
Space Optimization in the Bottom-Up Evaluation of Logic Programs

S. Sudarshan Divesh Srivastava Raghu Ramalsrishnan*

Jeffrey F. Naughtont

{sudarsha,divesh, raghu,naughton} @cs.wise.edu

Computer Sciences Department,

University of Wisconsin-Madison, WI 53706, U.S.A.

Abstract

In the bottom-up evaluation of a logic program, all gener-

ated facts are usually assumed to be stored until the end of

the evaluation. Considerable gains can be achieved by in-

stead discarding facts that are no longer required: the space

needed to evaluate the program is reduced, 1/0 costs may be

reduced, and the costs of maintaining and accessing indices,

eliminating duplicates etc. are reduced. Thus, discarding

facts early could achieve time as well as space improvements.

Given an evaluation method that is sound, complete and

does not repeat derivation steps, we consider how facts can

be discarded during the evaluation without compromising

these properties. Our first contribution is to show that such

a space optimization technique has three distinct compo-

nents. Informally, we must make all derivations that we can

with each fact, detect all duplicate derivations of facts and

try to order the computation so as to minimize the “life-

span” of each fact.

This separation enables us to use different methods for

each of the components for different parts of the program.

We present several methods for ensuring each of these corr-

ponents. We also briefly describe how to obtain a complete

space optimization technique by making a choice of tech-

niques for each component and combining them. Our results

apply to a significantly larger class of programs than those

considered in [NR90].

*The work of the first three authors was supported in part by

a David and Lucile Packard Foundation Fellowship in Science and

Engineering, an IBM Faculty Development Award and NSF grant

IRI-S804319.

t The work of this author supported by NSF grant IRI-8909795.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

e 1991 ACM 0-89791 -425 -2/91 /0005 /0068 . ..$1 .50

1 Introduction

Bottom-up evaluation of a logic program proceeds by repeat-

edly applying rules to generate facts until no new facts can

be produced. Bottom-up evaluation has been s]lown to have

several advantages over top-down evaluation in the area of

deductive databases (see, for example, [U1189]). However, a

disadvantage of bottom-up evaluation is that all generated

facts are usually assumed to be stored until the end of the

evaluation. Since the number of facts generated can be ex-

tremely large in the case of many programs, reducing the

space requirements of a program by discarding facts dur-

ing the evaluation may be very important. The following

example (from [N R90]) illustrates this point.

Example 1.1 The program computes the length of the

longest common subsequence (LCS) of two strings a and

b, and is representative of more general sequence analysis

programs. The algorithm is from Hirschberg [Hir75]; we use

the representation that if letter j of string a (resp. b) is a,

then the database contains the fact a(j, a) (resp. b(j, o)).

RI : lCS Trz,fv, o).
[R2 : lcs Mjn, O).

R3 : ics(M, N,X) _ M < m,N < n,a(M, C), b(N, C),

lcs(M+l, N+l, X– 1).

R4 : lcs(M, N,X) - M < m,N < n,a(ilf, C), b[N, D),

C <> D,lcs(M + l, N,,X1),lCS(M,

N+l, X2), X=max(Xl, X2)

Query: ?-lcs(O, O, X).

If the strings are of both of length n, then evaluating the

program using the top-down Prolog evaluation strategy gives

a running time that is Q(~J)). Using the Magic Sets rewrit-

ing strategy followed by bottom-up evaluation produces a

running time that is 0(n2), but is also space Q(n2). Sup-

pose n is 106, a value that we are likely to see in applications

such as DNA sequencing. Then the number of facts gener-

ated is around 1012, which is clearly impractical to store.

Sliding Window Tabulation, as described in [N R90], eval-

uates this program in O(n) space and 0(n2) time, by dis-

carding facts in the course of the computation. Storing 106

68

facts is certainly feasible, as opposed to 1012. Thus this im- Sliding Window Tabulation then turns out to be just one

provement in the space complexity is essential if the program particular way of combining techniques for each of the com-

is to be run on large data sets. 0 ponents. Thus our techniques significantly extend the class

In addition to improving the space requirements, discard-

ing facts that are no longer needed can have other advan-

tages. I/Ocosts may bereduced, even eliminated, ifthe pro-

gram can be evaluated in main memory; the costs of main-

taining and accessing indices, eliminating duplicates etc. are

also reduced. Thus, discarding facts early could achieve time

as well as space improvements. We refer to techniques that

discard facts during the course of the evaluation of a logic

program as space optirni,ratiora techniques].

While Sliding Window Tabulation is effective on the LCS

example, the applicability of Sliding Window Tabulation as

presented in [NR90] is fairly limited. For inst ante, sup-

pose we extend the LCS program so that instead of being

base predicates, a and b are defined by additional rules in

the program—this will be the case if the program prepro-

cesses “rough” base data before searching for common subse-

quences. Sliding Window Tabulation cannot be used on this

extension of the LCS program. Similarly, if the above pro-

gram is embedded in a larger program that uses the length

of the longest common subsequence to perform further anal-

ysis, such as find the region of this DNA sequence that best

matches the given test sequence, Sliding Window Tabulation

is again inapplicable.

One of the main contributions of this paper is to show

that space optimization techniques have three components:

of programs optimized in [N R90]. In particular, we can deal

with some programs (rewritten using Magic Sets) in which a

predicate p and the corresponding magic predicate magic.p

are mutually recursive whereas the techniques “of [NR90] do

not handle such programs.

1.1 Definitions

In this paper, we consider Horn clause logic programs2, and

assume the usual definitions including those of terms, atoms

and rules (clauses). We assume familiarity with semi-naive

evaluation, and in some of the sections of the paper we also

assume some familiarity y with the Magic Sets transformation.

We refer the reader to [U1189] for an introduction.

A program is treated as a set of rules and EDB facts.

While analyzing the program, we do not need to know the

specific EDB facts, but we often make use of information

such as functional dependencies on EDB relations. A pro-

gram -fact is used to mean any fact that is used or derived by

a program. In this paper, we assume that all program facts

are ground. We say that a predicate is derived with respect

to another if the two predicates are mutually recursive3. We

say that a predicate is derived wrt a rule if it is derived wrt

the head predicate of the rule. A derived predicate occur-

rence in a rule is an occurrence in the rule of a predicate

that is derived wrt the rule.

In the rest of this paper, we use the terms ‘derivation

1. Ensuring that each fact is used in every possible deriva- of a fact,’ ‘ (point in) the evaluation of a program,’ etc.

tion even though facts may be discarded before the end without formal definitions. They are what one would intu-

of the evaluation. itively expect in a bottom-up evaluation, and formal defini-

2. Ensuring that multiple derivations of a fact are de-
tions are included in the full version of this paper [SSRN90].

tected, in order to avoid repeated inferences.
We assume that the program is evaluated using semi-naive

evaluation.
3. Synchronizing the computation to ensure that deriva-

tions of facts are “close” to all their uses, and discarding

facts soon after their uses.
2 Soundness, Completeness and

Non-Redundancy
We describe these components in more detail in Sections 2.

This decomposition provides a framework in which to reason
In general, discarding a fact could result in the non-

derivation of other facts that should have been derived and
about space optimization methods. It also gives us the flex-

thereby, in the presence of negation, derivation of facts that
ibilit y of choosing different techniques for each component,

and synthesizing new space optimization techniques.
should not have been derived. This could compromise com-

pleteness, and in the presence of negation, also soundness.

In this paper, we also describe several new techniques

for each of these three components, and briefly discuss how

to combine these techniques to generate space optimization

methods. (Automatically combining these techniques to get

a space optimization technique for the full program is dis-

cussed in detail in the full version of this paper [SSRN90].)

1In this paper, we do not consider other space saving tech-

niques, such as allowing facts to share parts of their structure

with other facts.

The following condition ensures that facts are used in all

possible derivations and is used to ensure soundness and

completeness:

zThis can be extended to include programs with stratified

negation and aggregation.

3 We refine and extend this definition in the full version of this

paper.

4 In the full version of the paper, we consider a synchronization

technique called Nested-SCC evaluation that could result in some

repeated derivations.

69

Condition U: A fact p(E) satisfies Condition U with re-

spect to an evaluation , at a point el in the evaluation, iff

1. Every derivation using it has been made at or before

el, or

2. If p(ti) is discarded at el, it will be recomputed at some

later point e2 in the evaluation, and any derivation that

could have been made using p(ti) after el (had p(ii) not

been discarded) will be made after the fact has been

recomputed at e2. Also, if the program has negation,

any derivation that would have been prevented by the

presence of p(~) is not made between el and e2. ❑

In this paper, we assume that an evaluation is a semi-

naive evaluation [BR87, RSS90]. Such an evaluation has the

desirable property of not repeating inferences if no facts are

discarded, However, if a fact is discarded and subsequently

rederived, we may not detect this duplicate derivation and

thus may repeat some derivations that use this fact. This

could compromise the semi-naive property. Further, not de-

tecting duplicate derivations of a fact could compromise ter-

mination if cyclic derivations are possible. The following

condition ensures that multiple derivations of a fact are de-

tected:

Condition D: A fact p(ii) satisfies Condition D with re-

spect to an evaluation, at a point el in the evaluation, iff

1. It is not derived again at or after the point el, or

2. If p(ii) is discarded at el, then for any later point e2 in

the evaluation where p(ti) is derived, no inference using

I@) made at or before el is repeated after e2. ❑

We say that an evaluation is derivation-complete if all

derivations that can be made using the rules and facts are

in fact made by the evaluation.

Theorem 2.1 Consider cm evaluation E of a program such

that E is sound, derivation-complete, has the semi-naive

property and no facts are discarded during the evaluation.

Suppose we modify E by discarding facts one at a time dur-

ing the evaluation. Then the modified evaluation is sound,

derivation-complete and has the semi-naive property ifl Con.

ditions U and D are satisfied by each fact whenever it is

discarded. ❑

In the rest of this paper, we assume that facts are dis-

carded one at a time, and Conditions U and D reflect this

assumption.

Theorem 2.2 Given a logic program P, an EDB Dl, and

an arbitrary point el in an evaluation of program P on Dl,

it is undecidable whether a given fact satisfies Conditions U

and/or D at cl.= ❑

5 For Datalog programs, this is decidable, but we may have to

evaluate the program fully in order to check the conditions, which

defeats the aim of discarding facts during the evaluation of the

program.

Consequently, it is undecidable whether discarding a fact

during an evaluation will compromise the soundness, com-

pleteness or semi-naive property of the evaluation. Hence,

we must look for sufficient conditions for ensuring D and U

for program facts. Even the stronger conditions that only

test the first parts of Conditions U and D are undecidable.

Our sufficient conditions are often based on the first parts

of Conditions D and U.

2.1 An Overview of Our Approach

We now present a brief overview of our techniques. In sub-

sequent sections we look in detail at some of the techniques

that we outline here. Consider facts of the form p(~) in a

program P. Consider an evaluation of P and let @ be a

schedule for discarding p-facts in this evaluation. We justify

@ by establishing that Conditions D and U hold for each p

fact before it is discarded. At compile time we analyze the

program, and decide on the applicability of each technique.

We then add extra tests and auxiliary computations (that

we describe along with each technique) to the compiled ver-

sion of the program. In general these tests are performed at

run time to decide when a fact satisfies Conditions D and U.

These operations are quite efficient-see Section 7 for more

details. Facts are discarded at run-time as soon as the tests

determine that they satisfy both Conditions D and U,

Ensuring Condition D : Condition D can be checked on

a per-rule basis, and different techniques can be used

for different rules in a given program. Applicable tech-

niques include the following:

(1) Providing a bound on the total number of deriva-

tions of a fact: If a program is duplicate free ([MR90]),

we know that once a fact is derived it will not be derived

again. We look at this technique for ensuring Condi-

tion D in Section 3.

(2) Using monotonicity constraints: Monotonicity

constraints ensure some monotone ordering on the

derivation of facts. We look at this idea in Section 4.1,

Ensuring Condition U : Condition U can be checked on

a per-body-literal basis, and different techniques can be

used for different literals in a given program. Applica-

ble techniques include the following:

(1) Providing a bound on the total number of uses of

a fact: Suppose a rule in linear, i.e. there is only

one predicate in the body of the rule which is mutu-

ally recursive with the head of the rule. Once a fact

for the derived predicate is used (with all the facts for

the base predicates), we know that no new derivations

can be made using that fact in that rule. We look at

this and more general ways of ensuring Condition U in

Section 3.

(2) Using monotonicity constraints: In Section 4.2

we consider using monotouicity constraints to satisfy

Condition U.

70

If none of these approaches for ensuring D or U suc-

ceeds, we always have the option of not discarding any

p-facts. We can still optimize the rest of the program,

unlike the technique described in [NR90].

Synchronization : If (all) derivations of facts are “close”

to all their uses, facts can be discarded soon after being

derived. We call techniques that can be used to order a

computation so as to maximize this property synchro-

nization techniques. These include:

(1) Interleaved-SCC synchronization: This technique

is described in detail in Section 5.

(2) Delaying first use of facts: The goal is to balance

the derivation of new facts against the identification of

facts that can be discarded so that the number of facts

that are stored at any one time is minimized. The set

of derived facts is partitioned into a set of ‘(active” facts

used in derivations and a set of “hidden” facts whose

use is delayed.

Although this idea is present as a part of Sliding Win-

dow Tabulation [N R90], we isolate the synchroniza-

tion achieved by hiding facts from other components

of space optimization techniques.

(3) Nested-SCC synchronization: This technique can

be understood as identifying “subgoals” that are to be

evaluated by a “subprogram” on each call. The idea is

to generate facts for the subprogram as and when they

are needed by the main program.

We omit the last two techniques from the short version

of this paper due to lack of space.

Combining Techniques : The various techniques for syn-

chronization and for ensuring Conditions D and U are

applicable to parts of a program (such as rules, predi-

cate occurrences, etc). These need to be combined to

get a space optimization technique for the full program.

We briefly look at this in Section 6.

3 Bounds on Derivations and

Uses of Facts
Condition DF1: (1) No fact for p is derived by more than

one rule, (2) there is at most one derivation for each p fact

by any rule, and (3) no derivation for any p fact is repeated.

!3

The techniques of [MR90] can be used to test the first two

parts of this condition. The third part of the condition is

satisfied in a semi-naive evaluation if duplicate derivations

of all other facts are detected (using any of the techniques

described for ensuring Condition D).

Proposition 3.1 If a predicate p in a semi-naive evaluation

satisfies Condition DF 1, Condition D is satisfied by each p

fact after it is derived. ❑

The essential idea is that no fact for p is derived more

than once in this evaluation (i.e., p is duplicate free). We

can weaken Condition DF1 in several ways. Suppose re-

quirement (1) does not hold, we can still ensure Condition

D using a run-time check to determine that a fact has been

derived once by every rule that could possibly derive it. We

can also use functional dependencies between the head of a

rule and derived predicates in the rule body to bound the

number of rule applications that derive a fact. We discuss

these extensions in the full version of this paper.

Condition Bounds_U: Consider an evaluation of a pro-

gram P, and a rule R : p20i--p(7), bo, plo,, where bo de-

notes the join of all the base predicate occurrences (other

than p(~), if it is base) in the body of the rule, and plo

denotes the join of all derived predicate occurrences (other

than p(;)) in the body of R. Suppose that no derivations for

any p2 facts are repeated. Then the predicate occurrence

p(;) in R satisfies Condition Bounds.U if p(~) functionally

determines plo in R. ❑

Note that in the case when p(i) is the only predicate oc-

currence that is derived with respect to the rule (i.e. R is a

“linear” rule), Bounds_U is trivially satisfied.

Proposition 3.2 Consider an evaluation of a program, and

let a body predicate occurrence p(~) in R satisfy Condition

Bounds.U. A fact p(=) can no longer be used in the occur-

rence p(~) if (1) p(~) does not match any facts for bo, or

(2) p(ti) matches base facts, and it has been used in the

occurrence p(l) in a successful rule application. ❑

Suppose some derivations using R and p(fi) are repeated.

If we discard the fact p(~) after one successful derivation,

we would prevent repetitions of that derivation and hence

not satisfy Condition U. Condition B U 1 can be generalized

by requiring that p(~) along with bo functionally determine

plo in R. We examine this and other generalizations in the

full version of this paper.

Example 3.1 Consider the program below.

anc(X, Y) +- father(X, Y).

anc(X, Y) + jather(X, Z), anc(Z, Y).

Suppose we know that the ~athe~ relation is a tree. That is,

we are given the following functional dependency: father :

1 + 2, i.e. each person has only one father, and we also

know that the father relation is acyclic. Suppose also that

the user gives a query ? – anc(X, Y). We assume that if a

fact is an answer to the query, it is printed out straight away

to the users terminal.

We can deduce the following about the program:

● The program is duplicate free: The techniques of

[MR90] may be used to deduce this. Informally, this

is because the functional dependency shows that each

fact can be deduced at most once by each rule, and the

71

acyclicity of ~ather along with the functional depen-

dency shows that each fact can be deduced by at most

one rule.

● Since the rule is linear, each derived fact for anc is used

in at most one rule application. We can then discard

anc facts once they have been used in one rule applica-

tion.

We now look at the benefits due to discarding facts in

this program. Let n be the number of facts in the relation

~ather. The functional dependency on anc shows that for

each node z, there is exactly one ancestor at each distance i.

This means that at each stage, at most n facts are computed.

Thus at most 2* n anc facts are stored at any point of

time. If facts were not discarded, up to 0(n2) facts may

need to be stored, depending on the structure of the father

relation. Note that monotonicity based techniques (such

as Sliding Window Tabulation and extensions discussed in

Section 4) are not applicable to this program, since there is

no monotonicity inherent in the rules.

Even in the absence of the functional dependency and

acyclicity information of the above form, facts for the anc

program can be deduced to satisfy Conditions D and U.

Suppose for some a, no fact anc(., a) (for any value “-”) is

derived in a particular iteration in a semi-naive evaluation of

this program, then facts of the form anc(-, a) will neither be

derived again norused again in the evaluation. Therefore all

such facts satisfy Conditions D and U, and can be discarded

(ifthey arenotanswers tothe query). Weexpect thesavings

to be significant in practise, although we cannot make any

stronger claims about it. This idea can be extended to more

general classes of programs, to derive other techniques for

ensuring Condition D, but we do not pursue it here. ❑

4 Monotonicity

In this section we look at how to use monotonicity to ensure

Conditions D and U. Our results on the use of monotonicity

extend the results of [NR90].

We make extensive use of the # function defined in [NR90].

The function # can take any predicate p as an argument and

returns an arithmetic expression involving only the argu-

ment positions of p. Further, ~ can also take any fact p(z)

as an argument , and returns an integer. Candidate func-

tions for # can be generated using the techniques discussed

in [NR90]. We do not discuss this here, but assume that

possible # functions are made available. The function q$ has

a natural extension that also can take as argument an atom

p(z), and returns an arithmetic expression involving only the

variables in ~. For instance, a @ that maps fac(l, N) to 1

would map ~ac(l + 1, Nl) to 1 + 1. Such a ~ also maps

fac(4, -) to 4.

4.1 Monotonicity and Condition D

Definition 4.1 Locally Saturated : Suppose that no

derivation for any p fact is repeated in an evaluation. Then

a set of facts for derived body predicate occurrences of a

rule R defining p is said to be locally saturated with respect

to R if every derivation that can be made using (1) R, (2) all

facts for the base predicate occurrences of R, and (3) only

the given set of facts for derived body predicate occurrences

of R, has already been made. A set of facts is said to be

locally saturated with respect to a set of rr-des if it is locally

saturated with respect to each of the rules. ❑

Since all derivations that could be made using just the set of

locally saturated facts have been made, any new derivation

requires at least one fact (for a derived predicate occurrence)

that is not in the set of locally saturated facts.

In the case of the Semi-Naive evaluation of an SCC (where

the set of predicates derived with respect to p is just the

set of predicates defined in the SCC of p), at any point in

the n + lth iteration, the set of facts derived before the nth

iteration is a set of locally saturated facts for p. If a different

evaluation or synchronization technique is used, the sets of

locally saturated facts may change, but the following results

would not be affected. Thus we achieve a certain degree

of independence from evaluation techniques in the following

results.

Definition 4.2 Monotonicity : A rule is said to be

monotonically increasing with respect to a predzcate occur-

rence p’ in its body if, for every instance of the rule (with

p(~) used in p’), #(head) > @(p(;)). A rile is said to

be monotonically increasing if it is monotonically increasing

with respect to each body occurrence of a predicate that is

derived with respect to the rule. ❑

The following is a sufficient algorithmic test for mono-

tonicity. Consider a rule R:

l?:p(i) +pl(K),..., pn(K).

The rule is guaranteed to be monotonically increasing if

for every derived literal p, (~, the arithmetic expression

#(P(~)) – #(PI(@) is always >0. This can be tested using

symbolic manipulation on each expression ~(p(~)) – O(P, (z)).

Condition Monotonicity-D: Consider an evaluation of

a program P. Let p be a predicate defined in P, and S be

the set of all predicates in P that are derived with respect

to p (note that p c S). Let 7? be the set of all the rules of P

defining the predicates in S. The predicate p satisfies Con-

dition Monotonicity-D iff every rule in ‘R is monotonically

increasing. ❑

Definition 4.3 Min-head-gap bounding function :

For a predicate p as in Condition Monotonici~y_D, a func-

tion y mapping facts to integers is said to be a rein-head-gap

bounding junction for p iff for each instance R’ of any rule

72

R defining p, if p(ii) is the head fact and g(~) is a derived

fact in the body of R’, (q$(p(ii)) – ~(q(~))) ~ y(q(z)). 0

Note that the constant function y = O is always a min-

head-gap bounding function—however, one might be able to

get a “better” function for the purposes of the subsequent

theorem.

We can algorithmically determine a rein-head-gap bound-

ing function aa follows. Suppose for each rule R defining p

and for each derived predicate p, (~ in the body of R, each

expression @(p(i)) — #(p,(~) not only is non-negative but

also (aft er simplification) has as arguments only variables

from ~. Then we can derive a rein-head-gap bounding func-

tion for p by symbolic arithmetic manipulations on these

functions. The simplification above could include replace-

ment of variables using arithmetic equalities present in the

body of the rule. For instance, if we have the rule

jac(X, X * IV)+X > O,Y = X - l,~ac(~N).

we can replace Y by X -1 to get the rein-head-gap bound-

ing function (the constant function 1) for ~ac. See the full

version of the paper for more details.

Theorem 4.1 Consider a semi-naive evaluation where

predicate p satisfies Condition Monotonicity_D and ~ is a

rnin-head-gap bounding junction for p. Let S and ‘R be as

in Condition Monotonicity-D. In this evaluation, let F be

the set of all the facts that have been derived for predicates

defined in S, and F’ G F be a set of facts such that F’ is

locally saturated with respect to the set of rules %?,. Let

m = min{d(~) + -i(t) I j c F – F’}

If a fact p(~) is such that @(p(ii)) < m, then p(z) will not be

derived again. ❑

An analogous theorem holds with monotonically decreas-

ing rules in place of monotonically increasing rules in Condi-

tion Monotonicity.D. The theorem gives us a way of ensuring

Condition D for facts when the conditions on monotonicity

are satisfied.

In an iteration of Basic Semi-Naive evaluation of an SCC,

the set of facts in the p relations (i.e. the facts derived two or

more iterations before) constitutes F’ (as mentioned earlier)

and the set of facts in the tip relations (i.e. those derived

in the previous iteration) and the facts derived during the

current iteration constitutes F - F’.

Note that although the set of derived predicates as well

as the set of locally saturated facts depends on the actual

evaluation used, the theorem holds independent of the eval-

uation.

Example 4.1 Consider the following

putes a list of factorials of all squares

program that com-

of integers less than

some constant n.

R1 : fac-.list O, [1]).

[R2 : fat-list N, [V I L]) + N > 0, N < n, fac-list(

N – l, L), fac(N * N,V)

R3 : fac 0,1).

[R4:fac N, N*V) ~N>O, N<n *n,

fac(N – 1, V).

Let the @ function map fac-Zist(N, -) to N, and fac(N, _)

also to N. We deduce that rule R3 and R4 are monotoni-

cally increasing. In rule R2, fac is a predicate from a lower

SCC and hence is not derived wrt R2. Hence we deduce

that R1 and R2 are monotonically increasing. Thus Condi-

tion Monotonicity-D is satisfied by predicates fac as well as

fac.list. We also deduce rein-head-gap bounding functions:

the constant function 1 for fuc as well as for fac_list.

From Theorem 4.1 we deduce that once a f ac fact with

index n is derived, no fac fact with index lesk than n + 1

will ever be derived again. We deduce similar results for

fac~ist. ❑

4.2 Monotonicity and Condition U

In this section we discuss how to use monotonicity of rules

to satisfy Condition U. We make use of the definitions and

results in Section 4,1. Let #J be a function as described earlier

in this section.

Definition 4.4 Body_gap : Let R be a rule and let

p’ and q’ be predicate occurrences in its body. Let R’

be an instance of R with facts p(fi) and g(~) used in

the occurrences p’ and q’ respectively. We then define

bod~-gap(R’, p’, q’) = #(p(~)) – #(q(fi)). If R has at

least one derived predicate occurrence in its body, we define

body -gap(l?, q’) = max{body-gap(R’, p’, q’) I p’ is a derived

predicate occurrence in R}. If R has no derived predicate

occurrence in its body, body -gap(R’, q’) = co. 0

Note that if there is only one derived predicate occurrence

g’ in the body of a rule R, and R’ is any instance of R, then

body -gap(R’, g’) = O.

Monotonicity can be used to infer that a fact can no longer

be used in a body predicate occurrence q’ based on Condition

Monotonicity-U and Theorem 4.2 below.

Condition Monotonicity-U: Consider au evaluation of a

program P. Let R be a rule with a body predicate occur-

rence q’. Let p;, . . . , p~ be the derived predicate occurrences

in the body of the rule R. Let ~ be a function that maps

q facts to integers. The predicate occurrence g’ in R satis-

fies Condition Monotonicity-U with function y iff, for each

instance R’ (with g(ti) used in the occurrence g’)

body -gap(R’, q’) ~ y(g(ii)) ❑

Intuitively the theorem states that if two facts are used in a

rule to make a successful derivation, the indices of the facts

73

are fairly “close” to each other. The function y provides an

upper bound on the gap. Suppose for each derived predicate

occurrence p; in the body of rule R, q$(p~) – @(q’) (after

simplification) involves only the variables in the Iiteraf q’.

Then, by a process similar to the derivation of rein-head-gap

bounding functions in Section 4.1, we can derive a function

~ as in Condition Monotonicity.U.

Theorem 4.2 Consider a semi-naive evaluation of a pro-

gram P. Let R be a rule in P and q’ be a body predicate

occurrence in R such that q’ satisfies Condition Monotonic-

ity-U with function 7. Let m be an integer such that no

fact for any p~, 1 ~ i s n with index (under the function

4) less than m will be derived again6. Suppose that the set

of all facts {p, (~) I 1 ~ i ~ n and ~(p,(~)) < m} is locally

saturated with respect to R.

Then, a fact q(m) can no longer be used in the predicate

occurrence q’ of R if#(q(K)) + ~(q(tii)) < m. ❑

The essential idea behind the theorem is as follows. Con-

sider the index y(q(~)) + d(q(~)) for a fact q(ti). Suppose at

a point in the evaluation we know that no new facts below

this index will be derived, and ail the facts below this index

are locally saturated, then we know that every new rule in-

stantiation must use in its body at least one fact above this

index. But by Condition Monotonicity-U, for the fact q(ii)

to be used all the derived facts in the rule body must have

an index below y(q(ii)) + #(q(F)). Hence we know that q(ii)

cannot be used in any new rule instantiation beyond this

point in the evaluation.

Note that the theorem makes no mention of whether g

is derived with respect to the head of the rule or not. An

analogous theorem holds when the body-gap of the rule with

respect to q’ is bounded from below, and no fact for any p:

with index (under d) greater than some m will be derived

again.

A special case of the function ~ is the constant function

k (for some k). The above theorem generalizes the con-

ditions of Sliding Window Tabulation ([NR90]), since only

such constant functions could be used for 7 in Sliding Win-

dow Tabulation. Example 4.2 shows the need for allowing

general functions.

Example 4.2 We use the program from Example 4.1 again.

Consider Rule R4:

R4:~ac(N, iV*V)+N >0, iV<n*n)~ac(iV –l, V).

There is only one derived predicate in the body of this

rule, hence a ~ac fact can be used at most once (Condition

Bounds_ U). Another way of looking at this is using mono-

tonicity. A y function on fac that bounds body_gap is the

constant function O. Hence if no fac fact with index less

than n will be derived henceforth, ~ac facts with indices less

than n will no longer be used in this rule. A similar result

holds for uses of ~ac-list facts in rule R2 shown below:

R2 : fac_list(N, [V I L]) t N > 0, N < n, ~ac.list(

N– l, L), fac(N* N, V).

The one predicate occurrence left is the occurrence of fac

in rule R2. Now we derive a function y on f,ac facts that

satisfies Condition Monotonicity-U, using the technique de-

scribed earlier: -y maps fac(N * N, .) to N – 1 – N * N, and

hence ~ac(J4, .) to m– M – 1. Using this we deduce that

if no fat-list facts with index less than n will be produced

and there are no fat_/ist facts with index less than n in the

differential 6 relations, then ~ac facts ~ac(lf, -) such that

Al + @ – M – 1 < n will no longer be used. But from

Example 4.1 we know how to find what fat-list facts will

no longer be produced: if a fact fac_list(n, _) has been pro-

duced in an iteration, no fat-list fact with index less than

n + 1 will be produced hence.

Thus in a semi-naive evaluation, one iteration after

fac_Zist(n, _) has been produced we know that any ~ac(m, _)

fact with @– 1 < n can no longer be used in the occurrence

of fac in rule R2. ❑

5 Synchronization
A synchronizing technique orders the computation of a pro-

gram so that derivations of facts are “close” to their uses;

this helps reduce the “life-spans” of facts. Intuitively, if each

fact is stored for only a short time during the computation,

the total space required for the overall comp~tation is re-

duced. Here we only discuss one of the three techniques

presented in the full version of this paper ([SSRN90]) due to

lack of space.

Interleaved-SCC synchronization is a form of synchroniza-

tion that exploits SCC structure. The intuition behind the

technique is as follows. Consider a predicate p defined in an

SCC. A p-fact must be retained until Conditions U and D

are satisfied by it in this (“producer”) SCC; in addition, it

must be retained until it has been used completely in all oc-

currences of p in other (“consumer”) SCCs. If our evaluation

proceeds SCC-by-SCC, the producer SCC computation must

be completed before computation of the consumer SCCS can

begin, and p-facts must therefore be retained at least until

the end of the computation of the producer SCC. However,

it is sometimes possible to use the p fact in all consumer

SCCS soon after it is produced by interleaving the execution

of SCCS, thereby making it possible to discard it sooner,

while retaining all the advantages of an SCC by SCC semi-

naive evaluation. We present our techniques for the case of

one producer SCC, one consumer SCC, and one predicate

defined in the producer and used by the consumer. In the

full version of the paper we present the general form of our

techniques which removes these assumptions,

‘Theorem 4.1 may be used to ensure this. Let a predicate p be defined in an SCC S1 and used in an

74

SCC S2. SCC S1 is referred to as the producer and S2 as

the consumer.

Condition Interleaved-SCCs:

● The producer and the consumer SCCS contain only

monotonically increasing rules.

c In the consumer S2, suppose a rule R contains an oc-

currence ofp in the body. Call this predicate occurrence

p’. Then either

(I) There is a bound max,~ such that for any fact p(~)

that can be used in the occurrence p’, ~(p(~)) < maxP/

or

(2) Suppose q is any derived predicate and g’ any oc-

currence of q in the body of R. Then there must exist

a function -yP,,~, that maps q facts to integers such that

for each instance R’ of R (where say q(~) is used in the

occurrence g’), body -gap(R’, p’, q’) ~ yP~,q,(g(~)). ❑

We can derive bounding functions -jJP/,*, in a manner simi-

lar to to the way we derive bounding functions for Condition

Monotonicity-U in Section 4.2.

We now describe the Interleaved-SCC’ synchronization

technique, which works on any subprogram that satisfies

Condition Interleaved-SCCs. At each stage of the evalua-

tion we know what facts have been newly derived. During

the evaluation we can therefore easily keep track of the max-

imum # values for facts of each derived predicate in each of

the SCCS. From this value and the functions yPt,qJ we can

deduce that with the given derived facts only p facts with an

index less than a certain value can be used. We can easily

derive this index (we do not describe here the straightfor-

ward way to compute this index), and we call this index

maz -p in the following algorithm:

Procedure Interleaved-SCC.-Producer (S1, maz.p)

(1) Evaluate S1 till no facts p(~) such that #(p(;)) ~

max_p can be derived.

/* Tested using monotonicity of rules in S1 “/

/’ Facts in S1 can be discarded once they satisfy

Conditions D and U “/

end Interleaved-SCC-Producer

Procedure Interleaved-SCC-Consumer (S2)

(1) Evaluate S2 with the following restriction:

(2) Whenever new facts are made available for

derived predicates in S2, before using

the facts do

(3) Update the index max-p.

(4) Call Interleaved-SCC-Producer (S1, maz-p).

end Interleaved-SCC_ Consumer

Example 5.1 Consider again the $ac-Zist program from

Example 4.1. This program has two SCCS, the lower one

containing the predicate ~ac and the upper one containing

~acJist. We call the lower SCC S1 and the upper one S2.

SCC S1 is a producer of ~uc and S2 a consumer.

There is only one rule R2 in S2 that uses the pred-

icate fat. This rule has a derived predicate fat-list.

We derive the function y that maps fac-Zist(N – 1,_) to

N2 – N + 1, (and hence facJi.d(N, -) to N2 + N + 1)

to bound body -gap(R2, fac(N * N, V), ~acJist(N – 1, L)).

SCCS S1 and S2 satisfy Condition Interleaved-SCCs with

this function -y that bounds body-gap. We can then use

Interleaved-SCC evaluation to evaluate this program.

After each semi-naive iteration of the higher SCC (in

Procedure Interleaved-SCC-Consumer) new facts are pro-

duced. Using these facts we find the maximum value of

#(fat-Zist(N, -)) + ~(fac-list(N, -)). Thus if ~ac-fist(n, -)

has been produced, we need fac facts with indices

upton2+2n .+1. We then call Procedure Inter-

leaved-SCC_Producer(Sl, nz + 2n -I- 1). SCC S1 then it-

erates, producing ~uc facts. Due to monotonicity of rules in

S1, we know that when fac(nz + 2n + 1, _) has been pro-

duced, all fac facts with indices ~ n2 + 2n + 1 have been

produced. Hence Procedure Interleaved-SCC.-Producer re-

turns, and Procedure Interleaved-SCC-Consumer continues

with its next iteration.

We discard each fact once it satisfies Condition D and U

(see Examples 4.1 and 4.2). It is easy to see that in SCC S2,

only two fac-Zist facts are retained at any time; each fac-.list

fact uses O(n) space. As for SCC S1, we store at most facts

with indices from (n — 1)2 to n2, which means at most 2n – 1

facts are stored. Thus we use a total of O(n) space using this

space optimization technique. By discarding facts during

the evaluation, we have improved the space utilization from

O(nz) to o(n). ❑

5.1 Using Inverted Rules

In several cases (such as monotonically increasing SCCS that

have been rewritten using the Magic Sets transformation),

the conditions for Interleaved SCCS are almost met, ex-

cept that the two SCCS are monotone in opposite direc-

tions. By using the notion of inverted rules, we can still

use Interleaved-SCC evaluation in some cases. Consider the

following example:

Example 5.2 The following Magic rewritten program P,&~c

is used to compute the nth Factorial number.

R1 : m-fat(n).
R2 : fac(O, 1) - m-fat(O).

R3 : m-fac(N – 1) e m.fat(N), N >0.

R4 : fac(N, N * Xl) - m-fac(N), N >0, fac(N – 1,X1).

There are two SCCS in this program-SCC S1 defining

m-fat and SCC S2 defining fat. Unfortunately, the con-

ditions for Interleaved-SCC synchronization are not satis-

fied, since the two SCCS are monotone in opposite direc-

tions. Each m-~ac(i) fact is used in the computation of

75

m.~ac(z-1) (using rule R3) and in the computation of ~ac(i)

(using rule R4). Since none of the rules defining ~ac can be

applied until all the m.fac facts have been computed, the

two uses of an m_fac fact are considerably “separated” in

the evaluation.

If an m-fat fact is not discarded until it has been used

to compute the corresponding fac fact, we do not achieve

any savings in the space complexity ofthis program; we still

need to store O(n) facts, 0

Naughton and Ramakrishnan [NR90] introduced the no-

tion of inverted magic rules. Suppose a set of rules is mono-

tone. The set of ~ringe~acts for these rules are those that

do not generate any new facts. We can in some cases use

the original setof rulesin reverse—feed therntheheadfacts

and regenerate the body facts. This is done using “inverted’)

rules created by swapping the head and one of the body lit-

erals in a rule. A set of rules ‘R is said to be invertible if

such a set of inverted rules can be created from ‘R.

Condition Inverted_R.ules: A pair of SCCS SO, S1 satis-

fies this condition if

*

e

These SCCS satisfy the conditions for Interleaved-SCC

synchronization with SO as the producer SCC and ,$ as

consumer SCCS, except that the rules in SO are mono-

tonic in the opposite direction to the rules in S1.

The set ‘Ro of rules in SO is invertible. ❑

Suppose SO and S1 satisfy Condition Inverted_ Rules.

Now, the inverted rules R: obtained from ‘Ro satisfy Con-

dition Interleaved-SCCs with %?& as the producer SCC and

S1 as the consumer SCC.

If a given set of rules ‘R is invertible, the inverted rules

‘R’ provide a mechanism to ensure that any (non-fringe) fact

computed by an e~aluation of ‘R can be discarded without

violating Condition U—these facts can be recomputed using

%!’ and the set of fringe facts. If Condition Inverted-Rules is

satisfied for a pair of SCCS, we can use the following variant

of Interleaved-SCC synchronization:

Algorithm Inverted_Rules.Eval (SO, S1)

Let the set of inverted rules obtained from %Lo be %&.

(1) Evaluate SO. Discard facts other than fringe facts

once they are no longer needed for use in SO

(based on Conditions D and U restricted to SO).

(2) Evaluate the set of rules @ (with the fringe facts)

and S] using Interleaved-SCCs synchronization

(with %?j as the producer SCC).

end Inverted_ Rules-Eval

This potentially reduces the number of facts that need to

be stored at any point in the evaluation, as the following

example illustrates. In the full version of the paper, we gen.

eralize the notion of inverted rules beyond that of [NR90],

and allow multiple SCCS to use facts generated by the in-

verted rules.

Example 5.3 We continue with Example 5.2. Condition

Inverted-Rules is satisfied by the pair of SCCS. The pair

of SCCS are monotone in opposite directions, but satisfy

Condition Interleaved-SCCs otherwise. A ~ function which

is the constant function 1 is used for rule R4. For rule R2 we

have a bound O such that any m-fat fact used here has index

< 0. The rules in the producer SCC S1 can be inverted.

There is only one inverted rule which is as follows7:

R’ : m-fac(N + 1) - m.fat(N), N < n.

In the first phase of Algorithm Inverted-Rules-Eval we evalu-

ate S1. Facts other than fringe facts can be discarded during

the evaluation of S1 once they satisfy Conditions D and U

with respect to S1 alone. We can use either monotonicity

or bounds on number of uses of facts to satisfy Conditions

D and U. In either case, we store only two facts during this

evaluation. A fact m-fat(i) is discarded once it has been

used to compute m.fac(i – 1); since however m-~ac(z) is

needed in the computation of fat(i), it is recomputed in the

second phase of Algorithm Inverted -Rules_Eval using the in-

verted magic rule R’.

In the second phase we use Interleaved-SCC synchroniza-

tion with the producer being rule R’ and the consumer be-

ing S2. We skip the details here, but note that at most two

m-fat facts and two fac facts are stored at a time. We have

thus reduced the space complexity from O(n) to 0(1). Slid-

ing Window Tabulation is applicable on this program, and

would also use O(I) space.

Sliding Window Tabulation is not applicable, however, on

the magic program obtained from the fac_lzst program (de-

scribed in previous sections), whereas Inverted-Rules_ Eval

(with the extension to multiple consumer SCCS described in

the full paper) is applicable. ❑

6 Combining Techniques

The identification of the three components of any space op-

timization technique helps us to mix and match different

techniques for different parts of a program.

Our approach to combining techniques consists of first

organizing the program into subprograms and choosing syn-

chronization strategies for each subprogram. We first iden-

tify certain subprograms that are to be synchronized using

Nested-SCC synchronization, based upon how the rewrit-

ing changes the SCC structure of the original program. We

then try to use Interleaving to further reduce space needs

by examining producer–consumer subprograms, Next, we

examine each subprogram, and consider how delaying first

7The inverted magic rule generated in [NR90] did not have the

condition N < n in it, but the evaluation ensured that computa-

tion did not proceed beyond n.

76

use of facts can be used to improve space utilization. This

completes the choice of synchronization strategies.

We then check which techniques for ensuring Conditions

U and D are applicable, given the choice of synchronization

strategies and choose techniques for each part of the pro-

gram. This completes the decisions on space optimization.

A detailed algorithm may be found in the full version of the

paper.

7 Overheads

There are three aspects to the overheads involved with our

space optimization techniques.

Compile-time time overheads: Suppose we are given

a) dependency information about all predicates in the pro-

gram, b) duplicate-freedom information, c) ~ functions for

all predicates in the program, and d) y functions for differ-

ent predicates as necessary. Then the cost of testing various

conditions is linear in the size of the input. We have indi-

cated briefly how to derive some of the functions, and we

expect our algorithms to be efficient in practice.

Run-time time overheads: These overheads are min-

imal for tests based on bounds—in some cases there is no

overhead for any tests, and at most, in other cases, a few

simple counts need to be maintained for each fact, and up-

dated when the fact is used. Tests based on monotonicity

are a little more complicated. When a fact is derived we

need to compute its # value, and possibly its value under

some of the y functions. This computation is constant time

per fact and quite efficient. The only important cost here

is the cost of secondary indices on the @ value so that facts

can be discarded when index m (from Theorem 4.1) reaches

a certain value.

Run-time space overheads: For bounds based tech-

niques, there is no overhead in some cases, and a constant

overhead of one to a few integers per stored fact in other

cases. For monotonicity based techniques, we can choose to

either store various function values for each stored fact, or

recompute them on demand and thus avoid all space over-

heads. There is at most a constant space overhead per stored

fact, even if we decide to store the function values. When

the number of facts stored is reduced by an order of mag-

nitude, a constant space overhead per stored fact is clearly

negligible.

8 Conclusion
In this paper we have described how to reduce the space re-

quired during bottom-up evaluation of logic programs by dis-

carding facts. We showed that any space optimization tech-

nique that discards facts during the evaluation has three ba-

sic components: (1) ensuring that all derivations are made,

(2) ensuring that derivations are not repeated, and (3) syn-

chronizing the derivation and use of facts. We presented

some techniques for ensuring each of these three components,

and showed how they can be combined to get a space opti-

mization technique for the full logic program. Since Sliding

Window Tabulation [NR90] can be shown to bd just one way

of combining techniques for each of these three components,

our results subsume those in [N R90].

Incorporating these optimizations into an actual deduc-

tive database runtime system, and enhancing the com-

piler/interpreter to test for and use these optimizations is

being considered for CORAL, a deductive database system

being developed at the University of Wisconsin, Madison.

Future work in this area includes finding more methods for

ensuring each of the three components of an effective space

optimization technique. For instance, the generate and test

paradigm could benefit from a form of synchronization where

facts are generated and tested in a synchronized fashion,

and may be discarded once they have been tested. Work

is also needed in determining which technique to use when

more than one technique is applicable to a given part of the

program.

References

[BR87]

[Hir75]

[MR90]

[NR90]

[RSS90]

I. Balbin and K. Rarnamohanarao. A general-

ization of the differential approach. to recursive

query evaluation. Journal of Logic Programming,

4(3), September 1987.

D. S. Hirschberg, A linear space algorithm

for computing maximal common subsequences.

Communications of the A CM, 18(6):341-343,

June 1975.

Michael J. Maher and Raghu Rarnakrishnan.

Dkjii vu in fixpoints of logic programs. In Proceed-

ings of the Symposium on Logic Programming,

Cleveland, Ohio, 1990.

Jeffrey F. Naughton and Raghu Ramakrishnau.

How to forget the past without repeating it. In

Proceedings of the Szxteenth International Con-

ference on Very Large Databases, August 1990.

Raghu Ramakrishnan, Divesh Srivast ava, and

S. Sudarshan. Rule ordering in bottom-up fix-

point evaluation of logic programs. In Proceecl-

ings of the Sixteenth International Conference on

Very Large Databases, August 1990.

[SSRN90] S. Sudarshan, Divesh Srivastava, Raghu Ramakr-

ishnan, and Jeff Naughton. Space optimiza-

tion in the bottom-up evaluation of logic pro-

grams. Technical Report Tech. Report (To ap-

pear), Univ. Wisconsin at Madison, Madison WI

53706, 1990.

[U1189] Jeffrey D. Unman. Principles of Database and

Knowledge-Base Systems, volume 2. Computer

Science Press, 1989.

77

