
CORAL-Control, Relations and Logic*

Raghu Ramakrishnan Divesh Srivastava S. Sudarshan

Computer Sciences Department,
University of Wisconsin-Madison, WI 53706, U.S.A.

Abstract

CORAL is a modular declarative query language/prog-

ramming language that supports general Horn clauses with

complex terms, set-grouping, aggregation, negation, and

relations with tuples that contain (universally quantified)

variables. Support for persistent relations is provided by

using the EXODUS storage manager. A unique feature

of CORAL is that it provides a wide range of evaluation

strategies and allows users to - optionally - tailor ex-

ecution of a program through high-level annotations. A

CORAL program is organized as a collection of modules,

and this structure is used as the basis for expressing control

choices. CORAL has an interface to C++, and uses the

class structure of C++ to provide extensibility. FinaUy,
CORAL supports a command sublanguage, in which state-

ments are evaluated in a user-specified order. The state-

ments can be queries, updates, production-system style

rules, or any command that can be typed in at the CORAL

system prompt.

*This work was supported by a David and Lucile Packard
Foundation Fellowship in Science and Engineering, a Presiden-
tial Young Investigator Award, with matching grants from Digi-
tal Equipment Corporation, Tandem and Xerox, and NSF grant
ELI-9011563. An earlier version of this paper appeared at the
NACLP ‘SO Workshop on Deductive Databases. The authors’
e-mail addresses are {raghu,divesh,sudarshau}&s.wisc.edu.

Permission to copy without fee all or part of this material is

grantedprovided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

1 Introduct ion
CORAL’ is a database programming language being
developed at the University of Wisconsin-Madison. It
seeks to combine features of a database query lan-
guage, such as efficient treatment of large relations,
aggregate operations and declarative semantics, with
those of a logic programming language, such as more
powerful inference capabilities and support for incom-
plete and structured data. CORAL significantly ex-
tends the expressiveness of standard database query
languages such as SQL, and differs from logic pro-
gramming languages such as Prolog in supporting a
modular and non-operational semantics. Applications
in which large amounts of data must be extensively
analyzed are likely to benefit from this combination
of features. In particular, CORAL is attractive for
sequence data analysis, natural language processing,
temporal queries, and bill-of-materials and other tran-
sitive closure related applications.

To provide efficient support for novel applications
CORAL allows the user to create new abstract data
types and integrate them with the declarative query
language in a simple and clean fashion. For instance,
when dealing with DNA sequences, a type sequence
that provides several built-in operations such as ap-
proximate subsequence matching, indexing etc. is very
useful. Without such an abstract type definition facil-
ity, sequences would have to be simulated using, say,
lists, which is inefficient.

A CORAL program is a collection of modules: at
most one imperative module and any number of declar-

ative and command modules. Modules can be com-
piled separately.

The declarative features of CORAL, which define
the sublanguage permitted in declarative modules,

‘The CORAL project was initiated in 8889 - under the
name Conlog - and an initial overview was presented in
[RBSSSO].

238

provide a powerful language that can be used to
write complex view definitions or as a general purpose
DBPL. CORAL supports tuples with variables (non-
ground terms). While Prolog systems and some pro-
duction rule systems support non-ground terms, none
of the deductive database systems do so. This facility
is useful in itself (for example, it allows the use of non-
ground data structures like difference-lists and the use
of variables to denote some incomplete information),
and is essential for future extensions of the system to
deal with “constraint facts,” in a manner similar to
CLP(R) [JMSYSO]. The language used for impera-
tive modules is currently C++ extended with several
new types and constructs. Predicates defined in other
modules can be queried from the imperative module;
conversely, predicates defined in the imperative mod-
ule can be used in other modules. The CORAL sys-
tem also provides a command sublanguage that serves
both as a shell for the CORAL interpreter, and as a
set-oriented imperative language.

An important goal of the declarative language is to
support efficient execution of queries. While CORAL
does optimize queries without aid from the user, it al-
lows the user to control the choice of evaluation tech-
niques in order to improve efficiency of evaluation. In
this, CORAL differs from other deductive database
and logic programming systems. CORAL also differs
from these systems in other ways, which we describe
in more detail in Section 8.

1.1 An Example
We present an example in Figure 1 that illustrates
declarative modules in CORAL. The program com-
putes paths, with lists used to maintain the sequence of
nodes on a path.2 The example also illustrates the use
of multiple modules to structure code - Listroutines
could contain several other useful operations.

The module definition permits a subset of the de-
fined predicates to be named as exported predicates,
and other modules can pose queries over these pred-
icates. The query forms permitted for each exported
predicate are also indicated in the export declaration.
For instance, the path module exports the predicate
path (queries on this predicate that have the last three
arguments free and the first argument either bound or
free are permitted), and the Listroutines module in
the above program exports the append predicate (in

‘The use of append is for illustrative purposes. We can use
cons instead to get the edges in the reverse order.

three permissible query forms-each corresponding to
one of the three arguments being free and the other two
bound). Note that queries that do not match the given
form can be posed, but the CORAL system might
use an inefficient technique to evaluate such queries,
or might run into problems with predicates (such as
arithmetic predicates) that require certain arguments
to be ground.

The current prototype of CORAL is optimized pri-
marily for main-memory execution, but is interfaced
with the EXODUS storage manager [CDRS86] to pro-
vide transparent (and quite efficient) access to data
that is stored on disk. The CORAL system is in the
public domain, and a copy of the software can be ob-
tained by contacting the authors.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the declarative features of CORAL,
and in the next section we discuss how the evaluation
of a declarative module can (optionally) be guided by
a user. In Section 4, we discuss the imperative fea-
tures, and in Section 5, we present the command sub-
language. We discuss the CORAL system briefly from
a user perspective in Section 6, including a prelim-
inary comparison with the LDL system. Support for
extensibility in CORAL, including the addition of new
data types and operations and new relation and index
implementations, is discussed in Section 7. We dis-
cuss related systems in Section 8, and outline future
directions in Section 9.

2 Declarative Language Fea-
tures

We assume the usual definitions of terms, literals,
rules, etc., and in this section, we discuss more ad-
vanced features of the language. In particular, we dis-
cuss non-ground facts, and rules with negation and
set-generation. CORAL supports a significantly larger
class of programs with negation and set-generation
than other systems. It is also the only deductive
database system that supports non-ground facts.

2.1 Non-Ground Facts

Unlike Aditi ([VRKS90]), EKS-Vl ([VBKLSO]), LDL
([NT89, CGK+SO]), Glue-NAIL! ([MUVG86, PDRSl])
and Starburst SQL ([MPRSO]), which restrict the facts
in a database to be ground, CORAL permits variables
within facts. As an example, consider Figure 1. It is

239

module path.
export paWbffft ffff>.
patqx, Y, Pl, Cl) : - path(X, Z, P, C),edge(Z,Y, EC),

append(P, [edge(Z, Y)], Pl), Cl = C + EC.
path(X,Y, [edge(X,Y)], C) : - edge(X,Y, C).
end-module.

module Listroutines.
export append (bbf, bfb, fbb).
append I, 4 Lb
append It H 1 T], L, [H 1 Ll]) : - append(T, L, Ll).

end-module.

Figure 1: Program Path

possible to query append as follows:

Query: ?-uppend([l, 2,3,4, X], [Y, Z], ANS).

and get the answer (a fact with variables in it)

ANS=[1,2,3,4,X,Y,Z].

The interpretation of a variable in a fact is that the fact
is true for every possible replacement of each variable
by a ground term. Thus a fact with a variable in it
represents a possibly infinite database. Such facts are
often useful in knowledge representation, and could
be particularly useful in a database that stores (and
possibly manipulates) rules. There is another, possibly
more important use of variables-namely to specify
constraint facts.

Since we allow non-ground facts, we do not re-
quire rules to be range-restricted. Non-ground facts in
the database are a special case of non-range-restricted
rules where the body is empty.

2.2 Negation
The keyword not is used as a prefix to indicate a
negated body literal. For instance, given a predicate
parent, we can test if a is not a parent of b by using
not purent(u, b). Such a literal can be used in a query,
or in the body of a rule.

CORAL supports a class of programs with negation
that properly contains the class of non-floundering left-
to-right modularly stratified programs ([RosSO]). A
program is non-floundering if all variables in a negated
literal are ground before the literal is evaluated (in the
left-to-right rule order). Intuitively, a modularly strat-
ified program is such that in the answers and subgoals
generated for the program, there should be no cycles
through negation.

The following example from [RosSO] illustrates the
use of modularly stratified negation in a program.
Suppose we have a complex mechanism constructed
out of a number of components that may themselves
be constructed from smaller components. Let the
component-of relationship be expressed in the relation
part. A component is known to be working either if
it has been (successfully) tested or if it is constructed
from smaller components, and all the smaller compo-
nents are known to be working. This is expressed by
the following program.

zuor&g(X) : - tested(X).
working(X) : - p&(X, Y),

not hassuspect-part(X).
hassuspect-part(X) : - purt(X, Y), not working(Y).

Note that the predicate working is defined negatively
in terms of itself. However, the part relation is acyclic,
and hence the working status of a component is de-
fined negatively in terms of subcomponents, but not
negatively in terms of itself. CORAL provides an
evaluation mechanism called Ordered Search [RSS92a]
that evaluates programs with left-toright modularly
stratified negation efficiently.

2.3 Creating Sets and Multisets
Sets and multisets are allowed as values in CORAL;

{1,2,3,f(a,b), I’ a isanexampleofaset, {l,f(u),f(u)}
is an example of a multiset. Sets and multisets can
contain arbitrary values as elements, and can them-
selves be used as arguments to functors (lists, sets
or multisets). General matching or unification of sets
(where one or both of the sets can have variables, re-
spectively) is not supported. Although LDL supports
set matching, we believe that most, if not all, uses of

240

set matching as in LDL can be implemented naturally
using the suite of functions that we provide on sets.
Since we allow arbitrarily nested structures, we must
define what the domain (or universe) of discourse is.
In this we follow LDL, whose treatment of the universe
is an extension of the Herbrand universe that is used
as a standard in logic programming. The extended
Herbrand universe is described in [BNSTSl].

There are two ways in which sets and multisets can
be created using rules, namely, set-enumeration ({ })
and set-grouping (< >) as in LDL. However, the oper-
ations CORAL permits on sets are different from those
supported by LDL, and we discuss the differences later.
The following rule illustrates the use of set-generation:

p(X, < Y >) : - q(X, Y, 2).

This rule uses facts for q to generate a multiset S
of instantiations for the variables X,Y, and 2. For
each value x for X in this set it creates a fact
p(z, r~ux=~S), where 7ry is a multiset projection (i.e.,
it does not do duplicate elimination). Thus with
facts q(1,2,3),q(1,2,5) and q(1,3,4) we get the fact

P(ll {‘A 2,311.

The use of the set-grouping construct in CORAL is
similar to (but not exactly the same as) the grouping
construct in LDL- set-grouping in CORAL is defined
to construct a multiset, whereas it constructs a set
in LDL. We can always obtain a set from the multiset
using the set operator. In fact, with the following rule,
the evaluation is optimized to create a set directly,
rather than to first create a multiset and then perform
duplicate elimination to convert it to a set.

p(X, set(< Y >)) : - q(X,Y, 2).

In several programs, the number of copies of an ele-
ment is important, and the support for multiset se-
mantics permits simple solutions. For example, to ob-
tain the amount spent on employee salaries, the salary
column can be projected out and grouped to gener-
ate the multiset of salaries, and then summed up. The
projection and grouping in LDL yields a set of salaries,
and if several employees have the same salary, the total
amount spent on salaries is hard to compute.

We require that the use of the set-grouping operator
be left-toright modularly-stratified (in the same way
as negation). This ensures that all derivable q facts
with a given value x for X can be computed before a
fact p(z, -) is created. Without such a restriction it is

possible to write programs whose semantics is hard to
define, or whose evaluation would be inefficient.3

2.4 Operations on Sets
We provide several standard operations on sets and
multisets as built-in predicates. These include
member, union, intersection, difference, multisetunion,

cardinality, subset, and set. The multiset versions of
these operations are carefully chosen to preserve the
intuitive semantics of multisets. For reasons of effi-
ciency, most of these are restricted to testing, and will
not permit generation - for example, the subset pred-
icate cannot be used to generate subsets of a set, but
can be used to test if a given set is a subset of another.
The predicate member is an exception in that it can
be used to generate the members of a given set.

The treatment of set-terms in LDL generates a num-
ber of rules at compile time that is exponential in the
size of the largest set-term in the program text. The
use of set-matching is limited in CORAL to avoid this
problem. A set term is restricted to be ground (as in
LDL) and to match only another (identical) ground
set term or variable. All the LDL rules with set terms
that we have seen are easily translated into CORAL
rules.

We allow several aggregate operations to be used on
sets and multisets. The list of aggregate operators we
support includes count, min, max, sum, product, average

and any. Some of the aggregate operations can be
combined directly with the set-generation operations
for increased efficiency. For instance, the evaluation of
the following rule is optimized to store only the maxi-
mum value during the evaluation of the rule, instead of
generating a multiset and then selecting the maximum
value.

maxgrade(Class, max(< Grade >)) : -
student(S, Class), gmde(S, Grade).

This optimization is also performed for
sum and product.

count, min,

The program in Figure 2 illustrates how to use ag-
gregation to find shortest paths in a graph with edge
weights. (The program as written is not efficient, and

3LDL imposes the more stringent restriction that uses of
grouping be stratified. We note that while EKS-Vl does not
support set-generation through grouping, it does support set-
generation in conjunction with aggregate operations such as
count, min and sum. Indeed, EKS-Vl allows recursion through
uses of aggregation.

241

module shortest-path.
export shortest-path(bfff, ffff).
shortest-p&(X, Y, P, C) : - s-p-length(X, Y, C),path(X, Y, P: C).
s-p_length(X, Y, min(< C >)) : - path(X, Y, P, C).
path(X, Y, Pl, Cl) : - path(X,Z, PIG’), edge(Z,Y, EC),

append([edge(Z, Y)], P, Pl), Cl = C + EC.

path(X, Y, k&(X, VI, C) : - edge(X, Y, C).

end-module.

Figure 2: Program Shortest-Path

may loop for ever; in Section 3.2 we describe how an-
notations may be used to get an efficient version of the
program.) This program can be used, for example, to
compute cheapest flights. The use of more complicated
combinations of grouping and aggregation in CORAL
is illustrated below.

nzlmofemps(M, count(set(< E >))) : -
worksfor(E, M).

This results in one tuple per manager with the second
argument as the number of distinct employees working
under her. The following example illustrates the use
of member to generate the elements of a set.

ok-i!eam(S) : - old-team(S), count(S, C), C 5 3,

member(X, S), member(Y, S), member(2, S),
engineer(X),piZot(Y), doctor(Z).

Each tuple in old-team consists of a set of people. An
ok-team tuple additionally must contain an engineer,
a pilot and a doctor. Note that a team containing
a single member who is an engineer, a pilot and a
doctor would qualify as an ok-team. This program is
a translation into CORAL of an LDL program from
[STZ92]; the semantics of the original LDL program
required that a team contain at most three members.
The addition of count(S, C), C 5 3 to the body of the
rule ensures this.

2.5 Persistent Relations
The schema of a persistent relation must be declared,

e.g., schemu(empZoyee(string, int, float, string)).
Currently, tuples in a persistent relation are restricted
to have fields of type string, int or float. Except for
the points noted below (in Section 2.6), a persistent
relation behaves just the same as a non-persistent re-
lation. Indices can be declared, and are implemented
as BS tree indices.

CORAL uses the EXODUS storage manager to sup-
port persistent relations. EXODUS uses a client-server

architecture; CORAL is the client process, and main-
tains buffers for persistent relations. If a requested
tuple is not in a local buffer, a request is forwarded to
the EXODUS server and the page with the requested
tuple is retrieved. In the current implementation, the
tuple is copied from the local buffer into the CORAL
space. This is adequate when queries do not examine
very large subsets of persistent relations, but is likely
to cause problems otherwise. We are investigating al-
ternative techniques wherein local copies of requested
tuples are not created.

2.6 Multiple Databases

A database is a collection of relations, which can be
either explicitly enumerated “base” relations or rela-
tions exported by a module. It is useful to think of
a database as a workspace or environment. A user
can have several named databases, copy relations be-
tween two databases (or simply make a relation in one
database visible from another without copying), up-
date relations in a database, or run queries against a
database. It is also possible to save a database in a file
between executions.

Persistent relations exist in a database called
“db-rels”, and can be made visible to other databases
without copying. When a database that refers to a
persistent relation is saved, only the name of the per-
sistent relation-and not its current set of tuples-is
saved.

3 Controlling the Evaluation of
Declarative Modules

For (pure) declarative modules, CORAL evaluation
(with occur checks) is guaranteed to be sound, i.e., if
the system returns a fact as an answer to a query, that
fact indeed follows from the semantics of the declara-
tive program. The evaluation is also “complete” in a

242

limited sense - as long as the execution terminates,
all answers to a query are actually generated. It is pos-
sible however, to write queries that do not terminate;
in some such cases (e.g., programs without negation or
set-grouping) CORAL is still complete in that it enu-
merates all answers in the limit. (Of course, the use of
choice, updates, aggregate selections and the absence
of occur checks can result in incomplete or even un-
sound evaluation. These features should therefore be
used with some care.)

During the evaluation of a rule T in module M, if we
generate a query on a predicate exported by module
N, a call is set up on module N. The answers to this
query are used iteratively in rule r; each time a new an-
swer to the query is required, rule T requests for a new
tuple from the interface to module N. The interface to
relations exported by a module makes no assumptions
about the evaluation of the module. Module N may
contain only base predicates, or may have rules that
are evaluated in any of several different ways. The
module may choose to cache answers between calls,
or choose to recompute answers. All this is transpar-
ent to the calling module. Similarly, the evaluation of
the called module N makes no assumptions about the
evaluation of calling module M.

This orthogonality permits the free mixing of dif-
ferent evaluation techniques in different modules in
CORAL and is central to how different executions in
different modules are combined cleanly.

CORAL provides several rewriting transformations
such as Magic Templates, Supplementary Magic Tem-
plates, Context Factoring, Existential Query Rewrit-
ing, etc. (see, e.g., [RSS92b]). By default, CORAL
chooses a combination of rewriting transformations.
However, other combinations might work better for
some queries, and the expert user can choose an ap-
propriate combination using annotations. The user
can also control the execution in ways other than the
choice of a rewriting strategy; we describe these op-
tions in the following sections.

3.1 Module Level Control
Materialization Vs. Pipelining:

Consider the following rules:

r(X, Y) : - P(X, q, !7(Z, Y).
P(X, y> : - Pl(X, z>,Jfqz, 0

Materialized evaluation creates a relation for p and

stores the generated tuples, whereas pipelined evalua-
tion simply generates the p tuples and joins them with
q tuples. The two approaches complement each other.
If p is used many times, the cost of materialization
is outweighed by the savings in avoiding recomputa-
tion. On the other hand, pipelining can be done very
efficiently, and unless subqueries on p are indeed set
up multiple times, the cost of storing the p tuples is
avoided.

CORAL supports both materialization and pipelin-
ing. An interesting aspect of pipelining in CORAL is
the treatment of recursive predicates. A subquery on
the recursive predicate is solved by a recursive invoca
tion of the same module, and each invocation pipelines
the local results. The resulting computation is close to
the evaluation strategy of a top-down implementation
such as Prolog. (Of course, pipelined evaluation of
recursive modules carries the same risks of potential
incompleteness, and should be used with care.)

Controlling the Order of Deductions:

The use of facts computed during bottom-up eval-
uation can be prioritized. Consider the shortest
path program from Figure 2, that uses the predicate
path(Source, Destination, Path-list, Cost). For this
program, it is better to explore paths of lesser cost
first. This can be achieved by using path facts of lesser
cost in preference to path facts of greater cost. path
facts of greater cost are hidden when they are derived,
and each time a fixpoint is reached, the path facts of
lowest cost are exposed. This continues until there are
no more hidden facts.

The user can specify that the evaluation prioritize
the use of facts in this fashion, using an annotation of
the following form:

@ prioritize path(X, Y, P, C) min(C).

This annotation is easily extended to prioritize facts
for multiple predicates at the same time. We describe
the benefits of this annotation in Section 3.2.

The Save Module Facility:

The module facility provides several important ad-
vantages. First, by moving many rules out of a mod-
ule, the number of rules that are involved when per-
forming an iteration on a module is reduced; this is
particularly useful when computation in the higher
module can proceed only after answers to subgoals on
the lower module have been returned. Second, pred-
icates defined in an external module are treated just

243

like base predicates by the semi-naive rewriting algo-
rithms - whenever there is a query (or set of queries)
on such a predicate, a call to the module is made,
and all the answers are evaluated. This has the ben-
efit that the number of semi-naive rewritten rules de-
creases considerably if more predicates can be treated
as base predicates. Third, in most cases, facts (other
than answers to the query) computed during the eval-
uation of a module are best discarded to save space
(since bottom-up evaluation stores many facts, space
is generally at a premium). Module calls provide a con-
venient unit for discarding intermediate answers. By
default, CORAL does precisely this - it discards all in-
termediate facts and subgoals computed by a module
at the end of a call to the module.

However, there are some cases where the first two
benefits of modules are desired, but the third feature
is not a benefit at all, but instead leads to a signifi-
cant amount of recomputation. This is especially so in
cases where the same subgoal in a module is generated
in many different invocations of the module. In such
cases, the user can tell the CORAL system to maintain
the state of the module (i.e., retain generated facts) in
between calls to the module, and thereby avoid recom-
putation; we call this facility the save module facility.

In the interest of efficient implementation we have
the following restriction on the use of the save module
feature: if a module uses the save module feature, it
should not be invoked recursively. We do not make
any guarantees about correct evaluation should this
happen at run-time. (Note that the predicates defined
in the module can be recursive; this does not cause
recursive invocations of the module).

3.2 Predicate Level Control

CORAL provides a variety of annotations at the level
of predicates. By default, duplicate elimination is per-
formed when inserting facts into a relation, so that a
relation with only ground tuples consists of a set of
facts.4 An annotation allow-duplicates tells the system

to not perform duplicate checks for any predicate in
the module. This can also be done on a per-predicate
basis. If a predicate in a program is declared to be
multiset, CORAL guarantees that the number of copies
of tuples in the answer to a goal on the predicate is
equal to the number of derivations for the tuple in the

4 If facts contain variables, duplicate elimination requires sub-
sumption checking. CORAL does not, however, guarantee that
relations are maintained as h-redundant sets of facts.

original program. Some of the other predicate-level
annotations are described below.

Indexing Relations:
CORAL supports two forms of indices: (1) argzl-

ment form indices, and (2) pattern form indices. The
first form creates an index on a subset of the argu-
ments of a relation. The second form is more sophis-
ticated, and allows us to retrieve precisely those facts
that match a specified pattern that can contain vari-
ables. Such indices are of great use when dealing with
complex objects created using functors. Suppose a re-
lation employee had two arguments, the first a name
and the second a complex term address(Street, City).
The following declaration then creates a pattern form
index that can efficiently retrieve, for instance, em-
ployees named “John”, who stay in “Madison”, with-
out knowing their street.

@ make-index empZoyee(Name, address(Street,
City))(Name, City).

The Magic Templates rewriting stage generates an-
notations to create all indices that are needed for effi-
cient evaluation. The user is allowed to specify addi-
tional indices, which is particularly useful if the Magic
Templates rewriting stage is bypassed.

The Choice Operator:

CORAL provides a version of the choice opera-
tor of LDL, but with altogether different semantics
[RBSSSO]. The following example illustrates the use
of choice in CORAL. Suppose with the path predicate
from Figure 2, we are interested in just one path be-
tween each pair of nodes. (For instance, the user may
want just one answer, or perhaps the predicate path
is used in a computation that works equally well, ir-
respective of which path it gets, so long as it gets at
least one path between each pair of nodes X, Y when-
ever such a path exists.) This can be specified using
the following annotation:

@choice path(X, Y, P, C)(X, Y)(P, C).

The choice annotation says that for each value of the
pair I, y, at most one fact path(z, y,p, c) need be re-
tained for path. If more than one fact path(z, y,p, c) is
generated by the program for any pair t, y, the system
arbitrarily picks one of the facts to retain, and discards
the rest. If we wish to retain a path for each pair of
nodes and each path cost, we could use an annotation

@choice path(X, Y, P, C)(X, Y, C)(P).

244

Unlike in LDL, the choice made is final - CORAL
does not backtrack and try different ways to make the
choice. We believe this semantics can be implemented
more efficiently in a bottom-up evaluation than the
LDL semantics. Giannotti et al. [GPSZSl] have inves-
tigated the connections between this “local” version
of choice and stable models, and Greco et al. [GZG92]
have shown that it is useful in a variety of “greedy”
algorithms.

Aggregate Selections:

Consider the shortest-path program from Figure 2.
To compute shortest paths between points, it suffices
to use only the shortest path between pairs of points -
path facts that are do not correspond to shortest paths
are irrelevant. CORAL permits the user to specify an
aggregate selection of the following form on the predi-
cate path.

@ aggregate-selection path(X, Y, P, C)(X, Y)min(C).

The system then checks (at run-time) if a path fact
is such that there is a path fact of lesser cost C
with the same value for X, Y (i.e., between the same
pair of points), and if there is such a fact, the
costlier path fact is discarded. This aggregate se-
lection is extremely important for efficiency - with-
out it the program may run for ever, generating
cyclic paths of increasing length. With this ag-
gregate selection, along with the choice annotation
@choice path(X, Y, P, C)(X, Y, C)(P), a single source
query on the program runs in time O(E . V), where
there are E edge facts, and V nodes in the graph.

Using facts in a prioritized fashion (described in
Section 3.1) reduces the cost of evaluation of a sin-
gle source shortest path problem from a worst case of
O(E . V) to O(E . log(V))5 ([SR91]). This illustrates
the importance of aggregate selections and prioritiz-
ing the use of facts in a bottom-up evaluation. [SR91]
describes a technique to generate such aggregate se-
lections automatically, but aggregate selections could
also be specified by the user.

3.3 Rule Level Control
Join Orders:

CORAL uses a default left to right join order in
the absence of information about relation sizes, except
that for semi-naive rewritten rules the “delta” predi-
cate is moved to the head of the join order. The user

5Assuming that the edge cost are non-negative.

can override this default by specifying the join order on
a per-rule or on a per-semi-naive-rewritten rule basis.

The Update Operator:

We allow a limited form of update in rule heads,
which is illustrated by the following program.

Rl : path(X, Y, co).
R2 : path(X, Y, 03 --+ C) : - edge(X, Y, C),

path X, Y, m).
R3 : path I X, Y, C + Cl + C2) : - edge(X, 2, Cl),

path(Z, Y, C2),path(X, Y, C), Cl + C2 < C.
Query: ?-path(a) b, C).

In the above program we have used cw to represent
some value that is larger than the maximum length of
acyclic paths in the edge relation. Note the difference
in the structure of the head of rule R3. The notation
C -+ Cl + C2 says that on successfully instantiating
the rule, any fact that matches path(X, Y, C) should
be replaced by a fact path(X, Y, Cl + C2). Under the
semantics described above, an evaluation of this pro
gram stores only one fact path(z, y, c) for each pair
x, y, and computes shortest paths in the edge graph.

An alternate way of understanding this rule would
be as follows.

path(X, Y, Cl + C2), delete path(X, Y, C) : -
edge(X, 2, Cl),path(Z, Y, C2),
path(X, Y, C), Cl + C2 < C.

Each successful rule instantiation deletes any
facts that match the (instantiated version of)
path(X, Y, C), and inserts (the instantiated version of)
path(X, Y, Cl + C2). In effect, here, the third field of
the path fact is updated “in place.”

The semantics of using this operation is, in the gen-
eral case, non-deterministic. However, there are useful
classes of programs when this is deterministic.

4 Imperative Modules
An imperative module is a program in an imperative
language, which consists of C++ augmented by adding
a layer of new types and constructs.

The basic object the C++ user needs to understand
to be able to interface with CORAL is the relation,
which can be treated as a set of tuples. Indices can be
added to a relation by means of a procedure call. A
C++ user can also directly access a database relation
(not just get a copy of it) by providing the name of
the relation and its arity. CORAL provides facilities
to insert tuples into, and delete tuples from relations
using the “+ =” and “- =” operators. A procedure

245

update-tuple to update tuples in a relation is also pro-
vided .

CORAL provides two iterative constructs for ac-
cessing the tuples of a relation (the tuples are re-
turned in an arbitrary order). FOR-EACH-TUPLE suc-

cessively instantiates its first argument to each tu-
ple in the relation given by the second argument.
FOR-EACH-MATCHING-TUPLE successively instanti-
ates its first argument to each tuple in the relation
given by the second argument that matches the pat-
tern specified by the third argument. A variety of
other functions are available to the imperative lan-
guage programmer to manipulate relations. These in-
clude all the set and aggregate functions described ear-
lier.

A C++ user can invoke a query on a relation that
is defined declaratively (and exported by a declarative
module), using a procedure call-coral. There are two
variants of this procedure, one of which takes a single
query, and the other a set of queries. In later versions
of CORAL we plan to allow inline declaration of a
declarative module within imperative code. This will
provide a simpler syntax for calling declarative mod-
ules and could be interpreted as a direct extension of
the C++ language. CORAL provides a simple con-
vention for defining predicates using C++ code. We
also provide a facility to define subclasses of tuple with
typed and named attributes. Methods corresponding
to the attribute names are created for the subclass,
and these help in seamlessly converting types between
C++ primitive types and CORAL’s internal type sys-
tem.

5 Command Modules
Command modules provide support for imperative
programming without resorting to C++. Command
modules provide sequencing and iteration as control
constructs, and a set of atomic commands that in-
cludes any command that can be typed in at the
CORAL prompt. Command modules can be param-
eterized. For example, if we wish to write a module
that reads in a file and does some processing, the name
of the file can be a parameter. Whereas - at least,
in the absence of dynamic linking - C++ imperative
modules must be compiled with the CORAL runtime
system, command modules can be consulted from the
CORAL prompt, just like declarative modules. We il-
lustrate some features of command modules using the
following example to sort a unary relation.

Example 5.1 If the relation elem is implemented as
a heap (this can be specified by the CORAL user),
the following program6 would implement heap sort.
This can be used elsewhere through the notation
HeapSort(in-rel).sort(Sorted-list). Note that in-rel
could be a set or the name of a relation.

module HeapSort (in-rel).

export sort (f).
elem(X) : - in-rel(X).

so4 1).
while (elem(C)) {

sort(B + [AIB]) : - sort(B), A = ma~(elem.1).
delete elem(A) : - sort([A(B]).

1
end-module.

maz(elem.1) is used to obtain the maximum element
in the first column of the (current) elem relation. Con-
sequently, the above program incrementally builds up
sorted lists of the largest values in the elem relation.
Cl

6 Using the CORAL System
The CORAL implementation, in contrast to LDL, does
not do full compilation. Rather, there is a fixed run-
time system that essentially interprets rules, and a user
program is compiled into an optimized set of rules.
This results in fast compilation, making CORAL suit-
able for interactive program development7 CORAL
provides utilities to take a text file organized as a ta-
ble, parse it into fields and records, and convert it into
a relation. Similarly, utilities for output of relations in
tabular form are also provided. The user can also exe-
cute any Unix command using the shell command from
the CORAL prompt. CORAL provides a help facility
that details the various commands available from the
CORAL prompt.

Program Development Environment:

CORAL provides some basic facilities for debugging
of programs. A trace facility is provided that does the
following: (1) it lets the user know what rules are being
evaluated, and (2) it prints out answers and subgoals

‘The program is intended to illustrate the functionality of
command modules, but some of the syntax is still tentative.

7However, if there is an imperative module in a program, the
entire CORAL system must be re-compiled when the imperative
module is compiled. This is because we do not use a dynamic
linker.

246

as they are generated, to let the user know how the
computation is proceeding. It is possible to trace in-
dividual predicates rather than tracing all predicates.

CORAL also provides some high-level profiling facil-
ities. The unit of profiling is the unification operation.
Unification of two atomic terms counts as one unifi-
cation, while, for example, unification of f(X,Y) and
f(a, 6) counts as three unifications, one at the outer
level and two at the inner level. Profiling also lets
the user know how efficient the indexing is, by keep-
ing counts of the number of tuples that the indexing
operation tried to unify, and the number that actually
unified and were retrieved. In addition, other counts
such as number of successful applications of each rule,
and the number of unsuccessful attempts at using a
rule are also maintained. All this information put to-
gether gives users a fair idea of where their programs
are spending the most time, and helps them optimize
programs accordingly.

6.1 A Preliminary Performance Com-
parison of CORAL with LDL

In this section we present results of a brief comparison
of the performance of CORAL with LDL. (EKS-Vl
and Glue-NAIL! are not currently distributed publicly,
and we were not able to compare their performance.)
We emphasize that these results are preliminary, since
CORAL is still in the process of being tuned, and our
comparison is itself very limited. The goal is to give
the reader some idea of how CORAL compares with
other deductive database systems.

A main observation is that by virtue of being par-
tially interpreted instead of fully compiled, CORAL
is much faster than LDL in reading and compiling
queries. In this respect, CORAL is comparable to Pro-
log systems. It is therefore very convenient for inter-
active program development.

We also compared execution times - Unix user cpu
times on a lightly loaded Sun 4 workstation - on
a work load that included a simple join rule, linear
recursive programs (ancestor and same generation),
non-linear programs (bi-linear ancestor), and struc-
ture manipulation (list append).’ The data-sets in-
cluded trees, chains, a (sparse) random graph and lists
of varying lengths. Both LDL and CORAL allow the

sThe programs and queries were chosen to preclude intelli-
gent backtracking, factoring and other optixnizations that apply
to some, but not all, programs in order to get numbers that
reflect the general case.

user some execution choices (e.g. whether or not to
eliminate duplicates), and we used the best combina-
tions for both systems.g

To summarize the results of the comparison, we
found that the following observations generally held.
LDL was about three times faster than CORAL on
simple joins (10s vs. 30s on a join that generated -
but did not materialize - an intermediate relation of
100,000 tuples). This is explained by the fact that
LDL’s compilation strategy allows for some optimiza-
tions on a per-rule basis that is not possible with
CORAL’s partial interpretation, and also by the fact
that CORAL uses more abstract representations for
terms since it has to support non-ground terms, unlike
LDL. CORAL was typically much faster than LDL on
the linear recursive queries. A selection of the numbers
that we obtained illustrates this: on same generation
with a 0.1% selection, 5.2s vs. 25.3s on a chain of length
1000 and 5.2s vs. 28.9s on a tree; and on right-linear
ancestor with no selection, 37.4s vs. 265.8s on a chain
of length 160. (The only exception that we found to
this trend was on left-linear ancestor with no selec-
tions, where CORAL took 33.5s vs. 17.1s for LDL on
a chain of length 160.) While there is no fundamen-
tal reason why this should be so, we conjecture that
CORAL perhaps has better indexing. CORAL was
also faster on bilinear queries, especially with +;:lec-
tions. For instance, on bi-linear ancestor with a 1% se-
lection, CORAL took 1.2s vs. 39.8s for LDL on a tree.
The reason here is that LDL only implements a version
of magic sets that deals with linear recursive queries.
This is confirmed by the fact that LDL cannot run
the takeuchi program (a standard Prolog benchmark),
where bindings must be propagated through recursive
literals to avoid unsafe calls on arithmetic predicates.
Finally, CORAL is linear on append, whereas LDL is
quadratic. For example, CORAL execution time went
from 0.6s to 2.4s when we quadrupled the list length,
while LDL went from 4s to 56s. Again, we conjecture
that the difference is due to indexing, and for this ex-
ample in particular, the treatment of structured terms.

We also ran these queries on a Prolog system,
CLP(R) Version 1.1 from IBM. As expected, CORAL
was much faster on all but the append query, on which
CLP(R) was much faster. On the append program,
the overhead of memoing facts was wasted; on the

‘For CORAL, pipelined execution is over twice as fast on
append, but we give the numbers for bottom-up evaluation to
provide a meaningful comparison.

247

other programs, with the exception of the join, it saved
much repeated computation. (Incidentally, Prolog will
not terminate on the left-linear and bi-linear versions
of ancestor.) We note that there are Prolog systems
such as BIM, Quintus and Sicstus Prolog that are
much faster than CLP(R); we used CLP(R) since the
others are not available to us currently.

Finally, we note that Prolog-style execution can be
obtained in CORAL by using the pipelined mode of
evaluation. Our implementation of pipelining is not as
sophisticated as current Prolog implementations; exe-
cution is typically slower than CLP(R), but by a factor
of less than 10. However, on many programs, e.g. ap-
pend, it is faster than standard bottom-up evaluation
with magic sets rewriting.

7 Extensibility in CORAL
The implementation of the declarative language of
CORAL is designed to be extensible, i.e., the user can
add new types to the system, and can add new imple-
mentations of relations and indices, without modifying
or recompiling the rest of the system code. The user’s
program will, of course, have to be compiled and linked
with the system code.

7.1 Adding Abstract Types to CORAL
To create a new type”, the user must declare it as a
subclass of the system class ConstArg. Several virtual
functions (methods) must be defined for the new type.
These include: an operator ‘==’ (which takes an ob-
ject of type Arg as parameter), printon (which takes a
file as a parameter), hash which returns a hash value,
copy which creates a copy of the object, and delete
which is called when the system no longer needs the
object.

For example, once we define a new type, say bitmap,

we can create tuples with arguments that are bitmaps
- employee records can now store photos of employees
represented as a bitmap. The function printon controls
how bitmaps are interpreted when they are printed.
It can, for instance, create a window to display the
bitmap.

CORAL does not provide syntactic support for ob-
jects of new types within the declarative module. How-

loObjects of the user-defined type must be “constants”, i.e.,
they cannot contain variabIes within them. New types that
are not constants can be supported with minimal change to the
system code. Later versions of CORAL may providemore direct
support for such types, without the need to modify system code.

ever, it is possible for the user to define built-in pred-
icates that construct or retrieve subparts of objects of
the new type. For example, a constructor for the data
type sequence may take as parameter a list of elements,
and convert it into whatever internal format is used for
sequences. Clearly, bitmaps cannot be efficiently con-
structed thus, and must be created by imperative code
written by the user. They can then be stored in rela-
tions, and manipulated just like other CORAL types.

Once objects of a user-defined type are created, pre-
sumably the user will want to manipulate them using
rules. Builtin predicates on the user-defined type will
probably be critical for this stage. CORAL provides
the user with a very simple way of creating such built-
in predicates, and hence this stage should not be a
bottleneck in developing applications that use user-
defined types.

The user has control over both the copy routine and
the delete routine. The system never modifies a con-
stant object, so the copy function can merely return a
pointer to the old copy of the object, so long as the
delete function is written keeping this in mind (per-
haps using a reference count scheme). Such sharing is
important for a type such as a bitmap that could use
a lot of space.

7.2 Adding New Relation and Index
Implementations

CORAL currently supports relations organized as
linked lists, relations organized as hash tables, rela-
tions defined by rules, and relations defined by C++
functions. The interface code to relations makes no
assumptions about the structure of relations, and is
designed to make the task of adding new relation im-
plementations easy.

Tuples in a relation can be accessed using the
get-nezt-tzlple(Tuplelterator) member function of the
type Relation. This function takes as a parame-
ter a Tuplelterator structure that contains a pat-
tern, and each call to this function returns a tuple
(from the relation) that matches the pattern. The
code that searches the relation can save its state
in a field of the TupleIterator in between calls to
get-next-tuple. Tuples can be inserted into relations
using insert(Tuple), and tuples can be deleted from
relations using delete(Tuple), each of which are mem-
ber functions of the type Relation, New implementa
tions of relations can be created by making the im-

24%

plementation a subclass of Relation. The functions
insert, delete and get-next-tuple are virtual functions,
and can be redefined for the user-defined implementa-
tion of the relation.

Similarly, the user can create index structures as
subclasses of type Index, along with insert(Tuple),
get-next-tuple(TupleIterator) and delete(Tuple)
function definitions. The user can store the indices
in an IndexSet field of the relation, and can use the
indices to make the get-nexktuple function on rela
tions efficient. It is relatively straightforward to add,
for instance, a B-tree index in this fashion.

8 Related Systems
There are many similarities between CORAL and de-
ductive database systems such as Aditi ([VRK+SO]),
EKS-Vl ([VBKLSO]), LDL ([NT89, CGK+SO]), Glue-
NAIL! ([MUVG86, PDRSl]) and Starburst SQL
([MPRSO]). However, there are several important dif-
ferences, and CORAL extends all the above systems
in the following ways:

1. CORAL supports a larger class of programs, in-
cluding programs with non-ground facts and non-
stratified negation and set-generation.

2. CORAL supports a wide range of evaluation tech-
niques, and gives the user considerable control
over the choice of techniques.

3. CORAL is extensible - new data and relation
types and index implementations can be added
without modifying the rest of the system.

With respect to EKS-Vl, we note that it is the only
system that supports integrity constraint checking. It
also supports hypothetical reasoning. Aditi is unique
in giving primary importance to disk-resident data.

LDL++, a successor to LDL under development at
MCC Austin, is reportedly also moving in the direction
taken by CORAL in many respects. It will be partially
interpreted, support abstract data types, and use a lo-
cal semantics for choice (Carlo Zaniolo, personal com-
munication).

In comparison to logic programming systems, such
as various implementations of Prolog, CORAL pro
vides better indexing facilities and support for persis-
tent data. Most importantly, the declarative intended
model semantics is supported (for all positive Horn

clause programs, and a large class of programs with
negation and aggregation as well).

Modules serve as the units of compilation, and sev-
eral evaluation choices can be specified on a per-
module basis. Unlike Glue-NAIL! and LDL, where
modules have only a compile-time meaning and no
run-time meaning, modules in CORAL have impor-
tant run-time semantics. Several run-time optimiza-
tions are done at the module level. For instance, mod-
ules provide a very useful unit for discarding interme-
diate facts-this is important with bottom-up com-
putation, since facts that are computed are generally
not discarded anywhere else, and would use excessive
amounts of memory. Modules with run-time semantics
are also available in several production rule systems
(for example, RDLl [KdMSSO]).

9 Future Direct ions
A number of issues require further work. These in-
clude support for metaprogramming, constraints, disk-
resident data, new data types and operations, user in-
terfaces, inheritance and object orientation.

10 Acknowledgements
We would like to acknowledge our debt to LDL, NAIL!,
SQL, Starburst, and various implementations of Pro-
log from which we have borrowed numerous ideas. We
would like also to acknowledge the contributions of Per
Bothner, who played a principal role in the implemen-
tation of the first prototype of CORAL, and Praveen
Seshadri, who contributed significantly to the imple-
mentation of CORAL.

References

[BNSTSl] Catriel Beeri, Shamim Naqvi, Oded
Shmueli, and Shalom Tsur. Set constructors in
a logic database language. The Journal of Logic
Programming, pages 181-232, 1991.

[CDRS86] Michael Carey, David Dewitt, Joel
Richardson, and Eugene Shekita. Object and
file management in the EXODUS extensible
database system. In Proceedings of the Inter-
national Conference on Very Large Databases,
August 1986.

[CGK+SO] D. Chimenti, R. Gamboa, R. Krishna-
murthy, S. Naqvi, S. Tsur, and C. Zaniolo. The
LDL system prototype. IEEE Transactions on

249

Knowledge and Data Engineering, 2(1):76-90,
1990.

[GPSZSl] Fosca Giannotti, Dino Pedreschi, Domenico
Sacca, and Carlo Zaniolo. Non-determinism in
deductive databases. In C. Delobel, M. Kifer,
and Y. Masunaga, editors, Proceedings of the

Second International Conference on Deductive

and Object-Oriented Databases DOOD’91, Mu-
nich, Germany, 1991. Springer-Verlag.

[GZG92] Sergio G reco, Carlo Zaniolo, and Sumit Gan-
guly. Greedy by choice. In Proceedings of the

ACM Symposium on Principles of Database Sys-

tems, 1992.

[JMSYSO] J. Jaffar, S. Michaylov, P. Stuckey, and
R. Yap. The CLP(R) language and system.
Technical report, IBM, T. J. Watson Research
Center, 1990.

[KdMSSO] G. K iernan, C. de Maindreville, and E. Si-
mon. Making deductive database a practical
technology: a step forward. In Proceedings of the

ACM SIGMOD Conf. on Management of Data,
1990.

[MPRSO] Inderpal S. Mumick, Hamid Pirahesh, and
Raghu Ramakrishnan. Duplicates and aggre-
gates in deductive databases. In Proceedings of
the Sixteenth International Conference on Very

Large Databases, August 1990.

[MUVG86] Katherine Morris, Jeffrey D. Ullman, and
Allen Van Gelder. Design overview of the NAIL!
system. In Proceedings of the Third Interna-
tional Conference on Logic Programming, 1986.

(NT891 Shamim Naqvi and Shalom Tsur. A Logical

Language for Data and Knowledge Bases. Prin-
ciples of Computer Science. Computer Science
Press, New York, 1989.

[PDRSl] Geoffrey Phipps, Marcia A. Derr, and Ken-
neth A. Ross. Glue-NAIL!: A deductive
database system. In Proceedings of the ACM

SIGMOD Conf. on Management of Data, pages
308-317,199l.

[RBSSSO] Raghu Ramakrishnan, Per Bothner, Di-
vesh Srivastava, and S. Sudarshan. CORAL:
A database programming language. In Jan
Chomicki, editor, Proceedings of the NACLP

‘90 Workshop on Deductive Databases, Octo-
ber 1990. Available as Report TR-CS-90-14,
Department of Computing and Information Sci-
ences, Kansas State University.

[RosSO] Kenneth Ross. Modular Stratification and
Magic Sets for DATALOG programs with nega-
tion. In Proceedings of the ACM Symposium on
Principles of Database Systems, pages 161-171,
1990.

[RSS92a] Raghu Ramakrishnan, Divesh Srivastava,
and S. Sudarshan. Controlling the search in
bottom-up evaluation. Manuscript, submitted
for publication, 1992.

[RSS92b] Raghu Ramakrishnan, Divesh Srivastava,
and S. Sudarshan. Efficient bottom-up evalua
tion of logic programs. In J. Vandewalle, editor,
The State of the Art in Computer Systems and

Software Engineering. Kluwer Academic Pub-
lishers, 1992.

[SR91] S. Sudarshan and Raghu Ramakrishnan. Ag-
gregation and relevance in deductive databases.
In Proceedings of the Seventeenth International

Conference on Very Large Databases, Septem-
ber 1991.

[STZ92] Oded Sh mueli, Shalom Tsur, and Carlo Zan-
iolo. Compilation of set terms in the logic data
language (LDL). Journal of Logic Programming,

12(1&2):89-120, 1992.

[VBKLSO] L. Vieille, P. Bayer, V. Kiichenhoff, and
A. Lefebvre. EKS-Vl, a short overview. In
AAAI-90 Workshop on Knowledge Base Man-

agement Systems, 1990.

[VRK+SO] Jayen Vaghani, Kotagiri Ramamohanarao,
David Kemp, Zoltan Somogyi, and Peter
Stuckey. The Aditi deductive database system.
In Proceedings of the NACLP’90 Workshop on

Deductive Database Systems, 1990.

250

