
The Valid Model Semantics for Logic Programs*

Catriel Beeri

Department of Computer Science,

The Hebrew University of Jerusalem, Givat Ram, Israel.

Raghu Ramakrishnan Divesh Srivastava S. Sudarshan

Computer Sciences Department,

University of Wisconsin,

Abstract

We present the valid model semantics,

providing semantics for logic programs

a new approach to

with negation, set-

terms and grouping. The valid model semantics is a three-

valued semantics, and is deftned in terms of a ‘normal form’

computation. The valid model semantics also gives meaning

to the generation and use of non-ground facts (i.e., facts with

variables) in a computation.

The formulation of the semantics in terms of a normal

form computation offers important insight not only into

the valid model semantics, but also into other semantics

proposed earlier. We show that the valid model semantics

extends the well-founded semantics in a natural manner, and

has several advantages over it. The well-founded semantics

can also be understood using a variant of the normal form

computations that we use; the normal form computations

used for valid semantics seem more natural than those used

for well-founded semantics.

We also show that the valid model semantics haa several

other desirable properties: it is founded ([SZ90]), it is

cent ained in every regular model ([YY90]), and it is

contained in every two-valued stable model.

*The work of Catriel Beeri was supported by the USA-

ISRAEL Binational Science Foundation. Part of the work

was done while visiting the University of Wisconsin. The

work of Raghu Ramakrishnan, Divesh Srivastava and S. Su-

darshan was supported by a David and Lucile Packard Foun-

dation Fellowship in Science and Engineering, a Presiden-

tial Young Investigator Award with matching grants from

DEC, Tandem and Xerox, and NSF grant IRI-901 1563.

The email addresses of the authors are beeri@shum.huji. ac.il,

{raghu, divesh, sudarshan}@cs.wise.edu.

Permission to copy without fee all or part of this material is
granted provided that tha copies are not made or distributed for

direct commercial advantage, the ACM copyright notioe and tha
title of the publication and its date appear, and notice is given

that copying ie by permission of the Association for Computing
Machinary. To copy otharwise, or to republish, requires a fee

and/or apacific permission.
11th Principles of Database Systems/6/92/San Diego, CA
W1992 ACM 0.89791.520-8/92/0006/0091 ...$1.50

ikfadison WI 53706, U.S.A.

1 Introduction

In recent years there has been much interest in defining

semantics for deductive databases/logic programs that

use negation and set-grouping. It is well-known that

in the presence of negation or set-grouping there

is no acceptable semantics based purely on logical

implication, and so the meaning of a program is defined

either as the result of some ‘normal form’ computation,

or as the set of facts in some ‘intended’ model.

In this paper we present a semantics, based on a

‘normal form’ computation, that applies to all logic

programs with negation and set-grouping. We call

this semantics the valid semantics. We develop this

semantics in four steps:

1.

2.

3.

91

Given a rule, a set of facts T (’true’ facts) and a set

of facts F ((false’ facts), we define what it means for

a fact to ‘follow from’ the rule and the given sets

of facts. We also define what it means for a fact to

be used positively or negatively in a rule instance.

We define rule jirings based on the notion of ‘follows

from’.

All the above definitions are very general, in that

they apply even to rules with set terms, set-grouping

and negation used with non-ground facts. This, in

itself, is one of the contributions of this paper.

We define jiring sequences as (possibly transfinite)

sequences of rule firings, and lenient computations as

firing sequences that satisfy the following condition:

each fact derived follows from some rule, with

T being the set of facts derived earlier in the

computation, and F being the set of facts that do

not unify with any fact in T. (This implies that

once a fact is derived, it cannot be used negatively

in a rule firing, but if does not unify with a fact

derived earlier, it can be used negatively). We also

define what it means for a lenient computation to be

a lenient eztenston of another.

We then define a class of computations that we call

4.

valid computations. Informally, a valid computation

is a lenient computation in which a fact is used

negatively at any point only if it ‘cannot be derived’

(more precisely, there is no lenient extension of the

computation up to that point that can derive the

fact). A complete valid computation is one such that

no valid computation that extends it computes any

new facts.

From the set of facts constructed in a valid compu-

tation, we form a 3-valued valid model. lVe use a

definition of 3-valued models that differs from Przy-

musinski’s definition in [Prz90], and seems to be

more natural. WJe show that each program has a

unique (3-valued) valid model. This defines the valid

model semantics of a program.

We compare the valid model semantics with several

earlier semantics for logic programs with negation,

and logic programs that use aggregate operations

on relations. The following is a summary of the

advantages of the valid model semantics over other

commonly accepted semantics such as the well-founded

model semantics ([VRS91]), the stable model semantics

([GL88]) and the 3-valued stable model semantics

([Prz90]).

1.

2.

—

Valid model semantics provides direct semantics for

logic programs that use negation, set terms and set-

grouping. Valid semantics also gives meaning to

the generation of non-ground facts (i.e., facts with

variables) in a computation. To our knowledge,

earlier semantics that deal with negation do not

consider the generation of non-ground facts.

The valid model semantics extends the well-founded

semantics in a natural way that is consistent with

the intuition behind Negation as Failure. We show

that for every logic program with negation, the valid

model of the program ‘contains’ the well-founded

model of the program. 1 To strengthen the above

result, we show an example of a program for which

the valid model provides an intuitive semantics

whereas the well-founded model merely says that the

truth value of every fact is ‘unknown’.

This is an interesting result since the well-founded

model of a program is often viewed as the most

natural semantics in a certain sense, while our

results show that it can leave too many values

undefined. Valid computations are defined using

lenient extensions of computations. It is interesting

to note that well-founded computations can be

1In other words if a fact is true (resp. false) in the well-founded

model of a program, it is also true (resp. false) in the valid model.

3.

4.

defined using a different notion of extensions of

computations, which we call WF lenient extensions.

Lenient extensions seem to generalize WF lenient

extensions in a straightforward manner.

Valid models are ‘founded’ in a sense that extends

that of Sacca and Zaniolo [S Z90], and You and

Yuan ~90]. Very roughly speaking this implies

that each positive fact in the model has an acyclic

derivation, and there is a justification (’cannot be

derived by a lenient extension’) for assuming any fact

to be negative. This property is viewed as desirable

and plays an important role in the perception of a

semantics as intuitive.

Every stable model of a logic program with negation

contains the valid model of the program. A program

may have no stable model, or may have several stable

models, but every program has a unique valid model.

Like the stable models and 3-valued stable models,

valid models do not seem to lend themselves to efficient

computation. However, valid models offer a semantics

(for all programs) that has advantages over earlier se-

mantics, and the notion of valid computations is use-

ful for deriving specialized computations for restricted

classes of programs that can be efficiently evaluated. As

an example of this, in a companion paper [BRSS91] we

describe a semantics, called the ‘exhaustive computa-

tion’ semantics, for the class of programs that is gen-

erated by the Magic Templates rewriting of stratified

programs. We show (in [BRSS91]) that this semantics

is consistent with the valid model semantics, and can

be efficiently evaluated.

2 Databases and Programs – Syntax

We assume familiarity with the standard terminology
of logic programming, such as variables, constants,

function symbols, and terms. Following Beeri et al.

[BNST91], we extend the definition of terms to allow

sets in terms. We use simple terms to refer to the

standard definition of terms. A grouping term has the

form < X >, where X is a variable, In this paper,

unless noted otherwise, ‘term’ means a set term.

We extend the standard definition of tuples, atoms

and negative atoms to allow them to contain set terms.

A grouptng atom has the fo~m p(t1,....tn)where all the

ti’s except one are terms, and precisely one is a grouping

term. A literal is either an atom or a negative atom.

The definitions of (definite) rules and facts follows the

standard terminology, except for the restrictions due to

grouping, summarized below. If the head of a rule is

a grouping atom, we call the rule a groupzng rule. We

92

have the following restrictions on grouping: (GR1): A

grouping term may appear only in the head of a rule,

never in its body; (GR2): A head may contain at most

one grouping term; (GR3): A grouping rule must have

a non-empty body; and (GR4): Facts cannot contain

grouping terms.

A fact that contains no variables is a ground fact,

A relation is a set of facts (ground or otherwise). A

database is a finite collection of relations. A relation

(database) is called ground if it contains only ground

facts. A program is a collection of rules, P =

{Rl,..., Rn }. Note that our notions of fact, relation

and database generalize the corresponding notions in

the deductive database literature, since we do not insist

that facts be ground.

Given a program P and a database D, P U D is

referred to as a deductive database. Sometimes we

assume that the database is included in the program,

and do not refer to it separately. Given our three kinds

of terms, we have several classes of programs. The most

general programs may contain arbitrary terms, grouping

rules, and negated literals in rule bodies. If we disallow

the use of set terms and grouping terms, we obtain logzc

programs with negation. If we also disallow negation, we

obtain the well-studied class of logic programs.

The semantics of programs is better described by first

preprocessing the program to simplify the use of the

grouping construct. Consider a rule with grouping in

the head as shown below:

Rj :~(~<Y >) :- il(t~),...,ln(t~).

We replace such a rule by two rules as shown below

(where Xl, Xk _ 1 are distinct new variables):

R; : WZ,(i Y) :- /l(t;),. .,/n(t;).

R; :P(xl,.. .,xk_l, <Y>) :- p~, (x~,..., x~_~, Y).

We call the program produced by preprocessing P as
Ppre. This preprocessing is not critical, but helps

simplify our terminology considerably. The semantics of

the original program is defined to be the semantics of the

preprocessed program. Clearly this preprocessing does

not affect logic programs with negation (i.e., without

grouping and set terms).

3 Semantics - The Basics

We now consider the meaning of databases, programs

and queries. There are some issues that need to be

considered first.

1. We allow ground facts to contain components that

are sets, that may also contain other sets as

2.

3.

4,

components. Therefore, the traditional Herbrand

universe is insufficient for the interpretation of

databases and programs. We interpret databases

and programs in a generalized universe, following

[BNST91], and we refer the reader to that paper for

more details. Following [BNST91], we assume that

for any given program and database a universe of

some fixed (but not necessarily finite) size has been

chosen.

Given a universe for a deductive database P U D, the

set of all possible ground facts is a base for P U D.

A 3-valued tnterpretatton for a program assigns to

each ground atom in the base either true, or false, or

undefined. A fi?-valued interpretation assigns either

true or false, but never undefined. An interpretation

(whether 3-valued or 2-valued) can be denoted by a

pair (T, F), where T is the set of facts that are true

in it and F is the set of facts that are false in it.

Note that T and F must be disjoint by definition.

We allow databases to contain non-ground facts, and

such facts are also allowed in answers to queries. We

need to define the meaning of such (collections of)

facts. In particular, in this paper we use bottom-

up computation as the operational paradigm, so we

need to provide adequate meaning for a step in a

bottom-up computation that involves non-ground

facts.

We assume the standard definitions of substitution,

instance, subsumption and unification. We say that a

substitution is ground if each variable that it binds is

bound to a ground term. We view a non-ground fact

as a representation of the set of ground facts that

are its ground instances. The meaning of a relation

is thus the set of ground instances of its facts — a

(generalized) Herbrand model. The semantics of a

program w.r.t. a database (as we define later) is a

set of ground facts, that may be represented by a set

of facts that are not necessarily ground. We say that

a set of facts A covers a set of facts B if the set of

ground facts represented by A is a superset of the set

of ground facts represented by B. Abusing notation,

we extend the use of “covers” in the obvious manner

to the case where one or both of A and B is a fact

rather than a set of facts. We say that sets A and

B are equwalent if A covers B, and B covers A.

A non-ground interpreiatton M = (T, F) is a

representation of an interpretation (T’, F“) where T’

is the set of all ground instances of facts in T, and

F’ is the set of all ground instances of facts in F.

Note that by the definition of an interpretation, no

fact in T can unify with any fact in F.

5. Given a set of facts A, ~ denotes (a representation

of) the set of all ground facts in the base that are

not covered by A. One such representation is the set

of all facts that do not unify with any fact in A. For

the ground case, ~ is the complement of A wrt the

base.

We now define when a fact ‘follows from’ a rule,

when a fact is ‘used positively) in a rule and when a

fact is ‘used negatively’ in a rule. We partition rules

into three cases: simple rules, rules with negation and

rules with grouping, and give separate definitions for

each. Each of these definitions really has two parts:

the first defines the semantics in terms of purely ground

facts. The second part shows how the semantics can be

defined when non-ground facts are used: since we view

non-ground facts as representations of a set of ground

facts, this part does not provide a new semantics, but is

equivalent to the first part. However, it provides us

with the basis for making non-ground derivations in

the operational definition of semantics. For the case

of simple rules and rules with negation, the ground as

well as the non-ground semantics are well-known, so we

merely state the version of the semantics that deals with

non-ground facts.

3.1 Simple rules

Consider a (possibly non-ground) interpretation M =

(T, F), and a rule

R :~(~ :- ql(t;),.. .,q~(t;).

that does not contain any occurrence of grouping, or

negation. We say that the body of the rule is satzsfied

in M by a substitution a if the following holds.

(S1) For each i, 1< i $ k, the fact qi(&)[o] is an

instance of a fact in T.

We say that a fact p(F) follows from (T, F) by this rule,

if there exists a substitution u such that

(Fl) fia] = 1, and

(F2) The body of the rule is satisfied in M by o.

In the sequel, when a rule R is used to derive a fact

from a set of facts, as described above, we say that

each fact qi(~.)[~] 1 < a’ < k, is used positively in this

derivation step. Note that when set terms are used,

we must use set-unification (described in [B NST91])

instead of ordinary unification.

3.2 Rules with Negation

We now generalize the notion of ‘follows from’ for rules

with negation (due to the preprocessing, these have no

grouping in the head of the rule) applied to sets of non-

ground facts.

Consider a (possibly non-ground) interpretation M =

(T, F) and a rule R.

R :p(~ :- ql(t;), . . .,qk(ti),mqk+l(~k; l), . ~ ., -%(&).

We say that the body of the rule is satisfied in M

by a substitution a if the following holds. For each

i,l < i< n, let s; =tj[a],

(NS1) For each i, 1< i < k, qi(si) is an instance

of a fact in T, and

(NS2) For each j, j > k, every instance of qj(s~) is

an instance of some fact in F.

We say that the fact p(~ follows from M by this rule,

if there exists a substitution a such that,

(NF1) fla] = F, and

(NF2) The body of the rule is satisfied in M by cr.

If a rule R is used to derive a fact, as described

above, then we say that each fact qi(&)[c], i < k, is

used positively and each fact qj (~)[c], j > k, is used

negatively in the derivation step.

3.3 Rules with Grouping

We now describe the meaning of ‘follows from’ in the

case of rules with grouping. We consider first the case

where (1) the rule has only one body literal, and it

is positive, and (2) only ground facts are given, and

following [BNST9 1], only ground facts are generated.

Consider a rule,

R :P(C< Y >) :- q(?).

Let ~ be the variables (possibly including Y) that occur

in ~ Let M = (T, F) be a ground interpretation. We

say that the ground fact p(~, S) (where S is an element

of the universe)z follows from M by the rule, if there

exists a ground substitution u such that,

(GF1) fla] = F.

(GF2’) The body of the rule is satisfied in M by

a, that is, g(?)[a] is in T.

(GF3’) Let SO be the set of all ground substitu-

tions q (on variables in ?) such that fin] = fla], and

such that q(?)[q] is in T. Then S = {Y[q]lrI ~ S0}.

(GF4’) Let S; be the set of all ground substitu-

tions u’ (on variables in t’)such that fla’] = fla], and

2 Note the assumption that S is in the universe. It may be the

case that for a rule R and a substitution a, the set S defined by

GF2’ and GF3’ may be so large that it is not a member of the

universe in which the construction is taking place. As a simple

example, the set Sa may contain all possible substitutions, hence

the set S contains all elements of the universe, and it is not,

therefore in the universe. In such a case, p(~, S) does not follow

from M by R. That is, we are using the so-called liberal semantics

of [BNST91]. The reader is referred to that paper for a discussion

of this issue, and in particular to a description of restrictions on

programs that guarantee that ‘large’ sets are never candidates for

being generated by rules.

Y&

such that q(?) [a’] is not in T. Then {q(?) [cr’] la’ c S;}

is contained in F.

Essentially GF3’ and GF4’ above require that all q

facts that could affect the set created for the head fact

should be either in T or in F.

We now generalize these definitions to the case

that substitutions may be non-ground, but due to the

preprocessing of rules with grouping we can still assume

that the rule has only one body literal, and it is positive.

We remove the requirement that facts are ground, but

we still may assume that substitutions are ground on

variables that do not occur in the head.

Let M = (T, F) be a (possibly non-ground) interpre-

tation. We say that the fact p(;, S) (where the collection

of ground instances of members of S is an element of the

universe) follows from M by the rule, if there exists a

substitution u such that GF1 above holds, and in addi-

tion,

(GF2) The body of the rule is satisfied in M by a,

that is, q(?) [u] is covered by the facts in T.

(GF3) Let S0 be a set of all substitutions q (on

variables in t’) that also satisfy the body of the rule in

M, and such that flq] = au].3 Then every variable in

Sa appears in flu].

(GF4) Let S: be the set of all ground substitu-

tions u’ (on variables in ?) such that flu] unifies with

t!a’] but such that q(?)[a’] is not covered by T. Then

{g(~)[u’] la’ E S: } is covered by F,

(GF5) There is no substitution u’ such that tla]

unifies with t~u’],and Sot contains an element that is

not present in S0.

Then S = {Y[q]lq c S.}.

Condition GF3, which requires that every variable in

So appear in fla] is needed for the following reason.

Suppose we had a rule P(X, < Y >) :- q(X, Y) and a

fact q(X, X). Then the condition is satisfied, and we

produce a fact p(X, {X}), which represents {p(a, {a}) I

St. a is in the universe }, and this is correct. On

the other hand, if we had a fact q(X, Y) instead of

Q(X, X), we would generate a fact p(X, {Y}), which

represents {p(a, {b}) I s.t. a and b are in the universe},

which is clearly not equivalent to the ground semantics.

Condition GF4 is needed to ensure that every ground

fact that can affect the result of the grouping is defined

(i.e., covered by T or by F). We stay with ground facts

in this condition, since a non-ground fact can represent

a set of ground facts, some of which are in T and some in

F. Condition GF5 is needed, since otherwise with facts

q(X, 1) and 9(1,2), and a rule p(X, < Y >) :- q(X, Y),

3 Note that we do not discard any substitution from SC, even if

it is subsumed by another one. This is necessary to be consistent

with our treatment of a non-ground fact as a representation of

the set of its instances.

we would generate a fact p(X, {l}), which would not

match the ground semantics.

Proposition 3.1 Suppose a substitution u satisfies all

of Conditions GF1 through GF5, and let crl be a

substitution that satisjies Conditions GF1 through GF5,

and is less general than o on the variables in ;. Then

the set of facts that follow using U1 is covered by the set

of facts that follow using u. ❑

When a grouping rule is used, as described above,

to derive a fact from a set of facts, then for each

substitution q E S0, we say that the fact q(t’)[q]is used

positively in this derivation step. Note that such facts

are covered by T . For each substitution q E S; we say

that the fact q(?) [q] is used negatively in this derivation

step. Note that such facts are covered by F.

Note that GF2 implies that only p tuples that have

non-empty sets in the grouping argument are returned

by a derivation step for a rule with grouping in the head.

In all the above cases of rules, the substitution may be

taken to be ground on all variables not occurring in the

head, without loss of generality.

In summary, we have now defined the meaning

of ‘follows from’ for all types of rules. We have

also defined when a fact is ‘used negatively’ or ‘used

positively’ in a derivation step. We defined the

semantics for the use of non-ground facts in rules, with

non-ground substitutions. We need to ensure that the

set of facts computed using non-ground substitutions

is equivalent to the set of facts computed using only

ground substitutions. Proposition 3.1, along with

equivalent results for rules without grouping help us

establish the following theorem.

Theorem 3.2 The non-ground semantics for rules as

equivalent to the ground semantzcs for rules. ❑

4 Valid Semantics

We now define ‘bottom-up’ computations, and use them

to define the meaning (or semantics) of programs.

We consider computations as, possibly transfinite,

sequences of steps, since this allows us to give semantics

to programs even if they do not terminate finitely. This

approach differs from earlier approaches to defining

semantics for programs, which are primarily model-

theoretic.

4.1 Valid computations

To define computations of a program P, we consider

transfinite sequences of pairs of the form (R, p(i7j’),

where R is a rule of the program, and p(si is an instance

95

of R’s head. (Obviously, there is a unique substitution

0 that produces P(F) from the head of the rule, and

we could use (R, 0) instead.) A firing-sequence C is a

mapping from all ordinals that are smaller than some

ordinal a to a set of such pairs. The ordinal a is the

length of the firing-sequence. We call each pair in C a

step, and refer to R as the rule of the step, and to p(.?)

as the fact of the step. We also sometimes refer to the

derivation made in the step as a firing of rule R. (This

terminology is actually justified only for firing-sequences

that satisfy at least condition CC1 below, and we use it

later only when this is the case.)

Given a set of facts (i.e., positive literals) T, we

define inductively for each ordinal ~,/? ~ a, the set

of (positive) facts associated with /3 by C, starting from

T, denoted Me (C, T) as follows:

(DC1) The set of facts associated with O is the

given set, &l. = T.

(DC2) The set of facts associated with a successor

ordinal @ + 1 is M@ augmented with the fact of step ~.

(DC3) The set of facts associated with a limit

ordinal is the union of the sets associated with the

previous ordinals.

These definitions simply state that, starting from the

given set, each step adds its fact to the accumulated set

of facts.

A firing-sequence C is a lenient computation of

program P from a set T if it satisfies the following

condition:

(CC1) If the ~’th pair is (R, p(~), then p(F’)

follows from (iW@(C, T), M6(C, T)) by R.

Condition CC1 embodies the requirement that each

pair is indeed a step where a rule is used to derive a

fact, assuming that any fact not in Mb (C, T) is false. If

this condition is satisfied, we refer to the fact in it as the

fact derived in the step. The adjective ‘lenient’ refers to

the fact that in such a computation we may use a fact

negatively, yet infer it in a subsequent step. Thus, the

constraint in the definition on the term ‘computation’ is

rather weak. In the sequel, we often omit the adjective

‘lenient’.

We do not require steps in a lenient computation to

be distinct, nor do we require that the facts that are

derived be new. Repetitions of steps and additional

derivations of facts that have previously been derived

are allowed. However, it is obvious that if a step is

repeated several times, then all its occurrences except

the first may be deleted, and the result is a lenient

computation. Similarly, a step that derives an instance

of a fact derived previously may be deleted.

If C is a lenient computation of length a from T, then

the set associated with a in C is called the result of C

on T, and we denote it by M(C, T).

A special case of the definition above is when T is the

given database D. Then we have lenient computations

from D. We usually omit D, talk about computations

rather than computations from a set of facts, and write

M(C), rather than M(C, D).

Given two firing-sequences of lengths al, az, their

concatenation is the firing-sequence of length al + Q2,

such that its first al steps are those of the first firing-

sequence, and the next Cxz steps are those of the second

firing-sequence. In general, the concatenation of two

lenient computations need not be a lenient computation.

The reason is that the first computation may derive a

fact that unifies with a fact used negatively in the second

computation.

Lemma 4.1 If a lenient computation Cl does not

derive any fact that unifies with a fact used negatively

in a lenient computation C2, then Cl . C2 M a lentent

computation. ❑

Definition 4.1 If Cl is a lenient computation, and C2

is a lenient computation from M(C1), then we say that

C2 is a lenzent ezienszon of Cl. ❑

Since some steps involve rules with negation, or

grouping rules, it is well-known that different compu-

tations, that apply rules in different orders, may yield

different results for the program. The various solutions

adopted in the literature all assume that a derivation

using a rule with negation or a grouping rule is made

only when all the information needed to evaluate the

body is available. In particular, if a fact is used nega-

tively, we are certain that indeed it cannot be derived.

The following condition expresses this intuition in a way

that seems to be more general than earlier formulations.

Definition 4.2 Let T be a set of facts. We associate

with it a set of facts, called the set of facts assumed false

on the basis of T, denoted F. (T)4, defined as follows. A

fact p(F) is in F. (T) iff there is no fact that is in T, or

is derived in a lenient computation from T, that unifies

with it, ❑

The intuition here is that we assume that certain facts

are false by default, only if we are absolutely certain

that the facts (or instances thereof) cannot be derived

in any reasonable way from the given set of facts, using

the program. The interpretation given to ‘derived in any

reasonable way’ is ‘derived in a lenient computation.’

Definition 4.3 Valid Computations : Let C be a

lenient computation (from a database D), and for each

4 Fu stands for False under the Valid semantics.

96

step ,6 : (R p(a), let C@ be the prefix of C’ up to
(but not including) step b. We say that step ~ is valid

if p(F’) follows from (ikf(Cp), F’V(M(CO))) using R. We

say that C is a valid computation if all the steps in it

are valid. ❑

Note that a step is valid after C iff there is a derivation

step for the fact such that:

(1) every fact used positively in the derivation step is

covered by M(C), and

(2) each fact used negatively in the derivation step is
covered by FV(J4(C)).

Obviously, (by the definition of lenient computations)

the firing of a non-grouping rule without negation is

always valid. If a step in a lenient computation is not

valid, it uses a fact negatively, and there is some lenient

extension of the prefix of the computation up to, but not

including, the step, that derives a fact that unifies with

the fact used negatively. Any such lenient extension is

called a witness for the invalidity of the step.

This condition is in a sense a very general formulation

of the idea ‘all facts that could influence the result of

the current step have already been derived.’ It is our

interpretation for ‘negation by default’.

The condition, as stated, may be difficult, or even

impossible, to check, since it is stated in terms of

potential extensions, rather than in terms of what

has already been computed (although clearly its truth

depends only on the given database and what has been

computed). In special cases, such as for computations of

the magic rewriting of stratified programs, or modularly

stratified programs, the condition can be proven to

hold. Alternatively a stronger condition can be checked

instead, thus providing an approximation to valid

computations. In Section 6 we touch on this briefly,

and show that using one such stronger condition results

in the well-founded semantics.

We shall use the notation F.(C), where C is a

computation, to denote FV (M(C)). To make our

notation uniform, for a valid computation C, we shall

use Tv (C) to denote M(C). It is obvious from the

definitions that for any valid computation C, TV (C) 0

F.(c) = 0.
Obviously, the set of facts in M(C) for any lenient

computation C (not necessarily valid) grows monoton-

ically as more steps are performed. It turns out this is

also true for the set of facts assumed false.

Proposition 4.2 If C’l is a prefix of a lenient compu-

tation C, then F.(Cl) ~ FU(C).

Proofl Denote by C2 the part of C that follows Cl.

Then, if C3 is a lenient extension of C, then C2 . C3 is a

lenient extension of Cl. The claim follows. ❑

By the proposition, the set of facts assumed false

grows monotonically in a lenient computation. Since

the set of facts assumed false does not depend on

the computation, but rather on its result, one may

conjecture that if T c T’, then FU(T) ~ FU(T’). This is

false in general 5, but from the proposition we can prove

the following:

Corollary 4.3 Assume T and T’ are sets of facts such

that T C T’, and for each fact in T’ there is a lenient

computation from T that uses negatively only facts from

~, (i. e., facts that do not unify with any fact in T’).

Then F. (T) S F. (T’).

Proof We can concatenate the computations for all

the elements of T’ from T, and the result is still a

lenient computation. It follows that for any lenient

computation from T’ that derives a fact, there is a

lenient computation from T that derives this fact. There

may, however, exist lenient computations from T that

derive facts that cannot be derived from T’. The claim

follows. ❑

We now note an important property of valid compu-

tations, that is the key to the results in this and in the

following sections:

Proposition 4.4 IfC1 and C2 are valid computations,

then their concatenation is also a valid computation.

Proof: For each pair of computations, let its complex-

ity be the pair of the maximum and minimum of their

lengths. The claim is proved by induction on the lexico-

graphic ordering of the complexities of pairs of computa-

tions. For the basis, we note that for complexity (1, 1),

and even more generally the concatenation of any valid

computation with a valid computation of length one is

a valid computation. Consider Cl C2, where C2 has a

single step. Any fact used positively in this step is in

T. (0) = D, and any fact used negatively is in FU (D).

By monotonicity of the T. and F. sets, the step is valid

after Cl. For the induction steps, let Cl, C2 be a pair

of valid computations whose complexity is first in the

ordering, such that their concatenation, in any order, is

not a valid computation. If Cl C2 is not a valid compu-

t ation then necessarily C2 has more than one step, and

the last step of C2 is the first step in the concatenation

that is not valid. Let C2 = Cj s. There is a witness,

say Cs that s is not valid after Cl ~C!. But, by induc-

tion hypothesis, the concatenation of Cl and C.j, in any

order, is a valid computation. It follows that C.j. C1 is a

valid computation, and C3 is a lenient extension of this

computation. But then, Cl C3 is a lenient extension of

5Consider a program with the single rule p :- q. For this

program, F’.(O) = {p, g}, while ~.({q}) = @

97

—

C;, and a witness that s is not a valid step after C.j —

a contradiction. ❑

We say that a valid computation is complete if in each

of its valid extensions every step derives a fact such that

all its ground instances are instances of facts that have

already been derived. Let us say that a fact derived in

a step of a computation is new if it has some ground

instance that is not an instance of any of the previously

derived facts. Then a valid computation is complete

if none of its validity preserving one-step extensions

derives a new fact.

Example 4.1 Consider the program

RI : ql :- 7P.

R2 : p :- r, -w-.

R3 : r :- -m.

R4 : q2 :- YS.

R.5:s :-s.

Consider the rule firing sequence RI, R4.6 There is

no lenient extension of the empty computation that

derives p, so we can assume p is in F. of the empty

computation, that is, we can assume =p, and fire R1 to

derive ql. Similarly, there is no lenient extension that

derives s, we can assume s false, and hence fire R4 to

derive q2. Hence the rule firing sequence R1, R4 is a

valid computation. For this program, the reverse of this

sequence also happens to be a valid computation. Both

these computations are complete valid computations

since they cannot be extended, and both have the same

result {ql, q2}. Note that the rule for s does not cause

any difficulty. ❑

From the properties of valid computations and T., FV

sets above, we now obtain the following important

result.

Theorem 4.5 Suppose we are grven any program P,

any database D, and a generalized universe. Then aii

complete valid computations of P on D have the same

T. set and the same F. set. •l

The intuition behind the proof of this theorem is that if

two complete valid computations were to give different

results, i.e., different Tti sets, we could concatenate

them to get a valid computation that extends one of

them, deriving new facts, which would contradict its

completeness. Since the F. sets depend only on the

T. sets, the second part follows, (Alternatively, we

could use the monotonicity claim for Fu sets, and the

concatenation property to prove the claim.)

GIn the case of rules with variables, we need to specify the rule

instantiation used, but omit this from our examples for simplicity.

To complement these results, and have a basis for

defining a semantics of programs, we need also the

following.

Theorem 4.6 For each program P, each database D,

and each generalized universe, there exists a complete

valid computation of P on D. ❑

The idea behind this theorem is that each universe

has a cardinality, and the cardinality imposes a bound

on the ‘number’ of its elements, Computations that

derive new facts at each step must be bounded in length

by this cardinality. The existence of a maximal valid

computation follows by Zorn’s Lemma. (We need Zorn’s

Lemma since we are possibly dealing with computations

longer than u.)

Given these results, we define a semantics for pro-

grams, as follows. Assume we have a a program, a

database, and a given generalized universe. Let T. de-

note the set of facts computed in any complete valid

computation of the program, and let FV denote the set

of facts that are assumed false at the end of the compu-

tation. We call the pair (TV, F.) the valid semanttcs of

the program (on the given database, in the given uni-

verse).

The results above can be summarized as follows:

CoroHary 4.7 The valzd semantics of a program al-

ways exists, and M untque. ❑

Valid semantics is quite a general notion. We shall

shortly investigate its properties, and relate it to other

notions of semantics later in this paper.

We note that complete valid computations that derive

only ground facts exist by the same arguments as above

It follows from our results that such computations

define the same semantics as any other complete

valid computation. Similarly, assume we have two

representations, say D and D’ of the same database,

i.e., D and D’ represent the same collection of ground

facts. Then any valid ground computation from D is

also a computation from D’, and vice versa. Thus, in

terms of the semantics of programs the representation

of the database is irrelevant.

4.2 Grounded Programs

In the sequel, for simplicity, we consider only ground

valid computations. Further, without loss of generality,

we replace each rule in a program by the set of its ground

instances, defined as follows.

For the case of a rule without grouping, a ground

instance of a rule has all variables replaced by ground

terms. For a rule with grouping, we replace each

98

variable that appears in the head, but outside the

grouping term, by a ground term. We do not replace a

variable that appears in the grouping term but not in

any other term in the head of the rule by a ground term.

This would be meaningless. For example, consider the

rule ql(X, < Y >) :- plo It can be replaced by an

instance ql(5, < Y >) :- plo and other instances,

but the instance ql(5, <7 >) :- pl () should not

be used. Thus, in the presence of grouping rules, we

do not have a full reduction to the propositional case.

Note that due to the preprocessing, there is no variable

in the body of the grounded rule other than the variable

in the grouping term.

It can be seen that each valid computation of this

(possibly infinite) program is also a ground valid com-

put ation of the original program (i.e., it derives only

ground facts), and it is complete or incomplete for both

programs simultaneously. Thus, the instantiated pro-

gram has the same semantics as the original program.

5 Tllree-Valued Valid Models

We have just seen that the semantics of a program is

a set of true facts and a set of false facts. It follows

that to view it as a model, we need to consider three-
valued models. We consider this subject now. In the

rest of this paper we shall assume that the database

is part of the program; this is consistent with other

work in the area of defining semantics for programs. As

mentioned earlier, in keeping with the other literature

in this area, we consider only grounded programs, In

the rest of the paper, interpretation always means a 3-

valued interpretation.

An interpretation 1 = (T, F) is T-closed iff every

fact that follows from 1 and any rule in the program

is present in T.

Note that since the rules’ heads contain only positive

literals, T-closure only requires facts that follow by rules

to be in T, but there is no such requirement for F. (This

is why we call it T-closed.) It makes sense to require

that if a fact certainly cannot be inferred, then it must

be in F. This would make the roles of T and F more

symmetric. However, while the notion of ‘inferring a

true fact’ is the same in all approaches to semantics,

the notion of ‘certainly cannot be inferred’ depends on

the default mechanism in use, hence it cannot be used

to define a universal notion of F-closure. For valid

semantics, we define a interpretation to be F-closed if
F. (T) Q F. An interpretation that is both T and F

closed is a model of the program.

The above definition of a model is different from those

in the literature. First, our requirement of F-closure

7Actually, not quite, as discussed shortly.

seems to be new. Even if only T-closure is considered,

our approach is slightly different from those in the

literature, e.g., the definition used by Przymusinski (in

[Prz90]) for logic programs with negation. Briefly, the

difference is as follows. Suppose there is a fact such

that for every ground rule that has this fact in its

head, the body evaluates to undefined in the model.

Przymusinski’s definition of 3-valued models requires

that the fact be given a value of undefined. Our

definition allows for the possibility that the fact has

any value, and in particular it can be false. As a simple

example, consider Example 4.1. In the rule for p, with

both r and -w in its body, we allow p to be put into the

FV set, although given the rest of the program r may be

undefined.

Possible notions of ‘satisfying a rule’ in a 3-valued in-

terpretation are discussed in [YY90]. Briefly, the log-

ical operators =, A, V can be extended in a straight-

forward manner in 3-valued logic, so that TU = u;

uvt=t, uvf=u, anduvu= u;u At=u, uAf=f,

and u A u = u. One approach to defining rule seman-

tics is to treat a - b as a short form for =b V a. Then

when the body is undefined, the truth value of the rule

is undefined, unless the head is true. The shortcon--

ings of this approach are discussed in [YY90], and it is

advocated — as is also done in [SZ90] — that a rule

should be considered to be satisfied if the truth value

of its head is greater or equal to that of the body. Our

approach is similar, but for one difference: we allow the

body to be undefined, yet the head to be false. The

rule for p in Example 4.1 demonstrates that it is possi-

ble that the truth value of each of a rule’s body literals

is undefined, and thus, by computing truth values ‘by

the table’, the body as a whole is undefined; and yet,

by taking a global view of the body we can infer that it

is actually false for the purpose of inferring additional

facts from it.

Now, a program P has a valid semantics (Tv, Fu),

defined by any of its complete valid computations. It is

of course an interpretation.

Theorem 5.1 The valid interpretation (Tv, F.) for a

program P is a 3-valued model for P.

Proof Suppose that we have a rule instance whose

body is satisfied in the valid interpretation (TV, Fu).

Then the concatenation of a step that uses this rule to

any complete valid computation is a valid computation.
It follows that its head is already in TV Thus, we have

T-closure. F-closure follows from the definition. ❑

Since each program P has a unique valid interpreta-

tion, and the interpretation is a 3-valued model for P,

we shall call the valid interpretation the valid model for

the program.

99

—

Example 5.1 We continue with Example 4.1. We

derived q 1 and q2, and could assume p and s false in

the valid computation. The program thus has a 3-valued

valid model ({ql, q2}, {p, s}). o

An interpretation that is a 3-valued model according

to our definition (and in particular the valid model)

may not be a 3-valued model according to the definition

of Przymusinski [Prz90]. The model presented in

Example 5.1 is an example of such a model—it seems

intuitive, yet is not a model by the definition of

Przymusinski due to rule R2 where the head p is false

while the body (r-, w) is undefined. On the other

hand, if an interpretation is a model by Przymusinski’s

definition, it is a model by our definition.

6 Relation to Other Semantics

In this section, we compare the valid model semantics

with other well-known semantics for logic programs with

negation. Several semantics have been defined for logic

programs that allow the use of aggregate operations on

relations. We shall concentrate on the negation aspect

in this discussion, but

semantics proposed for

the connection between

models.

We start by defining

point out the relation to the

aggregation. We first discuss

valid models and well-founded

a class of computations called

JVF lenient computati~ns. These can be used to define

the well-founded semantics.

Definition 6.1 A firing sequence S is a WF lenient

computation from a set of facts T, if

(1) Every fact used in it positively in step ,0 is in

Mfl (S, T), and

(2) Every fact used in it negatively is in ~ (the

complement of T wrt to the base)8.

The set of facts that can be assumed false wrt to the WF

semantics given T (denoted FW(T)), is the set of facts

for which there is no WF lenient computation from T.

❑

We note that WF-lenient computations have a fixed set

of facts that can be used negatively. Thus, if a fact is

not in T, but is derived in the computation, it may still

be used negatively, even after it was derived. It is also

possible to use a rule that has the fact and its negation

in its body.

Definition 6.2 A lenient computation C from a set T

is a well-founded computation if in every step ,6,

8Recall that we are now considering only ground rules and

ground facts. For the general case, this can be stated as ‘every

fact used negatively does not unify with any fact in T.’

(1) a fact used positively is in Mp(C, T), and

(2) a fact used negatively is in FW(MP (C, T)). ❑

As we did for valid computations, we can show

that there exist complete well-founded computations.

It is also not difficult to show that well-founded

computations can be concatenated, that the sets of

facts that are true and that are assumed false grow

monotonically with the computation, hence the sets of

true facts and the facts assumed false after any complete

well-founded computation are the same, We denote

these by TW (T), FW (T) (assuming that P is known).

Theorem 6.1 Let P be a program with negation, and

D be a database. Then any comp!ete well-founded

computation of P on D yields a unique model. Further,

this model is the same as the well-founded model. ❑

The first part of the theorem can be proved using

essentially the same method used for valid models. It

is not hard to prove the second part of the theorem

using the alternating fixpoint technique for computing

well-founded models [Van89].

We now consider the relationship between the two

approaches to semantics.

Lemma 6.2 For every T, FW(T) S F.(T).

Proof It suffices to check that the set of WF-lenient

computations from any set contains the set of lenient

computations from that set, Hence, a larger set of facts

can be assumed false in the valid semantics. ❑

Lemma 6.3 Every welLfounded compuiataon is a valtd

computation. ❑

We say that a model Ml = (Tl, Fl) contazns a model

M2 = (T2, F2) iff T2 L T1 and F2 ~ F1. We can

now state the main result of our comparison with well-

founded models:

Theorem 6.4 Let P be a program wzth negation, and

D be a database. Then the valzd model of P contatns

the well-founded model of P.

Proofl We observe that a complete well-founded

computation is also a valid computation, but it is not

necessarily complete as a valid computation. Let C be

a complete well-founded computation. We have that

TW(C) = T.(C), and FW(C) s F.(C). If C is not a

complete valid computation, let C’ be a complete valid

computation that extends C. Then we have T. (C) ~

To(C’), and F.(C) ~ FU(C’). ❑

100

The notion of lenient computation from a set of facts

seems to provide insight into various approaches to

define negation by default, and constructive semantics

for logic programs. We have shown that at least two

interesting approaches (the well-founded semantics and

the valid semantics) define the defaults as depending

only on the set of facts given as true, with no regard

as to how these sets were computed. It is obvious

that the well-founded and valid semantics differ only

in the notion of lenient computation they use. The

notion of lenient computation as we have defined it

seems more intuitive then the WF-lenient computation,

as the latter allows to use a fact negatively even

after a step that derives it, and actually a fact can

be used both positively and negatively in the same

step. Our approach results in a smaller set of lenient

computations, where such steps are forbidden, hence

we succeed in inferring more facts to be false by default.

Due to the above reasons we believe that valid models

are more intuitive than well-founded models.

The following example shows that valid models can

properly contain well-founded models.

Example 6.1

9 :- pl, -lp2<

pl :- p2.

p2 :- lq.

Note that no lenient extension of the empty compu-

tation can compute q. To do so, pl would have to be

computed, and to compute pl, we would first have to

compute p2. But once we have computed p2, the first

rule cannot be fired. Hence, in a valid computation we

can assume that q is false, and in later steps compute

p2 and pl to get the model: ({p2, pi}, {q}). This model

is, incidentally, the only stable model of the program.

However, the well-founded model for the above is

({}){}) — there iS no non-trivial unfounded set since
the last rule has no positive literals. In our opinion,

this is less intuitive than the valid model. ❑

case. The class of modularly stratified programs

contains the class of locally stratified programs, which

in turn contains the class of stratified programs.

There are numerous semantics proposed for logic pro-

grams that use aggregate operations on relations, but

disallow set generation. While we have not explicitly

considered aggregation in this paper, the grouping op-

eration in conjunction with the aggregation operations

on sets can be used to implement aggregation.

Kemp and Stuckey [KS91] extend the well-founded

semantics to aggregation. Theorem 6.4 carries over

to Kemp and Stuckey’s extension of the well-founded

semantics to aggregation. It follows from [1<S91] that

the valid semantics is equivalent to the perfect model

semantics programs that are aggregate stratified or

group stratified.

Van Gelder [Van92], Ganguly, Greco and Zaniolo

[GGZ91], and Ross and Sagiv [RS91] consider how to

assign semantics to programs with specific kinds of

aggregation. For many programs, by making use of

special properties of specific aggregate operations they

are able to assign true or false to facts that Kemp

and Stuckey ’s as ‘well as our techniques leave undefined

since we do not assume any properties of aggregate

operations. However their techniques are not applicable

to all aggregate operations.

Sacca and Zaniolo [SZ90] define a property called

‘foundedness’, which is viewed as a desirable property

of models (and is a 3-valued extension of the definition

of stability in the stable model semantics). A similar

notion of ‘justified’ is defined in [YY90]. Following

them, we have the following definition.

Given a (possibly 3-valued model) M = (2’, F) for

a logic program with negation P, the reductzon of P

wrt M (denoted PJ1) is computed as follows. First, we

get the set of all ground instances of rules in P (using

the universe for the program). Then (1) we delete from

this set all instances that have as a body literal atom

p, where p is in F, or as a body literal qp where p is

Corollary 6.5 Given a program P, the vaitd model
in T, (2) we delete from this set all rules that have a

of P is equivalent to the following (under the special
literal that is undefined in Mg, and finally (3) we delete

conditions mentioned in each case):
negative literals from the bodies of all the rules in this

set. The resultant (positive) program is defined to be
(1) the weakly perfect model of P, tf P ts weakly- ~

stratified ([PP881),
YM .

(2) the mo;ularly stratified model of P, if P is

modularly stratified ([Ros90]),
Definition 6.3 A (possibly 3-valued) model M =

(3) the perfect model of P, if P is locally stratified
(T, F) of a program P is said to be T-founded if the least

([Prz88]), and
model of PM is equal to T. The model is F-founded if

~,AB(~8:~)e $ratified model of P, if P is stratified
F. (T) contains F. The model is founded if it is both T

and F founded. ❑
,. .,

9 Rules with false body literals have been deleted in Step 1. If

The above semantics are also equivalent to well-founded the body is completely defined and true then the head must be

models under the special conditions mentioned in each true since M is a model, so this part refers to bodies only.

101

The notions of foundedness in a sense complement

the notions of T-closure and F-closure. The closure

properties require certain facts to be in the T or F sets;

they are like lower bounds. The foundedness conditions

restrict these sets, like upper bounds. Note that, as

in the case of the definition of F-closure, the definition

of F-foundedness depends on the default mechanism in

use, and should not be treated as a universal notion.

Note that we have defined foundedness only for the

case of logic programs with negation. The notion of

foundedness can be extended to cover logic programs

with grouping, and Theorems 6.6 and 6.8 can be

generalized correspondingly. Details will be presented

in the full version of the paper.

Theorem 6.6 Let P be any logtc program with nega-

tion, Then the valid model M = (Tu, F.) of P M

founded,

Proof: Consider T- foundedness. First we show that TV

cent ains the least model of PM. The firing-sequence of a

computation of PM can be mapped to a firing-sequence

for P by reinserting the deleted negative literals. Call

this firing sequence S. This firing sequence has the

property that every fact used positively in a firing is

derived before it is used. Further, every fact used

negatively belongs to FV, by definition. Hence S is a

valid extension of any complete valid computation of P.

It follows that the facts derived in S must be contained

in TU.

For the other direction, we map C, a complete valid

computation of P, to a computation of PA1 by stripping

out negative literals from rule bodies. Each resulting

rule instance is present in PM by the definition of

reduction. Since each fact used positively in C is derived

before it is used, C is a computation of PM, and hence

the least model of PM contains TV.

F’-foundedness follows from the definitions. ❑

Przymusinski [Prz91] has defined the notion of ‘sta-

tionary expansion’ of a program, and has proved that

every stable model is a stationary expansion (but not

vice versa), and the well-founded model is the least sta-

tionary expansion. Thus, every stable model contains

the well-founded model. We now show that this holds

for the valid semantics as well. The reduction used in

defining stable models is the restriction, to the case of

two-valued models, of the reduction used in defining

foundedness.

Theorem 6.7 Let P be any logzc program with nega-

tton. Every i?-vataed stab[e model of P contains the vaitd

model of P.

Proof

Suppose not. Let the valid model be Mv = (Tv, Fo)

Let U. be the set of facts that are undefined in M..

Consider any 2 valued stable model Ms = (Ts, Fs).

Let C be a complete valid computation, and let a be

the first point in the valid computation where either (1)

a fact in F~ was derived, or (2) a fact in T. could be

assumed to be false. Let the prefix of C up to (but not

including) a be Ca.

First assume case (1) is true at a but case (2) is not.

Then every positive fact used in the body of the rule

instance used at a is present in T., and every fact used

negatively in the body of the rule is in F$. Hence, the

positive fact derived in the valid computation would

be present in the model of the reduction P~6 of the

program, and hence in T,. This implies that the fact

derived in the valid computation would be in T,, and

hence not in F,, which contradicts our assumption.

Now assume case (2) is true at a and let p be a fact

that is in T, such that ~p can be assumed at point a.

Since p is in T$, it must be derived in the fixpoint of

PM,. The firing sequence of a computation of PM, can

be mapped to a firing sequence of a computation of P by

reinserting the deleted negated literals. Call this firing

sequence of P as S. By our induction hypothesis, none

of the facts used negatively in these reinserted literals

have been derived before CX. Further, none of them are

derived in S, since M, is a stable model. Hence S is a

lenient extension of Ca. Thus p is derived in a lenient

extension of Ca, and hence cannot be assumed false at

point a in the valid computation C, which contradicts

our assumption.

Thus neither case (1) nor case (2) is possible, and the

claim follows. ❑

From the definition of stable models and the T-

foundedness result from Theorem 6.6 we can see that

a two-valued valid model is a stable model, It then

follows from Theorem 6.7 that if a logic program with

negation has a two-valued valid model, the valid model

is also the unique stable model of the program.

Valid models are incomparable to 3-valued stable

models (as defined in [Prz90]), as was discussed in

Section 5. Kemp and Stuckey [1<S9 I] present an

extension of the stable model semantics for aggregation,

We believe that their approach is not in the spirit

of stable model semantics since the reduction of a

program with aggregation can result in “aggregate

subgoals” being deleted from the program. The

“aggregate subgoals” implicitly contain positive as well

as negative subgoals, and thus positive subgoals are

implicitly deleted in the reduction. This is not in

keeping with the intuition behind the stable model

In’-)
LUL

semantics, and can lead to unintuitive models, Further,

stable models as per their definition are not preserved

under straightforward transformations such as the one

proposed in [GGZ91].

In [YY90] a notion of regular model was defined.

We restate the definition for our notion of model, and

our extended notion of foundedness. This definition

depends partly on the default used for negation since

it uses the definition of F- foundedness.

Definition 6.4 A model is regular if it is founded, and

there is no founded model that contains it. ❑

create a program completion based on the case analysis

(rather than create a model). The two-valued models

of the completion give the stable-by-case semantics,

and the intersection of all three-valued models of the

completion gives the well-founded-by-case semantics.

Schlipf points out that the stable-by-case semantics

suffers from the problem that the completion can be

inconsistent, and every fact is then both true and false.

The well-founded-by-case semantics is an extension of

the well-founded semantics (i.e., the well-founded-by-

case model contains the well-founded model). Valid

models also extend well-founded models; however the

Theorem 6.8 Let P be any logic program with nega-
well-founded-by-case model is incomparable with the

tion. Then the valid model of P is contained in every
valid model as shown by the following example.

regular model of P.

Proof Let C be any complete valid computation. Let

Mr = (Tr, I’r) be a regular model. We show that

Tv ~ Tv and F. ~ F.. This is proved by showing, using

induction on the number of steps, that it holds after

every step of the valid computation C. Let CP denote

the prefix of C up to but not including step ~. Initially,

before the first step, the set of true facts, TV (Co), is the

set of facts in D. These are clearly contained in Tr.

Since M is T-founded, there is a lenient computation

that derives T., using negatively only facts in F,. By

Corollary 4.3, Fv (Co) is contained in Fr.

Assume that for some /3, T. (CP) is contained in T,.

Since M. is T-founded, there is a valid computation

that derives each fact in T,, using negatively only facts

in F,. Since TV (Cp) ~ Tr, itdoes not intersect F,.

By Corollary 4.3, every lenient computation from T.

induces a lenient computation from TV (C@). Since M.

is F-founded, FV (Cp) ~ F,. It follows that Tv (Cp+l) is

contained in Tr, and this completes the induction step.

Example 6.2 The programs in this example are from

[Sch]. Consider first the program with the single rule

p :- -lp.

The well-founded-by-case semantics assigns p true,

whereas the valid model assigns p undefined. Thus, for

this program the valid model is contained in the well-

founded-by-case model. This program also shows that

the well-founded-by-case semantics is not founded.

Now consider the program

a :- ~b. b :- ~C. c :- ~a. s :- a, b,c,

The well-founded-by-case semantics assigns undefined

to a, b, c as well as s. The valid semantics assigns a, b and

c undefined, but assigns false to s. The first derivation

in any lenient computation starting from the empty

computation would derive one of a, b or c. After this

step, c, a or b (respectively) would not be derivable.

Hence s cannot be derived. But a, b and c can be derived

by different lenient extensions, and remain undefined.

Thus, for this program the valid model contains the

well-founded-by-case model. Q

u

Example 4.2 in [YY90] is used there to show that
There is no counterpart in the valid semantics to the

the intersection of all regular models is not the well-
positive inferences made using case analysis; however, if

founded model. The same example demonstrates that
positive inferences are made using case analysis (as in

the intersection of all regular models is not necessarily
the above example), the model may not be founded. We

leave it to the reader to judge whether this is desirable
the valid model.

or not.

Schlipf [Sch] describes extensions of the stable model

semantics and the well-founded semantics, based on the
7 Conclusion

idea of “case analysis”. The description is in terms

of the grounded program, and only considers logic

programs with negation. The essential idea is that

if every way of assigning true or false to some set of

ground facts results in fact p being true, then p must

be true. For instance, with a rule p :- -p, if p is

assigned false, it can be derived, and if it is assigned

true, it is already true. Thus p is assigned true in the

semantics. There are details of the semantics that are

too complex to present here, but the idea is to first

We have presented the valid model semantics, which is

a new way of assigning semantics to all logic programs

with negation, set-terms and grouping. We compared it

with techniques proposed earlier, and showed that there

is a common simple pattern to our approach and to the

definition of the well-founded semantics. Our work thus

sheds additional light on the properties of negation-by-

default. Additionally, the valid model semantics has

important advantages over earlier techniques such as

103

the well-founded model semantics and the stable model

semantics.

An open problem is to find a constructive way of

checking if there is a lenient extension that can derive

a fact (and that is efficient for Datalog programs).

Alternatively, it would be interesting to find, at least,

a definition of extensions that is intermediate between

lenient extensions and W? lenient extensions, and for

which we can efficiently check if there is such an

extension that can derive a fact.

References

[ABW88] K. R. Apt, H. Blair, and A. Walker. To-

wards a theory of declarative knowledge. In

J. Minker, editor, Foundations of Deductive

Databases and Logic Programming, pages 89-

148. Morgan-Kaufmann, San Mateo, Calif.,

1988.

[BNST91] Catriel Beeri, Shamim Naqvi, Oded Shmueli,

and Shalom Tsur. Set constructors in a logic

database language. The Journal of Logic

Programming, pages 181-232, 1991.

[BRSS91] C. Beeri, R. Ramakrishnan, D. Srivastava,

and S. Sudarshan, Valid computations and the

Magic implementation of stratified programs.

Manuscript, September 91.

[G GZ91] Sumit Ganguly, Sergio Greco, and Carlo

[GL88]

[1{S91]

[PP88]

[Prz88]

Zaniolo. Minimum and maximum predicates in

logic programming. In Proceedings of the ACM

Symposium on Principles of Database Systems,

1991,

M. Gelfond and V. Lifschitz. The stable model

semantics for logic programming. In Proc. Fzfih

International Conference and Symposzum on

Logic Programming, 1988.

David Kemp and Peter Stuckey. Semantics of

logic programs with aggregates. In Proceedings

of the International Logic Programming Sym-

posium, pages 387–401, San Diego, CA, U. S. A.,

October 1991.

H. Przymusinska and T.C. Przymusinski.

Weakly perfect model semantics for logic pro-

grams. In Proceedings of the Fifth Interna-

tional Conference/Symp ostum on Logic Pro-

gramming, 1988.

T.C. Przymusinski. On the declarative se-

mantics of stratified deductive databases. In

J. Minker, editor, Foundations of Deducitve

[Prz90]

[Prz91]

[Ros90]

[RS91]

[Sch]

[SZ90]

[Van89]

[Van92]

Databases and Logic Programming, pages 193-

216, 1988.

T.C. Przymusinski. Extended stable semantics

for normal and disjunctive programs. In Sev-

enth International Conference on Logtc Pro-

gramming, pages 459-477, 1990.

T. C. Przymusinski. Semantics of disjunctive

logic programs and deductive databases. In

C. Delobel, M. Kifer, and Y. Masunaga, ed-

itors, Proceedings of the Second International

Conference on Deductive and Object-Oriented

Databases DOOD ’81, pages 85-107, Munich,

Germany, 1991. Springer-Verlag.

Kenneth Ross. Modular Stratification and

Magic Sets for DATALOG programs with nega-

tion. In Proceedings of the ACM Symposium on

Principles of Database Systems, pages 161-171,

1990,

Kenneth Ross and Yehoshua Sagiv. Monotonic

aggregation in deductive databases. In Proceed-

ings of the post-ILPS’91 Workshop on Deduc-

tive Databases, 1991.

John S. Schlipf. Formalizing a logic for logic

programming. Annais of Mathernatzcs and

Artzficzal Intelligence. To appear.

Domenico Sacca and Carlo Zaniolo. Stable

models and non-determinism in logic progralms

with negation. In Proceedings of the ACM

Symposium on Principles of Database Systems,

pages 205–217, 1990.

A. Van Gelder. The alternating fixpoint of

logic programs with negation. In Proceedings of

the ACM Symposzum on Przncipies of Database

Systems, pages 1-10, 1989.

A. Van Gelder. The well-founded semantics

of aggregation, In Proceedings of the ACM

Sympostum on Principles of Database Systems,

1992. (To appear.).

[VRS911 A. Van Gelder, K. Ross, and J. S. Schlipf.

- Unfounded sets and well-founded semantics ~or

[YY90]

general logic programs. Journal of the A CM,

38(3):620-650, 1991.

Jia-Huai You and Li Yan Yuan. Three-

valued formalization of logic programming: is

it needed? In Proceedings of the ACM

Symposium on Principles of Database Systems,

pages 172-182, 1990.

104

