activities with Those in Other Contemporary

Topics of Condensed Matter Physics

In this section, we wish to compare how the activities in the (statistical) physics of

fracture and earthquake compare with other branches of condensed matter physics

that are generally consideredmature (with being awardedNobel prizes).One objective

way to compare is to look at the number of papers mentioning the subject unambig-

uously in the topics of a published paper (ISI Web of Science data). We compare the

data from websites such as Google Scholar and ISI Web of Science (data compiled in

January 2017; see Figs. 1–4).
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Fig. 1. (a) The number of papers on graphene listed in ISI Web of Science around the year the Nobel prize

was awarded in graphene (2010); (b) The same is shown for the Google Scholar data.
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Fig. 2. (a) The number of papers on liquid crystal listed in ISI Web of Science around the year the Nobel

prize was awarded in liquid crystal (1991); (b) The same is shown for the Google Scholar data.
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Fig. 3. (a) The number of papers on physics of fracture and earthquakes listed in ISI Web of Science;

(b) The same is shown for the Google Scholar data.
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Fig. 4. (a) The number of papers on statistical physics of fracture and earthquakes listed in ISI Web of

Science; (b) The same is shown for the Google Scholar data.
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Figures 1 and 2 show the number of papers published each year on the topics

graphene and liquid crystals, respectively, around the years in which the Nobel prizes

were awarded. Both ISI Web of science data (published papers; topics search) and

Google Scholar data (term anywhere in published/unpublished documents in the

Internet). Graphene data are much higher than those for physics of graphene data.

Statistical physics of graphene is not an appropriate topic for search (unlike the rest

of the datasets shown in Figs 2–4). Still, the data are shown here, just to indicate the

scale of research activities in the ¯eld at the time of recognition for such a popular

and contemporary condensed matter physics topic. The physics and statistical

physics of liquid crystals are of course much more appropriate for comparison with

the corresponding data (from both ISI Web of Science and Google Scholar) for

fracture as well as earthquake, and are shown in Figs. 3 and 4.

As might be noted, the contemporary rates of publications (research activities) in

both physics and statistical physics of fracture and earthquake are quite comparable

and even higher than the respective rates for liquid crystals research activities around

the year of its recognition. The data for contemporary research activities in physics of

fracture and of earthquake are also comparable to those for physics of graphene

around the year of its recognition.

6. Perspectives and Concluding Remarks

The data shown in Figs. 1–4 clearly indicate that the progress in the studies on the

statistical physics of fracture and earthquake and their impact in the contemporary

literature has already been extremely signi¯cant. It is therefore unfortunate that the

standard condensed matter physics graduate courses and researches do not include

even minimal discussions on physics of fracture (introduce, say, the elegant and

versatile Fiber Bundle Model, used and explored extensively by engineers and phy-

sicists) and of earthquake (introduce, say, the Burridge–Knopo® model). It may be

mentioned that four recently published books, namely Earthquakes: Models, Sta-

tistics, Testable Forecasts,59 Desiccation Cracks & their Patterns,60 Fiber Bundle

Model: Modeling Failure in Materials38 and Statistical Physics of Fracture, Break-

down & Earthquakes,52 in the series Statistical Physics of Fracture and Breakdown by

Wiley-VCH and edited by Purusattam and me tried to capture all these develop-

ments in details. A suitably picked and chosen set of topics from these set of books

can be utilized to generate an appropriate graduate level course. We do believe such a

course would be very timely and has been long overdue.
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