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Controlling the Search in Bottom-Up EvaluationRaghu RamakrishnanDivesh SrivastavaS. SudarshanComputer Sciences DepartmentUniversity of Wisconsin{MadisonMadison, WI 53706, U.S.A.fraghu,divesh,sudarshang@cs.wisc.eduAbstractBottom-up evaluation of queries on deductive databases has many advan-tages over an evaluation scheme such as Prolog. It is sound and completewith respect to the declarative semantics of least Herbrand models for posi-tive Horn clause programs. In particular, it is able to avoid in�nite loops bydetecting repeated (possibly cyclic) subgoals. Further, in many database ap-plications, it is more e�cient than Prolog due to its set-orientedness. How-ever, the completely set-oriented, breadth-�rst search strategy of bottom-up evaluation has certain disadvantages. For example, to evaluate severalclasses of programs with negation (or aggregation), it is necessary to orderthe inferences; in essence, we must evaluate all answers to a negative sub-goal before making an inference that depends upon the negative subgoal. Acompletely breadth-�rst search strategy ([14]) would have to maintain a lotof redundant subgoal dependency information to achieve this.We present a technique to order the use of generated subgoals, that isa hybrid between pure breadth-�rst and pure depth-�rst search. The tech-nique, called Ordered Search, is able to maintain subgoal dependency infor-mation e�ciently, while being able to detect repeated subgoals, and avoidin�nite loops. Also, the technique avoids repeated computation and is com-plete for DATALOG. We demonstrate the power of Ordered Search throughtwo applications. First, we show that it can be used to evaluate programswith left-to-right modularly strati�ed negation and aggregation more e�-ciently than with any previously known bottom-up technique. Second, weillustrate its use for optimizing single-answer queries for linear programs.1 IntroductionSeveral studies ([11, 18, 3]) have shown similarities between di�erent top-down evaluation methods and Magic Templates (or, Alexander Templates)based bottom-up evaluation methods for positive programs when all answersto a query are desired. In essence, the same subgoals and answers are gener-



ated by these methods when they use the same orderings of body literals inevaluating rules. However, there are important di�erences as well. In par-ticular, the order in which subgoals and answers are generated and used intop-down evaluation strategies is di�erent from the order in which they aregenerated and used in bottom-up evaluations. Top-down evaluations typi-cally synchronize the generation of subgoals and answers to those subgoals,whereas bottom-up evaluations generate them asynchronously. This di�er-ence is not relevant for positive programs when all answers to a query aredesired. However, when the program contains negation (or aggregation), theorder in which inferences are performed becomes crucial to the correctnessof the method, even when all answers to the query are desired. Again, whenonly a single answer to the query is desired, the order in which facts aregenerated and used becomes important, and the depth-�rst search strategyof a top-down evaluation scheme such as Prolog can perform much betterthan the breadth-�rst search strategy of bottom-up evaluation methods.We describe a memoing technique called Ordered Search that works onthe transformed program obtained using Magic Templates rewriting, and is ahybrid between tuple-oriented top-down evaluation and set-oriented bottom-up evaluation. This technique generates subgoals and answers to subgoalsasynchronously, as in bottom-up evaluation, while ordering the use of gener-ated subgoals in a manner reminiscent of top-down evaluation. As a conse-quence, Ordered Search is able to e�ciently evaluate left-to-right modularlystrati�ed programs [14] (see Sections 4.1 and 4.2), and restrict the searchspace in many cases when we want a single answer to the query (see Section4.3).1.1 Motivating ExamplesExample 1.1 (Modular negation)The class of programs with modular negation [14] naturally extends the classof programs with strati�ed and locally strati�ed negation while retaining atwo-valued model. Consider the following left-to-right modularly strati�edprogram-query pair hPeven; Qeveni:r1 : even(X) : � succ(X; Y 1); succ(Y 1; Y ); even(Y ):r2 : even(X) : � succ(X; Y );:even(Y ):r3 : even(0):succ(1; 0): succ(2; 1): : : : succ(n; n� 1):Query: ?-:even(m):Ross [14] proposed a supplementary magic sets rewriting of hPeven; Qeveniin conjunction with a bottom-up method for evaluating the rewritten pro-gram. This method explicitly stores all the subgoal dependency informationfor negative subgoals. Ross' approach on this example would take O(m2)space and make O(m2) derivations since it would compute and store all thedependencies between subgoals transitively.



The technique presented in this paper, Ordered Search, would computeand store only information about direct dependencies; hence, it would useO(m) space and make O(m) derivations in computing the query answer.(For more details, see Example 3.2.)We describe other top-down and bottom-up techniques that can evaluateleft-to-right modularly strati�ed programs in Section 5. As an example, thedoubled program technique of Kemp et al. [7] would also use O(m) space andmake O(m) derivations on this example. However, if rule r1 were removedfrom Peven, the doubled program approach would make O(m2) derivations,though it would still use only O(m) space. Even on this modi�ed program,Ordered Search would compute the answer to the query using O(m) spaceand making O(m) derivations. 2Example 1.2 (Obtaining a single answer)There are many cases where the user may want a single answer to a query.Consider, for example, the following program-query pair hPpath; Qpathi.r1 : path(X; Y; [X; Y ]) : � edge(X; Y ):r2 : path(X; Y; [X jP ]) : � edge(X;Z); path(Z;Y;P ):edge(1; 2): edge(1; 3): edge(2; 1): edge(2; 4): edge(3; 4):Query: ?-path(1; 4; X):A top-down, tuple-oriented evaluation strategy, like Prolog, would set upa query on path, and solve the subgoals in a depth-�rst fashion. However,since there is a cycle in the edge relation, Prolog would not terminate on thegiven query.One way of obtaining a single answer to the query is to evaluate the(magic transformed) program bottom-up until we get an answer to the query,and then terminate the evaluation. With this approach, subgoals are solvedin parallel as they are generated.The technique presented in this paper, Ordered Search, solves subgoalsin a depth-�rst fashion for this program, but since it performs memoing, itdoes not repeat computation and terminates on this program. In general,it provides an alternative evaluation strategy to the breadth-�rst strategyof bottom-up evaluation. For many programs (the above program with thegiven data is one such) a depth-�rst search for one answer is much moree�cient than a breadth-�rst search for one answer. (For more details, seeExample 3.1.) 2The rest of this paper is organized as follows. Preliminaries are coveredin Section 2. The data structures and algorithms needed to evaluate a pro-gram using Ordered Search are described in Section 3. We present resultsabout the soundness, completeness, and e�ciency of our procedure in Sec-tion 4. In Section 4.3, we characterize the order in which generated subgoalsare selected to be used in terms of a depth-�rst traversal of the \subgoal-dependency" graph of the original program. Related work is described inSection 5, and directions for future research are indicated in Section 6.



2 PreliminariesWe assume familiarity with logic programming terminology (see [10]) and theissues involved in the bottom-up evaluation of logic programs. In particular,we assume the reader is familiar with Magic Templates rewriting ([11]), andwith semi-naive bottom-up evaluation ([1]). For the purposes of this paper,a program is a set of normal rules. The techniques described in this paperare applicable to programs with uninterpreted function symbols, though forsimplicity we restrict the programs to compute only ground facts.We use the notion of a subgoal-dependency graph to characterize someof the results in this paper. Intuitively, the subgoal-dependency graph of aprogram-query pair is an AND/OR directed graph that characterizes the de-pendencies between subgoals set up in a top-down evaluation of the originalprogram. Given a subgoal on the head of a rule, there are directed arcs inthe subgoal-dependency graph to each subgoal set up during the evaluationof the body of that rule. We formalize this using SLP-trees and negationtrees (see [14]) in the full version of the paper.We assume the reader is familiar with the de�nition of (left-to-right)modularly strati�ed programs and the meaning of such programs (see [14]).Intuitively, a program is modularly strati�ed i� its mutually recursive com-ponents are locally strati�ed once all instantiated rules with a false sub-goal that is de�ned in a \lower" component are removed. In the subgoal-dependency graph for left-to-right modularly strati�ed programs there is nocyclic dependency involving a negated subgoal. Ross' [14] technique as wellas our technique makes essential use of this property in evaluating programswith left-to-right modularly strati�ed negation.2.1 Modi�ed Magic Templates RewritingIntuitively, the Magic Templates rewriting of a program de�nes a new pred-icate m p (the magic predicate) for each predicate p in the original programP . The predicate m p contains subgoals on p that need to be solved. Addi-tional rules (derived from rules in P ) that generate these subgoals are intro-duced in the rewritten program. Also, original program rules de�ning p areguarded by anm p literal that ensures that only p facts matching the desiredm p subgoals are generated. The supplementary variant of Magic Templatesavoids some recomputation by identifying common subexpressions, but atthe cost of storing additional relations.For the purpose of this paper, we modify the Magic Templates rewritingas follows: (1) For each (magic) predicatem p in the Magic Templates trans-formed program Pmg , we create a new predicate done m p, which containsthose subgoals on p all of whose answers have been computed. (2) For eachrule R in Pmg , and for each negated literal, say :qi(ti) in the body of R, weadd the literal done m qi(ti) to the body of R just before the occurrence of:qi(ti).



Intuitively, the literal done m qi(ti) will be satis�ed only when the com-plete set of qi answers matching ti have been computed. Hence, this literalacts as a guard on the use of the subsequent negated qi literal. In a similarfashion, we can also de�ne the modi�ed Supplementary Magic Templatesrewriting. In the rest of this paper, we use SMT(P;Q) to refer to the pro-gram obtained by this modi�ed Supplementary Magic Templates rewritingof program-query pair hP;Qi, using left-to-right sips.Further, when we talk about the dependencies between magic (or sup-plementary) facts in the rewritten program, we refer to the dependencies be-tween subgoals in the original program, before the (Supplementary) MagicTemplates rewriting has been performed.3 Ordered SearchWe now describe our evaluation technique, which we call Ordered Search,that works on the transformed program obtained using Magic Templates orSupplementary Magic Templates rewriting. This technique generates sub-goals and answers to subgoals asynchronously, as in bottom-up evaluation,but orders the use of generated subgoals in a manner reminiscent of top-down evaluation, and is in a sense a hybrid between pure (tuple-oriented)top-down evaluation and pure (set-oriented) bottom-up evaluation. We in-formally describe how Ordered Search works on a transformed program-querypair hPmg ; Qmgi and provide a detailed algorithmic description in the fullversion of the paper.3.1 An OverviewThe central data structure used by Ordered Search, the Context, is used topreserve \dependency information" between subgoals. Ordered Search canbe understood as modifying semi-naive bottom-up evaluation as follows:1. Newly generated magic and supplementary facts (if any) are insertedin the Context instead of being directly inserted in the di�erentialrelations. Consequently, these facts are hidden from the evaluation.(Other newly generated facts are inserted in the di�erential relations,and made available to the evaluation, as usual.)2. Magic and supplementary facts from Context are selectively insertedinto the di�erential relations (i.e., made available for further use bythe evaluation) when no new facts can be derived using the current setof facts available to the evaluation, i.e., a �xpoint has been reached.(When a fact in Context is made available to the evaluation, it is saidto be \marked" on the Context.)



3.2 Data Structures: ContextThe Context is a sequence of ContextNodes. Each ContextNode has anassociated set of magic facts and supplementary facts, and each magic or sup-plementary fact is associated with a unique ContextNode. A ContextNodeis said to be \marked" if any magic or supplementary fact associated withthe ContextNode is marked. The sequence of marked ContextNodes is asubsequence of the sequence of ContextNodes.In the rest of this paper, when we use adjectives like \earlier", \later",etc. to refer to ContextNodes in Context, we mean their position in thesequence and not the time (which might be di�erent) at which these nodeswere inserted in the sequence.We now intuitively describe the various operations performed on Context:(1) When a new magic or supplementary fact is inserted in Context, it isassociated with a new ContextNode. Facts on Context are stored in anordered fashion, such that if magic fact Q1 generates (i.e., depends on) themagic fact Q2, then Q2 is stored after or along with Q1 in the Context.(2) On detecting a cyclic dependency between subgoals on the Context, theassociated ContextNodes are collapsed into one ContextNode, and all thefacts associated with these ContextNodes are now kept together. Thus,unlike the stack of subgoals in Prolog evaluation, cyclic dependencies arehandled gracefully. (3) When all the answers to a subgoal have been com-puted, the subgoal is removed from the Context.3.3 AlgorithmsWe give an intuitive description of the Ordered Search technique and in theprocess make several claims informally. These are formally stated and provedin the full version of the paper.3.3.1 Inserting Facts into ContextNewly generated magic and supplementary facts (obtained by applying thesemi-naive rules of the Magic transformed program) are inserted in theContext before they are selectively made available to the evaluation. Whenapplying these rules, Ordered Search records which magic or supplementaryfact was used to make each derivation. (From the form of rules in the(Supplementary) Magic Templates transformation, there is exactly one suchfact.) Let Q1 be a newly computed magic/supplementary fact derived frommagic/supplementary fact Q2.� If Q1 is a magic fact m p(t1) that has been completely evaluated, itwill be present in the done m p relation.In this case, Ordered Search does not insert Q1 in Context.� Else, since magic/supplementary facts that have been made availablefor use but have not been completely evaluated are marked in the



Context (see Section 3.3.2), we know that Q2 occurs as a marked factin a marked ContextNode.The fact Q1 is now inserted in a new unmarked ContextNode im-mediately before the next marked ContextNode following the markedContextNode associated with Q2 in the sequence of ContextNodes.(If there is no such marked ContextNode, Q1 is inserted as the lastContextNode in the Context.) Thus, Q1 is inserted after Q2.Since Q2 depends on Q1, \answers" to Q1 could be used in computing\answers" to Q2. Insertion, as above, is used to maintain dependency in-formation between subgoals within the Context as a linear sequence. Theorder in which facts from Context are made available to the evaluation (seeSection 3.3.2) will ensure that Q1 is made available to the evaluation beforeQ2 is said to be completely evaluated.Duplicate elimination is now performed in the Context to ensure thatthere is at most one copy of Q1 in Context. If there is more than oneunmarked copy of Q1 in Context at this stage, only the \last" copy of Q1 isretained. If there is a marked copy of Q1 in Context, i.e., if Q1 has alreadybeen made available to the evaluation, there are two possibilities:� If the marked copy of Q1 occurs after the unmarked copy, only themarked copy of Q1 is retained in Context.� If the unmarked copy of Q1 occurs after the marked copy, Q1 dependson itself. We have thus detected a cyclic dependency between the setof all marked facts in Context in between the two occurrences of Q1.Ordered Search recognizes this and collapses this set of marked factsinto the node of the marked copy of Q1 in Context.Collapsing marked facts into a single node when a cyclic dependencyis detected is essential to the correctness of the technique in the presenceof cycles in the subgoal-dependency graph of the original program. (Notethat in left-to-right modularly strati�ed programs there can be positive cyclicdependencies, but no negative ones.) Since all these facts (cyclically) dependon each other, we cannot guarantee that any of these facts is completelyevaluated until we know that all of them have been completely evaluated.3.3.2 Making Facts Selectively AvailableFacts from Context are made available to the evaluation only when nonew facts can be computed using the set of available facts. If the lastContextNode contains at least one unmarked (magic or supplementary)fact, Ordered Search chooses one such unmarked fact, marks it and makes itavailable to the evaluation by inserting it in the corresponding di�erentialrelation. (Note that this fact still remains in the Context.)If all facts in the last ContextNode are marked, all the facts in the lastContextNode can be considered to be completely evaluated. Intuitively,
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m_path (1,4)Figure 1: Subgoal Dependency Graphs for Motivating Examplesthe reason for this is that a set of facts on Context (that have been madeavailable to the evaluation) can be considered to be completely evaluated if:1. no new facts can be generated using the currently available set of facts(i.e., the iterative application has reached a �xpoint), and2. every magic or supplementary fact generated from these facts has beencompletely evaluated.All these facts are removed from Context and all magic facts among theseare inserted in the corresponding done m p relations. The last ContextNodeis now removed from Context. Thus, when a magic fact m p(t1) on Contexthas been completely evaluated, it is moved to done m p.3.4 Motivating Examples RevisitedWe briey describe how Ordered Search can be used to evaluate the examplespresented in Section 1.1.Example 3.1 (Obtaining a single answer)Consider the program-query pair hPpath; Qpathi from Example 1.2, where theuser wants a single answer to the query. For this program-query pair, thesubgoal-dependency graph is shown in Figure 1. Note that the subgoal-dependency graph has a cycle; consequently, Prolog would not terminate onthis example program-query pair.The Magic Templates transformed program hPmgpath; Qmgpathi is straightfor-ward and we do not describe it further. We describe the evaluation ofhPmgpath; Qmgpathi using Ordered Search briey in Table 1. Facts in Contextmarked with an � indicate facts made available to the evaluation, and factsin Context within f g indicate facts associated with a single ContextNode.Note that an answer is produced in iteration 3, as in the semi-naive bottom-up evaluation of hPmgpath; Qmgpathi. However, the evaluation using Ordered Searchhas computed fewer facts than would be computed by pure bottom-up eval-uation. Also note that a cycle was detected since m path(1; 4) was derivedfrom m path(2; 4), and this magic fact occurs with an � earlier in Context.As a result, in iteration 2, several nodes in Context have been collapsedtogether. 2



Iter Facts in Ordered Search0 path fgContext m path(1; 4)1 path fgContext m path(1; 4)�; m path(3; 4); m path(2; 4)2 path fpath(2; 4; [2; 4])gContext fm path(1; 4)�; m path(2; 4)�g; m path(3; 4)3 path fpath(2; 4; [2; 4]); path(1; 4; [1; 2; 4])gContext fm path(1; 4)�; m path(2; 4)�gm path(3; 4)Table 1: Ordered Search evaluation of hPmgpath; QmgpathiExample 3.2 (Modular negation)Consider the left-to-right modularly strati�ed program Peven from Exam-ple 1.1, and the query ?:even(4). For this program-query pair, the subgoal-dependency graph is shown in Figure 1.We omit the details of the Supplementary Magic Templates transformedprogram hPmgeven; Qmgeveni. The evaluation of the supplementary magic programusing Ordered Search computes and stores only information about direct de-pendencies as a linear ordering of the magic and supplementary facts onContext; hence, the evaluation uses linear space and makes a linear numberof derivations.The technique described in [14] computes and stores the transitive depen-dencies in addition to the direct dependencies on this example; consequently,it would use quadratic space and make a quadratic number of derivations(of facts and dependencies). We omit details because of space limitationsand describe this example in detail in the full version of the paper. 24 Results about Ordered SearchAll results in this section are applicable to programs with function symbols,except where stated otherwise. We also assume for simplicity that onlyground facts are generated.4.1 Results on Soundness, Completeness and Non-repetitionThe key \lemma" to establish that Ordered Search computes the well-foundedmodel of a left-to-right modularly strati�ed program states that magic factsare moved from Context to the corresponding done m p relations only whenthese facts have been completely evaluated. The soundness result below thenfollows from the exhaustive nature of the evaluation and the correctness ofthe Supplementary Magic Templates rewriting with the done m p literals asguards for negative body literals (referred to as SMT rewriting).



Theorem 4.1 Suppose hP;Qi is a left-to-right modularly strati�ed program-query pair. An evaluation of Ordered Search(SMT(P;Q)) is sound wrt thewell-founded semantics of hP;Qi. 2Duplicate elimination of newly generated magic and supplementary factsin Context ensures that the evaluation does not repeat derivations.Theorem 4.2 Suppose hP;Qi is a left-to-right modularly strati�ed program-query pair. An evaluation of Ordered Search(SMT(P;Q)) does not repeatderivations. 2For programs with function symbols and negation, there is no e�ectiveprocedure that can guarantee completeness in general. If there is an in�nitesequence of subgoals, each depending on the next one in the sequence, andOrdered Search chooses to explore such an in�nite path, it may not computean answer to the original query, even if one exists. Such paths cannot existfor DATALOG programs. Hence, we have:Theorem 4.3 Suppose hP;Qi is a left-to-right modularly strati�ed DAT-ALOG program-query pair. An evaluation of Ordered Search(SMT(P;Q))terminates and is complete wrt the well-founded semantics of hP;Qi. 2In general, even if there are function symbols, Ordered Search is completewrt the well-founded semantics whenever it terminates.4.2 Results about Space and Time ComplexityIn maintaining an auxiliary data structure, the Context, Ordered Searchuses more space than ordinary semi-naive bottom-up evaluation (which onlyneeds to maintain di�erential relations). However, there is no increasein asymptotic space complexity compared to other bottom-up evaluationstrategies. Intuitively, this is because duplicate elimination on the Contextguarantees that the same set of magic, supplementary and answer factsare computed by the various evaluation strategies, and the space used byContext is proportional to the space used by the magic and supplementaryfacts computed.Note that Ross' technique may use asymptotically more space than Or-dered Search, since it stores transitive dependencies explicitly. For instance,in Example 1.1, Ross' algorithm uses O(m2) space, whereas Ordered Searchuses O(m) space. Our technique for evaluating left-to-right modularly strat-i�ed programs is strictly better than the algorithm in [14], in terms of theasymptotic space complexity.We now compare the asymptotic time complexity of Ordered Search withother bottom-up evaluation strategies. For positive programs, it is easy tosee that semi-naive bottom-up evaluation and Ordered Search make the sameset of inferences, although the order in which the inferences are performed



may be di�erent. Further, for left-to-right modularly strati�ed programs,it can be shown that Ordered Search makes no more inferences than Ross'method. Note, however, that Ross' algorithm may make asymptoticallymore inferences than Ordered Search since it computes transitive dependen-cies. For instance, in Example 1.1, Ross' algorithm to makes O(m2) infer-ences, whereas Ordered Search makes O(m) inferences.In order to obtain the total time taken by the Ordered Search evaluationin terms of the asymptotic cost of derivations, we need to obtain the cost ofeach derivation in the Ordered Search evaluation. Uni�cation of ground factscan be done in constant time using hash-consing for ground terms; indexingand insertion of ground facts in relations can also be done in constant timeusing hash based indexing (see [13]).Hence, the cost of each derivation depends on the operations on Context,and several of these operations are operations on sets: �nding the node cor-responding to a fact, taking the union of facts associated with nodes onContext, and deleting entire sets of facts associated with a ContextNode.These operations can be e�ciently implemented using the union-�nd tech-nique [17], with an amortized cost of O(�(N)) per operation, where N isthe total number of these operations on Context, and �(N) is the inverseAckermann function. Consequently, we have:Theorem 4.4 Let hP;Qi be a program-query pair.1. If hP;Qi is positive, let the time taken (in terms of asymptotic deriva-tion cost) to evaluate SMT(P;Q) in a bottom-up semi-naive evaluationbe T . Then, an evaluation of Ordered Search(SMT(P;Q)) takes timeO(T�(T )).2. If hP;Qi is left-to-right modularly strati�ed, let the time to evalu-ate hP;Qi using Ross' algorithm be T . Then, an evaluation of Or-dered Search(SMT(P;Q)) takes time O(T�(T )). 2Since �(T ) is very small even for very large values of T , Ordered Searchcompares favorably in asymptotic (space and time) complexity both to semi-naive bottom-up evaluation for positive programs, and to Ross' evaluationof left-to-right modularly strati�ed programs. Note that Ross' method canbe asymptotically worse than Ordered Search, as Example 1.1 showed.As a corollary to the above result, we can show that Ordered Search takesno more time (asymptotically) than either semi-naive bottom-up evaluationor Ross' method, when the subgoal dependency graph is acyclic.4.3 Results on Ordering Selection of SubgoalsRecall that bottom-up evaluation of a Magic Templates transformed programgenerates subgoals and answers to the subgoals as in a top-down evaluation,although the order in which these are generated in the bottom-up evaluation



may be quite di�erent from a top-down evaluation. By ordering the newlygenerated facts in Context, Ordered Search makes facts selectively availableto the evaluation in a manner considerably di�erent from pure bottom-upevaluation. We now show that the order in which generated subgoals(magic facts) are selected to be used by Ordered Search is related to a top-down evaluation.Theorem 4.5 Suppose hP;Qi is a left-to-right modularly strati�ed program-query pair. In an evaluation of Ordered Search(SMT(P;Q)), the order inwhich magic facts are marked corresponds to a depth-�rst traversal (withmarking) of the subgoal-dependency graph of hP;Qi starting from Q. 2The order in which Prolog explores the subgoal-dependency graph alsocorresponds to a depth-�rst traversal, although Prolog does not \mark"nodes, and hence may repeat computation. After generating an answerfor a subgoal generated from a rule literal, Prolog continues with the nextrule body literal, before attempting to generate more answers for the �rstsubgoal. Ordered Search, on the other hand, generates all answers for the�rst subgoal before trying to solve subgoals generated from the next rulebody literal. Consequently, Prolog may perform a lot less computation thanOrdered Search in obtaining a single answer to the query. For linear pro-grams, however, delaying the availability of subgoals to the Ordered Searchevaluation does not delay the computation of the �rst answer to the query(because of the asynchronous way in which answers are generated).We conjecture that Ordered Search is most useful for computing singleanswers to a query for the class of linear programs that may have cyclicsubgoals (and hence Prolog is not suitable).5 Related WorkOrdered Search compares favorably with other top-down and bottom-up meth-ods for evaluating logic programs in the literature. In earlier sections, wehave presented a detailed comparison with semi-naive bottom-up evalua-tion and with Ross' technique to evaluate left-to-right modularly strati�edprograms. We present a brief comparison with other techniques below.Prolog: Ordered Search is sound, complete for DATALOG and does notrepeat derivations. Prolog is not complete even for DATALOG, and mayrepeat derivations. Also, Prolog does not evaluate the class of left-to-rightmodularly strati�ed programs correctly.1 Although Ordered Search does givea measure of control for single answer queries, the Prolog search strategyis still likely to be superior in this respect (except for the class of linearprograms with a large number of repeated subgoals, or cyclic subgoals).QSQR/QoSaQ and Extension Tables: Extension Tables [5] is simi-lar to Prolog, except that it memos facts and subgoals and can detect loops.1Of course, a meta-interpreter can be written using Prolog to evaluate such programs.



QSQR/QoSaQ [19, 20] is a top-down, memoing, set-oriented strategy that isclosely related to bottom-up evaluation with Supplementary Magic rewrit-ing. Like Prolog, these techniques cannot deal with left-to-right modularlystrati�ed negation/aggregation. The tuple-oriented search strategy of theExtension Tables variant ET* is closer to Prolog, and may be more usefulthan Ordered Search in some settings when single answers are desired, but itrepeats computation.Ross also describes how his approach can be used to adapt QSQR todeal with left-to-right modularly strati�ed negation. In this case as well,dependencies between subgoals are maintained transitively, and our previouscomparisons also apply to this case.Subquery Completion: A variant of QSQR, subquery completion, wasdescribed in [8] to deal with recursively de�ned aggregates. It uses the depen-dencies between subgoals maintained by QSQR to handle a class of acyclicprograms with aggregation. However, this technique does not deal withprograms that have cycles in the subgoal-dependency graph of a stronglyconnected component with aggregates (even if the cyclic dependency is onlybetween positive subgoals). Ordered Search allows positive cycles in the sub-goal dependency graph, and deals with them by collapsing nodes in theContext, and declaring all the facts in a collapsed node to be completelyevaluated once a �xpoint is reached. There is no analogue to this step in thetechnique of [8].Techniques for computing the well-founded model: There areseveral query evaluation techniques in the literature that compute answersunder the well-founded model. For example, WELL! [2] is based on globalSLS-resolution; XOLDTNF [4] is an extension of OLDT resolution; GUUS [9]is based on the alternating �xpoint semantics; and the technique of Kempet al. [7] is based on alternating �xpoint semantics and magic sets. Theclass of programs handled by these techniques is larger than that handledby Ordered Search, but each of these techniques can repeat computation evenfor left-to-right modularly strati�ed programs. This can result in a loss ofe�ciency of evaluation.There are other proposed techniques that control the order of inferencesin a bottom-up evaluation in some way. Sloppy Delta Iteration [15] providesa way to \hide" facts until they are to be used. Techniques for hidingfacts are used in [6, 16] to evaluate programs with aggregate operationse�ciently. These results are only tangentially related to Ordered Search sincethe (motivation as well as the nature of the) orderings considered are quitedi�erent.6 Conclusions and Future WorkWe presented a memoing technique, Ordered Search, that is a hybrid be-tween breadth-�rst and depth-�rst search. This technique can be used to



e�ciently evaluate left-to-right modularly strati�ed programs, and it is alsouseful in computing single answers to queries. Fully set-oriented computa-tion causes problems for the evaluation of left-to-right modularly strati�edprograms, as illustrated by our comparisons with Ross [14]|it can result inan order of magnitude slow-down. Hence, it is important to provide some ofthe bene�ts of tuple-at-a-time computation with bottom-up evaluation, andOrdered Search does just this.Ordered Search can also be used for programs that compute non-groundfacts; details are presented in the full version of the paper. Also, while ourclaims about correctness of Ordered Search have been made for the class ofleft-to-right modularly strati�ed programs, we conjecture that the methodis correct whenever there is no cyclic negative dependency in the subgoal de-pendency graph. We believe thatOrdered Search is a versatile and very usefultool in the evaluation of queries on deductive databases. Ordered Search hasbeen implemented in the CORAL system [12], and performance numberswill be presented in the full version of the paper.An important direction of future research is to explore the possibilityof increasing the set-orientedness of Ordered Search, thereby increasing e�-ciency of evaluation, while retaining its desirable properties for evaluatingleft-to-right modularly strati�ed programs. Another direction of researchis to provide a �ner grain of control in making subgoals available to theevaluation such that the technique can mimic Prolog more closely, providingfurther bene�ts for queries requiring a single answer.AcknowledgementsWe would like to thank Alexandre Lefebvre for valuable discussions regardingQSQR and EKS-V1, and pointing out some related work. We would alsolike to thank the referees for several valuable suggestions. This research wassupported by a David and Lucile Packard Foundation Fellowship in Scienceand Engineering, a Presidential Young Investigator Award, with matchinggrants from Digital Equipment Corporation, Tandem and Xerox, and NSFgrant IRI-9011563.References[1] I. Balbin and K. Ramamohanarao. A generalization of the di�erential approachto recursive query evaluation. Journal of Logic Programming, 4(3), September1987.[2] N. Bidoit and P. Legay. WELL! An evaluation procedure for all logic programs.In Proceedings of the International Conference on Database Theory, pages 335{348, Paris, France, December 1990.[3] F. Bry. Query evaluation in recursive databases: Bottom-up and top-downreconciled. IEEE Transactions on Knowledge and Data Engineering, 5:289{312, 1990.
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