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Abstract

Bottom-up evaluation of queries on deductive databases has many advan-
tages over an evaluation scheme such as Prolog. It is sound and complete
with respect to the declarative semantics of least Herbrand models for posi-
tive Horn clause programs. In particular, it is able to avoid infinite loops by
detecting repeated (possibly cyclic) subgoals. Further, in many database ap-
plications, it is more efficient than Prolog due to its set-orientedness. How-
ever, the completely set-oriented, breadth-first search strategy of bottom-
up evaluation has certain disadvantages. For example, to evaluate several
classes of programs with negation (or aggregation), it is necessary to order
the inferences; in essence, we must evaluate all answers to a negative sub-
goal before making an inference that depends upon the negative subgoal. A
completely breadth-first search strategy ([14]) would have to maintain a lot
of redundant subgoal dependency information to achieve this.

We present a technique to order the use of generated subgoals, that is
a hybrid between pure breadth-first and pure depth-first search. The tech-
nique, called Ordered Search, is able to maintain subgoal dependency infor-
mation efficiently, while being able to detect repeated subgoals, and avoid
infinite loops. Also, the technique avoids repeated computation and is com-
plete for DATALOG. We demonstrate the power of Ordered _Search through
two applications. First, we show that it can be used to evaluate programs
with left-to-right modularly stratified negation and aggregation more effi-
ciently than with any previously known bottom-up technique. Second, we
illustrate its use for optimizing single-answer queries for linear programs.

1 Introduction

Several studies ([11, 18, 3]) have shown similarities between different top-
down evaluation methods and Magic Templates (or, Alexander Templates)
based bottom-up evaluation methods for positive programs when all answers
to a query are desired. In essence, the same subgoals and answers are gener-



ated by these methods when they use the same orderings of body literals in
evaluating rules. However, there are important differences as well. In par-
ticular, the order in which subgoals and answers are generated and used in
top-down evaluation strategies is different from the order in which they are
generated and used in bottom-up evaluations. Top-down evaluations typi-
cally synchronize the generation of subgoals and answers to those subgoals,
whereas bottom-up evaluations generate them asynchronously. This differ-
ence is not relevant for positive programs when all answers to a query are
desired. However, when the program contains negation (or aggregation), the
order in which inferences are performed becomes crucial to the correctness
of the method, even when all answers to the query are desired. Again, when
only a single answer to the query is desired, the order in which facts are
generated and used becomes important, and the depth-first search strategy
of a top-down evaluation scheme such as Prolog can perform much better
than the breadth-first search strategy of bottom-up evaluation methods.

We describe a memoing technique called Ordered_Search that works on
the transformed program obtained using Magic Templates rewriting, and is a
hybrid between tuple-oriented top-down evaluation and set-oriented bottom-
up evaluation. This technique generates subgoals and answers to subgoals
asynchronously, as in bottom-up evaluation, while ordering the use of gener-
ated subgoals in a manner reminiscent of top-down evaluation. As a conse-
quence, Ordered Search is able to efficiently evaluate left-to-right modularly
stratified programs [14] (see Sections 4.1 and 4.2), and restrict the search
space in many cases when we want a single answer to the query (see Section
4.3).

1.1 Motivating Examples

Example 1.1 (Modular negation)

The class of programs with modular negation [14] naturally extends the class
of programs with stratified and locally stratified negation while retaining a
two-valued model. Consider the following left-to-right modularly stratified

program-query pair {Peyen, Qeven):

rl:even(X): — suce(X,Y1),suce(Y1,Y), even(Y).
r2 teven(X): — suce(X,Y), —even(Y).

r3 : even(0).

suce(1,0). suce(2,1). ... suce(n,n—1).

Query: 7-—even(m).

Ross [14] proposed a supplementary magic sets rewriting of (P.yen, Qeven)
in conjunction with a bottom-up method for evaluating the rewritten pro-
gram. This method explicitly stores all the subgoal dependency information
for negative subgoals. Ross’ approach on this example would take O(m?)
space and make O(m?) derivations since it would compute and store all the
dependencies between subgoals transitively.



The technique presented in this paper, Ordered Search, would compute
and store only information about direct dependencies; hence, it would use
O(m) space and make O(m) derivations in computing the query answer.
(For more details, see Example 3.2.)

We describe other top-down and bottom-up techniques that can evaluate
left-to-right modularly stratified programs in Section 5. As an example, the
doubled program technique of Kemp et al. [7] would also use O(m) space and
make O(m) derivations on this example. However, if rule 71 were removed
from P,,.,, the doubled program approach would make O(m?) derivations,
though it would still use only O(m) space. Even on this modified program,
Ordered_Search would compute the answer to the query using O(m) space
and making O(m) derivations. O

Example 1.2 (Obtaining a single answer)
There are many cases where the user may want a single answer to a query.
Consider, for example, the following program-query pair (Pyqin, Qpatn)-

rl:path(X,Y,[X,Y]): — edge(X,Y).

r2 :path(X,Y,[X|P)]) : — edge(X, Z), path(Z,Y, P).
edge(1,2). edge(1,3). edge(2,1). edge(2,4). edge(3,4).
Query: ?-path(1,4, X).

A top-down, tuple-oriented evaluation strategy, like Prolog, would set up
a query on path, and solve the subgoals in a depth-first fashion. However,
since there is a cycle in the edge relation, Prolog would not terminate on the
given query.

One way of obtaining a single answer to the query is to evaluate the
(magic transformed) program bottom-up until we get an answer to the query,
and then terminate the evaluation. With this approach, subgoals are solved
in parallel as they are generated.

The technique presented in this paper, Ordered Search, solves subgoals
in a depth-first fashion for this program, but since it performs memoing, it
does not repeat computation and terminates on this program. In general,
it provides an alternative evaluation strategy to the breadth-first strategy
of bottom-up evaluation. For many programs (the above program with the
given data is one such) a depth-first search for one answer is much more
efficient than a breadth-first search for one answer. (For more details, see
Example 3.1.) O

The rest of this paper is organized as follows. Preliminaries are covered
in Section 2. The data structures and algorithms needed to evaluate a pro-
gram using Ordered_Search are described in Section 3. We present results
about the soundness, completeness, and efficiency of our procedure in Sec-
tion 4. In Section 4.3, we characterize the order in which generated subgoals
are selected to be used in terms of a depth-first traversal of the “subgoal-
dependency” graph of the original program. Related work is described in
Section 5, and directions for future research are indicated in Section 6.



2 Preliminaries

We assume familiarity with logic programming terminology (see [10]) and the
issues involved in the bottom-up evaluation of logic programs. In particular,
we assume the reader is familiar with Magic Templates rewriting ([11]), and
with semi-naive bottom-up evaluation ([1]). For the purposes of this paper,
a program is a set of normal rules. The techniques described in this paper
are applicable to programs with uninterpreted function symbols, though for
simplicity we restrict the programs to compute only ground facts.

We use the notion of a subgoal-dependency graph to characterize some
of the results in this paper. Intuitively, the subgoal-dependency graph of a
program-query pair is an AND/OR directed graph that characterizes the de-
pendencies between subgoals set up in a top-down evaluation of the original
program. Given a subgoal on the head of a rule, there are directed arcs in
the subgoal-dependency graph to each subgoal set up during the evaluation
of the body of that rule. We formalize this using SLP-trees and negation
trees (see [14]) in the full version of the paper.

We assume the reader is familiar with the definition of (left-to-right)
modularly stratified programs and the meaning of such programs (see [14]).
Intuitively, a program is modularly stratified iff its mutually recursive com-
ponents are locally stratified once all instantiated rules with a false sub-
goal that is defined in a “lower” component are removed. In the subgoal-
dependency graph for left-to-right modularly stratified programs there is no
cyclic dependency involving a negated subgoal. Ross’ [14] technique as well
as our technique makes essential use of this property in evaluating programs
with left-to-right modularly stratified negation.

2.1 Modified Magic Templates Rewriting

Intuitively, the Magic Templates rewriting of a program defines a new pred-
icate m_p (the magic predicate) for each predicate p in the original program
P. The predicate m_p contains subgoals on p that need to be solved. Addi-
tional rules (derived from rules in P) that generate these subgoals are intro-
duced in the rewritten program. Also, original program rules defining p are
guarded by an m_p literal that ensures that only p facts matching the desired
m_p subgoals are generated. The supplementary variant of Magic Templates
avoids some recomputation by identifying common subexpressions, but at
the cost of storing additional relations.

For the purpose of this paper, we modify the Magic Templates rewriting
as follows: (1) For each (magic) predicate m_p in the Magic Templates trans-
formed program P™Y, we create a new predicate done_m_p, which contains
those subgoals on p all of whose answers have been computed. (2) For each
rule R in P and for each negated literal, say —¢;(%;) in the body of R, we
add the literal done_m_g;(%;) to the body of R just before the occurrence of

_'f]i(g)-



Intuitively, the literal done_m_g;(;) will be satisfied only when the com-
plete set of ¢; answers matching ¢; have been computed. Hence, this literal
acts as a guard on the use of the subsequent negated ¢; literal. In a similar
fashion, we can also define the modified Supplementary Magic Templates
rewriting. In the rest of this paper, we use SMT(P, Q) to refer to the pro-
gram obtained by this modified Supplementary Magic Templates rewriting
of program-query pair (P, Q), using left-to-right sips.

Further, when we talk about the dependencies between magic (or sup-
plementary) facts in the rewritten program, we refer to the dependencies be-
tween subgoals in the original program, before the (Supplementary) Magic
Templates rewriting has been performed.

3 Ordered Search

We now describe our evaluation technique, which we call Ordered Search,
that works on the transformed program obtained using Magic Templates or
Supplementary Magic Templates rewriting. This technique generates sub-
goals and answers to subgoals asynchronously, as in bottom-up evaluation,
but orders the use of generated subgoals in a manner reminiscent of top-
down evaluation, and is in a sense a hybrid between pure (tuple-oriented)
top-down evaluation and pure (set-oriented) bottom-up evaluation. We in-
formally describe how Ordered_Search works on a transformed program-query
pair (P™,(Q)™¢) and provide a detailed algorithmic description in the full
version of the paper.

3.1 An Overview

The central data structure used by Ordered_Search, the Context, is used to
preserve “dependency information” between subgoals. Ordered Search can
be understood as modifying semi-naive bottom-up evaluation as follows:

1. Newly generated magic and supplementary facts (if any) are inserted
in the Context instead of being directly inserted in the differential
relations. Consequently, these facts are hidden from the evaluation.
(Other newly generated facts are inserted in the differential relations,
and made available to the evaluation, as usual.)

2. Magic and supplementary facts from Context are selectively inserted
into the differential relations (i.e., made available for further use by
the evaluation) when no new facts can be derived using the current set
of facts available to the evaluation, i.e., a fixpoint has been reached.
(When a fact in C'ontext is made available to the evaluation, it is said
to be “marked” on the Context.)



3.2 Data Structures: Context

The Context is a sequence of ContextNodes. Each ContextNode has an
associated set of magic facts and supplementary facts, and each magic or sup-
plementary fact is associated with a unique C'ontextNode. A ContextN ode
is said to be “marked” if any magic or supplementary fact associated with
the C'ontextNode is marked. The sequence of marked ContextNodes is a
subsequence of the sequence of C'ontext N odes.

In the rest of this paper, when we use adjectives like “earlier”, “later”,
etc. to refer to ContextNodes in Context, we mean their position in the
sequence and not the time (which might be different) at which these nodes
were inserted in the sequence.

We now intuitively describe the various operations performed on C'ontext:
(1) When a new magic or supplementary fact is inserted in Context, it is
associated with a new ContextNode. Facts on Context are stored in an
ordered fashion, such that if magic fact @), generates (i.e., depends on) the
magic fact ¢),, then )5 is stored after or along with ¢); in the Contezt.
(2) On detecting a cyclic dependency between subgoals on the C'ontext, the
associated ContextNodes are collapsed into one ContextNode, and all the
facts associated with these ContextNodes are now kept together. Thus,
unlike the stack of subgoals in Prolog evaluation, cyclic dependencies are
handled gracefully. (3) When all the answers to a subgoal have been com-
puted, the subgoal is removed from the Context.

3.3 Algorithms

We give an intuitive description of the Ordered_Search technique and in the
process make several claims informally. These are formally stated and proved
in the full version of the paper.

3.3.1 Inserting Facts into Context

Newly generated magic and supplementary facts (obtained by applying the
semi-naive rules of the Magic transformed program) are inserted in the
Context before they are selectively made available to the evaluation. When
applying these rules, Ordered_Search records which magic or supplementary
fact was used to make each derivation. (From the form of rules in the
(Supplementary) Magic Templates transformation, there is exactly one such
fact.) Let @, be a newly computed magic/supplementary fact derived from
magic/supplementary fact Q.

o If Q; is a magic fact m_p(%;) that has been completely evaluated, it
will be present in the done_m_p relation.
In this case, Ordered_Search does not insert ¢); in Context.

e Else, since magic/supplementary facts that have been made available
for use but have not been completely evaluated are marked in the



Context (see Section 3.3.2), we know that (), occurs as a marked fact
in a marked ContextN ode.

The fact J; is now inserted in a new unmarked ContextNode im-
mediately before the next marked ContextNode following the marked
ContextNode associated with (), in the sequence of ContextNodes.
(If there is no such marked ContextNode, (), is inserted as the last
ContextNode in the Context.) Thus, @ is inserted after Q.

Since (), depends on ¢}, “answers” to J; could be used in computing
“answers” to (J,. Insertion, as above, is used to maintain dependency in-
formation between subgoals within the C'ontext as a linear sequence. The
order in which facts from Context are made available to the evaluation (see
Section 3.3.2) will ensure that ¢); is made available to the evaluation before
()- is said to be completely evaluated.

Duplicate elimination is now performed in the C'ontext to ensure that
there is at most one copy of ¢, in Context. If there is more than one
unmarked copy of @1 in Context at this stage, only the “last” copy of ()4 is
retained. If there is a marked copy of ¢}, in Contezt, i.e., if J; has already
been made available to the evaluation, there are two possibilities:

o If the marked copy of ¢); occurs after the unmarked copy, only the
marked copy of ¢} is retained in Context.

o If the unmarked copy of (), occurs after the marked copy, ¢); depends
on itself. We have thus detected a cyclic dependency between the set
of all marked facts in C'ontext in between the two occurrences of ¢);.
Ordered_Search recognizes this and collapses this set of marked facts
into the node of the marked copy of ¢}, in Context.

Collapsing marked facts into a single node when a cyclic dependency
is detected is essential to the correctness of the technique in the presence
of cycles in the subgoal-dependency graph of the original program. (Note
that in left-to-right modularly stratified programs there can be positive cyclic
dependencies, but no negative ones.) Since all these facts (cyclically) depend
on each other, we cannot guarantee that any of these facts is completely
evaluated until we know that all of them have been completely evaluated.

3.3.2 Making Facts Selectively Available

Facts from Context are made available to the evaluation only when no
new facts can be computed using the set of available facts. If the last
ContextNode contains at least one unmarked (magic or supplementary)
fact, Ordered Search chooses one such unmarked fact, marks it and makes it
available to the evaluation by inserting it in the corresponding differential
relation. (Note that this fact still remains in the C'ontext.)

If all facts in the last C'ontextNode are marked, all the facts in the last
ContextNode can be considered to be completely evaluated. Intuitively,



m_even (4) -
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Figure 1: Subgoal Dependency Graphs for Motivating Examples

the reason for this is that a set of facts on Context (that have been made
available to the evaluation) can be considered to be completely evaluated if:

1. no new facts can be generated using the currently available set of facts
(i.e., the iterative application has reached a fixpoint), and

2. every magic or supplementary fact generated from these facts has been
completely evaluated.

All these facts are removed from Context and all magic facts among these
are inserted in the corresponding done_m _p relations. The last C'ontextN ode
is now removed from Context. Thus, when a magic fact m_p(t;) on Context
has been completely evaluated, it is moved to done_m_p.

3.4 Motivating Examples Revisited

We briefly describe how Ordered_Search can be used to evaluate the examples
presented in Section 1.1.

Example 3.1 (Obtaining a single answer)

Consider the program-query pair (P45, @ parn) from Example 1.2, where the
user wants a single answer to the query. For this program-query pair, the
subgoal-dependency graph is shown in Figure 1. Note that the subgoal-
dependency graph has a cycle; consequently, Prolog would not terminate on
this example program-query pair.

The Magic Templates transformed program (P77, , Q) is straightfor-
ward and we do not describe it further. We describe the evaluation of
(Pratn, Qrin) using Ordered Search briefly in Table 1. Facts in Context
marked with an * indicate facts made available to the evaluation, and facts
in Context within { } indicate facts associated with a single C'ontext N ode.
Note that an answer is produced in iteration 3, as in the semi-naive bottom-
up evaluation of (P77, Q% ). However, the evaluation using Ordered Search
has computed fewer facts than would be computed by pure bottom-up eval-
uation. Also note that a cycle was detected since m_path(1,4) was derived
from m_path(2,4), and this magic fact occurs with an * earlier in Context.
As a result, in iteration 2, several nodes in Context have been collapsed

together. O



Iter | Facts in | Ordered_Search

0 path {}
Context | m_path(1,4)
1 path {}
Context | m_path(1,4)*, m_path(3,4), m_path(2,4)
2 path {path(2,4,[2,4])}
Context | {m_path(1,4)*, m_path(2,4)*}, m_path(3,4)
3 path {path(2,4,[2,4]), path(1,4,[1,2,4])}
Context | {m_path(1,4)*, m_path(2,4)*}m_path(3,4)

Table 1: Ordered_Search evaluation of (P, Q)

path

Example 3.2 (Modular negation)

Consider the left-to-right modularly stratified program P.,., from Exam-
ple 1.1, and the query 7=even(4). For this program-query pair, the subgoal-
dependency graph is shown in Figure 1.

We omit the details of the Supplementary Magic Templates transformed
program (P79 QM9 3. The evaluation of the supplementary magic program
using Ordered_Search computes and stores only information about direct de-
pendencies as a linear ordering of the magic and supplementary facts on
Context; hence, the evaluation uses linear space and makes a linear number
of derivations.

The technique described in [14] computes and stores the transitive depen-
dencies in addition to the direct dependencies on this example; consequently,
it would use quadratic space and make a quadratic number of derivations
(of facts and dependencies). We omit details because of space limitations
and describe this example in detail in the full version of the paper. O

4 Results about Ordered Search

All results in this section are applicable to programs with function symbols,
except where stated otherwise. We also assume for simplicity that only
ground facts are generated.

4.1 Results on Soundness, Completeness and Non-repetition

The key “lemma” to establish that Ordered _Search computes the well-founded
model of a left-to-right modularly stratified program states that magic facts
are moved from C'ontext to the corresponding done_m_p relations only when
these facts have been completely evaluated. The soundness result below then
follows from the exhaustive nature of the evaluation and the correctness of
the Supplementary Magic Templates rewriting with the done_m_p literals as
guards for negative body literals (referred to as SMT rewriting).



Theorem 4.1 Suppose (P, Q) is a left-to-right modularly stratified program-
query pair. An evaluation of Ordered_Search(SMT(P,Q)) is sound wrt the
well-founded semantics of (P, Q). O

Duplicate elimination of newly generated magic and supplementary facts
in C'ontext ensures that the evaluation does not repeat derivations.

Theorem 4.2 Suppose (P, Q) is a left-to-right modularly stratified program-
query pair. An evaluation of Ordered_Search(SMT(P,Q)) does not repeat
derivations. O

For programs with function symbols and negation, there is no effective
procedure that can guarantee completeness in general. If there is an infinite
sequence of subgoals, each depending on the next one in the sequence, and
Ordered Search chooses to explore such an infinite path, it may not compute
an answer to the original query, even if one exists. Such paths cannot exist
for DATALOG programs. Hence, we have:

Theorem 4.3 Suppose (P,Q) is a left-to-right modularly stratified DAT-
ALOG program-query pair. An evaluation of Ordered_Search(SMT(P,Q))

terminates and is complete wrt the well-founded semantics of (P,Q). O

In general, even if there are function symbols, Ordered_Search is complete
wrt the well-founded semantics whenever it terminates.

4.2 Results about Space and Time Complexity

In maintaining an auxiliary data structure, the Context, Ordered_Search
uses more space than ordinary semi-naive bottom-up evaluation (which only
needs to maintain differential relations). However, there is no increase
in asymptotic space complexity compared to other bottom-up evaluation
strategies. Intuitively, this is because duplicate elimination on the Context
guarantees that the same set of magic, supplementary and answer facts
are computed by the various evaluation strategies, and the space used by
C'ontext is proportional to the space used by the magic and supplementary
facts computed.

Note that Ross’ technique may use asymptotically more space than Or-
dered Search, since it stores transitive dependencies explicitly. For instance,
in Example 1.1, Ross’ algorithm uses O(m?) space, whereas Ordered_Search
uses O(m) space. Our technique for evaluating left-to-right modularly strat-
ified programs is strictly better than the algorithm in [14], in terms of the
asymptotic space complexity.

We now compare the asymptotic time complexity of Ordered _Search with
other bottom-up evaluation strategies. For positive programs, it is easy to
see that semi-naive bottom-up evaluation and Ordered Search make the same
set of inferences, although the order in which the inferences are performed



may be different. Further, for left-to-right modularly stratified programs,
it can be shown that Ordered Search makes no more inferences than Ross’
method.  Note, however, that Ross’ algorithm may make asymptotically
more inferences than Ordered_Search since it computes transitive dependen-
cies. For instance, in Example 1.1, Ross’ algorithm to makes O(m?) infer-
ences, whereas Ordered_Search makes O(m) inferences.

In order to obtain the total time taken by the Ordered Search evaluation
in terms of the asymptotic cost of derivations, we need to obtain the cost of
each derivation in the Ordered_Search evaluation. Unification of ground facts
can be done in constant time using hash-consing for ground terms; indexing
and insertion of ground facts in relations can also be done in constant time
using hash based indexing (see [13]).

Hence, the cost of each derivation depends on the operations on C'ontext,
and several of these operations are operations on sets: finding the node cor-
responding to a fact, taking the union of facts associated with nodes on
Context, and deleting entire sets of facts associated with a ContextNode.
These operations can be efficiently implemented using the union-find tech-
nique [17], with an amortized cost of O(a(N)) per operation, where N is
the total number of these operations on Context, and a(N) is the inverse
Ackermann function. Consequently, we have:

Theorem 4.4 Let (P, Q) be a program-query pair.

1. If (P, Q) is positive, let the time taken (in terms of asymptotic deriva-
tion cost) to evaluate SMT(P,()) in a bottom-up semi-naive evaluation
be T'. Then, an evaluation of Ordered_Search(SMT(P,Q)) takes time
O(Ta(T)).

2. If (P,Q) is left-to-right modularly stratified, let the time to evalu-
ate (P,Q) using Ross’ algorithm be T. Then, an evaluation of Or-
dered_Search(SMT(P,())) takes time O(Ta(T')). O

Since a(T') is very small even for very large values of 7', Ordered_Search
compares favorably in asymptotic (space and time) complexity both to semi-
naive bottom-up evaluation for positive programs, and to Ross’ evaluation
of left-to-right modularly stratified programs. Note that Ross’ method can
be asymptotically worse than Ordered Search, as Example 1.1 showed.

As a corollary to the above result, we can show that Ordered Search takes
no more time (asymptotically) than either semi-naive bottom-up evaluation
or Ross’ method, when the subgoal dependency graph is acyclic.

4.3 Results on Ordering Selection of Subgoals

Recall that bottom-up evaluation of a Magic Templates transformed program
generates subgoals and answers to the subgoals as in a top-down evaluation,
although the order in which these are generated in the bottom-up evaluation



may be quite different from a top-down evaluation. By ordering the newly
generated facts in C'ontext, Ordered_Search makes facts selectively available
to the evaluation in a manner considerably different from pure bottom-up
evaluation. We now show that the order in which generated subgoals
(magic facts) are selected to be used by Ordered_Search is related to a top-
down evaluation.

Theorem 4.5 Suppose (P, Q) is a left-to-right modularly stratified program-
query pair. In an evaluation of Ordered_Search(SMT(P,Q)), the order in
which magic facts are marked corresponds to a depth-first traversal (with
marking) of the subgoal-dependency graph of (P,Q) starting from ). O

The order in which Prolog explores the subgoal-dependency graph also
corresponds to a depth-first traversal, although Prolog does not “mark”
nodes, and hence may repeat computation. After generating an answer
for a subgoal generated from a rule literal, Prolog continues with the next
rule body literal, before attempting to generate more answers for the first
subgoal. Ordered_Search, on the other hand, generates all answers for the
first subgoal before trying to solve subgoals generated from the next rule
body literal. Consequently, Prolog may perform a lot less computation than
Ordered Search in obtaining a single answer to the query. For linear pro-
grams, however, delaying the availability of subgoals to the Ordered_Search
evaluation does not delay the computation of the first answer to the query
(because of the asynchronous way in which answers are generated).

We conjecture that Ordered_Search is most useful for computing single
answers to a query for the class of linear programs that may have cyclic
subgoals (and hence Prolog is not suitable).

5 Related Work

Ordered Search compares favorably with other top-down and bottom-up meth-
ods for evaluating logic programs in the literature. In earlier sections, we
have presented a detailed comparison with semi-naive bottom-up evalua-
tion and with Ross’ technique to evaluate left-to-right modularly stratified
programs. We present a brief comparison with other techniques below.
Prolog: Ordered Search is sound, complete for DATALOG and does not
repeat derivations. Prolog is not complete even for DATALOG, and may
repeat derivations. Also, Prolog does not evaluate the class of left-to-right
modularly stratified programs correctly.! Although Ordered Search does give
a measure of control for single answer queries, the Prolog search strategy
is still likely to be superior in this respect (except for the class of linear
programs with a large number of repeated subgoals, or cyclic subgoals).
QSQR/QoSaQ and Extension Tables: Extension Tables [5] is simi-
lar to Prolog, except that it memos facts and subgoals and can detect loops.

1Of course, a meta-interpreter can be written using Prolog to evaluate such programs.



QSQR/QoSaqQ [19, 20] is a top-down, memoing, set-oriented strategy that is
closely related to bottom-up evaluation with Supplementary Magic rewrit-
ing. Like Prolog, these techniques cannot deal with left-to-right modularly
stratified negation/aggregation. The tuple-oriented search strategy of the
Extension Tables variant ET* is closer to Prolog, and may be more useful
than Ordered_Search in some settings when single answers are desired, but it
repeats computation.

Ross also describes how his approach can be used to adapt QSQR to
deal with left-to-right modularly stratified negation. In this case as well,
dependencies between subgoals are maintained transitively, and our previous
comparisons also apply to this case.

Subquery Completion: A variant of QSQR., subquery completion, was
described in [8] to deal with recursively defined aggregates. It uses the depen-
dencies between subgoals maintained by QSQR to handle a class of acyclic
programs with aggregation. However, this technique does not deal with
programs that have cycles in the subgoal-dependency graph of a strongly
connected component with aggregates (even if the cyclic dependency is only
between positive subgoals). Ordered_Search allows positive cycles in the sub-
goal dependency graph, and deals with them by collapsing nodes in the
Context, and declaring all the facts in a collapsed node to be completely
evaluated once a fixpoint is reached. There is no analogue to this step in the
technique of [8].

Techniques for computing the well-founded model: There are
several query evaluation techniques in the literature that compute answers
under the well-founded model. For example, WELL! [2] is based on global
SLS-resolution; XOLDTNF [4] is an extension of OLDT resolution; GUUS [9]
is based on the alternating fixpoint semantics; and the technique of Kemp
et al. [7] is based on alternating fixpoint semantics and magic sets. The
class of programs handled by these techniques is larger than that handled
by Ordered_Search, but each of these techniques can repeat computation even
for left-to-right modularly stratified programs. This can result in a loss of
efficiency of evaluation.

There are other proposed techniques that control the order of inferences
in a bottom-up evaluation in some way. Sloppy Delta Iteration [15] provides
a way to “hide” facts until they are to be used. Techniques for hiding
facts are used in [6, 16] to evaluate programs with aggregate operations
efficiently. These results are only tangentially related to Ordered_Search since
the (motivation as well as the nature of the) orderings considered are quite
different.

6 Conclusions and Future Work

We presented a memoing technique, Ordered Search, that is a hybrid be-
tween breadth-first and depth-first search. This technique can be used to



efficiently evaluate left-to-right modularly stratified programs, and it is also
useful in computing single answers to queries. Fully set-oriented computa-
tion causes problems for the evaluation of left-to-right modularly stratified
programs, as illustrated by our comparisons with Ross [14]—it can result in
an order of magnitude slow-down. Hence, it is important to provide some of
the benefits of tuple-at-a-time computation with bottom-up evaluation, and
Ordered Search does just this.

Ordered_Search can also be used for programs that compute non-ground
facts; details are presented in the full version of the paper. Also, while our
claims about correctness of Ordered Search have been made for the class of
left-to-right modularly stratified programs, we conjecture that the method
is correct whenever there is no cyclic negative dependency in the subgoal de-
pendency graph. We believe that Ordered_Search is a versatile and very useful
tool in the evaluation of queries on deductive databases. Ordered Search has
been implemented in the CORAL system [12], and performance numbers
will be presented in the full version of the paper.

An important direction of future research is to explore the possibility
of increasing the set-orientedness of Ordered_Search, thereby increasing effi-
ciency of evaluation, while retaining its desirable properties for evaluating
left-to-right modularly stratified programs. Another direction of research
is to provide a finer grain of control in making subgoals available to the
evaluation such that the technique can mimic Prolog more closely, providing
further benefits for queries requiring a single answer.
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