Synthesis of Trisubstituted Oxazoles via Aryne Induced [2,3] Sigmatropic Rearrangement-Annulation Cascade

Rahul N. Gaykar,^a Shiksha Deswal,^a Avishek Guin,^a Subrata Bhattacharjee,^a and Akkattu T. Biju^{*,a}

^a Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India

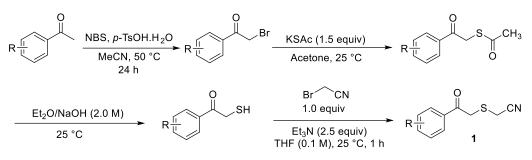
E-mail: atbiju@iisc.ac.in

Supporting Information

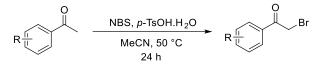
1. General Information	S02
2. General Procedure for the Synthesis of 2-Substituted Thio-acetonitriles	S03
3. General Procedure for the Preparation of β -Keto Amines	S05
4. General Procedure for the Optimization of the Reaction Conditions	S06
5. General Procedure for the Synthesis of Trisubstituted Oxazole Derivatives	S06
6. General Procedure for the Synthesis of 4-Aminotrisubstituted Oxazoles	S07
7. Competition Experiment	S08
8. X-ray Data of 3f	S09
9. Synthesis and Characterization of 2-Substituted Thio-acetonitriles	S11
10. Synthesis and Characterization of β -Keto Amines	S17
11. Synthesis and Characterization of Functionalized Oxazole Derivatives	S18
12. Product Functionalizations	S34
13. ¹ H and ¹³ C NMR Spectra of 2-Substituted Thio-acetonitriles and β -Keto Amines	S36
14. ¹ H and ¹³ C NMR Spectra of Functionalized Oxazole Derivatives	S52

1. General Information

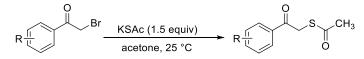
Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in flame-dried reaction vessels with Teflon screw caps. 25 °C Corresponds to the room temperature (rt) of the lab when the experiments were carried out. For reactions that required heating, preheated oil bath was used. THF was freshly purified by distillation over Na-benzophenone and was transferred under nitrogen. 18-Crown-6 was recrystallized from dry CH₃CN, and KF was dried by heating at 110 °C for 12 h and left to cool under nitrogen and stored in nitrogen filled glove-box. PhCN was used as received from the Spectrochem. All the acetophenone derivatives were purchased from commercial sources and were used without further purification. The 2-(trimethylsilyl)phenyl trifluoromethane sulfonate **2a** and the other symmetrical and unsymmetrical aryne precursors were synthesized following the literature procedure.¹


Analytical thin layer chromatography was performed on TLC Silica gel 60 F_{254} . Visualization was accomplished with short wave UV light or KMnO₄ staining solutions followed by heating. Flash chromatography was performed on silica gel (230-400 mesh) by standard techniques eluting with Pet. Ether-EtOAc solvent system.

All compounds were fully characterized. ¹H and ¹³C NMR spectra were recorded on a Bruker Ultrashield spectrometer in CDCl₃ as solvent. Chemical shifts (δ) are given in ppm. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_H = 7.26$ ppm, $\delta_C = 77.16$ ppm). Infrared (FT-IR) spectra were recorded on a Bruker alpha FT-IR spectrophotometer, v-max in cm⁻¹. HRMS (ESI) data were recorded on a Waters Xevo G2-XS Q-TOF instrument.

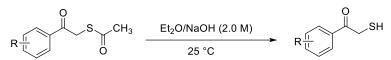

¹ (a) Sato, Y.; Tamura, T.; Kinbara, A; Morib, M. *Adv. Synth. Catal.* **2007**, *349*, 647. (b) Peña, D.; Cobas, A.; Pérez, D.; Guitián, E. *Synthesis*, **2002**, 1454.

2. General Procedure for the Synthesis of 2-Substituted Thio-acetonitriles


The 2-substituted thio-acetonitrile derivatives used for the present study were prepared from the commercially available acetophenone derivatives following the known four-step procedure.²⁻⁵

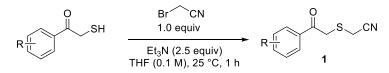
Procedure for Synthesis of a-Bromoacetophenones²

α-Bromoacetophenones were synthesized following the literature procedure (**CAUTION**: α-Bromoacetophenones are powerful lachrymators).² To a solution of the acetophenone derivative (9.7 mmol, 1 equiv) in 25 mL of CH₃CN were added NBS (1.7 g, 9.7 mmol, 1.0 equiv) and *p*-TsOH.H₂O (1.8 g, 9.7 mmol, 1.0 equiv). The reaction mixture was stirred at 50 °C for 24 h in a pre-heated oil bath. Then, the solvent was evaporated under reduced pressure. A saturated solution of NaHCO₃ (30 mL) was then added, and the solution was extracted with CH₂Cl₂ (3×30 mL). The organic layers were combined and dried over Na₂SO₄. The solvent was evaporated, and the residue was subjected to column chromatography (silica gel) using hexanes/CH₂Cl₂ (from 9:1 to 4:1) as eluent. These compounds exhibited physical and spectral data in agreement with those reported. *General Procedure for the Synthesis of Thioacetate Derivatives*³


All thioacetate derivatives were synthesized following the modified literature procedure.³ To the bromide (10 mmol) in acetone (100 mL) was added *S*-potassium thioacetate (1.5 equiv) at

² Borzecka, W.; Lavandera, I.; Gotor, V. J. Org. Chem. 2013, 78, 7312.

³ Miao, P.; Li, R.; Lin, X.; Rao, L.; Sun, Z. Green Chem. 2021, 23, 1638.

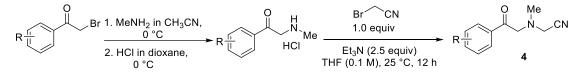

room temperature. The reaction progress was monitored by TLC (1-3 h). After consumption of starting material, the reaction mixture was filtered, and the solvent was removed under vacuum. The resulting residue was distributed between water (100 mL) and CH_2Cl_2 (300 mL), and the combined organic layer was washed with brine, dried over Na_2SO_4 , and concentrated in vacuo to give the thioacetate. The crude product was sufficiently pure and directly used for the next step without further purification.

General Procedure for Synthesis of 2-Mercaptoacetophenones⁴

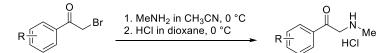
The 2-mercaptoacetophenones were synthesized following the modified literature procedure.⁴ To the solution of thioacetate (9 mmol, 1 equiv) in Et₂O (9 mL, 1M) was added 2M aqueous solution of NaOH (9 mL) and the resulting biphasic mixture was stirred vigorously at room temperature. The progress of the reaction was monitored by TLC (1-5 h). Next, the aqueous phase was separated, acidified with 1M HCl and extracted with CH₂Cl₂ (2×15 mL). The organic phase was washed with distilled water (2×10 mL), dried over Na₂SO₄, and concentrated in vacuo to afford the crude product. Pure compound was isolated by flash chromatography (eluent: Pet. ether /EtOAc 10:1). These compounds exhibited physical and spectral data in agreement with those reported.

General Procedure for Synthesis of 2-Substituted Thio-acetonitrile Derivatives⁵

The 2-substituted thio-acetonitrile derivatives were synthesized following the modified literature procedure.⁵ 2-Mercaptoacetophenones (4.94 mmol, 1.0 equiv) were dissolved in THF (0.1 M) under nitrogen atmosphere, then bromo acetonitrile (1.0 equiv) was added at 25 °C under nitrogen atmosphere. To the above stirring solution NEt₃ (2.5 equiv) was added. Then the reaction mixture was allowed to stir at 25 °C for 1 h. After completion of reaction time, the solvent was

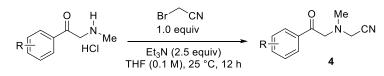

⁴ Przydacz, A.; Kowalczyk, R.; Albrecht, Ł. Org. Biomol. Chem. 2017, 15, 9566.

⁵ Sachse, F.; Gebauer, K.; Schneider, C. Eur. J. Org. Chem. 2021, 2021, 64.


evaporated and crude residue pre-adsorbed on silica gel and purified by flash column chromatography on silica gel (Pet. ether/EtOAc = 85/15 as the eluent) to afford the corresponding thioether derivative **1**.

3. General Procedure for the Preparation of the β -Keto Amines

The β -keto amines used for the present study have been prepared from commercially available acetophenone derivatives following the two-step procedure.⁶



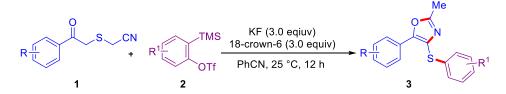
General Procedure for Synthesis of a-Secondary Amino Ketone Hydrochlorides⁶

The α -secondary amino ketone hydrochlorides were synthesized following the modified literature procedure.⁶ A solution of 2-bromoacetophenone (2 g, 10 mmol) in CH₃CN (4 mL) was added to a solution of methylamine (33% solution in absolute alcohol, 2.5 mL, 25 mmol, 2.5 equiv) in CH₃CN (3 mL) at 0 °C. The solution was stirred at 0 °C for 5 min (or monitored by TLC until complete conversion). Dry diethyl ether (100 mL) was added and the resulting precipitates were filtered. The solution was cooled to 0 °C and HCl (4 M in dioxane; 2.0 mL) was slowly added dropwise. The formed precipitate was filtered and purified by trituration with acetone.

General Procedure for Synthesis of β -Keto Amines

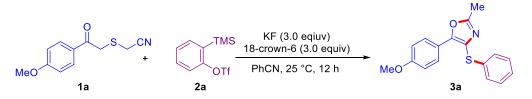
To a solution of α -secondary amino ketone hydrochlorides (2.3 mmol, 1.0 equiv) in THF (0.1 M) under nitrogen atmosphere was added NEt₃ (2.5 equiv) at 25 °C. Then reaction mixture was stirred for 1h at room temperature. To the above stirring solution was added bromo acetonitrile

⁶ Shang, G.; Liu, D.; Allen, S. E.; Yang, Q.; Zhang, X. Chem. - Eur. J. 2007, 13, 7780.

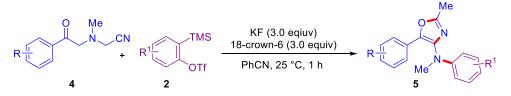

(1.0 equiv). Then the reaction mixture was allowed to stir at 25 °C for 12 h. After completion of the reaction, the solvent was evaporated and crude residue was pre-adsorbed on silica gel and purified by flash column chromatography on silica gel (Pet. ether/EtOAc = 80/20 as the eluent) to afford the corresponding thioether derivative.

4. General Procedure for the Optimization of the Reaction Conditions

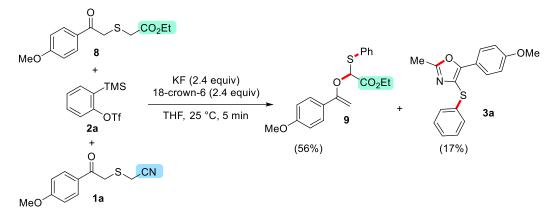
To a flame-dried screw-capped test tube equipped with a magnetic stir bar was added the 18-crown-6 (0.198 g, 0.75 mmol), KF (0.044 g, 0.75 mmol) inside the glove-box. The mixture was dissolved in 2.0 mL of CH₃CN outside the glove-box under nitrogen atmosphere. To this mixture was added the 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1a** (0.055 g, 0.25 mmol) and 2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2a** (0.112 g, 0.091 μ L, 0.375 mmol) subsequently. Then the reaction mixture was stirred at 25 °C for 12. The reaction mixture was diluted with CH₂Cl₂ (2.0 mL) and filtered through a short pad of silica gel and eluted with CH₂Cl₂ (10.0 mL). The solvent was evaporated to obtain the crude product whose yield was determined by ¹H NMR analysis using CH₂Br₂ (18 μ L, 0.25 mmol) as the internal standard.


5. General Procedure for the Synthesis of Trisubstituted Oxazole Derivatives

To a flame-dried screw-capped test tube equipped with a magnetic stir bar was added the 18-crown-6 (0.198 g, 0.75 mmol), KF (0.044 g, 0.75 mmol) inside the glove-box. The mixture was dissolved in 2.0 mL of PhCN outside the glove-box under nitrogen atmosphere. To this mixture was added the thioether 1 (0.25 mmol) and aryne precursor 2 (0.375 mmol) subsequently. Then stirring was started and the reaction mixture was stirred at 25 °C for 12 h. After 12 h, the reaction was stopped, the solvent was evaporated, and the crude residue was purified by flash column

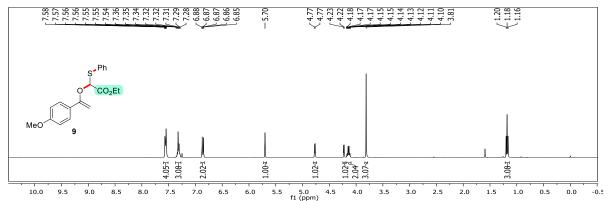

chromatography on silica gel (using Pet.ether-EtOAc as the eluent) to afford the corresponding oxazole derivatives **3**.

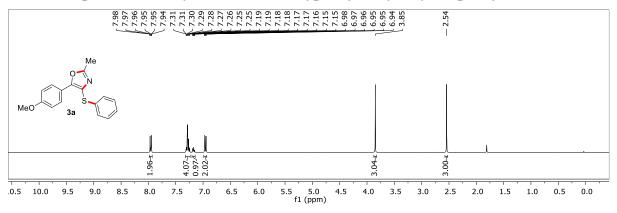
Procedure for the Synthesis of 3a in 2.0 mmol Scale


To a flame-dried screw-capped test tube equipped with a magnetic stir bar was added the 18-crown-6 (1.6 g, 6.0 mmol), KF (0.348 g, 6.0 mmol) inside the glove-box. The mixture was dissolved in 16.0 mL of PhCN outside the glove-box under nitrogen atmosphere. To this mixture was added the 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1a** (0.443 g, 2.0 mmol) and 2- (trimethylsilyl)phenyl trifluoromethanesulfonate **2a** (0.895 g, 728 μ L, 3.0 mmol) subsequently. Then stirring was started and the reaction mixture was stirred at 25 °C for 12 h. Subsequently, the reaction was stopped, the solvent was evaporated and the crude residue was purified by flash column chromatography (Pet. ether/EtOAc = 90/10) on silica gel to afford the 5-(4-methoxyphenyl)-2-methyl-4-(phenylthio)oxazole **3a** as a colorless oil (0.470 g, 79% yield).

6. General Procedure for the Synthesis of 4-Aminotrisubstituted Oxazoles

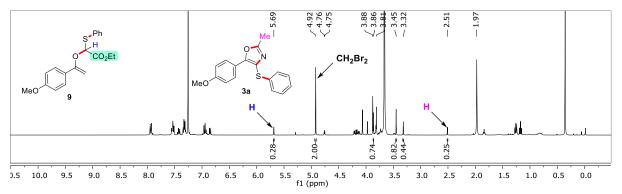
To a flame-dried screw-capped test tube equipped with a magnetic stir bar was added the 18-crown-6 (0.198 g, 0.75 mmol), KF (0.044 g, 0.75 mmol) inside the glove-box. The mixture was dissolved in 2.0 mL of PhCN outside the glove-box under nitrogen atmosphere. To this mixture was added the β -ketoamine **4** (0.25 mmol) and aryne precursor **2** (0.375 mmol) subsequently. Then stirring was started and the reaction mixture was stirred at 25 °C for 1 h. After completion of 1 h the reaction was stopped, the solvent was evaporated, and the crude residue was purified by flash column chromatography on silica gel (using Pet. ether-EtOAc as the eluent) to afford the corresponding oxazole derivatives **5**.


7. Competition Experiment



Competition between oxa-[2,3] and [2,3]-sigmatropic rearrangement

To a flame-dried screw-capped test tube equipped with a magnetic stir bar was added the 18-crown-6 (0.158 g, 0.6 mmol), KF (0.035 g, 0.6 mmol) inside the glove-box. The mixture was dissolved in 1.0 mL of THF outside the glove-box under nitrogen. To this mixture was added ethyl 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)acetate 8 (0.034 g, 0.125 mmol), 2-((2-(4mmol) methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1**a (0.028)0.125 and g, 2-(trimethylsilyl)phenyl trifluoromethane sulfonate 2a (0.090 g, 73 µL, 0.3 mmol). Then the reaction mixture was stirred at 25 °C for 5 min. After completion of indicated time, the reaction mixture was diluted with CH₂Cl₂ (2.0 mL) and filtered through a short pad of silica gel and eluted with CH₂Cl₂ (15.0 mL). The solvent was evaporated to obtain the crude product, which was analyzed using ¹H NMR using CH₂Br₂ (18 µL, 0.25 mmol) as the internal standard. ¹H NMR analysis confirmed the formation of two products ethyl 2-((1-(4-methoxyphenyl)vinyl)oxy)-2-(phenylthio)acetate 9 (56% yield) and 5-(4-methoxyphenyl)-2-methyl-4-(phenylthio)oxazole 3a (17% yield).



¹H-NMR Spectrum of ethyl 2-((1-(4-methoxyphenyl)vinyl)oxy)-2-(phenylthio)acetate (3a)

¹H-NMR of Crude Reaction Mixture

Form the above competition experiment, it is likely that the oxa-[2,3] sigmatropic rearrangement proceed approximately three times faster than the [2,3] sigmatropic rearrangement-annulation cascade.

8. X-ray Data of 3f

Single crystal of **3f** (recrystallized from CDCl₃ at 25 °C; a sample of chromatographically pure **3f** was dissolved in CDCl₃ and was allowed to evaporate slowly at 25 °C) was mounted and the diffraction data was collected at 100 K on a Bruker SMART APEX CCD diffractometer using SMART/SAINT software. Intensity data were collected using graphite-monochromatized Mo-Ka radiation (71.073 pm). The structure was solved by direct methods using the ShelXS and refined with ShelXS.⁷ Empirical absorption corrections were applied with SADABS.⁸ All Non-hydrogen atoms were refined anisotropically and hydrogen atoms were included in geometric positions.

⁷ SHELXS, G.M. Sheldrick, Acta Cryst. 2008, A64, 112.

⁸ Sheldrick, G. M. SADABS, University of Göttingen, Göttingen, Germany, **1999**.

Structure was drawn using Olex-2 and ORTEP-3. The crystallographic refinement parameters are given below:

ole S1 Ci	rystal data and structure refinement for 3f	
	CCDC	2111261
	Identification code	3f
	Empirical formula	C ₁₆ H ₁₃ NOS
	Formula weight	267.33
	Temperature/K	100(2)
	Crystal system	monoclinic
	Space group	P 2 ₁ /c
	a/Å	13.4701(2)
	b/Å	5.6180(10)
	c/Å	17.8943(3)
	$\alpha/^{\circ}$	90
	$\beta/^{\circ}$	104.498(10)
	$\gamma/^{\circ}$	90
	Volume/Å ³	1311.03(4)
	Z	4
	$ ho_{calc} mg/mm^3$	1.354
	m/mm ⁻¹	0.237
	F(000)	560.0
	2Θ range for data collection	1.561 to 30.632°
	Index ranges	$-19 \le h \le 19, -8 \le k \le 8, -25 \le l \le 25$
	Reflections collected	28641
	Independent reflections	4026[R(int) = 0.0313]
	Data/restraints/parameters	4026/0/172
	Goodness-of-fit on F ²	1.039
	Final R indexes [I>=2 σ (I)]	$R_1 = 0.0387, wR_2 = 0.1103$
	Final R indexes [all data]	$R_1 = 0.0451, wR_2 = 0.1152$
	Largest diff. peak/hole / e Å ⁻³	0.72/-0.76

Tabla S1	Crystal	data and	structuro	refinement	for 3f
I able SI	Urystal	uata anu	structure	rennement	10F 31

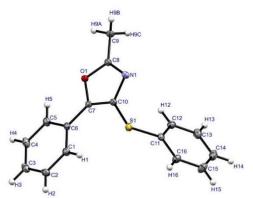
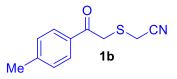


Figure S1. Crystal Structure of 3f (Thermal ellipsoids are shown with 50% probability)

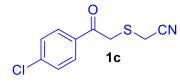

9. Synthesis and Characterization of 2-Substituted Thio-acetonitriles

2-((2-(4-Methoxyphenyl)-2-oxoethyl)thio)acetonitrile (1a)

Following the general procedure, treatment of 2-mercapto-1-(4methoxyphenyl)ethan-1-one (0.9 g, 4.94 mmol), 2-bromo acetonitrile (0.59 g, 0.34 mL, 4.94 mmol) and Et₃N (1.25 g, 1.7 mL, 12.34 mmol) in THF (0.1 M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1a** as yellow solid (0.95 g, 87 % yield). *R*f (Pet. ether /EtOAc = 80/20): 0.25; Melting point: 65-67 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.9 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 2H), 4.07 (s, 2H), 3.88 (s, 3H), 3.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.9, 164.3, 131.1, 128.0, 116.2, 114.2, 55.7, 37.1, 17.3. HRMS

(**ESI**) m/z: [M+H]⁺ Calcd for C₁₁H₁₂NO₂S 222.0583; Found: 222.0585. **FTIR** (**cm**⁻¹) 2938, 2243, 1680, 1598, 1511, 1331, 1170, 1028.

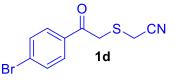
2-((2-Oxo-2-(p-tolyl)ethyl)thio)acetonitrile (1b)



Following the known procedure, treatment of 2-mercapto-1-(p-tolyl)ethan-1-one (1.0 g, 6.01 mmol), 2-bromo acetonitrile (0.72 g, 0.42 mL, 6.01 mmol) and Et₃N (1.5 g, 2.1 mL, 15.03 mmol) in THF

(0.1 M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 2-((2-oxo-2-(*p*-tolyl)ethyl)thio)acetonitrile **1b** as yellow solid (1.1 g, 89 % yield).

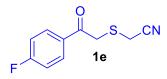
*R*_f (Pet. ether /EtOAc = 80/20): 0.30; Melting point: 77-79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.09 (s, 2H), 3.45 (s, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.0, 145.2, 132.6, 129.7, 128.8, 116.2, 37.3, 21.9, 17.3. HRMS (ESI) m/z: $[M+Na]^+$ Calcd for C₁₁H₁₁NNaOS 228.0454; Found: 228.0455. FTIR (cm⁻¹) 2944, 2240, 1685, 1606, 1369, 1202, 904.


2-((2-(4-chlorophenyl)-2-oxoethyl)thio)acetonitrile (1c)

Following the general procedure, treatment of 1-(4-chlorophenyl)-2mercaptoethan-1-one (0.560 g, 3.0 mmol), 2-bromo acetonitrile (0.36 g, 3.0 mmol) and Et₃N (0.759 g, 7.5 mmol) in THF (0.1 M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 2-((2-(4-chlorophenyl)-2-oxoethyl)thio) acetonitrile **1c** as yellow oil (0.542 g, 88% yield).

*R*_f (Pet. ether /EtOAc = 80/20): 0.27; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 4.09 (s, 2H), 3.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 140.8, 133.5, 130.1, 129.4, 115.9, 37.2, 17.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₀H₈ClNNaOS 247.9907; Found: 247.9912. FTIR (cm⁻¹) 3593, 2920, 2364, 2340, 2247, 1670, 1579.

2-((2-(4-Bromophenyl)-2-oxoethyl)thio)acetonitrile (1d)

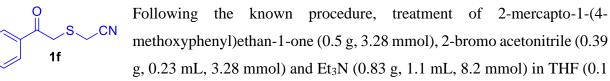


Following the general procedure, treatment of 1-(4-bromophenyl)-2mercaptoethan-1-one (0.693 g, 3.0 mmol), 2-bromo acetonitrile (0.36 g, 3.0 mmol) and Et₃N (0.759 g, 7.5 mmol) in THF (0.1 M) at ambient

temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 82/18) of the crude reaction mixture using silica gel afforded 2-((2-(4-bromophenyl)-2-oxoethyl)thio) acetonitrile **1d** as yellow solid (0.737 g, 91 % yield).

*R*_f(Pet. ether /EtOAc = 80/20): 0.27; Melting point: 83-85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.7 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 4.07 (s, 2H), 3.44 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.3, 133.7, 132.4, 130.2, 129.5, 115.9, 37.3, 17.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₉BrNOS 269.9583; Found: 269.9584. FTIR (cm⁻¹) 3581, 2919, 2364, 2332, 2243, 1667, 1585, 1484.

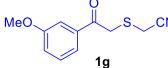
2-((2-(4-Fluorophenyl)-2-oxoethyl)thio)acetonitrile (1e)


Following the known procedure, treatment of 1-(4-fluorophenyl)-2mercaptoethan-1-one (1.5 g, 8.8 mmol), 2-bromo acetonitrile (1.06 g, 0.6 mL, 8.8 mmol) and Et₃N (2.2 g, 3.0 mL, 22.0 mmol) in THF (0.1

M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 2-((2-(4-fluorophenyl)-2-oxoethyl) thio)acetonitrile **1e** as yellow solid (1.49 g, 83 % yield).

*R*_f (Pet. ether /EtOAc = 80/20): 0.30; Melting point: 63-65 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.97 (m, 2H), 7.18-7.13 (m, 2H), 4.09 (s, 2H), 3.44 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 166.3 (d, *J* = 256.7 Hz), 131.4, 131.38, (d, *J* = 9.5 Hz) 116.2 (d, *J* = 21.9 Hz), 37.3, 17.2.

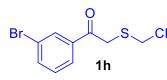
HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₉FNOS 210.0383; Found: 210.0389. **FTIR (cm⁻¹)** 2975, 2245, 1676, 1596, 1506, 1413, 1280, 1158.


2-((2-Oxo-2-phenylethyl)thio)acetonitrile (1f)⁵

M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 2-((2-oxo-2-phenylethyl)thio)acetonitrile **1f** as yellow solid (0.52 g, 83 % yield).

*R*_f (Pet. ether /EtOAc = 80/20): 0.25; Melting point: 43-45 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.95 (m, 2H), 7.64-7.60 (m, 1H), 7.51-7.48 (m, 2H), 4.12 (s, 2H), 3.45 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.3, 135.0, 134.1, 129.0, 128.7, 116.1, 37.4, 17.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₀NOS 192.0478; Found: 192.0480. FTIR (cm⁻¹) 2972, 2244, 1689, 1598, 1448, 1279, 1205, 922.

2-((2-(3-Methoxyphenyl)-2-oxoethyl)thio)acetonitrile (1g)

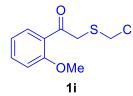


Following the general procedure, treatment of 2-mercapto-1-(3

-methoxyphenyl)ethan-1-one (0.95 g, 5.2 mmol), 2-bromo

1g acetonitrile (0.62 g, 0.36 mL, 5.2 mmol) and Et₃N (1.32 g, 1.82 mL, 13.0 mmol) in THF (0.1 M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 2-((2-(3-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1g** as light yellow solid (1.02 g, 89 % yield). *R*_f (Pet. ether /EtOAc = 80/20): 0.25; Melting point: 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.47 (m, 2H), 7.42-7.37 (m, 1H), 7.16-7.14 (m, 1H), 4.10-4.09 (m, 2H), 3.86-3.85 (m, 3H), 3.45-3.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 193.2, 160.1, 136.3, 130.0, 121.2, 120.6, 120.6, 116.1, 112.9, 55.6, 37.5, 37.4, 17.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₂NO₂S 222.0583; Found: 222.0588. FTIR (cm⁻¹) 3075, 2919, 2364, 2244, 1666, 1587, 1428, 1159.

2-((2-(3-Bromophenyl)-2-oxoethyl)thio)acetonitrile (1h)

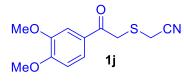


Following the general procedure, treatment of 1-(3-bromophenyl)-2-mercaptoethan-1-one (0.693 g, 3.0 mmol), 2-bromo acetonitrile (0.36 g, 3.0 mmol) and Et₃N (0.759 g, 7.5 mmol) in THF (0.1 M) at

ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 82/18) of the crude reaction mixture using silica gel afforded 2-((2-(3-bromophenyl)-2-oxoethyl)thio)acetonitrile **1h** as yellow solid (0.721 g, 89 % yield).

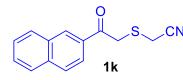
*R*_f (Pet. ether /EtOAc = 80/20): 0.27; Melting point: 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 1.4 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.67 (d, *J* = 8.3 Hz, 1H), 7.35-7.31 (m, 1H), 4.07 (s, 2H), 3.41 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 136.9, 136.7, 131.6, 130.6, 127.2, 123.3, 115.9, 37.3, 17.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₉BrNOS 269.9583; Found: 269.9585. FTIR (cm⁻¹) 3581, 2920, 2364, 2332, 2245, 1668, 1561, 1470.

2-((2-(2-Methoxyphenyl)-2-oxoethyl)thio)acetonitrile (1i)



Following the general procedure, treatment of 2-mercapto-1-(2-methoxyphenyl)ethan-1-one (0.88 g, 4.9 mmol), 2-bromo acetonitrile (0.59 g, 0.34 mL, 4.9 mmol) and Et_3N (1.24 g, 1.7 mL, 12.25 mmol) in THF (0.1 M) at ambient temperature for 1 h followed by flash column

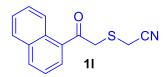
chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 2-((2-(2-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1i** as light yellow sticky solid (0.85 g, 78 % yield).


*R*_f (Pet. ether /EtOAc = 80/20): 0.25; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J_1 = 6.7 Hz, J_2 = 1.6 Hz, 1H), 7.52-7.48 (m, 1H), 7.02-6.96 (m, 2H), 4.11 (s, 2H), 3.90 (s, 3H), 3.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 194.4, 158.9, 134.9, 131.2, 125.2, 120.9, 116.4, 111.7, 55.7, 42.3, 16.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₂NO₂S 222.0583; Found: 222.0591. FTIR (cm⁻¹) 3074, 2919, 2363, 1663, 1594, 1435, 1153.

2-((2-(3,4-Dimethoxyphenyl)-2-oxoethyl)thio)acetonitrile (1j)

Following the general procedure, treatment of 1-(3,4dimethoxyphenyl)-2-mercaptoethan-1-one (0.3 g, 1.4 mmol), 2bromo acetonitrile (0.168 g, 0.1 mL, 1.4 mmol) and Et₃N (0.354 g, 0.49 mL, 3.5 mmol) in THF (0.1 M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 75/25) of the crude reaction mixture using silica gel afforded 2-((2-(3,4-dimethoxyphenyl)-2-oxoethyl)thio)acetonitrile 1j as white solid (0.28 g, 80 % yield). $R_{\rm f}$ (Pet. ether /EtOAc = 80/20): 0.20; Melting point: 114-116 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.5 Hz, 1H), 7.52 (s, 1H), 6.91 (d, J = 8.6 Hz, 1H), 4.08 (s, 2H), 3.96 (s, 3H), 3.94 (s, 3H), 3 3H), 3.46 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 192.1, 154.3, 149.5, 128.2, 123.6, 116.2, 110.6, 110.3, 56.3, 56.2, 36.9, 17.4. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₂H₁₄NO₃S 252.0689; Found: 252.0691. FTIR (cm⁻¹) 2970, 2243, 1665, 1588, 1418, 1270, 1153.

2-((2-(Naphthalen-2-yl)-2-oxoethyl)thio)acetonitrile (1k)



Following the general procedure, treatment of 2-mercapto-1-(naphthalen-2-yl)ethan-1-one (0.693 g, 3.0 mmol), 2-bromo acetonitrile (0.36 g, 3.0 mmol) and Et₃N (0.759 g, 7.5 mmol) in THF (0.1 M) at ambient temperature for 1 h followed by flash column chromatography

(Pet.ether/EtOAc = 92/08) of the crude reaction mixture using silica gel afforded 2-((2-(naphthalen-2-yl)-2-oxoethyl)thio)acetonitrile 1k as yellow solid (0.492 g, 81 % yield).

 $R_{\rm f}$ (Pet. ether /EtOAc = 80/20): 0.29; Melting point: 61-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.00-7.95 (m, 2H), 7.91-7.86 (m, 2H), 7.64-7.55 (m, 2H), 4.24 (s, 2H), 3.48 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) § 193.3, 135.9, 132.4, 132.3, 130.7, 129.7, 129.1, 128.9, 127.9, 127.2, 123.9, 116.2, 37.5, 17.3. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₄H₁₂NOS 242.0634; Found: 242.0641. FTIR (cm⁻¹) 3058, 2693, 2924, 2851, 2365, 2244, 1682, 1625.

2-((2-(Naphthalen-1-yl)-2-oxoethyl)thio)acetonitrile (11)

Following the general procedure, treatment of 2-mercapto-1-(naphthalen-1-yl)ethan-1-one (0.45 g, 2.22 mmol), 2-bromo acetonitrile (0.27 g, 0.15 mL, 2.22 mmol) and Et₃N (0.56 g, 0.77 mL, 5.55 mmol) in

THF (0.1 M) at ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 92/08) of the crude reaction mixture using silica gel afforded 2-((2-(naphthalen-1-yl)-2-oxoethyl)thio)acetonitrile **11** as yellow oil (0.43 g, 80 % yield).

 $R_{\rm f}$ (Pet. ether /EtOAc = 80/20): 0.29; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.95-7.89 (m, 2H), 7.65-7.50 (m, 3H), 4.21 (s, 2H), 3.52 (s, 2H). ¹³C **NMR** (**100 MHz**, **CDCl**₃) δ 196.9, 134.1, 133.4, 130.5, 129.8, 128.8, 128.7, 128.7, 126.9, 125.6, 124.4, 116.2, 40.2, 17.4. **HRMS** (**ESI**) m/z: [M+Na]⁺ Calcd for C₁₄H₁₁NaNOS 264.0454; Found: 264.0461. **FTIR** (**cm**⁻¹) 2920, 2364, 2245, 1647, 1511, 1461, 1146.

2-((2-Oxo-2-(thiophen-2-yl)ethyl)thio)acetonitrile (1m)

Following the known procedure, treatment of 2-mercapto-1-(thiophen-2yl)ethan-1-one (0.67 g, 4.24 mmol), 2-bromo acetonitrile (0.51 g, 0.30 mL, 4.24 mmol) and Et₃N (1.07 g, 1.5 mL, 10.6 mmol) in THF (0.1 M) at

ambient temperature for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 2-((2-oxo-2-(thiophen-2-yl)ethyl)thio)acetonitrile **1m** as yellow solid (0.7 g, 84 % yield).

*R*_f (Pet. ether /EtOAc = 80/20): 0.35; Melting point: 71-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.76 (m, 1H), 7.33-7.72 (m, 1H), 7.18-7.16 (m, 1H), 4.01 (s, 2H), 3.48 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 186.5, 142.0, 135.4, 133.3, 128.6, 116.1, 37.4, 17.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₈H₈NOS₂ 198.0042; Found: 198.0047. FTIR (cm⁻¹) 2958, 2920, 2364, 1646, 1514, 1379, 1129.

2-((2-Oxopropyl)thio)acetonitrile (1n)

1m

Following the general procedure, treatment of 1-mercaptopropan-2-one (0.5 g, 5.55 mmol), 2-bromo acetonitrile (0.67 g, 0.39 mL, 5.55 mmol) and Et₃N (1.4 g, 1.9 mL, 13.86 mmol) in THF (0.1 M) at ambient temperature for 1 h

followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 2-((2-oxopropyl)thio)acetonitrile **1n** as yellow oil (0.29 g, 40 % yield). R_{f} (Pet. ether /EtOAc = 80/20): 0.25; ¹H NMR (400 MHz, CDCl₃) δ 3.50 (s, 2H), 3.33 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 116.0, 41.3, 28.6, 16.8. LC-MS (ESI) m/z: [M]⁺ Calcd for C₅H₇NOS 129.02; Found: 129.05. FTIR (cm⁻¹) 2944, 2345, 1703, 1381, 1137, 1005.

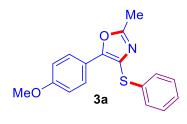
10. Synthesis and Characterization of β-Keto Amines

2-((2-(4-Methoxyphenyl)-2-oxoethyl)(methyl)amino)acetonitrile (4a)

Me Following the general procedure, treatment of 2-(4-Ń. **CN** methoxyphenyl)-N-methyl-2-oxoethan-1-aminium chloride (0.5 g, 4a 2.3 mmol), Et₃N (0.8 mL, 5.8 mmol) and 2-bromo acetonitrile (0.16 MeO mL, 2.3 mmol) in THF (0.1 M) at ambient temperature for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 80/30) of the crude reaction mixture using silica gel afforded 2-((2-(4-methoxyphenyl)-2-oxoethyl)(methyl)amino)acetonitrile 4a as yellow liquid (0.325 g, 64 % yield).

*R*_f (Pet. ether /EtOAc = 80/20): 0.20; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 3.94 (s, 2H), 3.87 (s, 3H), 3.77 (m, 2H), 2.53 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.8, 164.1, 130.4, 128.5, 114.9, 114.0, 60.6, 55.6, 45.2, 43.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄N₂NaO₂ 241.0947; Found: 241.0956. FTIR (cm⁻¹) 2841, 1683, 1601, 1512, 1262, 1233, 1173, 834.

2-(Methyl(2-oxo-2-phenylethyl)amino)acetonitrile (4b)

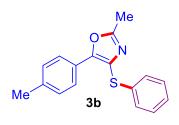


Following the general procedure, treatment of *N*-methyl-2-oxo-2phenylethan-1-aminium chloride (0.5 g, 2.7 mmol), Et_3N (0.92 mL, 6.7 mmol) and 2-bromo acetonitrile (0.19 mL, 2.7 mmol) in THF (0.1 M) at

ambient temperature for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 2-(methyl(2-oxo-2-phenylethyl)amino)acetonitrile **4b** as yellow liquid (0.275 g, 54 % yield).

*R*_f (Pet. ether /EtOAc = 80/20): 0.27; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.61-7.57 (m, 1H), 7.49-7.45 (m, 2H), 4.01(s, 2H), 3.79 (s, 2H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 135.4, 133.9, 128.9, 128.0, 114.8, 60.9, 45.2, 43.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₃N₂O 189.1022; Found: 189.1028. FTIR (cm⁻¹) 2798, 1693, 1599, 1451, 1227, 757, 691.

11. Synthesis and Characterization of Functionalized Oxazole Derivatives 5-(4-Methoxyphenyl)-2-methyl-4-(phenylthio)oxazole (3a)



Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h

followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 5-(4-methoxyphenyl)-2-methyl-4-(phenylthio)oxazole **3a** as a light yellow oil (0.058 g, 78% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.28; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.94 (m, 2H), 7.31-7.25 (m, 4H), 7.19-7.15 (m, 1H), 6.98-6.94 (m, 2H), 3.85 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 160.1, 152.8, 135.7, 129.2, 127.8, 127.6, 126.2, 123.5, 120.4, 114.2, 55.4, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆NO₂S 298.0896; Found 298.0899. FTIR (cm⁻¹) 3610, 3582, 2921, 1610, 1580, 1497, 1248, 830.

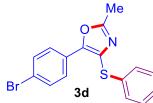
2-Methyl-4-(phenylthio)-5-(p-tolyl)oxazole (3b)



Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-oxo-2-(*p*-tolyl)ethyl)thio)acetonitrile **1b** (0.051 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by

flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 2-methyl-4-(phenylthio)-5-(*p*-tolyl)oxazole **3b** as a light yellow solid (0.046 g, 66% yield).

*R*_f(Pet. ether /EtOAc = 90/10): 0.28; Melting point: 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2 Hz, 2H), 7.32-7.24 (m, 6H), 7.20-7.16 (m, 1H), 2.55 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 152.8, 139.1, 135.6, 129.5, 129.2, 128.0, 126.3, 126.0, 124.9, 124.7, 21.5, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆NOS 282.0947; Found 282.0953. FTIR (cm⁻¹) 2922, 2852, 1582, 1502, 1475, 1439, 1171, 1087.


5-(4-Chlorophenyl)-2-methyl-4-(phenylthio)oxazole (3c)

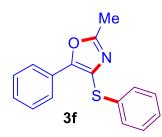
Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(4-chlorophenyl)-2-oxoethyl)thio)acetonitrile **1c** (0.056 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-

6 (0.198 g, 0.75 mmol) in CH₃CN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 95/05) of the crude reaction mixture using silica gel afforded 5-(4-chlorophenyl)-2-methyl-4-(phenylthio)oxazole **3c** as a light yellow oil (0.027 g, 36% yield). *R*_f(Pet. ether /EtOAc = 90/10): 0.60; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.8 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H), 7.32-7.28 (m, 4H), 7.22-7.18 (m, 1H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 151.2, 134.9, 134.8, 129.3, 129.1, 128.3, 127.2, 126.7, 126.3, 126.1, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₃ClNOS 302.0401; Found 302.0404. FTIR (cm⁻¹) 3587, 3059, 2930, 2350, 1578, 1438, 1401.

5-(4-Bromophenyl)-2-methyl-4-(phenylthio)oxazole (3d)

Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(4-bromophenyl)-2-oxoethyl)thio)acetonitrile **1d** (0.068 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-

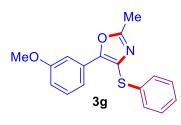
6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 92/08) of the crude reaction mixture using silica gel afforded 5-(4-bromophenyl)-2-methyl-4-(phenylthio)oxazole **3d** as a light yellow oil (0.037 g, 43% yield). $R_{\rm f}$ (Pet. ether /EtOAc = 90/10): 0.30; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.26-7.20 (m, 4H), 7.16-7.12 (m, 1H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 151.2, 134.9, 132.0, 129.3, 128.4, 127.4, 126.7, 126.6, 126.5, 123.1, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₃BrNOS 345.9896; Found 345.9903. FTIR (cm⁻¹) 3582, 3059, 2925, 2365, 1581, 1478, 1437, 1398.


5-(4-Fluorophenyl)-2-methyl-4-(phenylthio)oxazole (3e)

phenyltrifluoromethanesulfonate 2a (0.112 g, 91 µL, 0.375 mmol) with 2-((2-(4-fluorophenyl)-2-oxoethyl)thio)acetonitrile **1e** (0.052 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 5-(4fluorophenyl)-2-methyl-4-(phenylthio)oxazole 3e as a light yellow solid (0.041 g, 58% yield). **R**_f (Pet. ether /EtOAc = 90/10): 0.32; Melting point: 61-63 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03-7.98 (m, 2H), 7.32-7.26 (m, 4H), 7.21-7.17 (m, 1H), 7.15-7.10 (m, 2H), 2.56 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 162.9 (d, J = 250.4 Hz), 160.6, 151.6, 135.1, 129.3, 128.04, 128.0 (d, J = 7.5 Hz), 126.5, 125.2, 123.9 (d, J = 3.8 Hz), 115.9 (d, J = 3.8 Hz), 14.2. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₆H₁₃FNOS 286.0696; Found 286.0702. **FTIR** (cm⁻¹) 3069, 1583, 1500, 1439, 1232, 1164, 1084, 983.

Following the general procedure, treatment of 2-(trimethylsilyl)

2-Methyl-5-phenyl-4-(phenylthio)oxazole (3f)

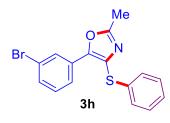

Following the general procedure, treatment of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate 2a (0.112 g, 91 µL, 0.375 mmol) with 2-((2oxo-2-phenylethyl)thio)acetonitrile 1f (0.048 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column

chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 2-methyl-5-phenyl-4-(phenylthio)oxazole **3f** as a light yellow solid (0.040 g, 60% yield).

 $R_{\rm f}$ (Pet. ether /EtOAc = 90/10): 0.36; Melting point: 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.46-7.43 (m, 2H), 7.39-7.35 (m, 1H), 7.34-7.26 (m, 4H), 7.21-7.17 (m, 1H), 2.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 152.4, 135.3, 129.2, 129.0, 128.8, 128.1, 127.7, 126.4, 126.0, 125.6, 14.3. **HRMS (ESI)** m/z: $[M+H]^+$ Calcd for C₁₆H₁₄NaOS 268.0791; Found 268.0796. FTIR (cm⁻¹) 2923, 2364, 1580, 1481, 1439, 1252, 1171, 1066.

5-(3-Methoxyphenyl)-2-methyl-4-(phenylthio)oxazole (3g)

Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate 2a (0.112 g, 91 µL, 0.375 mmol) with 2-((2-(3-methoxyphenyl)-2-oxoethyl)thio) acetonitrile 1g

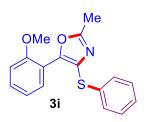

(0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 5-(3-methoxyphenyl)-2-methyl-4-(phenylthio)oxazole **3g** as a yellow

solid (0.044 g, 60% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.28; Melting point: 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.33-7.22 (m, 5H), 7.17-7.14 (m, 1H), 6.90-6.87 (dd, J_1 = 8.2 Hz, J_2 = 2.5 Hz, 1H), 3.79 (s, 3H), 2.53 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.7, 159.8, 152.1, 135.3, 129.9, 129.2, 128.8, 128.2, 126.5, 125.9, 118.4, 115.1, 111.1, 55.4, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆NO₂S 298.0896; Found 298.0904. FTIR (cm⁻¹) 3063, 2920, 2364, 1576, 1432, 1259, 1162.

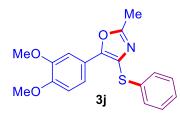
5-(3-Bromophenyl)-2-methyl-4-(phenylthio)oxazole (3h)


Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(3-bromophenyl)-2-oxoethyl)thio)acetonitrile **1h** (0.068 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by

flash column chromatography (Pet.ether/EtOAc = 92/08) of the crude reaction mixture using silica gel afforded 5-(3-bromophenyl)-2-methyl-4-(phenylthio)oxazole **3h** as a light yellow oil (0.047 g, 54% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.30; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.45-7.43 (m, 1H), 7.30-7.22 (m, 5H), 7.18-7.14 (m, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 150.4, 134.7, 131.7, 130.3, 129.6, 129.3, 128.7, 128.7, 127.4, 126.8, 124.4, 122.9, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₃BrNOS 345.9896; Found 345.9900. FTIR (cm⁻¹) 3584, 2958, 2921, 2366, 1577, 1470, 1171, 1136.

5-(2-Methoxyphenyl)-2-methyl-4-(phenylthio)oxazole (3i)


Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(2-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1i**

(0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 5-(2-methoxyphenyl)-2-methyl-4-(phenylthio)oxazole **3i** as yellow oil (0.058 g, 78% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.28; ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.36 (m, 2H), 7.28-7.21 (m, 4H), 7.15-7.11 (m, 1H), 7.00-6.94 (m, 2H), 3.75 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 157.4, 150.9, 136.2, 131.3, 131.1, 129.0, 128.1, 127.9, 126.0, 120.5, 116.7, 111.5, 55.6, 14.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₆NO₂S 298.0896; Found 298.0901. FTIR (cm⁻¹) 3059, 2924, 2364, 1581, 1434, 1254, 1175.

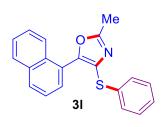
5-(3,4-Dimethoxyphenyl)-2-methyl-4-(phenylthio)oxazole (3j)

Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(3,4-dimethoxyphenyl)-2-oxoethyl)thio)acetonitrile **1j** (0.063 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12

h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 5-(3,4-dimethoxyphenyl)-2-methyl-4-(phenylthio)oxazole **3j** as a yellow solid (0.057 g, 70% yield).

R^f (Pet. ether /EtOAc = 90/10): 0.21; Melting point: 97-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 2H), 7.28-7.22 (m, 4H), 7.17-7.13 (m, 1H), 6.90 (d, *J* = 9.0 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 152.6, 149.7, 148.9, 135.6, 129.2, 127.7, 126.3, 123.7, 120.4, 119.1, 111.2, 109.1, 56.0, 55.9, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₈NO₃S 328.1002; Found 328.1010. FTIR (cm⁻¹) 3057, 2926, 1672, 1582, 1442, 1266, 1142.

2-Methyl-5-(naphthalen-2-yl)-4-(phenylthio)oxazole (3k)


Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(naphthalen-2-yl)-2-oxoethyl)thio)acetonitrile **1k** (0.060 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75

mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 94/06) of the crude reaction mixture using silica gel afforded 2-methyl-5-(naphthalen-2-yl)-4-(phenylthio)oxazole **3k** as a light yellow oil (0.045 g, 57% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.31; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.19-8.16 (m, 1H), 7.88-7.82 (m, 3H), 7.51-7.49 (m, 2H), 7.37-7.35 (m, 2H), 7.29-7.25 (m, 2H), 7.20-7.16 (m, 1H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 152.3, 135.3, 133.2, 133.2, 129.3, 128.6, 128.5, 128.4, 127.8, 126.9, 126.7, 126.6, 126.2, 125.5, 125.1, 123.3, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆NOS 318.0947; Found 318.0956. FTIR (cm⁻¹) 3055, 2923, 1581, 1505, 1476, 1438, 1380, 1266.

2-Methyl-5-(naphthalen-1-yl)-4-(phenylthio)oxazole (3l)

Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(naphthalen-1-yl)-2-oxoethyl)thio)acetonitrile **1l** (0.06 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by

flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 2-methyl-5-(naphthalen-1-yl)-4-(phenylthio)oxazole **3l** as a yellow oil (0.051 g, 64% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.31. ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.86 (m, 3H), 7.62-7.60 (m, 1H), 7.51-7.46 (m, 3H), 7.28-7.19 (m, 4H), 7.14-7.11 (m, 1H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 152.8, 135.5, 133.8, 131.5, 130.5, 129.1, 129.1, 128.6, 128.5, 127.0, 126.4, 126.4, 125.5, 125.1, 124.6, 14.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₆NOS 318.0947; Found 318.0957. FTIR (cm⁻¹) 3054, 2924, 2364, 1648, 1581, 1476, 1242, 1169.

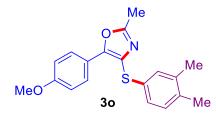
2-Methyl-4-(phenylthio)-5-(thiophen-2-yl)oxazole (3m)

Following the general procedure, treatment of 2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-oxo-2-(thiophen-2-yl)ethyl)thio)acetonitrile **1m** (0.049 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol)

in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 2-methyl-4-(phenylthio)-5-(thiophen-2-yl)oxazole **3m** as a light yellow oil (0.035 g, 52% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.36; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 3.7 Hz, 1H), 7.35 (d, *J* = 5.0 Hz, 1H), 7.32-7.30 (m, 2H), 7.27-7.23 (m, 2H), 7.18-7.15 (m, 1H), 7.08-7.06 (m, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 149.4, 135.0, 129.2, 128.9, 128.4, 127.6, 127.1, 126.6, 126.1, 124.6, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₂NOS₂ 274.0355; Found 274.0364. FTIR (cm⁻¹) 2957, 1648, 1472, 1240, 1169, 1081, 1043, 928.

2,5-Dimethyl-4-(phenylthio)oxazole (3n)

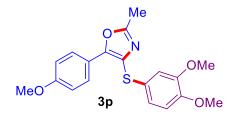


Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-oxopropyl)thio)acetonitrile **1n** (0.032 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc

= 90/10) of the crude reaction mixture using silica gel afforded 2,5-dimethyl-4-(phenylthio)oxazole **3n** as a light yellow oil (0.028 g, 55% yield).

*R*_f(Pet. ether /EtOAc = 90/10): 0.32; ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.20 (m, 4H), 7.18-7.14 (m, 1H), 2.45 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.4, 153.0, 136.3, 129.0, 127.6, 126.0, 125.5, 14.1, 10.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₂NOS 206.0634; Found 206.0643. FTIR (cm⁻¹) 2923, 1583, 1477, 1438, 1163, 1086, 741.

4-((3,4-Dimethylphenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (30)

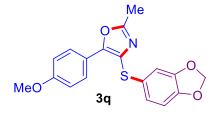

Following the general procedure, treatment of 4,5-dimethyl-2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2b** (0.122 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio) acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in

PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 4-((3,4-dimethylphenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole **30** as a light yellow solid (0.059 g, 73% yield).

*R*_f(Pet. ether /EtOAc = 90/10): 0.35; Melting point: 56-58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 7.09 (s, 1H), 7.05-6.99 (m, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H), 2.50 (s, 3H), 2.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.04, 160.0, 152.2, 137.7, 135.2, 132.0, 130.5, 129.8, 127.6, 126.1, 124.5, 120.6, 114.2, 55.5, 19.9, 19.5, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀NO₂S 326.1209; Found 326.1214. FTIR (cm⁻¹) 2922, 1585, 1499, 1251, 1175, 1031, 834.

4-((3,4-Dimethoxyphenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3p)

Following the general procedure, treatment of 4,5-dimethoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2c** (0.134 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl) thio)acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-

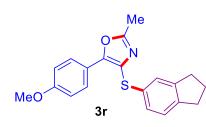


crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded 4-((3,4-dimethoxyphenyl)thio)-5-(4methoxyphenyl)-2-methyloxazole **3p** as a light yellow solid

(0.061 g, 68% yield).

*R*_f(Pet. ether /EtOAc = 90/10): 0.21; Melting point: 85-87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.8 Hz, 2H), 6.95-6.89 (m, 4H), 6.74 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 159.8, 151.6, 149.3, 148.5, 127.5, 126.1, 125.2, 122.1, 120.5, 114.2, 113.1, 111.9, 56.0, 56.0, 55.4, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀NO₄S 358.1108; Found 358.1113. FTIR (cm⁻¹) 2959, 2933, 1614, 1584, 1502, 1463, 1440, 1254.

4-(Benzo[d][1,3]dioxol-5-ylthio)-5-(4-methoxyphenyl)-2-methyloxazole (3q)

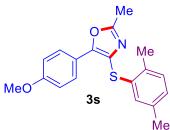

Following the general procedure, treatment of 6-(trimethylsilyl)benzo[d][1,3]dioxol-5-yl trifluoromethane sulfonate **2d** (0.128 g, 0.375 mmol) with 2-((2-(4methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-

6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column

chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 4-(benzo[*d*][1,3]dioxol-5-ylthio)-5-(4-methoxyphenyl)-2-methyloxazole **3q** as a light yellow solid (0.060 g, 71% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.21; Melting point: 88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 6.88-6.86 (m, 1H), 6.81 (m, 1H), 6.70 (d, *J* = 8.1 Hz, 1H), 5.90 (s, 2H), 3.83 (s, 3H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 160.0, 151.9, 148.3, 147.1, 127.5, 127.5, 124.9, 122.9, 120.4, 114.2, 110.1, 108.9, 101.4, 55.4, 14.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₅NNaO₄S 364.0614; Found 364.0619. FTIR (cm⁻¹) 2924, 1583, 1502, 1474, 1233, 1175, 1036.

4-((2,3-Dihydro-1*H*-inden-5-yl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3r)

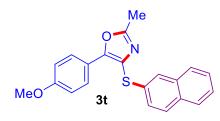


Following the general procedure, treatment of 6-(trimethylsilyl)-2,3-dihydro-1*H*-inden-5-yl trifluoromethane sulfonate 2e (0.107 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2oxoethyl)thio)acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g,

0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 4-((2,3-dihydro-1H-inden-5-yl)thio)-5-(4-methoxyphenyl)-2-methyloxazole **3r** as a yellow oil (0.06 g, 71% yield). *R*_f (Pet. ether /EtOAc = 90/10): 0.30; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 2H), 7.18 (s, 1H), 7.11 (s, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H), 2.83 (t, *J* = 7.4 Hz, 4H), 2.51 (s, 3H), 2.07-1.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 159.9, 152.1, 145.5, 143.0, 132.4, 127.5, 126.6, 125.0, 124.7, 124.6, 120.6, 114.2, 55.4, 32.9, 32.5, 25.5, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀NO₂S 338.1209; Found 338.1213. FTIR (cm⁻¹) 2924, 2365, 1648, 1584, 1435, 1251, 1174.

4-((2,5-Dimethylphenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3s)

Following the general procedure, treatment of 3,6-dimethyl-2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2f** (0.122 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio) acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column



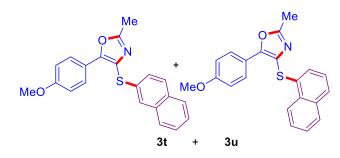
chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 4-((2,5-dimethylphenyl)thio)-5-(4methoxyphenyl)-2-methyloxazole **3s** as a light yellow oil (0.050 g, 62% yield).

 R_f (Pet. ether /EtOAc = 90/10): 0.35; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 8.8 Hz, 2H), 7.04 (d, J = 7.5 Hz, 1H), 6.94 (d, J = 8.8 Hz,

2H), 6.89-6.87 (m, 2H), 3.83 (s, 3H), 2.53 (s, 3H), 2.37 (m, 3H), 2.19 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 160.1, 152.8, 136.3, 134.2, 133.3, 130.3, 128.0, 127.6, 127.1, 123.3, 120.5, 114.2, 55.4, 21.2, 19.8, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₂₀NO₂S 326.1209; Found 326.1212. FTIR (cm⁻¹) 2922, 1612, 1584, 1499, 1252, 1175, 1032.

5-(4-Methoxyphenyl)-2-methyl-4-(naphthalen-2-ylthio)oxazole (3t)

Following the general procedure, treatment of 3-(trimethylsilyl)naphthalen-2-yl trifluoromethanesulfonate 2g(0.131 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2oxoethyl)thio)acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g,


0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 5-(4-methoxyphenyl)-2-methyl-4-(naphthalen-2-ylthio)oxazole **3t** as a light yellow oil (0.053 g, 61% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.30; ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 2H), 7.76-7.68 (m, 4H), 7.45-7.36 (m, 3H), 6.95-6.92 (m, 2H), 3.82 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 160.2, 152.9, 133.9, 133.1, 132.0, 128.9, 127.8, 127.6, 127.3, 126.6, 126.1, 126.0, 125.8, 123.5, 120.4, 114.3, 55.4, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₈NO₂S 348.1053; Found 348.1061. FTIR (cm⁻¹) 3504, 2930, 1697, 1598, 1497, 1258, 1171, 852.

5-(4-Methoxyphenyl)-2-methyl-4-(naphthalen-2-ylthio)oxazole (3t) and

5-(4-Methoxyphenyl)-2-methyl-4-(naphthalen-1-ylthio)oxazole (3u)

Following the general procedure, treatment of 1-(trimethylsilyl)naphthalen-2-yl trifluoromethanesulfonate **2h** (0.131 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-

oxoethyl)thio) acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude

reaction mixture using silica gel afforded 5-(4-methoxyphenyl)-2-methyl-4-(naphthalen-2ylthio)oxazole (**3t**) and 5-(4-methoxyphenyl)-2-methyl-4-(naphthalen-1-ylthio)oxazole (**3u**) as an inseparable mixture of regioisomers in 1.4:1 ratio as a light yellow oil (0.055 g, 64% yield). *R*_f (Pet. ether /EtOAc = 90/10): 0.36; ¹H NMR (**400 MHz, CDCl**₃) of Major Isomer: δ 7.98-7.94 (m, 2H), 7.77-7.68 (m, 5H), 7.45-7.33 (m, 2H), 6.95-6.91 (m, 2H), 3.82 (s, 3H), 2.55 (m, 3H). ¹³C NMR (**100 MHz, CDCl**₃) of Major Isomer: δ 160.2, 160.15, 152.9, 133.9, 133.1, 132.0, 128.9, 127.6, 127.3, 126.6, 126.3, 126.0, 125.8, 124.5, 123.5, 120.4, 114.3, 55.4, 14.3. ¹H NMR (**400** MHz, CDCl₃) of Minor Isomer: δ 8.37-8.33 (m, 1H), 7.98-7.94 (m, 2H), 7.85-7.82 (m, 1H), 7.56-7.49 (m, 2H), 7.45-7.33 (m, 3H), 6.95-6.91 (m, 2H), 3.82 (s, 3H), 2.52 (s, 3H). ¹³C NMR (**100** MHz, CDCl₃) of Minor Isomer: δ 160.2, 160.17, 153.0, 134.1, 132.7, 131.7, 128.6, 127.8, 127.0, 126.6, 126.4, 126.0, 125.9, 124.5, 123.2, 120.39, 114.3, 55.4, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₈NO₂S 348.1053; Found 348.1059. FTIR (cm⁻¹) 3052, 1615, 1585, 1500, 1435, 1282, 1252, 1175.

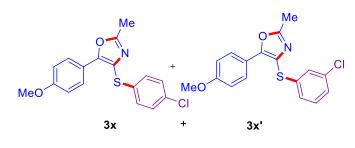
5-(4-Methoxyphenyl)-4-((3-methoxyphenyl)thio)-2-methyloxazole (3v)

Following the general procedure, treatment of 3-methoxy-2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2i** (0.123 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio) acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in

PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 5-(4-methoxyphenyl)-4-((3-methoxyphenyl)thio)-2-methyloxazole **3v** as a light yellow oil (0.055 g, 68% yield). **R**_f(Pet. ether /EtOAc = 90/10): 0.28; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.8 Hz, 2H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.85-6.81 (m, 2H), 6.69 (dd, *J*₁ = 8.2 Hz, *J*₂ = 2.3 Hz, 1H), 3.82 (s, 3H), 3.73 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 160.1, 160.07, 153.0, 137.2, 130.0, 127.6, 123.2, 120.3, 119.9, 114.2, 113.2, 111.8, 55.4, 55.3, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₈NO₃S 328.1002; Found 328.1004. FTIR (cm⁻¹) 2923, 2364, 1583, 1499, 1280, 1248, 1171, 1034.

5-(4-Methoxyphenyl)-2-methyl-4-(*p*-tolylthio)oxazole (3w) and 5-(4-Methoxyphenyl)-2-methyl-4-(*m*-tolylthio)oxazole (3w')

Following the general procedure, treatment of 4 methyl-2-(trimethylsilyl)phenyl trifluoromethanesulfonate **2j** (0.117 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl)thio)acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column

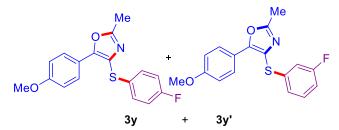

chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 5-(4methoxyphenyl)-2-methyl-4-(p-

tolylthio)oxazole (3w) and 5-(4-

methoxyphenyl)-2-methyl-4-(m-tolylthio)oxazole (3w') as an inseparable mixture of regioisomers in 1.1:1 ratio as a light yellow oil (0.056 g, 72% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.36; ¹H NMR (400 MHz, CDCl₃) of Major Isomer: δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.15-7.05 (m, 3H), 6.97-6.92 (m, 3H), 3.83 (s, 3H), 2.52 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) of Major Isomer: δ 160.1, 160.0, 152.3, 139.0, 130.0, 128.4, 128.0, 127.21, 123.7, 120.45, 114.2, 55.4, 21.5, 14.2. ¹H NMR (400 MHz, CDCl₃) of Minor Isomer: δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.21-7.19 (m, 2H), 7.15-7.05 (m, 2H), 6.97-6.92 (m, 2H), 3.83 (s, 3H), 2.50 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) of Minor Isomer: δ 160.1, 159.9, 152.7, 136.4, 135.4, 131.9, 129.0, 128.38, 127.6, 124.9, 124.3, 120.5, 114.2, 55.4, 21.1, 14.22. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₈NO₂S 312.1053; Found 312.1055. FTIR (cm⁻¹) 2924, 1585, 1252, 1175, 1031, 833.

4-((4-Chlorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3x) and 4-((3-chlorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3x')

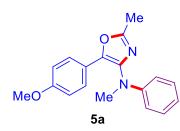


Following the general procedure, treatment of 4-chloro-2-(trimethylsilyl)phenyl trifluoromethane sulfonate **2k** (0.125 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl) -2-oxoethyl)thio) acetonitrile **1a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g,

0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 4-((4-Chlorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3x) and 4-((3-chlorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3x') as an inseparable mixture of regioisomers in 2.3:1 ratio as a light yellow oil (0.056 g, 68% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.35; ¹H NMR (400 MHz, CDCl₃) of Major Isomer: δ 7.90 (d, *J* = 8.9 Hz, 2H), 7.22-7.17 (m, 4H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) of Major Isomer: δ 160.2, 160.1, 152.9, 134.3, 132.2, 129.3, 127.6, 126.4, 123.1, 120.2, 114.3, 55.5, 14.2. ¹H NMR (400 MHz, CDCl₃) of Minor Isomer: δ 7.90 (d, *J* = 8.9 Hz, 2H), 7.22-7.17 (m, 2H), 7.15-7.10 (m, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 3.83 (s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) of Minor Isomer: δ 160.3, 160.2, 153.3, 137.9, 135.0, 130.2, 129.1, 127.7, 127.1, 125.5, 122.4, 120.1, 114.3, 55.5, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for $C_{17}H_{15}CINO_2S$ 332.0507; Found 332.0511. FTIR (cm⁻¹) 2927, 1611, 1582, 1501, 1254, 1174, 1089, 1034.

4-((4-Fluorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3y) and 4-((3-Fluorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3y')

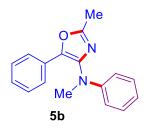

Following the general procedure, treatment of 5-fluoro-2-(trimethylsilyl)phenyl trifluoromethane sulfonate **2l** (0.119 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2oxoethyl) thio)acetonitrile **1a** (0.055 g, 0.25

mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 12 h followed by flash column chromatography (Pet.ether/EtOAc = 90/10) of the crude reaction mixture using silica gel afforded 4-((4-fluorophenyl)thio)-5-(4-

methoxyphenyl)-2-methyloxazole (3y) and 4-((3-fluorophenyl)thio)-5-(4-methoxyphenyl)-2methyloxazole (3y') as an inseparable mixture of regioisomers in 2.9:1 ratio as a light yellow oil (0.062 g, 79% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.36; ¹H NMR (400 MHz, CDCl₃) of Major Isomer: δ 7.93-7.88 (m, 2H), 7.30-7.23 (m, 2H), 6.98-6.91 (m, 4H), 3.83 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) of Major Isomer: δ 161.9 (d, J = 245.6 Hz), 160.3, 160.2, 152.2, 138.3, 130.3 (d, J = 8.0 Hz), 127.6, 124.1, 120.3, 116.4 (d, J = 21.5 Hz), 114.3, 55.4, 14.2. ¹H NMR (400 MHz, CDCl₃) of Minor Isomer; δ 7.93-7.88 (m, 2H), 7.23-7.18 (m, 1H), 7.04-7.02 (m, 1H), 6.98-6.91 (m, 3H), 6.85-6.81 (m, 1H). 3.83 (s, 3H), 2.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) of Minor Isomer; δ 163.2 (d, J = 249.0 Hz), 160.3, 160.1, 153.4, 138.3, 130.5, 130.4, 127.7, 122.9 (d, J = 3.9 Hz), 120.1, 114.3, 114.1, 113.1 (d, J = 21.3 Hz), 55.4, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₅FNO₂S 316.0802; Found 316.0809. FTIR (cm⁻¹) 2923, 2364, 1613, 1585, 1497, 1253, 1175, 1032.

5-(4-Methoxyphenyl)-*N*,2-dimethyl-*N*-phenyloxazol-4-amine (5a)

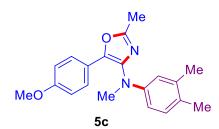


Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate **2a** (0.112 g, 91 μ L, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl)(methyl)amino) acetonitrile **4a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL)

at 25 °C for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded 5-(4-methoxyphenyl)-*N*,2-dimethyl-*N*-phenyloxazol-4-amine **5a** as a yellow oil (0.041 g, 55% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.22; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.9 Hz, 2H), 7.23-7.19 (m, 2H), 6.87 (d, *J* = 8.9 Hz, 2H), 6.82-6.76 (m, 3H), 3.80 (s, 3H), 3.25 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 158.5, 147.6, 142.2, 137.7, 129.2, 125.9, 120.9, 118.8, 114.3, 114.1, 55.4, 38.2, 14.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₉N₂O₂ 295.1441; Found 295.1445. FTIR (cm⁻¹) 2926, 1599, 1507, 1251, 1177, 1031, 835, 750.

N,2-Dimethyl-*N*,5-diphenyloxazol-4-amine (5b)

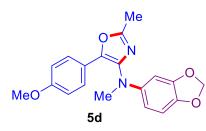


Following the general procedure, treatment of 2-(trimethylsilyl) phenyltrifluoromethanesulfonate 2a (0.112 g, 91 µL, 0.375 mmol) with 2-(methyl(2-oxo-2-phenylethyl)amino)acetonitrile **4b** (0.047 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded

N,2-dimethyl-*N*,5-diphenyloxazol-4-amine **5b** as a yellow oil (0.033 g, 50% yield). $R_{\rm f}$ (Pet. ether /EtOAc = 90/10): 0.22; ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.65 (m, 2H), 7.37-7.34 (m, 2H), 7.26-7.22 (m, 3H), 6.85-6.80 (m, 3H), 3.29 (s, 3H), 2.54 (s, 3H). ¹³C NMR (100 MHz,

CDCl₃) § 159.2, 147.3, 141.9, 139.3, 129.2, 128.8, 127.9, 127.8, 124.3, 118.9, 114.2, 38.2, 14.6. **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₇N₂O 265.1335; Found 265.1343. **FTIR** (cm⁻¹) 2911, 1598, 1484, 1276, 1110, 767, 661.

N-(3,4-Dimethylphenyl)-5-(4-methoxyphenyl)-*N*,2-dimethyloxazol-4-amine (5c)



Following the general procedure, treatment of 4,5-dimethyl-2-(trimethylsilyl)phenyl trifluoromethanesulfonate 2b (0.122 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2oxoethyl)(methyl)amino)acetonitrile 4a (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198

g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded N-(3,4dimethylphenyl)-5-(4-methoxyphenyl)-N,2-dimethyloxazol-4-amine 5c as a yellow oil (0.043 g, 53% yield).

 $R_{\rm f}$ (Pet. ether /EtOAc = 90/10): 0.22; ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.58 (m, 2H), 6.97 (d, J = 8.2 Hz, 1H), 6.89-6.86 (m, 2H), 6.58-6.57 (m, 1H), 6.54-6.52 (m, 1H), 3.80 (s, 3H), 3.21 (s, 3H), 2.49 (s, 3H), 2.18 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 158.4, 145.8, 141.9, 138.3, 137.2, 130.3, 126.9, 125.8, 121.1, 115.9, 114.3, 111.8, 55.7, 38.4, 20.4, 18.8, 14.6. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₀H₂₃N₂O₄ 323.1754; Found 323.1762. **FTIR (cm⁻¹)** 2927, 1609, 1509, 1248, 1177, 1104, 835.

N-(Benzo[*d*][1,3]dioxol-5-yl)-5-(4-methoxyphenyl)-*N*,2-dimethyloxazol-4-amine (5d)

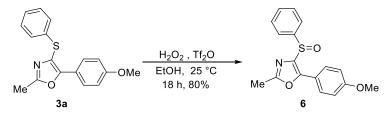
Following the general procedure, treatment of 6-(trimethylsilyl)benzo[d][1,3]dioxol-5-yl trifluoromethane sulfonate **2d** (0.128 g, 0.375 mmol) with 2-((2-(4methoxyphenyl)-2-oxoethyl)(methyl)amino)acetonitrile **4a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol)

and 18-crown-6 (0.198 g, 0.75 mmol) in PhCN (2.0 mL) at 25 °C for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 80/20) of the crude reaction mixture using silica gel afforded *N*-(benzo[*d*][1,3]dioxol-5-yl)-5-(4-methoxyphenyl)-*N*,2-dimethyloxazol-4-amine **5d** as a yellow oil (0.034 g, 40% yield).

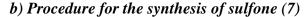
*R*_f (Pet. ether /EtOAc = 90/10): 0.20; ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 6.90-6.87 (m, 2H), 6.68 (d, *J* = 8.5 Hz, 1H), 6.35 (d, *J* = 2.4 Hz, 1H), 6.22 (dd, *J*₁ = 8.5, *J*₂ = 2.4 Hz, 1H), 5.84 (s, 2H), 3.81 (s, 3H), 3.19 (s, 3H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 158.5, 148.5, 143.6, 141.9, 140.7, 138.3, 125.9, 120.9, 114.3, 108.5, 106.3, 100.9, 97.5, 55.4, 38.9, 14.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₉N₂O₄ 339.1339; Found 339.1343. FTIR (cm⁻¹) 2928, 1510, 1488, 1250, 1036, 833.

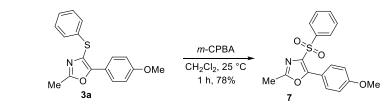
N-(2,3-Dihydro-1H-inden-5-yl)-5-(4-methoxyphenyl)-N,2-dimethyloxazol-4-amine (5e)

Following the general procedure, treatment of 6-(trimethylsilyl)-2,3-dihydro-1*H*-inden-5-yl trifluoromethanesulfonate **2e** (0.127 g, 0.375 mmol) with 2-((2-(4-methoxyphenyl)-2-oxoethyl) (methyl)amino)acetonitrile **4a** (0.055 g, 0.25 mmol) in the presence of KF (0.044 g, 0.75 mmol) and 18-crown-6 (0.198 g, 0.75 mmol)


in PhCN (2.0 mL) at 25 °C for 1 h followed by flash column chromatography (Pet.ether/EtOAc = 85/15) of the crude reaction mixture using silica gel afforded *N*-(2,3-dihydro-1*H*-inden-5-yl)-5-(4-methoxyphenyl)-*N*,2-dimethyloxazol-4-amine **5e** as a yellow oil (0.042 g, 50% yield).

*R*_f (Pet. ether /EtOAc = 90/10): 0.22; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.8 Hz, 2H), 7.06-7.04 (m, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 6.67 (s, 1H), 6.59-6.57 (m, 1H), 3.80 (s, 3H), 3.21 (s, 3H), 2.83-2.87 (m, 4H), 2.49 (s, 3H), 2.06-1.98 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) 159.2, 158.4, 146.6, 145.4, 141.9, 138.5, 134.6, 125.9, 124.7, 121.1, 114.3, 112.7, 110.7, 55.4, 38.6, 33.4,


32.1, 25.9, 14.5. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₁H₂₃N₂O₂ 335.1754; Found 335.1761. **FTIR (cm⁻¹)** 2935, 2838, 1602, 1485, 1269, 1012, 826.

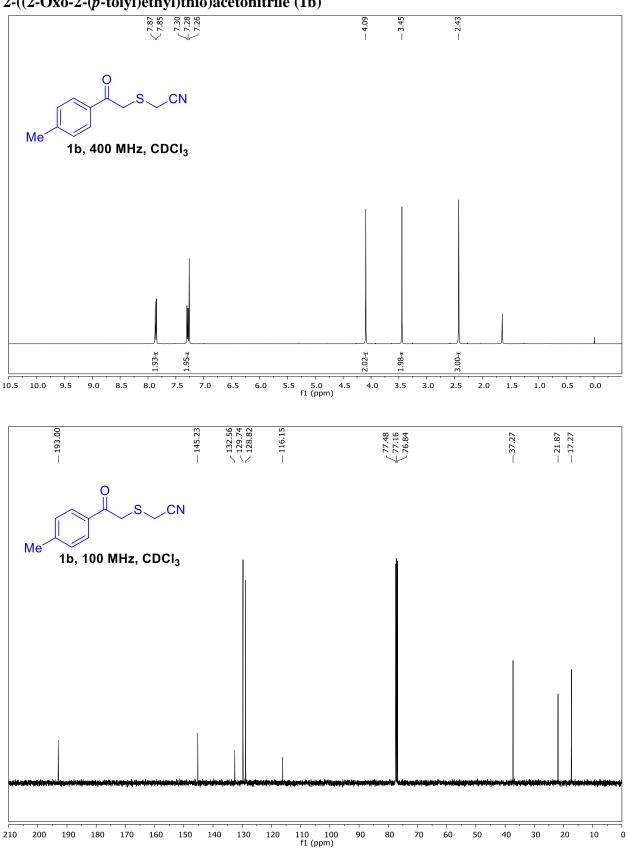

12. Product Functionalizations

a) Procedure for the synthesis of sulphoxide (6)

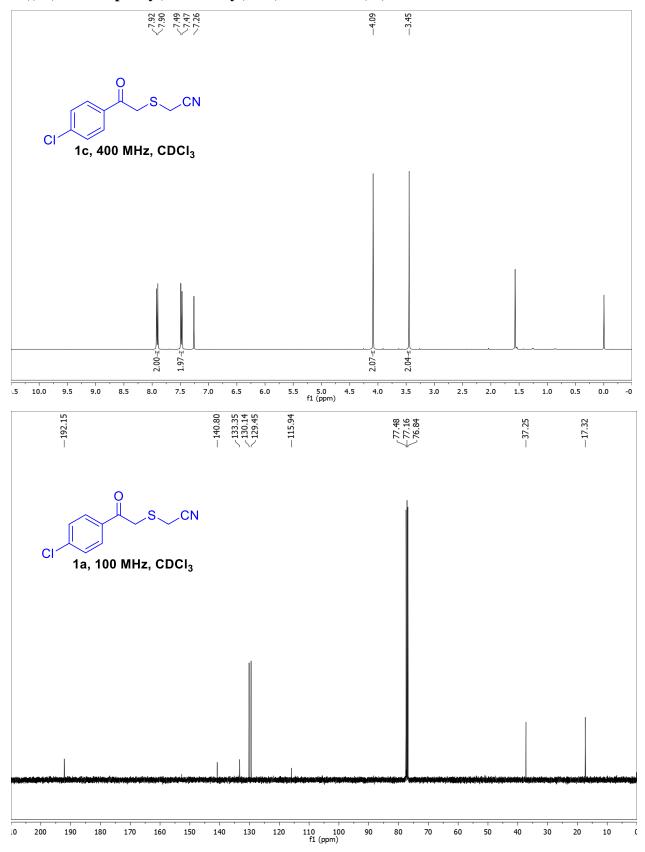
Oxazole derivative **6** was prepared by using the literature procedure.⁹ In a flame-dried screw-capped test tube equipped with a magnetic stir bar, oxazole derivative **3a** (0.17 mmol, 0.050 g) was dissolved in EtOH (0.8 mL). To the above solution, H_2O_2 (30%, 0.34 mmol, 35 µL) and Tf₂O (0.085 mmol, 14 µL) were added, and the mixture was stirred at 25 °C for the 20 h. When the oxazole had completely disappeared, the reaction mixture was quenched by adding H_2O (10 mL). Then product was extracted with EtOAc (4 × 5 mL) and the combined extracts were dried using MgSO₄. The filtrate was evaporated, and the corresponding sulfoxide was purified by flash column chromatography on silica gel (using Pet. ether/EtOAc = 60/40 as the eluent) to afford the 5-(4-methoxyphenyl)-2-methyl-4-(phenylsulfinyl)oxazole **6** as a white solid (0.042 g, 80% yield) **R**_f (Pet. ether /EtOAc = 80/20): 0.28; Melting point: 168-170 °C. ¹**H NMR (400 MHz, CDCl₃)** δ 7.83 (d, *J* = 8.7 Hz, 2H), 7.74-7.72 (m, 2H), 7.52-7.47 (m, 3H), 7.01 (d, *J* = 8.7 Hz, 2H), 3.88 (s, 3H), 2.45 (s, 3H). ¹³**C NMR (100 MHz, CDCl₃)** δ 161.2, 161.0, 153.0, 142.6, 135.8, 131.0, 129.3, 128.8, 125.1, 118.9, 114.7, 55.6, 14.2. **HRMS (ESI)** m/z: [M+Na]⁺ Calcd for C₁₇H₁₆NO₃S 314.0845; Found 314.0851. **FTIR (cm⁻¹)** 2930, 1613, 1585, 1500, 1252, 1179, 1088, 1045.

⁹ Khodaei, M. M.; Bahrami, K.; Karimi, A. Synthesis 2008, 1682.

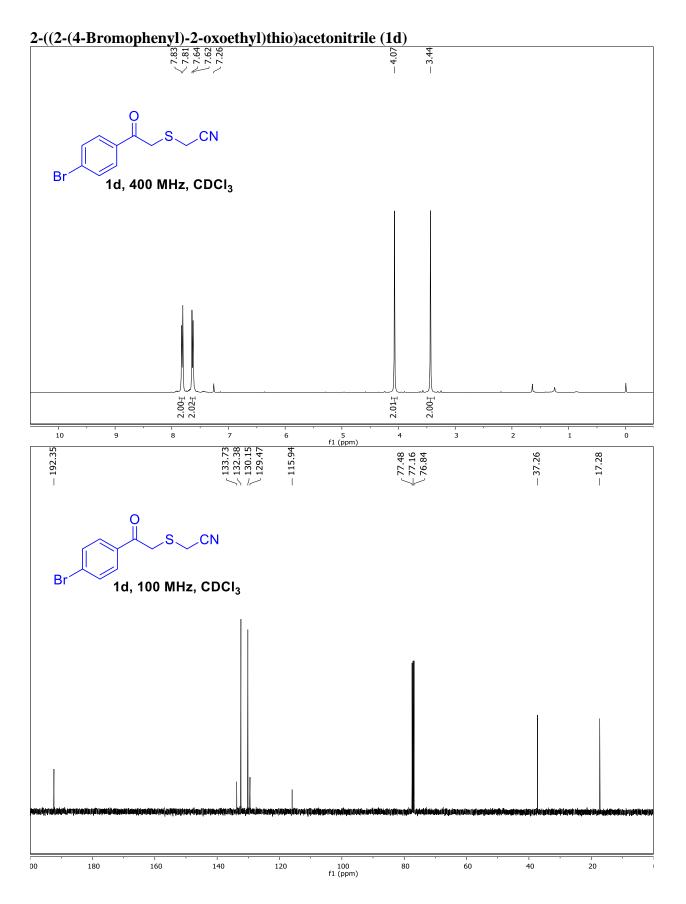
Oxazole derivative **7** was prepared by using the literature procedure.¹⁰ To a 25 mL round bottom flask equipped with stir bar, oxazole **3a** (0.060 g, 0.2 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (10 mL). The reaction mixture was cooled to 0 °C with ice-bath followed by the addition of *m*-CBPA (0.6 mmol, 3 equiv) portion-wise and allowed to stir for 1h at room temperature. After the completion of the reaction, monitored by TLC, the reaction was neutralized with saturated aq. NaHCO₃ and extracted with CH₂Cl₂. The organic layer was evaporated under reduced pressure and the crude product thus obtained was purified by column chromatography using mixture of Pet. ether /ethyl acetate as an eluent to afford 5-(4-methoxyphenyl)-2-methyl-4-(phenylsulfonyl) oxazole **7** as a white solid (0.051 g, 78% yield).

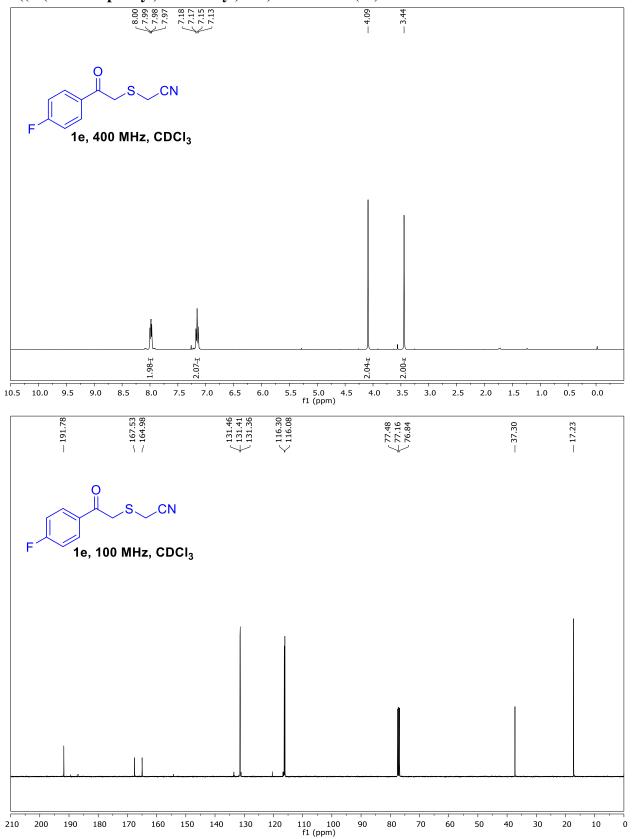

*R*_f (Pet. ether /EtOAc = 90/10): 0.28; Melting point: 131-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.6 Hz, 2H), 7.90 (d, *J* = 8.7 Hz, 2H), 7.60-7.48 (m, 3H), 6.99 (d, *J* = 8.6 Hz, 2H), 3.87 (s, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 159.9, 153.2, 140.9, 133.9, 133.6, 130.7, 129.2, 128.0, 118.4, 114.1, 55.5, 14.0. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₆NO₄S 330.0795; Found 330.0800. FTIR (cm⁻¹) 2364, 1604, 1589, 1500, 1445, 1330, 1255, 1151.

¹⁰ Reddy, A. C. S.; Anbarasan, P. Org. Lett. 2019, 21, 9965.

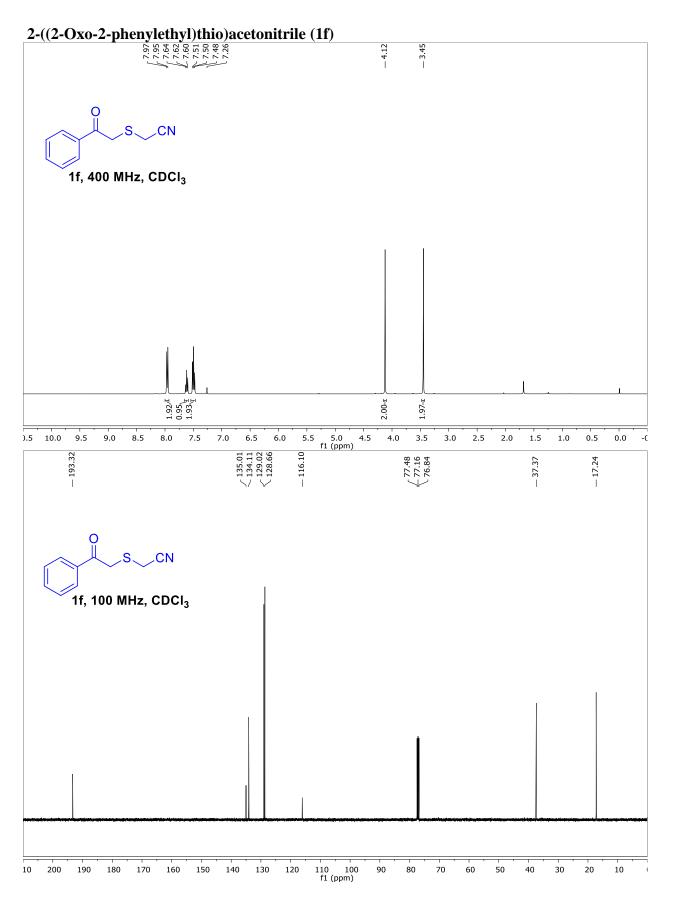

13. ¹H and ¹³C NMR Spectra of 2-Substituted Thio-acetonitriles and β-Keto Amines

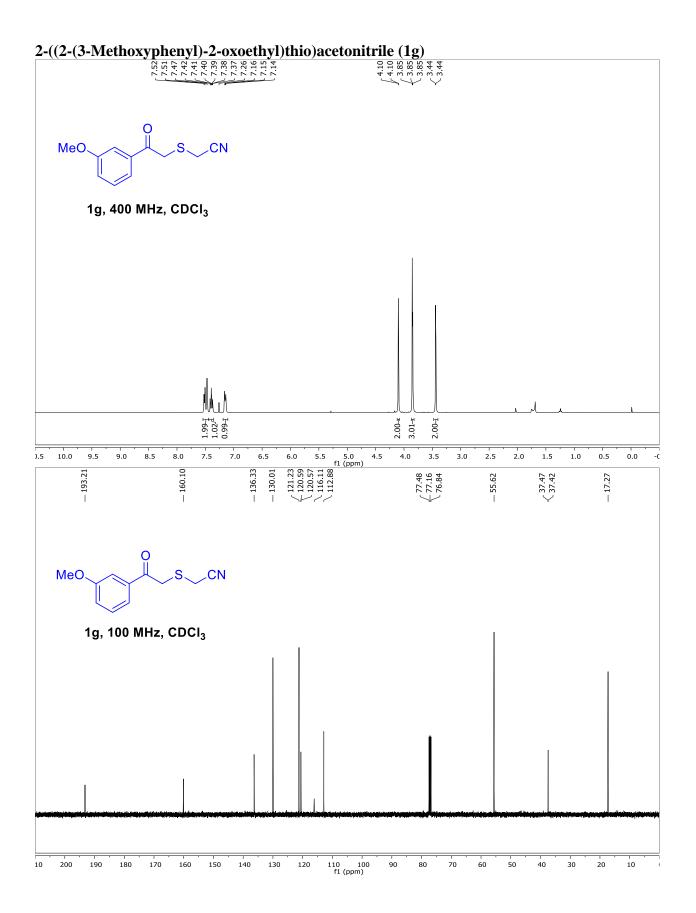
~ 7.26 ∠ 6.97 ∠ 6.95 — 4.07 — 3.88 - 7.95 - 7.93 CN MeO 1a, 400 MHz, CDCI₃ × - 2.00 .99_. .99₌ 2.00- 3.04₌ 7.0 6.0 10.0 9.5 9.0 8.0 7.5 6.5 5.5 5.0 4.5 f1 (ppm) 4.0 3.0 2.5 2.0 1.5 1.0 0.5 0.0 10.5 8.5 - 131.08 - 128.03 ✓ 116.20✓ 114.23 -191.90-164.33- 77.48 - 77.16 - 76.84 — 17.29 --- 55.70 -- 37.09 0 **CN** S MeO 1a, 100 MHz, CDCI₃ 110 100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 0

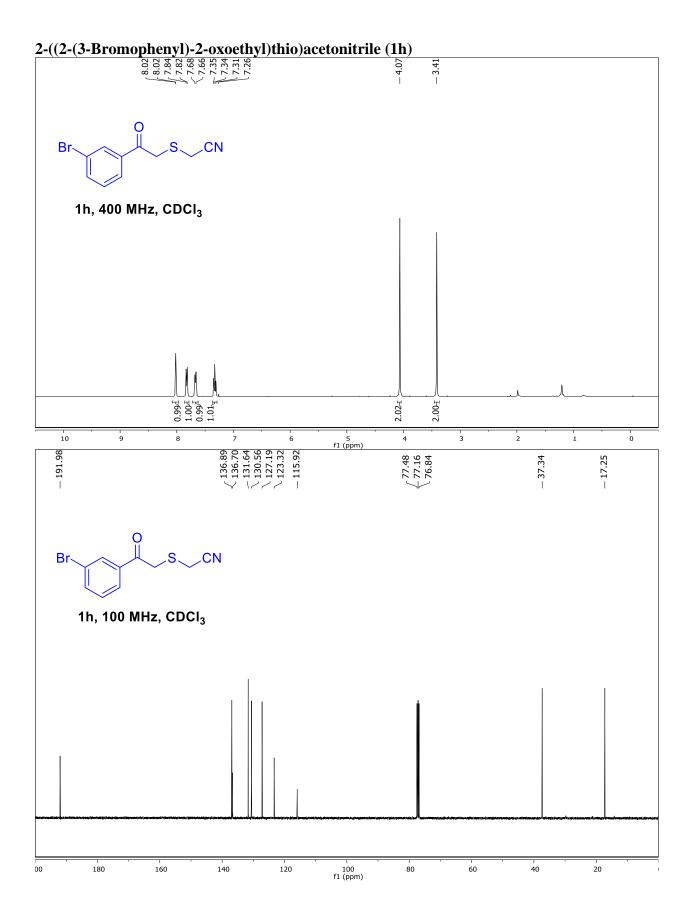

2-((2-(4-Methoxyphenyl)-2-oxoethyl)thio)acetonitrile (1a)

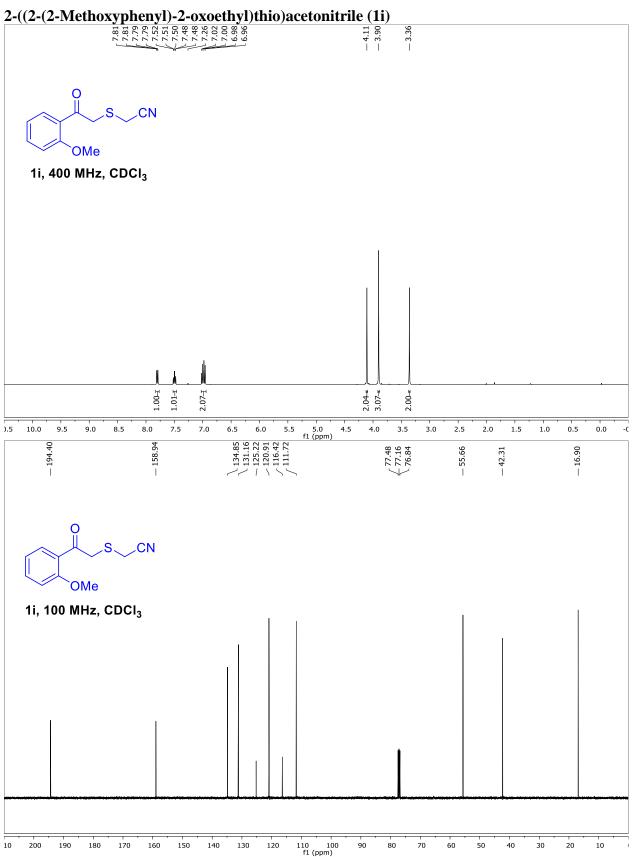


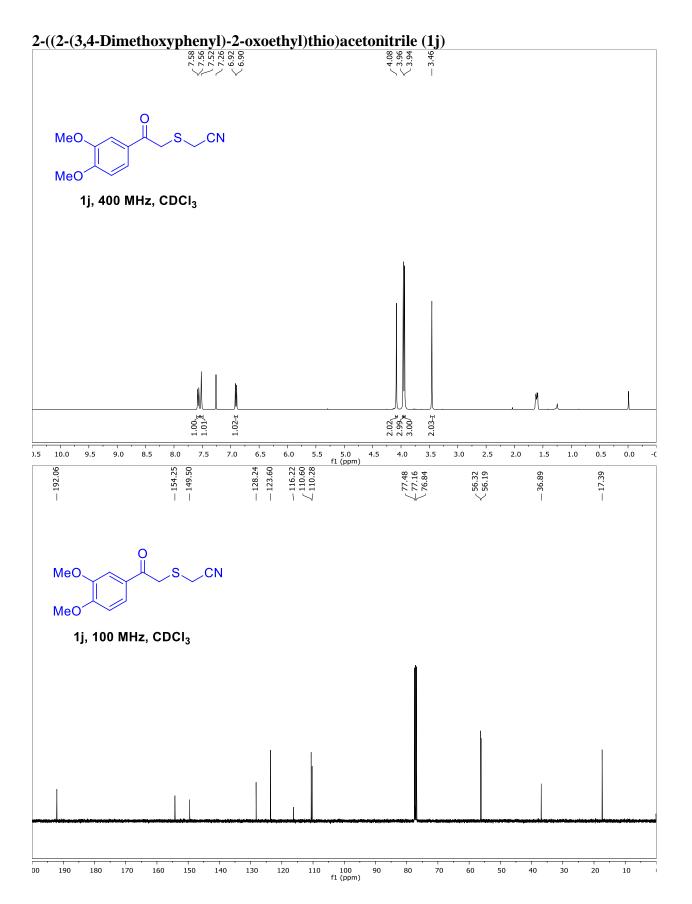
2-((2-Oxo-2-(p-tolyl)ethyl)thio)acetonitrile (1b)

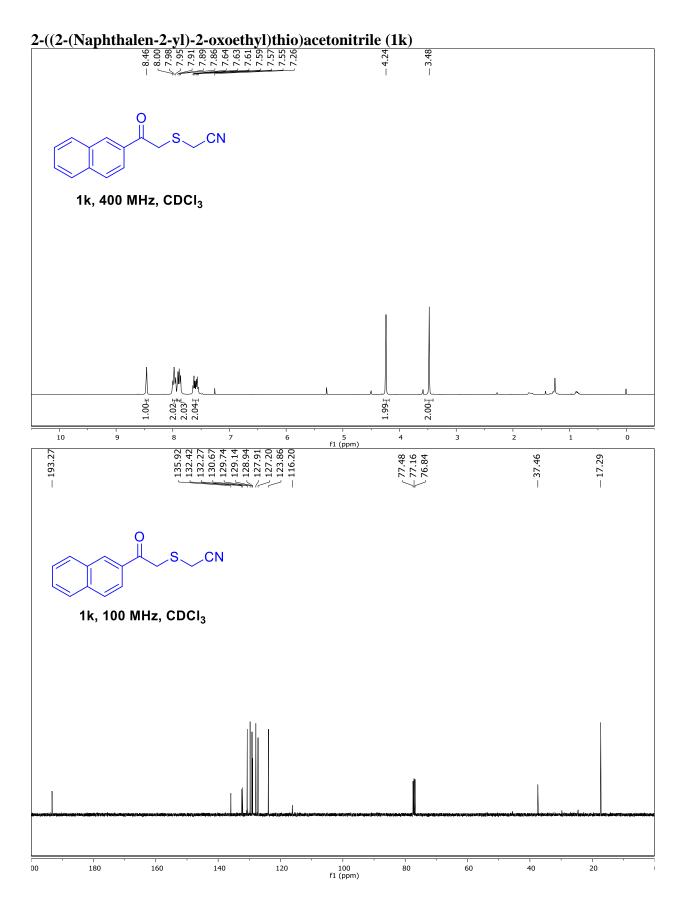


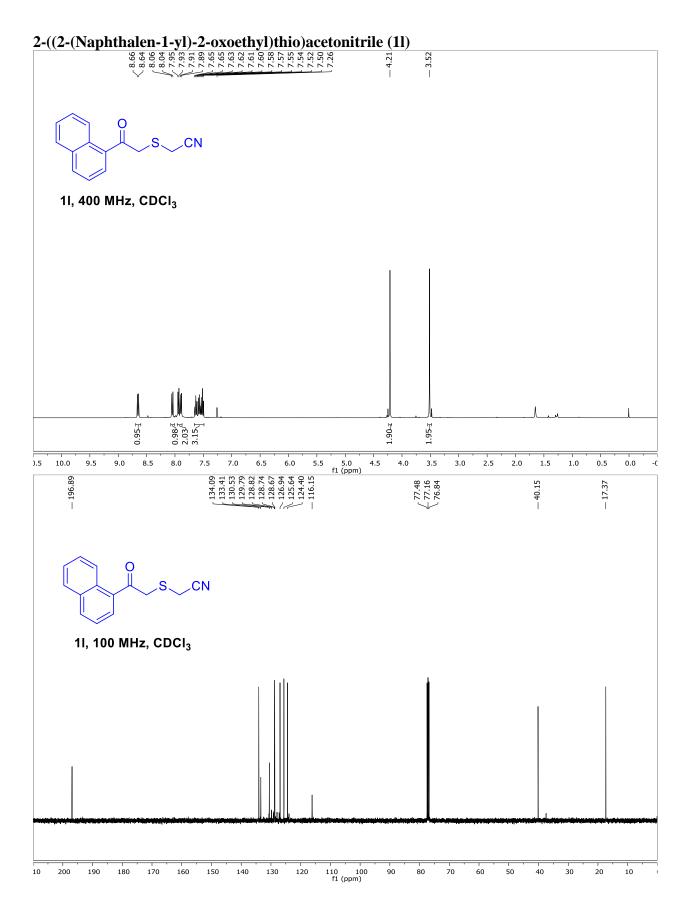

2-((2-(4-Chlorophenyl)-2-oxoethyl)thio)acetonitrile (1c)

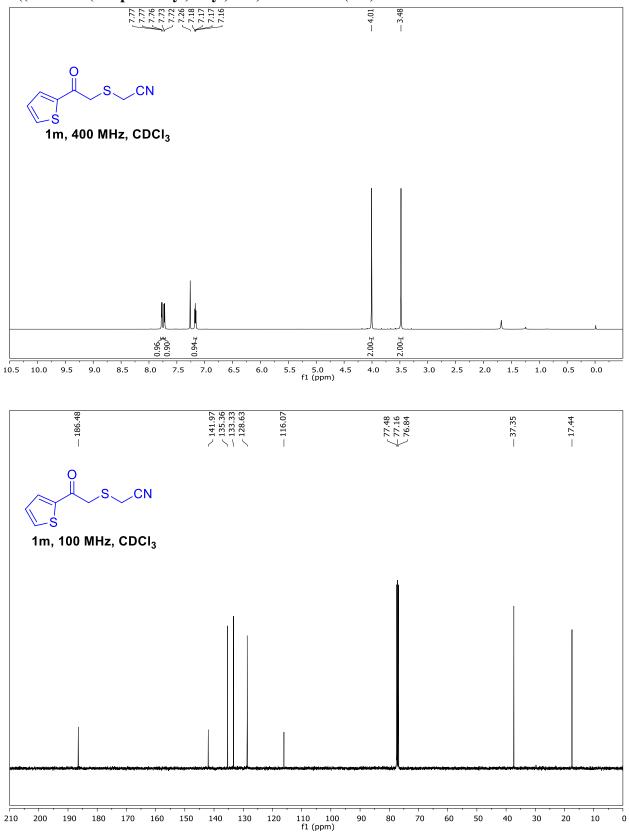



2-((2-(4-Fluorophenyl)-2-oxoethyl)thio)acetonitrile (1e)

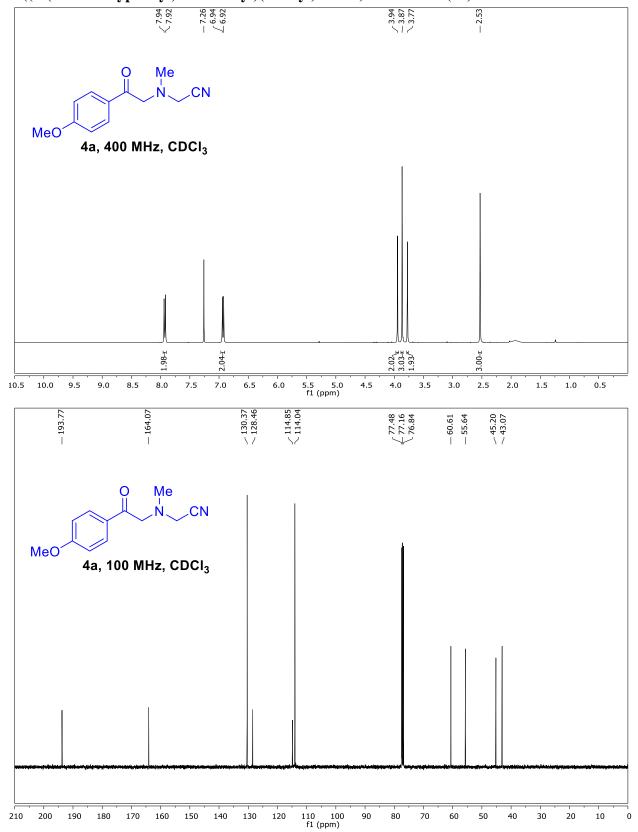


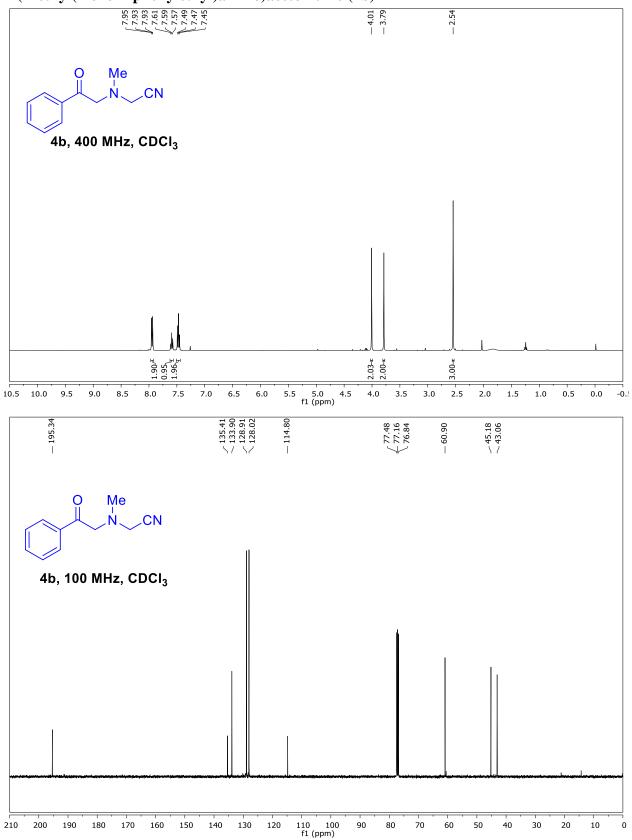

S42



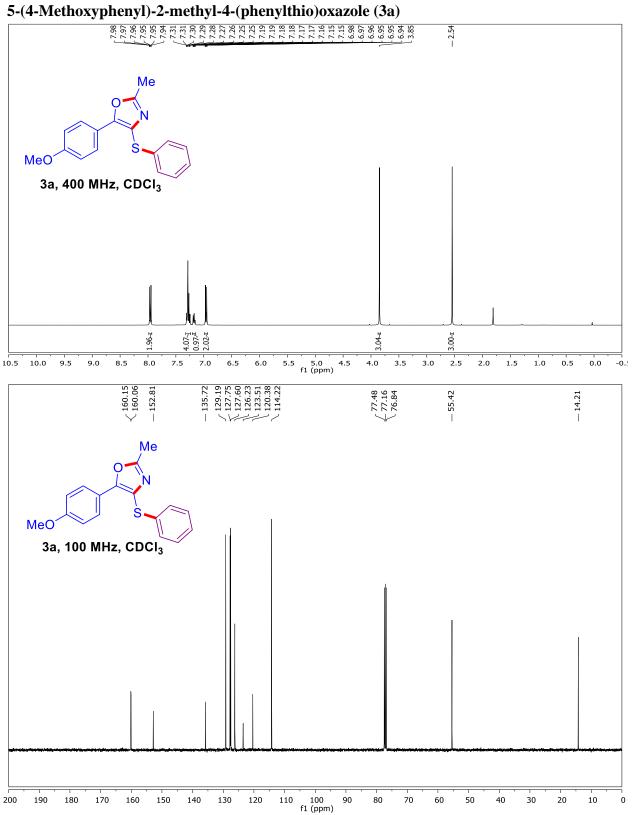


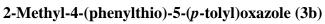
S45

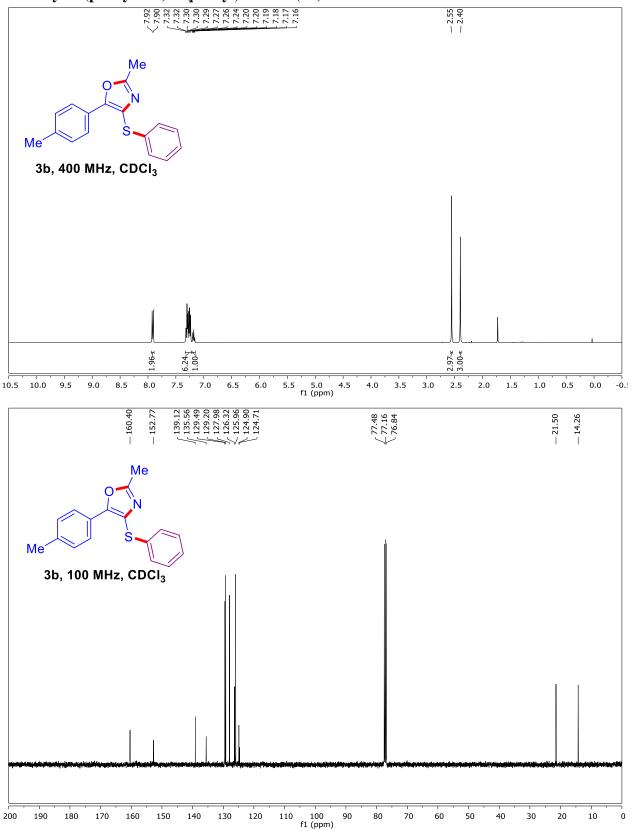


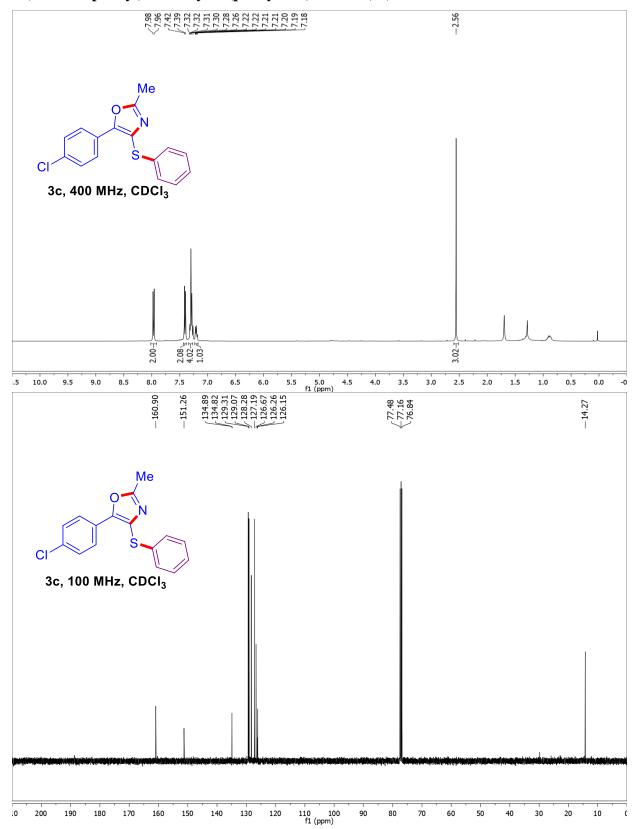


2-((2-Oxopropyl)thio)acetonitrile (1n) -- 3.50 -- 3.33 - 2.25 CN Me 1n, 400 MHz, CDCI₃ 2.03-≢ 2.07-≢ 3.00-3.5 7.0 5.5 5.0 4.5 f1 (ppm) 2.5 3.0 2.0 7.5).5 10.0 9.5 9.0 8.5 8.0 6.5 6.0 4.0 1.5 1.0 0.5 0.0 -C -- 201.96 -115.98- 77.48 - 77.16 - 76.84 — 28.55 -16.83-- 41.33 0 CN Me 1n, 100 MHz, CDCI₃ 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 70 60 40 20 0 -10 80 50 30 10

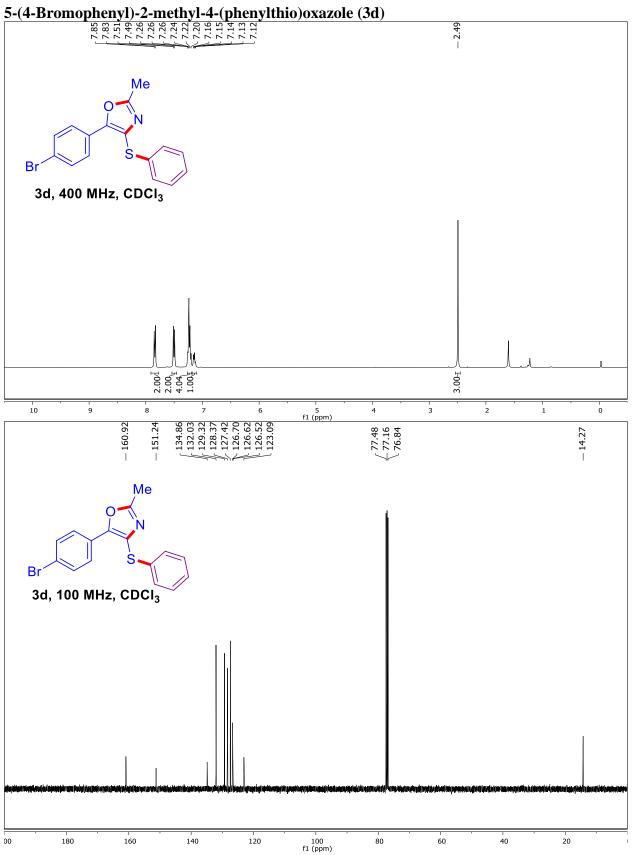


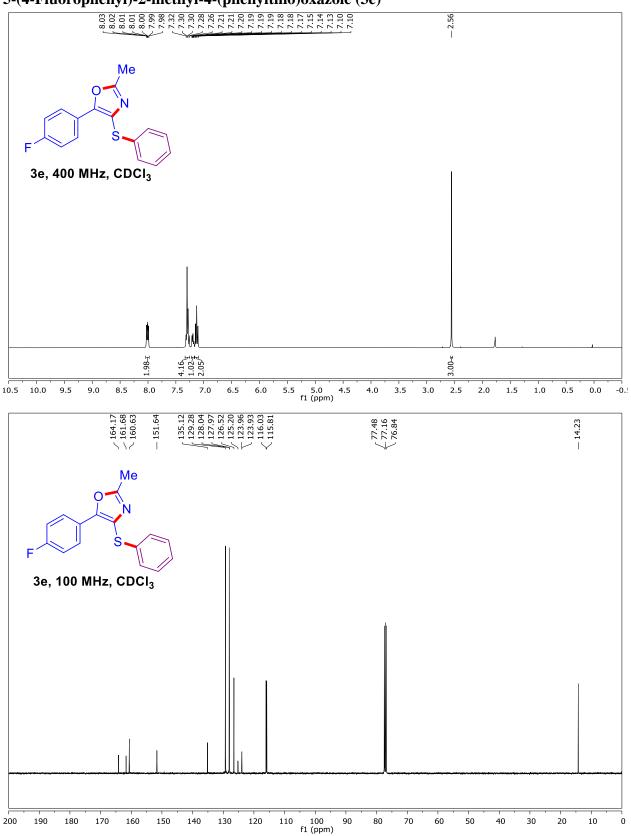

2-((2-(4-Methoxyphenyl)-2-oxoethyl)(methyl)amino)acetonitrile (4a)

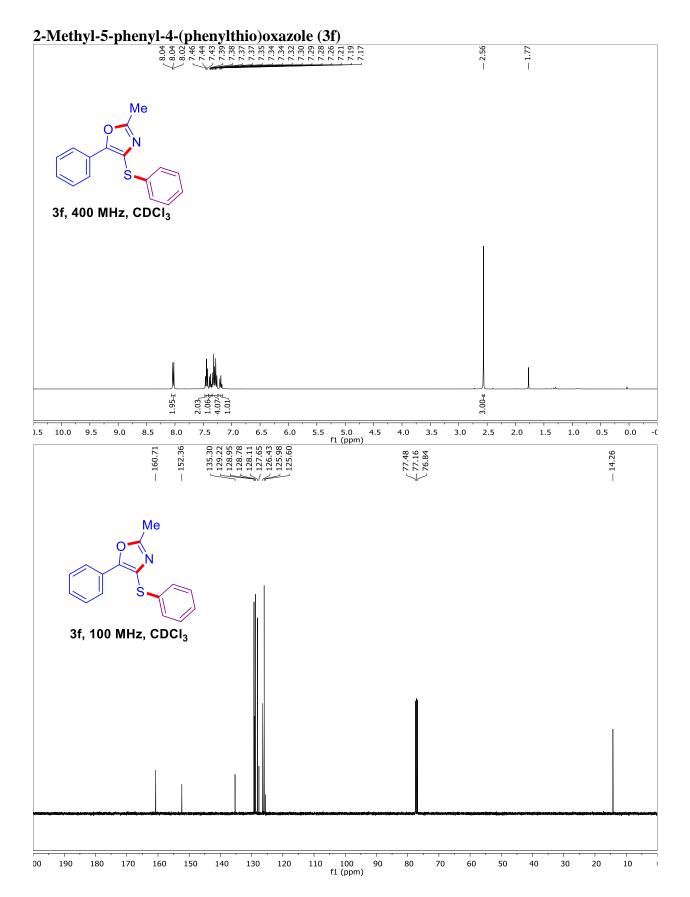



2-(Methyl(2-oxo-2-phenylethyl)amino)acetonitrile (4b)

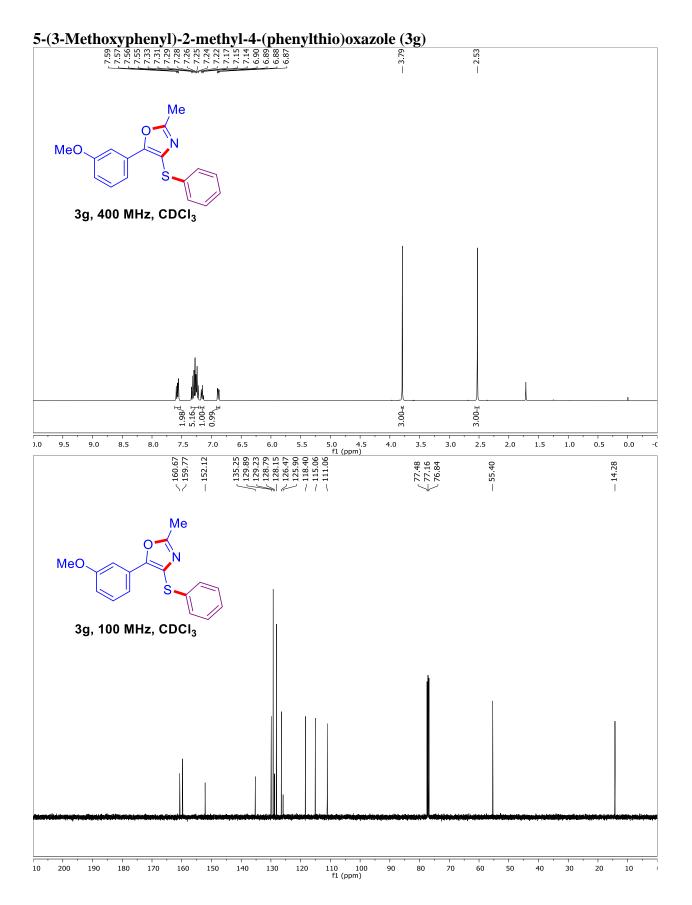
14. ¹H and ¹³C NMR Spectra of Functionalized Oxazole Derivatives

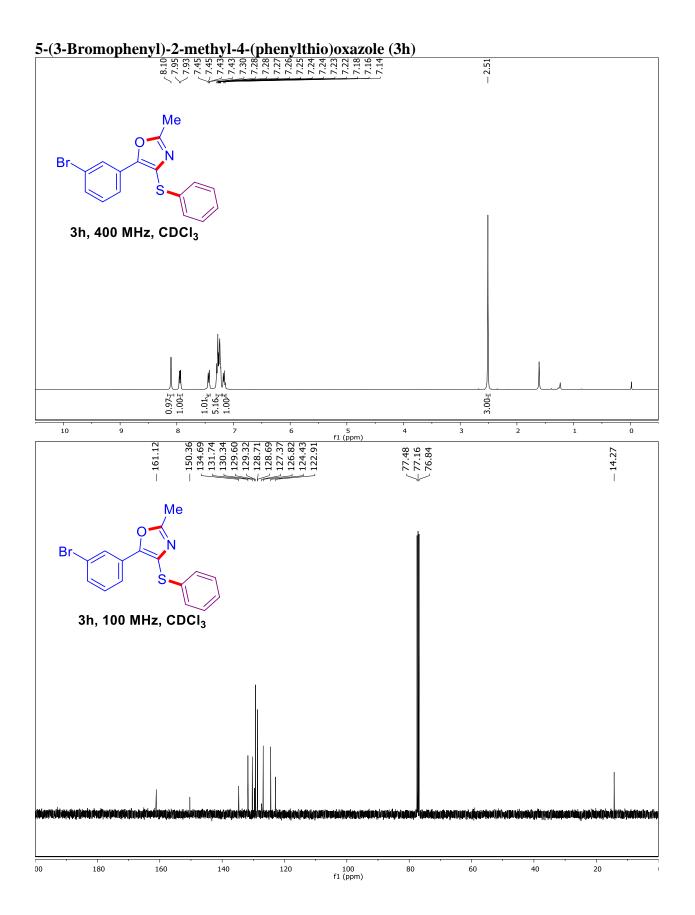


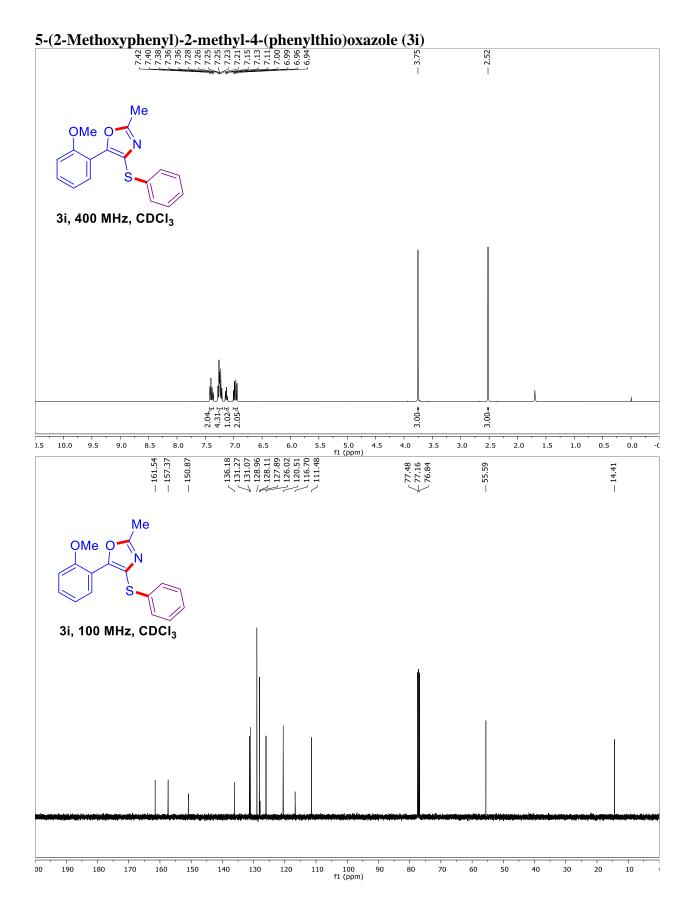


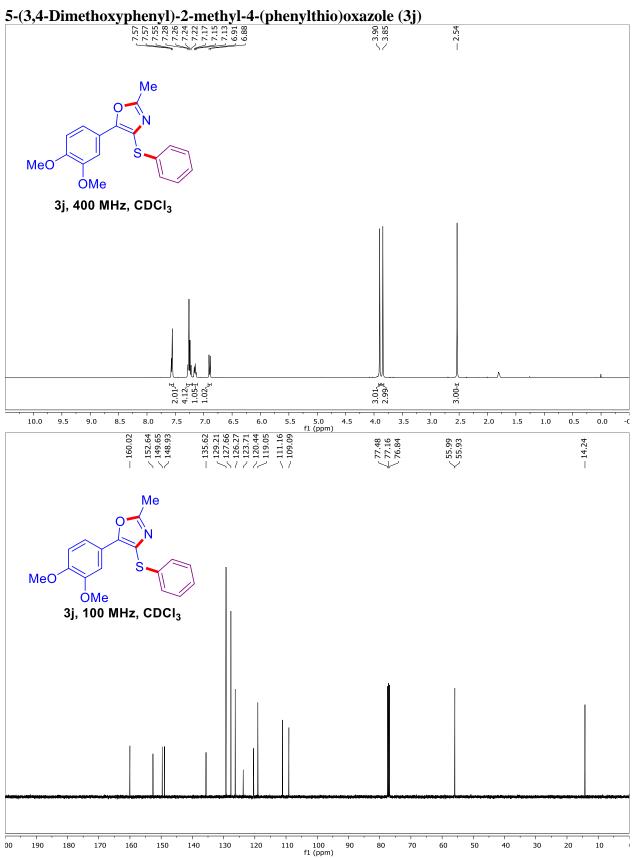


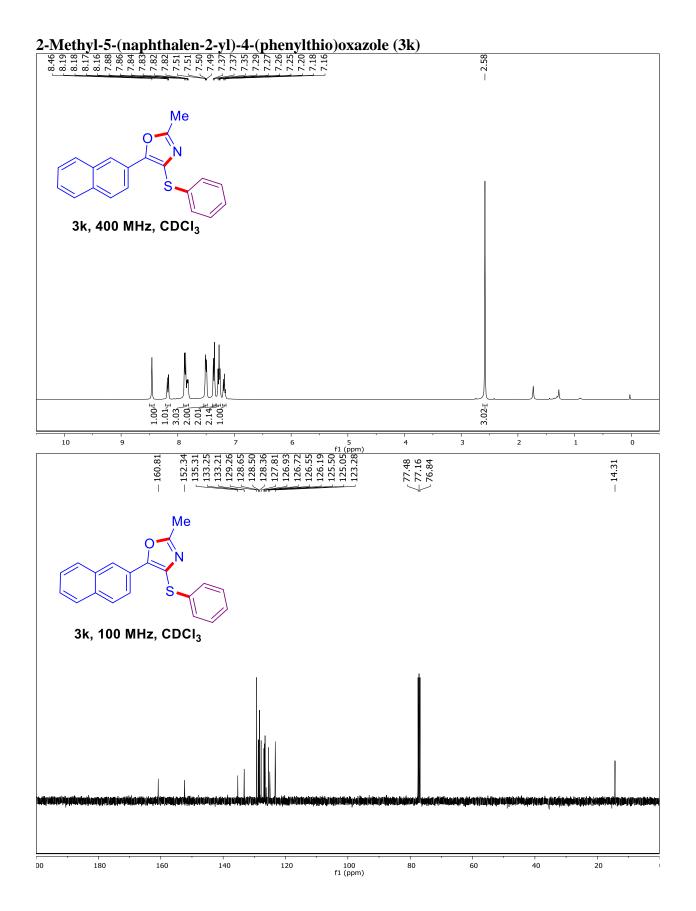
5-(4-Chlorophenyl)-2-methyl-4-(phenylthio)oxazole (3c)

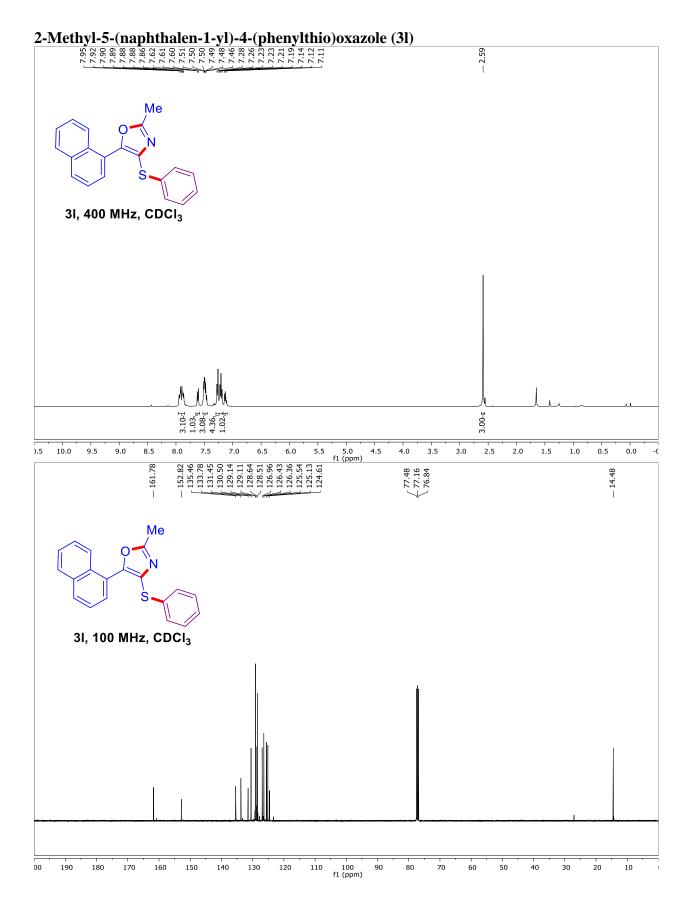


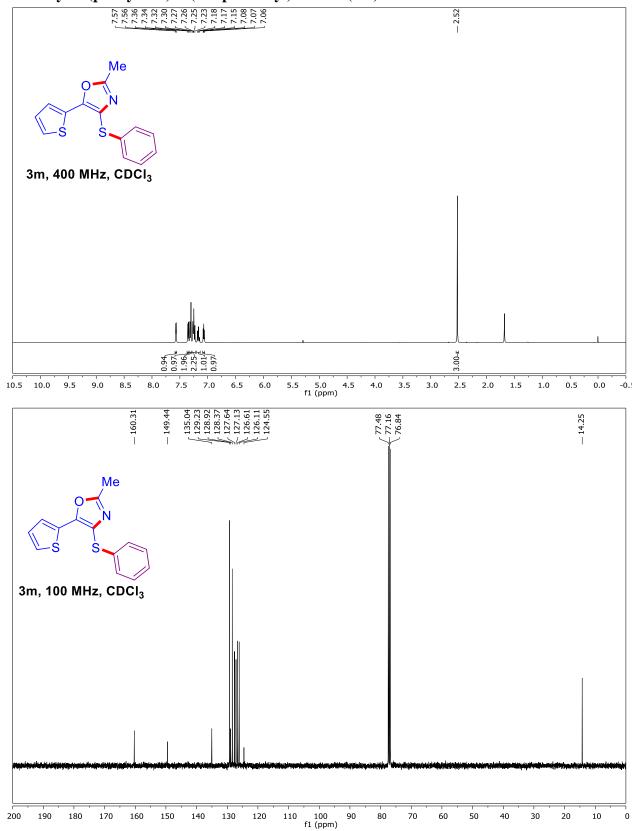


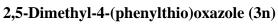

5-(4-Fluorophenyl)-2-methyl-4-(phenylthio)oxazole (3e)

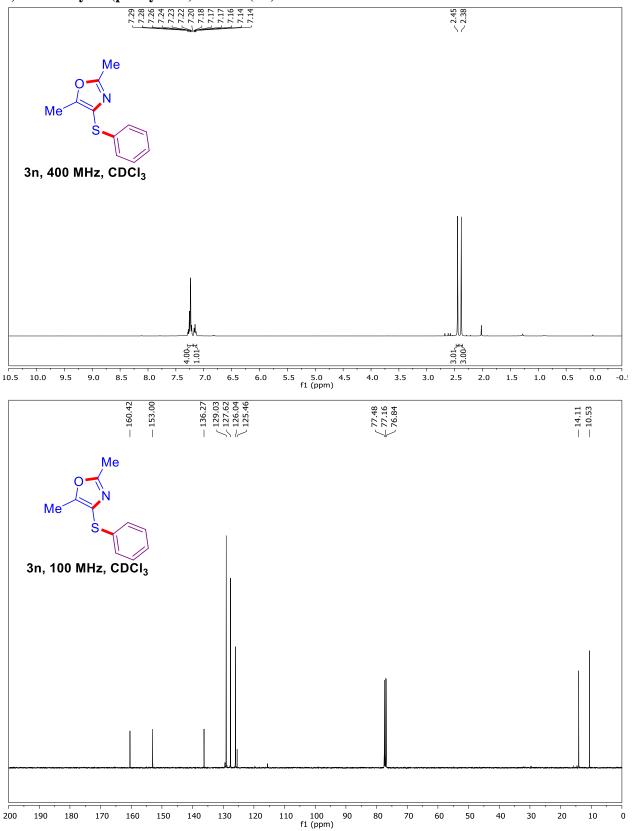


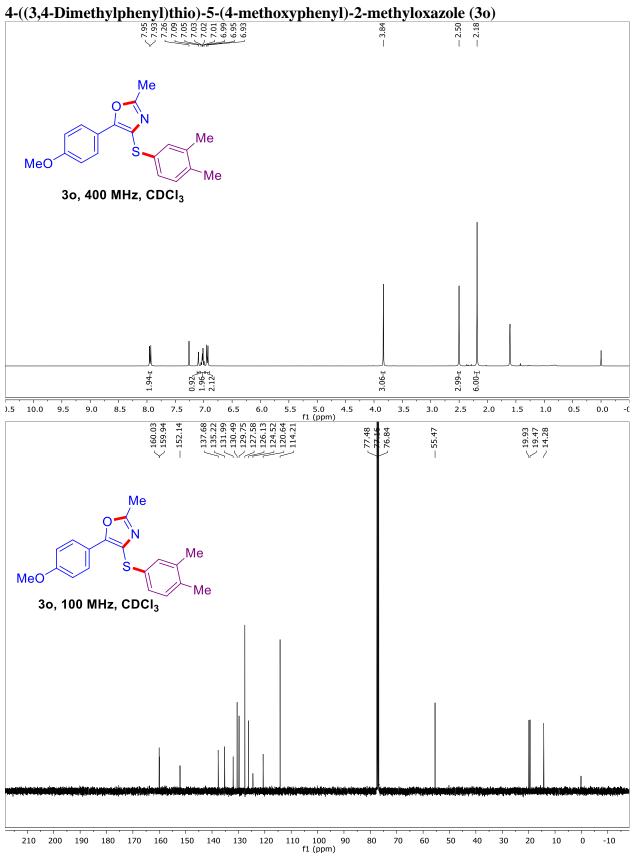

S57

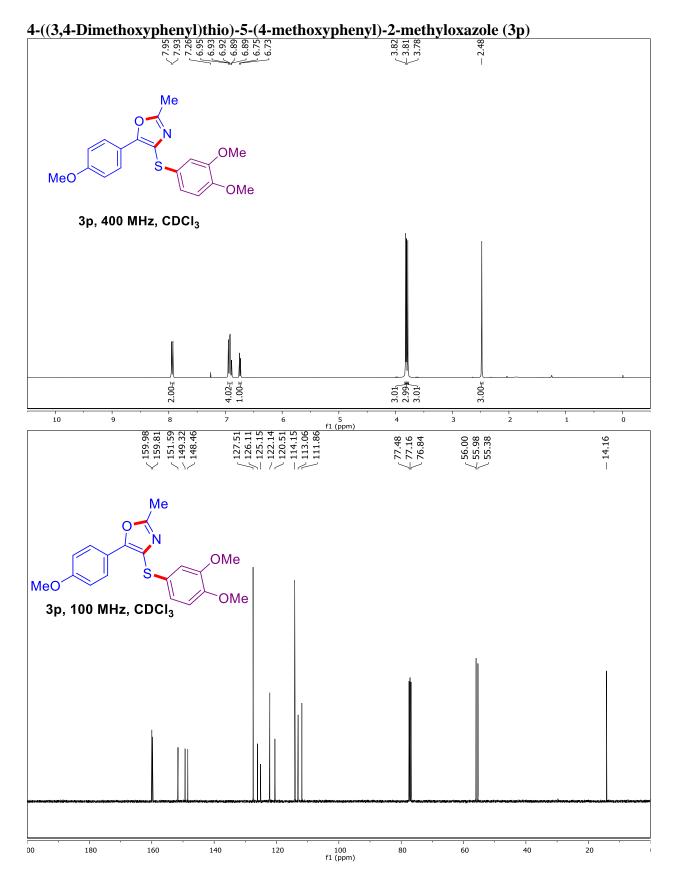


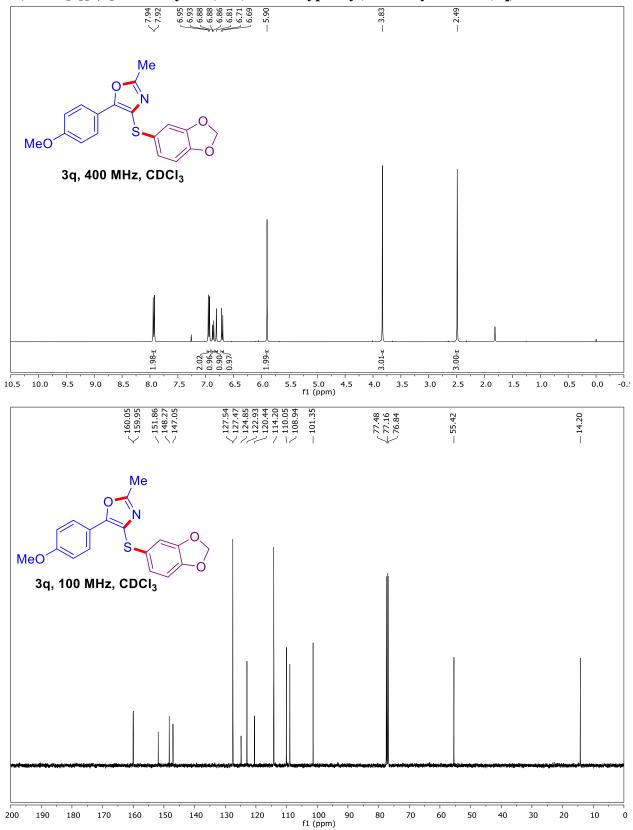


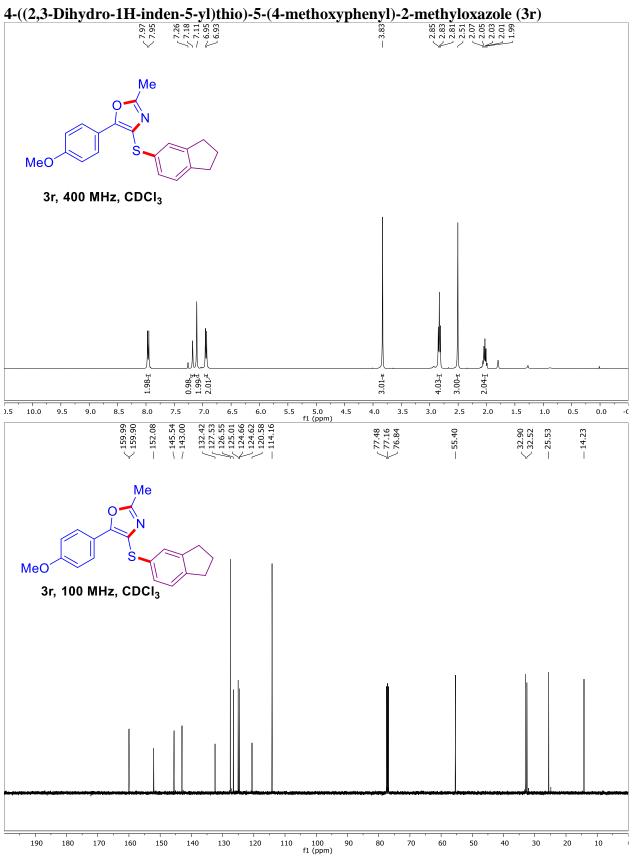


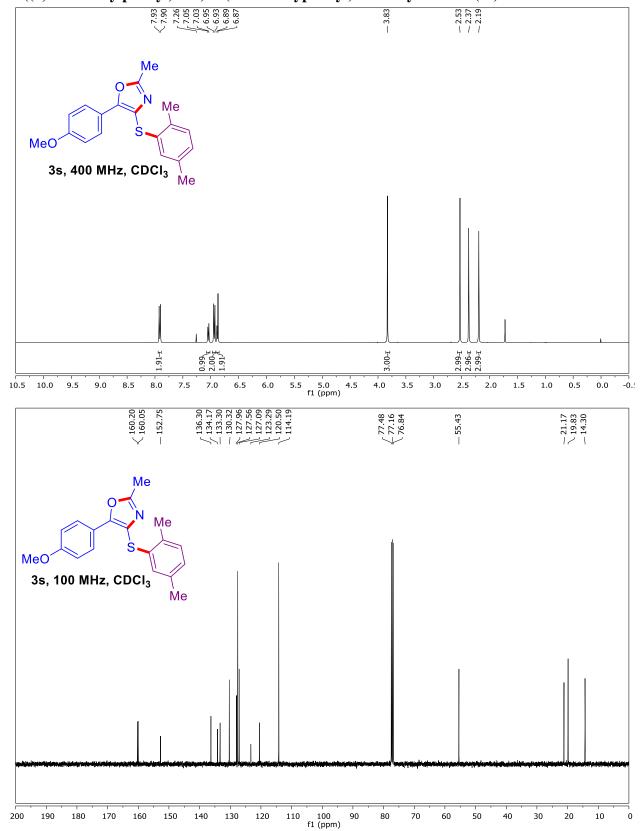

S62

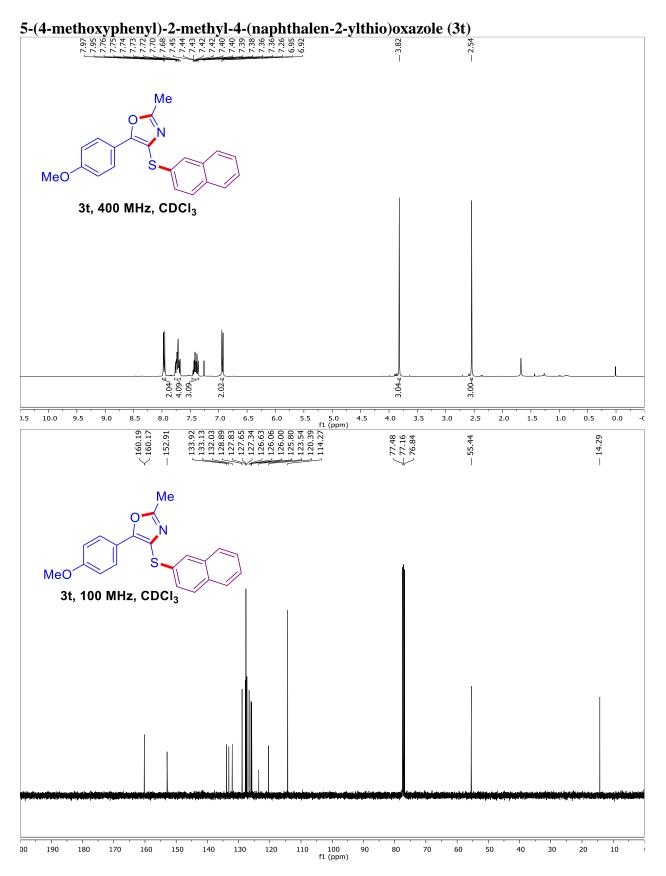


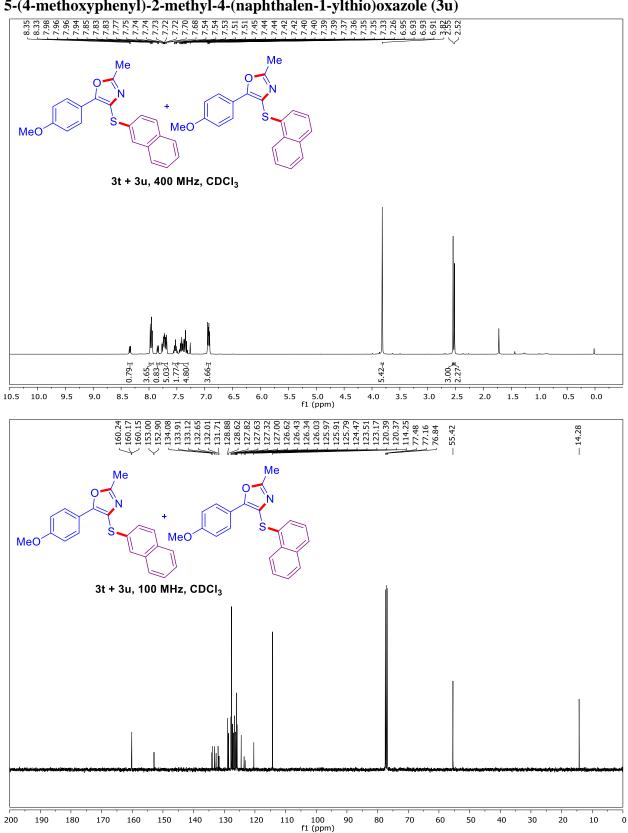


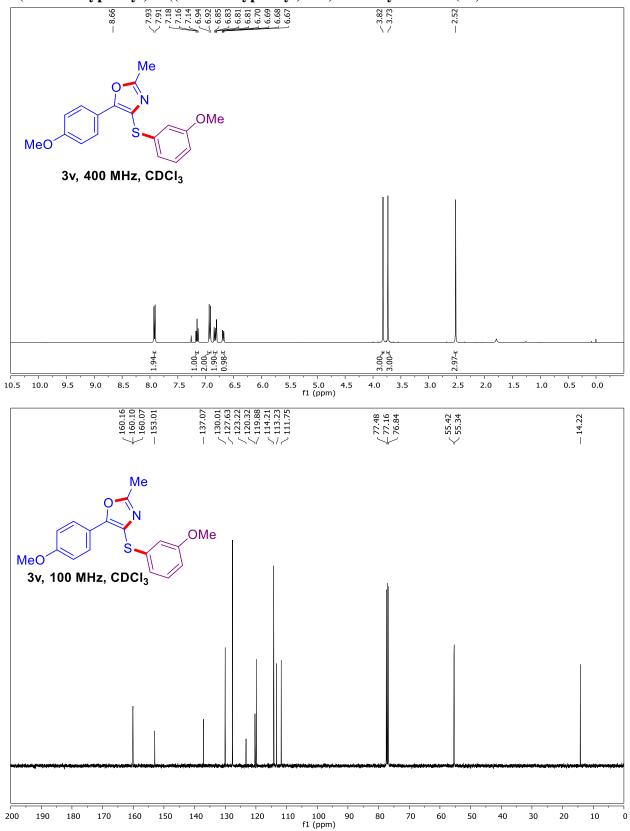

2-Methyl-4-(phenylthio)-5-(thiophen-2-yl)oxazole (3m)



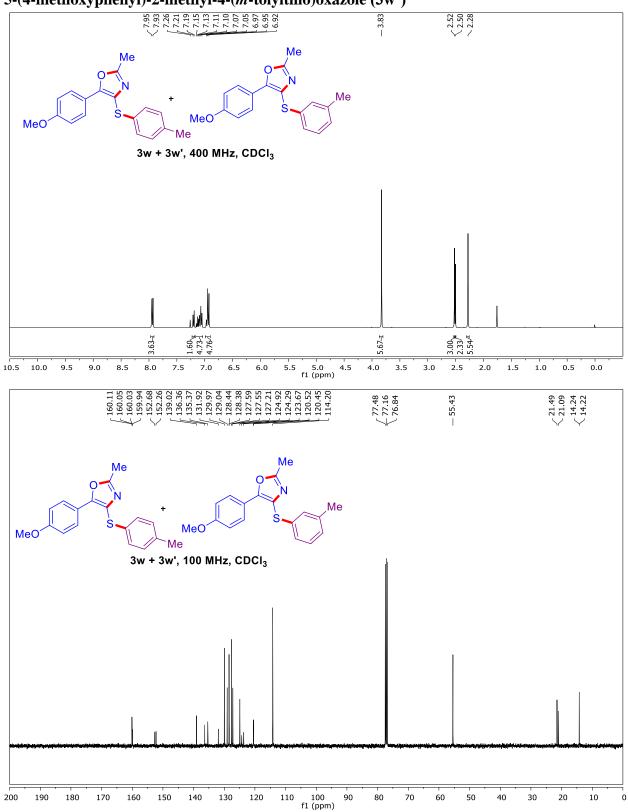


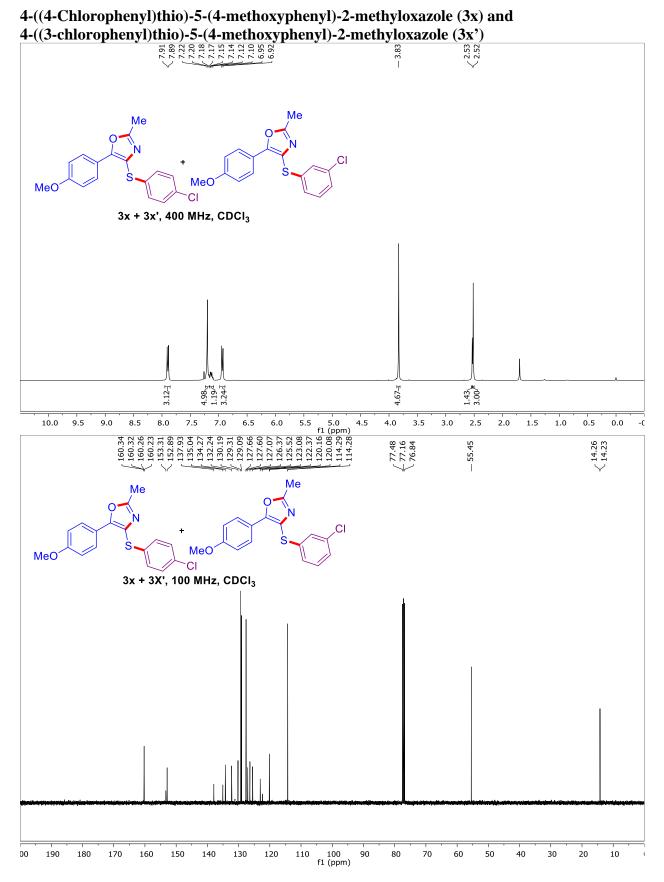


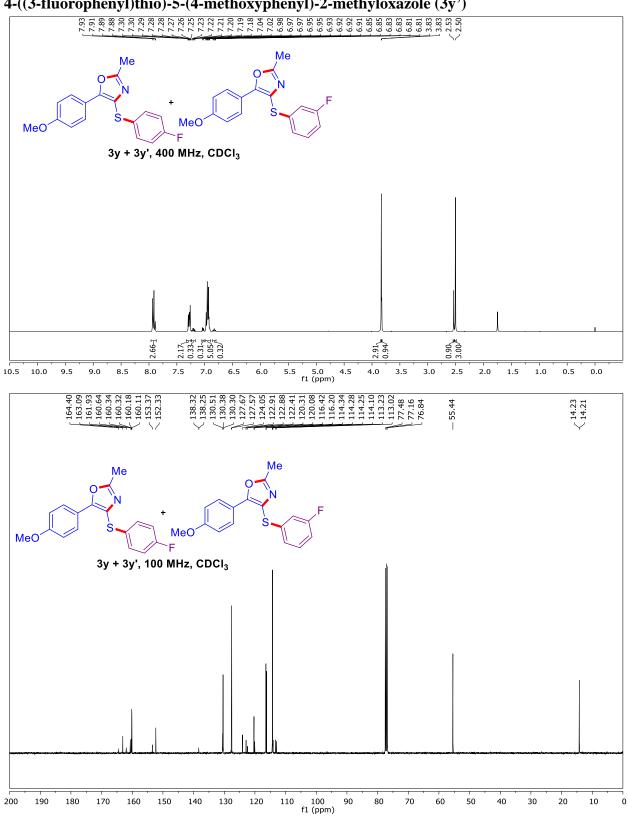

4-(Benzo[d][1,3]dioxol-5-ylthio)-5-(4-methoxyphenyl)-2-methyloxazole (3q)



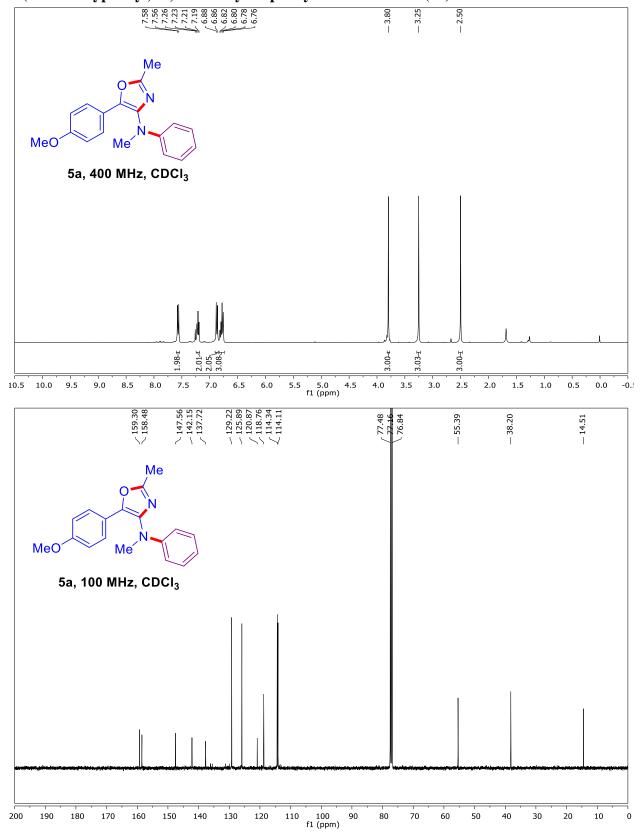
4-((2,5-Dimethylphenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3s)



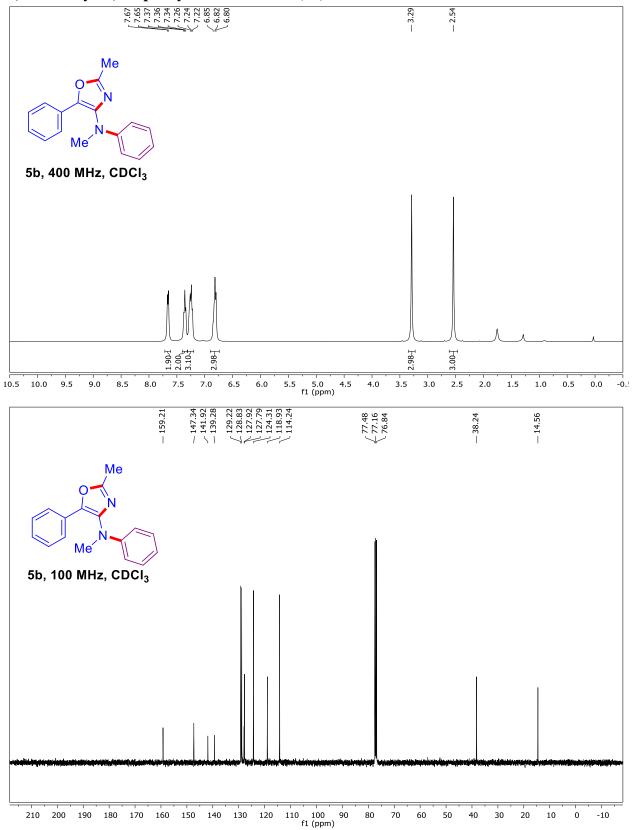

5-(4-Methoxyphenyl)-2-methyl-4-(naphthalen-2-ylthio)oxazole (3t) and 5-(4-methoxyphenyl)-2-methyl-4-(naphthalen-1-ylthio)oxazole (3u)

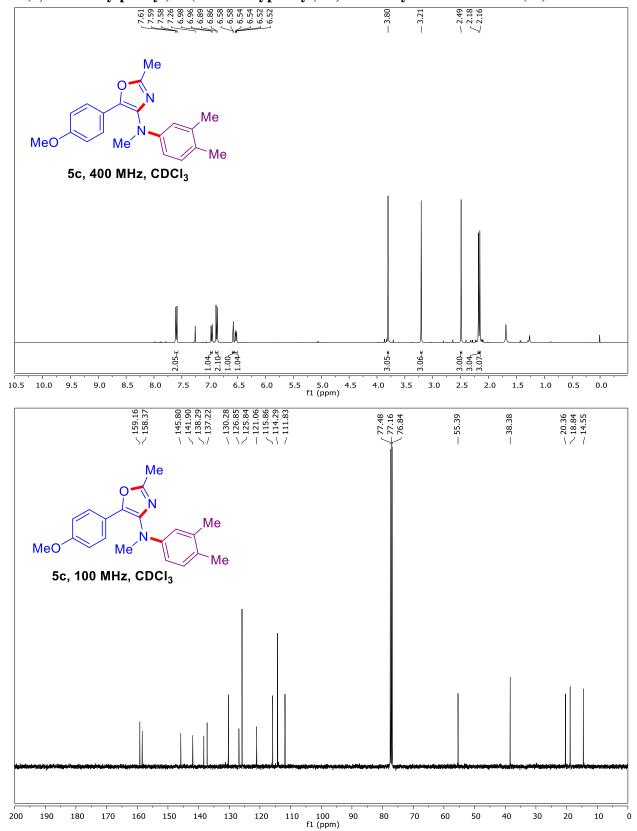


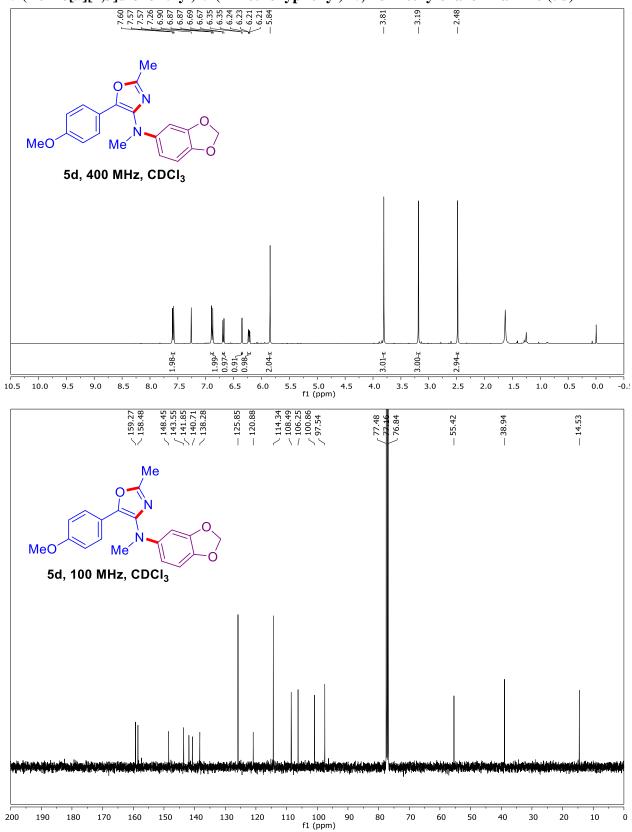
5-(4-Methoxyphenyl)-4-((3-methoxyphenyl)thio)-2-methyloxazole (3v)



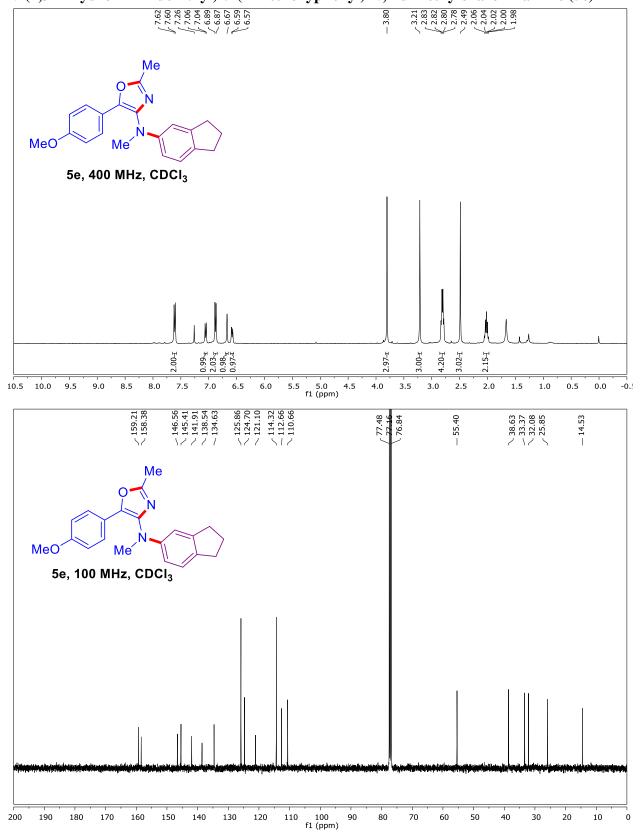
5-(4-Methoxyphenyl)-2-methyl-4-(*p*-tolylthio)oxazole (3w) and 5-(4-methoxyphenyl)-2-methyl-4-(*m*-tolylthio)oxazole (3w')

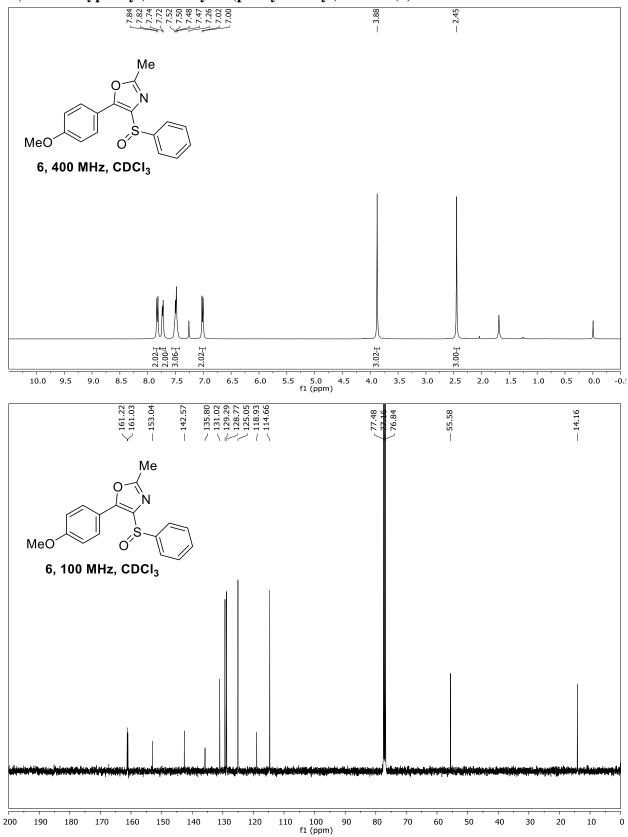


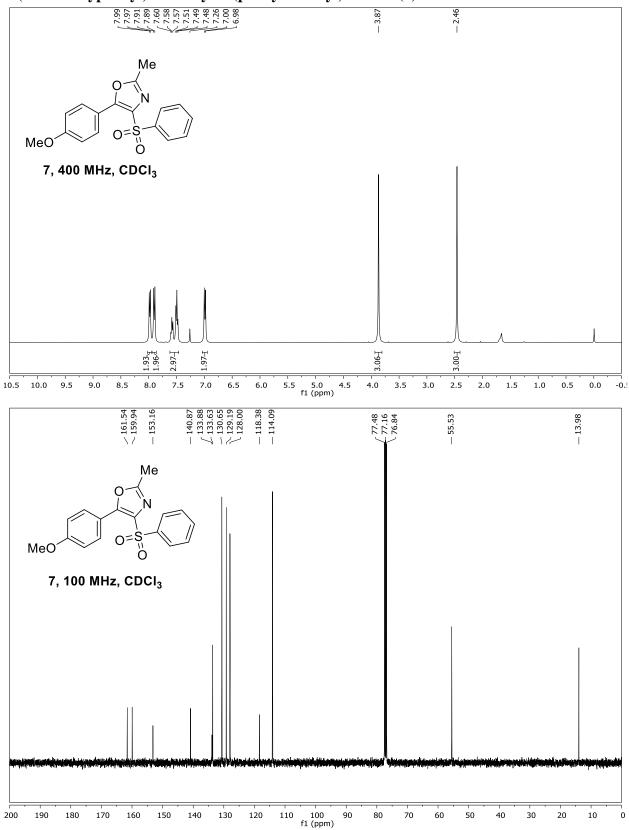

4-((4-Fluorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3y) and 4-((3-fluorophenyl)thio)-5-(4-methoxyphenyl)-2-methyloxazole (3y')


5-(4-Methoxyphenyl)-N,2-dimethyl-N-phenyloxazol-4-amine (5a)

N,2-Dimethyl-*N*,5-diphenyloxazol-4-amine (5b)




N-(3,4-Dimethylphenyl)-5-(4-methoxyphenyl)-*N*,2-dimethyloxazol-4-amine (5c)



N-(2,3-Dihydro-1*H*-inden-5-yl)-5-(4-methoxyphenyl)-*N*,2-dimethyloxazol-4-amine (5e)

5-(4-Methoxyphenyl)-2-methyl-4-(phenylsulfinyl)oxazole (6)

5-(4-Methoxyphenyl)-2-methyl-4-(phenylsulfonyl)oxazole (7)