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Abstract 

Recovery activities, like logging, checkpointing and 
restart, are used to restore a database to a consistent 
state after a system crash has occurred. Recovery re- 
lated overhead is particularly troublesome in a main- 
memory database where I/O activities are performed 
for the sole purpose of ensuring data durability. In this 
paper we present a recovery technique for main-memory 
databases, whose benefits are as follows. First, disk I/O 
is reduced by logging to disk only redo records during 
normal execution. The undo log is normally resident 
only in main memory, and is garbage collected after 
transaction commit. Second, our technique reduces lock 
contention on account of the checkpointer by allowing 
action consistent checkpointing - to do so, the check- 
pointer writes to disk relevant parts of the undo log. 
Third, the recovery algorithm makes only a single pass 
over the log. Fourth, our technique does not require the 
availability of any special hardware such as non-volatile 
RAM. Thus our recovery technique combines the ben- 
efits of several techniques proposed in the past. The 
ideas behind our technique can be used to advantage in 
disk-resident databases aa well. 
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1 Introduction 

Current computer systems are able to accommodate a 
very large physical main memory. In such an environ- 
ment, it is possible, for certain type of applications, to 
keep the entire database in main memory rather than on 
secondary storage. Such a database system is referred 
to as a main-memory database (MMDB). The potential 
for substantial perforinance improvement in an MMDB 
environment is promising, since I/O activity is kept at 
minimum. Because of the volatility of main memory, 
updates must be noted in stable storage on disk in order 
to survive system failure. Recovery related processing 
is the only component in a MMDB that must deal with 
I/O, and hence it must be designed with care so that it 
does not impede the overall performance. 

The task of a recovery manager in a transaction pro- 
cessing system is to ensure that, despite system and 
transaction failures, the consistency of the data is main- 
tained. To perform t,his task, book-keeping activities 
(e.g., checkpointing and logging) are performed during 
the normal operation of the system and restoration ac- 
tivities take place following a failure. Logging notes 
on stable storage all updates done to the database, and 
checkpointing periodically creates a consistent snapshot 
of the database on disk. When a system is restarted 
after a system crash, recovery activities have to be per- 
formed first, and transaction processing can proceed 
only after necessary recovery activities are performed. 
To minimize the interference to transaction processing 
caused by recovery related activities, it is essential to 
derive schemes where the length of time it takes to do 
a checkpoint, as well as the time to recover from sys- 
tem failure are very short. It is the aim of this paper 
to present one such scheme, tailored to main-memory 
databases. 
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For simplicity we assume that the entire database 
is kept in main memory, while a backup copy is kept 
on disk and is only modified when a checkpoint takes 
place. However, the ideas behind our technique can 
be used profitably in disk resident databases as well, 
where parts of the database may need to be flushed to 
disk more often in order to make space for other data. 
A checkpoint dumps some fraction of the database re- 
siding in main memory onto the disk. A write-ahead 
log is also maintained to restore the database to a con- 
sistent state after a system crash. The key features of 
our scheme are as follows: 

l The write-ahead log on disk contains only the 
redo records of committed transactions; this mini- 
mizes recovery I/O. We maintain in main memory 
the redo and undo records of active transactions 
(i.e., transactions that have neither committed nor 
aborted). Undo records of a transaction are dis- 
carded once the transaction has committed. Undo 
as well as redo records of a transaction are dis- 
carded once it has has aborted. The undo records 
of a transaction are written to disk only when a 
checkpoint takes place while the transaction is ac- 
tive. By writing out undo records thus, we are able 
to perform checkpointing in a state that is action 
consistent but not transaction consistent.’ 

l The recovery actions after a system crash make 
only a single pass over the log. The usual back- 
wards pass on the log to find ‘winners’ and ‘losers’ 
and undo the actions of losers is avoided by keeping 
the undo log separate from the redo log. Recovery 
is speeded up significantly by reducing I/O in case 
the redo log does not fit in main-memory. (Al- 
though the redo and undo records of transactions 
that are active at any given point of time can be 
expected to fit in memory, we do not assume that 
the entire redo log fits in memory.) 

l Our technique can be used with physical as well as 
logical logging. 

l A checkpoint can take place at almost any point 
(namely, in any action consistent state) and the 
database can be partitioned into small segments 
that can be checkpointed separately. Interference 
with normal transaction processing is thereby kept 
very small. 

‘The issue of action consistency is important if logical oper% 
tion logging is used. 

l No assumptions are made regarding the availability 
of special hardware such as non-volatile RAM or an 
adjunct processor for checkpoiutiug. Con.sctqucntly, 
the scheme proposed here cau be usc>d with any 
standard machine configuration. 

The area of recovery for main-memory dikt&mcs 11;~s 
received much attention in the paqt. We prcserrt 1.11~ 
connections of the present work to earlier work in the 
area, in Section 8. 

The remainder of this paper is organized u follows. 
In Section 2 we present our system model. In Section 3 
the basic checkpoint and recovery scheme is presented. 
The correctness of this scheme is established in Scc- 
tion 4. Various extensions to the basic scheme, iuclud- 
ing the segmentation of the database and logical log- 
ging, are presented in Sections 5,6 and 7. Rclatcd work 
is described in Section 8, and in Section 9 we discuss 
miscellaneous aspects of our technique. Concluding re- 
marks are offered in Section 10. 

2 System Structure 
111 this section we pmscut the systcnt ~~loclcl uxcd in 
this paper, and describe how transaction proct&ug is 
handled. 

2.1 System Model 
The entire database is kept in main memory, while a 
backup copy, possibly out of date and not transaction 
consistent, is kept on disk. We awume that disk storage 
is stable and will never lose its content. For instance, 
disk mirroring or RAID architectures may be used to 
ensure this, but the specific disk replication strategy is 
orthogonal to our discussion here. The system main- 
tains a redo log on the disk, with the tail of the log 
in main memory. Information about actions that up- 
date the database, such as writes, is written to th redo 
log, so that the actions can be redone if required W~KII 
restartiiig Ihe systcui after a crash. At various poi&3 
in time the tail is appended to the log ou the disk. We 
refer to the portion of the redo log on the. disk as tlw 
persis2enl redo log (or as the persistcnl 109) and the por- 
tion of the redo log in main memory as the volatile redo 
log. The entire redo log is referred to as the global redo 
log (or as the global log). 

The global log consists of all the redo records of the 
committed transactions, and the redo records of a COIII- 
mitted transaction appear consecutively in the global 
log. This is in contrast to traditional logs where thr IOK 
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Figure 1: Structure OC a Physical Log Record 

records of different transactions are intermingled. To 
achieve this, the redo records of an active transaction 
are kept initially in a private redo log in main-memory, 
and these redo records are appended to the global log 
only when the transaction begins its commit processing. 
(This aspect of the model is not central to our algo- 
rithms, and later we discuss extensions that allow redo 
records to be written directly to the global log tail.) We 
say that a transaction commits when its commit record 
hits the persistent log. When this occurs, the system 
can notify the user who initiated the transaction that 
the transaction has committed. 

Initially, we assume that the only actions that modify 
the database are writes to the database, and writes are 
logged to the redo log. The structure of a typical phys- 
ical log record is shown in Figure 1. The transaction 
id field identifies the transaction, the start address and 
length specify the start and length of a range of bytes 
that have been modified, and the value field stores the 
new byte values of the range of bytes. Later, we con- 
sider actions that are encapsulated and treated as a unit 
for the purpose of logging. 

For ease of exposition, we initially require that the 
following condition hold: 

Condition LAl: Actions logged are idempotent aud 
are atomic; that is, repetition of the actions in a state 
where the effect of the actions is already reflected is 
harmless, and any stable image of the database is in 
a state after an action finished execution or in a state 
before the action started execution. 

In Section 6 we shall relax this restriction. 

Some recovery techniques proposed in the past to 
do away with undo logging assume deferred updates 
[4]. Deferred updates require a mechanism to note up- 
dates done on an object by an uncommitted transac- 
tion without executing them, and redirecting further ac- 
cesses on the object to the updated copy instead of the 
original. A mechanism to install the deferred updates 
after commit is also required. In an object-oriented 
database, the redirecting of accesses may be particu- 
larly troublesome.2 Our recovery technique does not 

zShadow paging can remove the look-up overhead by making 
use of virtual memory address mapping, but carries with it a 
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Figure 2: System Model 

assume the use of deferred updates (i.e., allows in-place 
updates), and is thus more general. 

The backup copy of the database on disk is updated 
only when a checkpoint is taken. We allow a check- 
point to be taken at any time, which implies that the 
backup copy may contain dirty pages - pages that 
contain data produced by transactions that have not 
committed yet. The possibility of having dirty pages 
on the backup copy implies that that we need to be 
able to undo the effect of those transactions that were 
active when the checkpoint took place, and that have 
since aborted. We do so by keeping in memory, for 
each active transaction, a private log consisting of all 
the undo records of that transaction. The private undo 
log of a transaction is discarded after the transaction 
either commits or aborts. The undo logs of all the ac- 
tive transactions are flushed to disk when a checkpoint 
takes place (see Section 3.1). An overview of our system 
model is presented in Figure 2. 

Access to the MMDB is via transactions. Each trans- 
action is atomic and the concurrent execution of these 
transactions must be serializable. In this paper we as- 
sume that serializability is achieved through the use of 
a rigorous two phase locking (R2PL) protocol, where all 
locks are released only after a transaction either com- 
mits or aborts. The use of the RSPL protocol also en- 
sures that the commit order of transactions is consistent 
with their serialization order. The granularity of lock- 
ing is irrelevant to our algorithm; it can be at the level 
of objects, pages, extents or even the entire database 
(e.g., if transactions are run serially). Further, our re- 
covery technique permits extended locking and logging 

space cost, 
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modes (such as increment/decrement locks, with cor- 
responding redo/undo log records), provided the sched- 
ules satisfy some simple recoverability conditions (which 
we describe later). 

2.2 Commit Processing 
When a transaction Ti starts its execution, it is added to 
the list of active transactions, and the record (start Ti) 
is added to the private redo log of Ti. While the trans- 
action is executing, its redo and undo records are main- 
tained in the private logs. When Ti finishes executing, 
it pre-commits, which involves the following steps: 

Pre-commit Processing: 

1. Transaction Ti is assigned a commit sequence num- 
ber, denoted by csn(Ti), .which is a unique spot in 
the commit order. 

2. Transaction Ti releases all the locks that it holds. 

3. Transaction Ti is marked as ‘committing’ and its 
commit sequence number is noted in the active 
transaction list. 

4. The record (commit T,csn(‘l;:)) is added to the 
private redo log, and the private redo log is ap- 
pended to the global log. (The commit record is 
the last log record of a transaction to be appended 
to the global log.) 

Transaction Ti actually commits when its commit 
record hits the disk. After this has occurred, the system 
executes the following post-commit processing steps. 

Post-commit Processing: 

1. Notify the user that transaction X committed (and 
pass back any return values). 

2. Remove Ti from the list of active transactions. 

3. Delete the volatile undo log created for Ti. 

As with other log-based recovery schemes, the persis- 
tent log can be considered the master database. 

Figure 3 outlines the main steps in redo logging and 
commit processing. 

We are in a position to state several key properties 
of our scheme. Before doing so, however, we need to 
define the following. 

Definition 1: We say that two database states are 
equivalent if they cannot be distinguished by any trans- 
actions. The definition accounts for abstract data types 

Figure 3: Steps in Transaction Processing 

that may have different internal structures but that can- 
not be distinguished by any operations on the abstract 
data types. 0 

The following condition ensures that redo logging is 
done correctly for each transaction: 

Condition RPl: Consider the set of objects accessed 
by a transaction Ti that is executing alone in the sys- 
tem. Suppose that transaction Ti finds this set of ob- 
jects in state s when first accessed, and its execution 
takes the set to state s’. Then replaying the redo log 
of transaction Ti starting from state s takes the *set ol 
objects to a state equivalent to s’. 

Since the R2PL protocol ensures that the commit or- 
der is the same as the scrialixation order, and since we 
write out redo records in commit order, the following 
two key properties hold: 

Property COl: The order of transactions in the per- 
sistent log is the same as their serialization order. 

Property C02: The commit order of transactions is 
the same as the precommit order of transactions. Fur- 
ther, a transaction commits only if all transactions that 
precede it in the precommit order also commit. 

Condition RPl and Properties CO1 and CO2 ensure 
that replaying the redo log starting from the empty 
database (and executing only redo actions of commit- 
ted transactions) is equivalent to a serial execution of 
the committed transactions in an order consistent with 
their serialization order (i.e., the two bring the database 
to equivalent states). After presenting the checkpoint- 
ing algorithm, we will discuss ways to recover from a 
system crash without replaying the entire log. 

2.2.1 Discussion 

The use of private redo logs reduces contention on the 
global log tail, as noted in (111. The log tail is ac- 
cessed only when a transaction has pre-committed, and 
repeated acquisitions of short-term locks on the log tail 
is eliminated. Although writing out private redo records 
at the end of the transaction can slow down the commit 
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process for transactions that write many log records, 
it speeds up processing of transactions that write only 
a few (small) log records. It is not hard to extend 
the technique to allow redo records (but not commit 
records) to be written ahead for large transactions (e.g., 
whenever there is a pageful of redo records), and ignored 
on restart if the transaction does not commit. 

The release of locks on pre-commit allows a transac- 
tion Ti to access data written by an earlier transaction 
Tj that has pre-committed but not committed. How- 
ever, Ti has to wait for Tj to commit before it can com- 
mit. This is not a problem for updaters (since they 
have to wait to write out a commit record in any case). 
However, for read-only transactions that have read only 
committed data, such a wait is unnecessary. Read- 
only transactions may fare better under an alternative 
scheme that holds all locks until commit, since read- 
only transactions as above can commit without being 
assigned a spot in the commit sequence order. 

The benefits of the two schemes can be combined by 
marking data as uncommitted when a pre-commit re- 
leases a lock, and removing the mark when the data has 
been committed. Then, read-only transactions that do 
not read uncommitted data do not have to wait for ear- 
lier updaters to commit. Refining the scheme further, 
uncommitted data can be marked with the commit se- 
quence number of the transaction that last updated the 
data. A read-only transaction can commit after the 
commit of the transaction whose csn is the highest csn 
of uncommitted data read by the read-only transaction. 

2.3 Abort Processing 
An undo log record (see, e.g. [9]) contains information 
that can be used to undo the effects of an action. For 
example, a physical undo log record stores the old value 
of updated data. 

Undo logging is implemented as follows. The undo 
records are written to the volatile undo log ahead of 
any modification to memory. The undo log records are 
not written to disk except when a checkpoint is taken. 
The undo log records of each transaction are chained so 
that they can be read backwards. After a transaction 
commits, the volatile undo log of the transaction may 
be deleted. (Similarly, the undo log may be deleted 
after a transaction aborts -see the description of abort 
processing below .) 

We require the following condition on undo logs: 

Condition ULl: The effect of a transaction that has 

not pre-committed can be undone by executing (in re- 
verse order) its undo log records. 

Abort processing is done as follows. 

Abort Processing: When a transaction Ti aborts, its 
undo log is traversed backwards, performing all its undo 
operations. Each undo action is performed and its undo 
record is removed from the undo log in a single atomic 
action. After all the undo operations have been com- 
pleted, the record (abort Ti) is added to the global log. 
The transaction is said to have aborted at this point. 
After a transaction has aborted, it releases all the locks 
that it held. 

We do not require the global log to be flushed to disk 
before declaring the transaction aborted. Also, since we 
assumed RSPL, there is no need to reacquire any locks 
during abort processing. The use of the abort record 
in the persistent log will be made clear once we discuss 
the checkpoint scheme. 

3 Checkpointing and Recovery 
In this section we describe the main details of our 
checkpointing and recovery scheme. For ease of exposi- 
tion, we describe first an algorithm for an unsegmented 
database. This algorithm, however, could cause trans- 
actions to wait for an inordinately long time. In Sec- 
tion 5, we address the problem by extending this basic 
scheme to a segmented database where each segment is 
checkpointed separately. In such an environment, the 
length of time for which transactions are delayed is re- 
duced correspondingly. 

3.1 Checkpointing 
Checkpointing is done in an action consistent manner 
(i.e., no update actions are in progress at the time of 
the checkpointing). Action consistency implies that the 
database and the undo log are frozen in an action con- 
sistent state during the course of the checkpoint. We 
discuss alternative ways of implementing freezing after 
presenting the basic algorithm. 

Checkpoint Processing: 

1. Freeze all accesses to the database and to the undo 
log in an action consistent state. 

2. Write the following out to a new checkpoint image 

(a) A pointer to the end of the persistent log. 

(b) The undo logs of all active transactions, 

(c) The main-memory database. 
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(d) The transaction IDS and status information of 
all transactions that are active at the end of 
the checkpoint .3 

(e) The last assigned commit sequence number. 

3. Write out the location of the new checkpoint to the 
checkpoint location pointer on stable store. After 
this, the old checkpoint may be deleted. 

We assume that there is a pointer in stable store to 
the latest checkpoint. The last action performed dur- 
ing a checkpoint is the update of this pointer. Thus, we 
follow a ping-pong scheme (see [17]), keeping up to two 
copies of the database. Partially written checkpoints 
are ignored in the event of a crash, and the previous 
(complete) checkpoint is used instead, so the writing of 
the checkpoint is atomic (i.e., it either happens com- 
pletely or appears to have not happened at all). The 
set of active transactions and their status is not changed 
during the checkpoint. 

It is not hard to see that our protocol ensures the 
following two conditions: 

1. The undo log record is on stable store before 
the corresponding update is propagated to the 
database copy on disk, so that the update can be 
undone if necessary. 

2. Every redo log record associated with a transaction 
is on stable store before a transaction is allowed 
to commit, so that its updates can be redone if 
necessary. 

3.1.1 Discussion 

Although in the above description the main-memory 
database is written out to disk, it is simple enough to 
apply standard optimizations such as spooling out a 
copy to another region of main memory, and writing the 
copy to disk later, and further optimizing the scheme 
by spooling using copy on write [16]. These techniques 
together with the segmented database scheme described 
later, reduce the time for which the database activities 
(or accesses to parts of the database, in case segmenting 
is used) is frozen. 

In contrast to most other checkpoint schemes, we do 
not require the redo log to be flushed at checkpoint 

3Although we assume here that access to the database is 
frozen, we relax the assumption later. 

time (although we do require the undo log to be check- 
pointed). As a result the (backup) database on disk 
may be updated before the redo log records for the cor- 
responding updates are written out. 

IIowever, the checkpoint processing algorithm makes 
the following guarantee: any redo records that occur 
in the persistent log before the pointer obtained nbovca 
have their effects already reflected in the database.” 
Thus, they need not be replayed (and are not replayed). 
But commit records do not have this consistency guar- 
antee, since the status of active transactions may still 
need to be changed. There may be redo operations re- 
flected in the database, but that appear after the per- 
sistent log pointer in the checkpoint. We describe later 
how to handle both cases in the recovery algorithm. 

Some checkpointing schemes such as that of Lehman 
and Carey [ll] require checkpoints to be taken in a 
transaction consistent state, and the redo log to hc 
flushed to disk at checkpoint time. Ilowever, trans- 
action consistent checkpoints can lead to lower concur- 
rency and a longer checkpoint interval, especially if long 
transactions are executed. 

To implement freezing of access in an action consis- 
tent manner, we can use a latch that covers the database 
and the undo log. Any action hw lo acquire the latch 
in shared mode at the start of the action, and release 
it after the action is complete. The checkpointer has 
to acquire the latch in exclusive mode before starting 
the checkpoint, and can release it after checkpointing is 
complete. 

Action consistency is not really required in the caqc 
of physical logging, since the undo/rctJo action can Ibe 
performed even if a checkpoint was made at a stag(a 
when the action was not complete. IIowever, we require 
the following: 

Condition UL2: Insertion of records into the undo log 
does not occur during checkpointing. 

The above condition ensures that the undo log writ- 
ten at checkpoint time is in a consistent state. 

3.2 Recovery 
Unlike most other recovery algorithms, our recovery al- 
gorithm is essentially one pass, going forward in the pcr- 
sistent log. The recovery scheme is executed on restart 

‘In case the algorithm is modified to write out redo records to 
the global log before pre-commit, care mnst be taken to ensure 
this condition. 
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ceasing, and it consists of the following: 

Recovery Processing: 

1. Find the last checkpoint. 

2. From the checkpoint read into main memory: 

(a) 
(b) 

(4 

(4 

(4 

The entire database. 

The pointer to the end of the persistent log at check- 
point time. 

The transaction IDS and status information of all 
transactions that were active at checkpoint time. 

The undo logs of all transactions active at chcck- 
point time. 

The last assigned commit sequence sequence num- 
ber at checkpoint time. 

3. Go backward in the persistent log from the end until the 
first commit/abort record is found. Mark the spot as the 
end of the persistent log. 

4. Starting from the persistent log end noted in the check- 
point, go forward in the log, doing the following: 

A.lf a redo operation is encountered, Then 
If the operation is a physical redo operation, 
Then Perform the redo operation 
Else /* Steps to handle logical redo 

operations are discussed later */ 
B.lf an abort record is encountered, Then 

If the transaction was not active at the time 
of checkpoint 

Then ignore the abort record. 
Else find checkpoint copy of (volatile) undo log 

for the transaction, and 
perform the undo operations as above. 

C.lf a commit record is encountered, 
Then read its commit sequence number and 

update the last commit sequence number. 

5. Perform undo operations (using the checkpointed undo 
log) for all those transactions that were active at the time 
the checkpoint took place, and whose commit records 
were not found in the redo log, and that are not marked 
committing. 

6. Perform undo operations (using the checkpointed undo 
log), in reverse commit sequence number order, for all 
transactions that were active at the time of checkpoint 
such that (i) their commit records were not found in the 
redo log, and (ii) they are marked committing and their 
commit sequence number is greater than the commit SC 
quence number of the last commit record in the log. 
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persistent log that do not have a corresponding commit 

record. In our implementation, instead of traversing the 

redo log backwards to skip them, we only go forward 
in the log, but we read all the records for a transaction 
(these are consecutive in the log) before performing any 
action. If the commit or abort record for the transaction 
is not found, we ignore the log records of the transaction 
that were read in earlier. Thereby, we avoid the need for 
atomic writes of individual log records (i.e., log records 
can cross page boundaries), and the need to keep back 
pointers in the log. The checkpointed undo log can be 
expected to fit in main-memory since it only contains 
undo information for transactions that are active at the 
time of checkpoint. 

Our scheme executes undo operations of a transac- 
tion only if the transaction did not commit. A some- 
what simpler alternative is to perform undo actions for 
all the undo log records in the checkpoint first and then 
perform the redo actions for the committed transac- 
tions in the log. With such a scheme there is no longer 
the need to log abort records for aborted transactions. 
IIowever, we suffer the penalty of first undoing and 
then redoing the actions for most transactions active 
at the time of the checkpoint (which eventually com- 
mit). Since this undo followed by redo may be large 
and expensive, we have used the slightly more complex 
scheme above where the undos are performed only when 
determined to be necessary. 

By the use of commit sequence numbering, our re- 
covery algorithm can find the transactions that have 
committed without looking at the commit records in 
the persistent log preceding the pointer. Alternative 
schemes, such as using the address of the record in 
the persistent log instead of the commit sequence num- 
ber can also be used to similar effect. There may be 
redo records after the persistent log pointer stored in 
the checkpoint, whose effect is already expressed in the 
checkpointed database. Replaying, on restart, of such 
log records is not a problem for physical log records due 
to idempotence. When we discuss logical logging we de- 
scribe how to avoid replaying logical log records whose 
effect is already expressed in the checkpoint. 

This completes the description of the basic version 
of our recovery scheme. In following sections we will 
extend the functionality of the recovery scheme to al- 
low segmentation of the database and logical logging. 
First, however, we establish the correctness of the basic 



recovery scheme. 

4 Correctness 
The following theorem is the main result that shows the 
correctness of our recovery scheme. 

Theorem 4.1 Zf rigorous two-phase locking is foi- 
lowed, recovery processing brings the database lo a state 
equivalent to ihal after the serial ezecuiion, in the com- 
mit order, of all commilied traasaclions. 0 

The formal proof is presented in the full version of 
the p&per. The intuition is as follows. The proof is by 
case analysis on the state of a transaction at the time 
of the last checkpoint and at the time of system crash. 
The easy cases are when the abort or commit finished 
before the checkpoint. If the transaction had not pre- 
committed at the time of crash, it would have held all 
locks till crash, and it is straightforward to show that 
it can be rolled back. If it precommitted but did not 
commit, we show that the undos are performed in the 
correct order. If the transaction aborted (resp. commit- 
ted) after checkpoint but before crash, we show that 
its undo (resp. redo) operations are performed at the 
correct point in the serialization order. The commit 
sequence numbers are important to find what transac- 
tions committed before the checkpoint, but whose post- 
commit actions (change of status) wa done after the 
checkpoint. 

5 Segmenting the Database 
Until now we had assumed that the entire database 
is checkpointed at one time, while all transactions are 
frozen. Clearly, this could cause transactions to wait 
for an inordinately large amount of time. To avoid such 
delay, we divide the database into units that we call 
segmenfs, and checkpoint each segment independently 
in an action consistent state. 

A segment can be a page, or a set of pages. With 
small segments, checkpointing a segment will probably 
have overhead comparable to page flushing in a disk- 
resident database. For our scheme to work, we require 
the following condition to hold: 

Condition ASl: Each database action that is logged, 
as well as the actions to redo or undo it, access data 
resident in only one segment. 

The above condition is required so that different seg- 
ments may be checkpointed independently. Otherwise, 

during restart if a single redo or undo action accesses 
different segments checkpointed separately, it could see 
an inconsistent database state. 

The various logging, checkpointing, and recovery 
techniques described earlier can be used with the fot- 
lowing changes: 

l The undo log of each transaction is split into a 
set of undo logs, one for each segment it accesses. 
Since each action affects only one segment, it is 
straightforward to do so. The undo tog records of a 
transaction are chained together as before, allowing 
them to be scanned backwards. Redo logging is 
done as before. 

l Checkpointing is done one segment at a time. 
(There is no requirement that segments are check- 
pointed in any particular order, although some pcr- 
formance benefits of ordering are discussed Mrr.) 
To checkpoint a segment, all accesses to the seg- 
ment are frozen in an action consistent state. For 
all active transactions, the undo logs correspondiug 
to the segment are written out, instead of thr cn- 
tire undo logs. Instead of a pointer to the database 
checkpoint in stable store, a table of pointers, one 
per segment is maintained in stable store, and these 
are updated when the checkpoint of a segment (or 
of a set of segments) is completed. 

* We use a latch that covers the segmeut and its undo 
log to implement action consistent checkpointing 
of a segment. Any action on the segment, has to 
acquire the latch in shared mode at the start of the 
action, and release it after the action is comptctc~. 

As before, we do not need to flush the redo tog when 
checkpointing a segment, although we do checkpoint the 
undo log. Thereby, we reduce the time for which access 
to the segment must be frozen. 

We note that the list of active transactions that have 
updated the segment but have not committed must not 
change during checkpointing. This is ensured since a 
per-segment per-transaction undo log has to be created 
before a transaction updates a segment, and has to be 
deleted before a transaction aborts. 

Recovery can be done as before, but for each segmenl 
we ignore the persistent log records before the persistent 
log pointer in its last checkpoint. If we split the redo log 
per segment, we can recover some segments early and 
permit new transactions to begin operating on those 
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ncgmenln while rccovcriug other segmcntz. The idea is 
discussed further in Section 7, where we alsodiscuss how 
to relax further the requirement that the checkpoint be 
made in an action consistent state. 

The smaller the segment, the less the time for which 
acceae to the segment will be restricted during check- 
pointing. But logged operations must be kept small 
enough, or segment sizes should be made large enough 
to ensure that Condition AS1 is satisfied. If a segment 
is large, we can use techniques like the black/white copy 
on update scheme of [15] to minimize the time for which 
the segment is inaccessible for transaction processing. 
We do not specify the size of segments used for check- 
pointing, except that the segments must contain an in- 
tegral number of pages (the unit of I/O to persistent 
storage). The choice may be made by the database 
administrator. Also, segments need not be predefined, 
and could possibly be extended dynamically to ensure 
Condition ASl. 

A benefit of segmenting the database, noted in [ll], 
is that segments containing hot spots (i.e., regions that 
are accessed frequently) can be checkpointed more often 
than other segments. Recovery for such segments would 
be speeded up greatly, since otherwise a large number 
of redo operations would have to be replayed for the 
segment. 

6 Logical Logging 
Logging of higher level ‘logical’ actions as opposed to 
lower level or physical actions such ss read/write, is 
important for at least two reasons (see [9]). First, it 
can significantly reduce the amount of information in 
the log. For example, an insert operation may change 
a significant part of the index, but the a logical log 
record that says ‘insert specified object in index’ would 
be quite small. (In some cases, there could be a tradeoff 
between recomputation at the time of recovery and ex- 
tra storage for physical log records.) Second, with most 
extended concurrency control schemes, such as [18, 21, 
physical undo logging cannot be used to rollback trans- 
actions - an object may have been modified by more 
than one uncommitted transaction, and a compensat- 
ing logical operation haa to be executed to undo the 
effect of an operation. For instance, such is the case 
with space allocation tables, which we cannot afford to 
have locked till end of transaction. 

Conceptually, we view a logical operation as an op- 
eration on an abstract data-type (ADT). For example, 

an index, or an allocatior~ lill)lC can be considered an 
ADT, and operations such as “iusert a tuple” or “allo- 
cate an object” can be considered as logical operations. 
We make the following assumption: 
LOl: Each logical operation affects exactly one data 
item (although the data item may be large, for exam- 
ple, an index). 
Typically, the ADT performs its own concurrency con- 
trol scheme internally, which may not be RPPL (and 
may not even be 2PL). Some form of higher level lock- 
ing is used to ensure serializability of transactions. 

On system restart, our recovery algorithm performs 
redo and undo operations in serialization order, and 
omits operations that were rolled back before the check- 
point. We discuss later how to ‘repeat history’ by per- 
forming redo and undo operations in the exact order 
in which they occurred originally, but in this section 
we assume redo and undo operations are performed in 
serialization order. The design of an ADT that uses 
logical logging must ensure that when performing redo 
and undo operations as above, (i) each redone operation 
has the same result as when it originally executed, and 
(ii) the ADT is brought to a ‘consistent’ state at the 
end of restart; that is, a state that is equivalent (in an 
application specific sense) to one where the operations 
corresponding to committed transactions are executed 
in serialization order. Also, the ADT must be able to 
undo any operation until transaction commit. 

We formalize these notions in the full version of the 
paper, but for an intuitive idea of what these require- 
ments signify, consider the case of a space allocator. 
The redo log should contain not only data stating that 
an allocate request was made, but should’ also contain 
data that says what the location of the allocated space 
was (the location is the return value of the allocation 
operation). When performing a redo, the allocator must 
ensure that the same location is allocated. Further, the 
space allocator must be able to undo both allocate and 
deallocate requests. To undo a deallocate request, the 
deallocated space should be reallocated, and its value 
restored, which means the space should not be allocated 
to any other transaction until the transaction that per- 
forms the deallocate commits. At the end of recovery, 
the state of the allocation information should be such 
that all space that was allocated as of the end of recov- 
ery is noted as allocated, and all that was free is noted 
as free. The state may not be exactly the same as if 
only actions corresponding to committed transactions 
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were executed since the exact layout of the tables may 
be different. But any difference in the layout is seman- 
tically irrelevant, sssuming that an allocation request 
(not a redo- of an allocation request) may return any 
space that was free. 

6.1 Logical Logging and RolIback 
A logical operation may take a good deal of time to 
complete. To accommodate such logical operations, we 
relax assumption LA1 further here, by allowing check- 
pointing in the middle of a logical operation. To under- 
stand how this can be done, logical operations are best 
understood as multi-level nested transactions (e.g. [9] 

or [Y). 

In order to roll back partially completed logical ac- 
tions, we create undo logs for the nested transaction. 
We create redo log records for logical actions and hence 
do not need to create redo log records for the nested 
transaction. 

The undo log for the nested transaction, with an iden- 
tifier i, is embedded in the undo log of the main trans- 
action as follows: 

1. A “( begin operation i )” is written to the undo 
log. 

2. The undo operations of the nested transaction are 
written to the undo log. 

3. An “( end operation i )” record, with any infor- 
mation necessary for logical undo, is written to the 
undo log. The nested transaction is said to commit 
as soon as the “(end operation i )” record enters the 
undo log. The insertion of the log record is done 
in an atomic fashion. 

On system restart, logical redo operations should not 
be executed repeatedly since they may not be idempo- 
tent, and the “( end operation i )” records are used to 
ensure non-repetition, aa described later. We require 
the following properties of the undo log: 

Condition NTl: The effects of the nested transaction 
that has not committed can be undone by executing 
(in reverse order) the undo log records of the nested 
transaction. 

Condition NT2: At any point after the commit of a 
nested transaction, but before the commit of the main 
transaction, the effects of logical operation i can be un- 
done by executing the logical undo operation specified 
in the “( end operation i )” record. 

Redo logging in the case of logical actions is the same 
as with physical actions. We now present versions of 
the abort processing and recovery processing algorithms 
that work correctly even with logical logging. 

Abort Processing-2: When a transaction aborts, its 
undo log is traversed backwards, performing all its undo 
operations. If an “( end operation i )” record is en- 
countered, the logical undo operation is performed, and 
undo actions of the corresponding nested transaction 
are ignored. Otherwise the undo actions of the nestod 
transaction are executed. In any case, an undo action 
is performed and its undo record is removed from the 
undo log in a single atomic action. 

After all the undo operations have been completed, 
the transaction logs an abort record in the shared (redo) 
log. The transaction is said to have aborfed at this 
point. (Note, in particular, that it is not necessary to 
wait for the abort record to reach the persistent log). 
After a transaction has aborted, it can release all its 
locks. 

The requirement that logical undo actions are pcr- 
formed and the undo record removed from the log in one 
atomic action essentially says that checkpointing should 
not take place while these actions are in progress. 

It is important that the designer of the ADT ensure 
that logical undo operations will never run into a dead- 
lock when acquiring (lower level) locks that they need. 
If such a situation were to arise, another abort may be 
need to break the deadlock, which can lead to a cycle 
that leaves the system hung for ever. 

6.2 Checkpointing and Recovery 

We now present a modification to the checkpoint pro- 
cessing and recovery processing technique given in Sec- 
tion 3. 

Checkpoint Processing-2: Checkpoint processing is 
done aa before, except that if a logical action is im- 
plemented as a nested transaction, with its own undo 
log, checkpointing can be done in a state that is action 
consistent with respect to the nested transaction’s ac- 
tions. Thus, checkpointing need not be suspended for 
the entire duration of the logical action. 

Recovery processing with logical logging differs from 
recovery processing with physical logging only iu the 
way logical log records are handled. We describe below 
the relevant ntcps of the recovery procenxillg nlgoritht 11. 
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1. Find the last checkpoint. /* As before */ 

2 . . . . as before, read in checkpoint data. 

3. . . . as before, find end of persistent log. 

4. Starting from the persistent log pointer noted in the 
checkpoint, go forward in the log: 

A.lf a redo operation (numbered, say, i) 
is encountered, Then 

If the operation is a physical redo operation, 
Then Perform the redo operation 
Else /* it is a logical action */ 

If there is an “end operation i” record 
in the checkpointed undo log, 

Then ignore the redo operation. 
/* the effect of the operation has been 

reflected in the checkpointed segment, 
and it should not be reexecuted. l / 

Else 
If there are undo log records from a nested 

transaction for the logical action 
Then execute the undo operations. 

Execute the redo operation. 
/* Executing the redo operation creates 

undo log records as described earlier */ 
B . . . . handle abort records as before. 
C . . . . handle commit records as before. 

5. . . . perform undo operations, as before. 

6 . . . . perform undo operations, as before. 

The correctness arguments of the scheme with logical 
logging are similar to the correctness arguments for the 
scheme with physical logging. The primary additional 
concern is that we have to prove that at recovery time 
WC do not redo any action whose effect is already re- 
flected in the checkpoint, and that is not idempotent. 
The logging of the end of logical operation helps detect 
if a logical operation has been executed already. A for- 
mal proof is presented in the full version of the paper. 

7 Extensions 
In this section we consider several extensions of the al- 
gorithms described so far. 

7.1 Repeating History 
Our algorithm collects redo records for a transaction 
together, and outputs the redo records in serialization 
order to the global log. This reduces the contention on 
the persistent log tail. On the other hand, if logical 

operabione gre implemented using non-RPPL locking at 
lower Icvcls, care has to 1~: tctkcn in implementing the 
logical operations to ensure that they have the same 
effect when redone as when they were done originally, 
although they have been reordered. The idea of repeal- 
ing history [14] sidesteps this problem by presenting the 
ADT, at recovery time, with exactly the same sequence 
of operations as originally occurred. Our algorithm can 
be modified to repeat history by logging redo operations 
to the global log in the order in which the occur, and 
logging undo operations to the global log only when 
a physical undo actually occurs (also in the order in 
which the operations take place). In fact, the undo op- 
erations can be treated just like regular actions, except 
that they also remove undo records from the (volatile) 
undo log. Typically undo operations occur only rarely, 
so undo records will be written out only rarely, unlike 
with other recovery schemes. The recovery algorithm 
works with minor modifications, and still makes only 
one pass on the persistent log. 

7.2 Database Bigger Than Memory 
We assumed earlier that the database fits into main- 
memory. We can relax this assumption by using virtual 
memory. Alternatively, we could use the checkpointer 
to flush some dirty segments, in order to make space for 
other segments. Doing so may be preferable to writing 
dirty pages to swap space since we get the benefit of 
checkpointing with roughly the same amount of I/O. 
In fact, our algorithm can be used for disk resident 
databases as well, and will be efficient provided most 
of the data in use at any point of time fits into main 
memory. The idea of writing undo logs only when flush- 
ing segments that are not transaction consistent can be 
used in disk-resident databases as well, and our basic 
algorithm can be used with some minor modifications 
even in cases where data does not fit into main memory. 

7.3 Partitioning The Redo Log 
We can partition the redo log across segments (assum- 
ing that every log operation is local to a segment). Par- 
titioning the redo log permits segments to be recovered 
independently, transactions can start executing before 
all segments have been recovered, and segments can be 
recovered on demand. To commit a transaction, we 
write a ‘prepared to commit’ record to each segment 
redo log, then flush each segment redo log. After all 
segment redo logs have been flushed, we can write a 
commit record to a separate global transaction log; the 
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transaction commits when this record hits stable stor- 
age. Abort records are written to each segment redo 
log and to the global transaction log. During recovery 
the global transaction log is used to find what transac- 
tions committed and what transactions did not commit. 
To recover a segment, we bring the segment into main 
memory and use recovery processing as before on it but 
using its local redo log, and doing either redoing or un- 
doing the actions of the transaction at the point where 
the ‘prepared to commit’ or abort log record is found, 
depending on whether the commit record is in the global 
transaction log or not. 

Lehman and Carey [II] present a redo log partition- 
ing technique where the log tail is written unpartitioned 
into a stable region of main memory, and later a sep- 
arate proce&r partitions the log tail. However, the 
technique appears to depend on the availability of sta- 
ble main memory for the log tail. 

7.4 Miscellaneous 
If a physical operation has already generated an undo 
log, we can allow it to proceed even during checkpoint- 
ing. The undo log can be used to undo the data from 
whatever intermediate state it is in when the segment 
is written out. 

If checkpointing is done cyclically on the segments 
(i.e., in a round-robin fashion), we can use a bubble 
propagation scheme to keep segment checkpoints (al- 
most) contiguous on disk. The idea is to all have seg- 
ment checkpoints contiguous, except for a single bubble. 
The bubble is used to create a new checkpoint image 
for the segment whose old checkpoint is just after the 
bubble. Once the checkpoint is complete, the bubble is 
moved forward, replacing the old checkpoint of the seg- 
ment. The bubble can be used to checkpoint the next 
segment. Since the undo log that is written out with 
each segment is not of a predetermined size, some fixed 

amount of space can be allocated for the undo log, and 
if the log is too big, any excess can be written in an 
overflow area. 

8 Related Work 
For a detailed description of the issues related to main- 
memory databases, and how they differ from disk- 
resident databases, see [S]. In this section we con- 
centrate on issues related to checkpointing and recov- 
ery. There has been a considerable amount of work on 
checkpointing and recovery schemes for main-memory 

databases. Salem and Garcia-Molina [16] and Eich [7) 
provide surveys of main-memory recovery techniques. 

Main-memory recovery differs from recovery in disk- 
oriented database systems in several ways. The most 
important differences that we exploit in the present pa- 
per are (a) dirty segments are not flushed to disk as 
often as dirty pages in a disk b;tsed system, and (b) 
the redo and undo logs of uncommitted transactions 
can be kept in memory and modified without incurring 
any disk I/O. As a result of (b) we are able to modify 
the logs and write out to disk only what is absolutely 
needed to be written to disk, and thus reduce log I/O 
and recovery time. The benefit of (a) is that undo logs 
of most transactions never nced be written to disk, if 
the transaction runs to completion without any of its 
dirty pages being written out. 

Some of the details of our recovery scheme are similar 
to those of Lehman and Carey [ll]. Both schemes prop- 
agate only redo information of committed transaction 
to the stable log, and both schemes keep the redo log 
records of a transaction consecutive in the log. Lehman 
and Carey also support segmented databases with in- 
dependent checkpointing for each segment, and logical 
logging. 

The most important contribution of our techniquc~ is 
that it permits the use of redo-only logging while per- 
mitting action consistent checkpointing. The benefits of 
redo-only logging are clear - recovery time is speeded 
up by eliminating an analysis pass on the log, and undo 
operations do not have to be replayed. Li and Eich 
[13] present an analysis that underscores the benefits of 
not having undo logging. However, previous techniques 
paid a high price for this benefit, since checkpointing 
had to be transaction consistent if undo logging was 
not done. For example, in the algorithm of Lehman and 
Carey [l 11, in order to checkpoint a segment, the check- 
pointer has to obtain a read lock on the segment. This 
can adversely affect performance in the case of database 
hot spots, since the checkpointer will cause contention 
with update transactions. Levy and Silberschatz [12] 
also require transaction consistent checkpointing, as do 
the redo/no-undo techniques described in [4], and t.hc 
EOS storage manager [5]. 

To avoid the transaction consistency assumption for 
checkpointing, we allow dirty pages to be written out. 
Our idea of writing out undo records when checkpoint- 
ing dirty pages is, as far aa we know, novel. Our tech- 
nique is thereby able to avoid full undo logging, and at 
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the tlitltttib tirucb IIO~. rc+rcb trnnsactiun connintt!ut chcck- 
pointing, thus getting benefits of both worlds. 

An alternative, proposed by Eich [6], is not to check- 
point the primary copy of the database, but instead to 
replay redo logs of committed transactions continually 
on a secondary stable copy of the database, and have 

transactions execute on the primary copy only. This 
would double the storage and processing requirements. 
Moreover, replaying could become a bottleneck, since it 
is in effect replaying the committed actions of the main- 
memory database on the disk database, in serialization 
order, and could require a considerable amount of I/O. 

The black/white checkpointing technique of Pu [15], 
also described in [17], allows action consistent check- 
pointing, but either requires deferred updates (shadow 
paging) or undo logging on disk. The disadvantages of 
requiring deferred updates were discussed in Section 1. 
llagmann [lo] allows fuzzy checkpointing, that is, does 
not even require action consistency. However, logical 
operation logging cannot be supported by his technique, 
and undo logging is required, which can slow recovery 
down. 

If the database does not fit entirely into main mem- 
ory, our technique can checkpoint a dirty segment and 
swap it, in contrast to other techniques, such ss that of 
Lehman and Carey, that require transaction consistent 
checkpoints. 

The algorithms of [II] and [6] require stable main- 
memory. Our algorithms are not dependent on the 
availability of stable main-memory. This will enable our 
algorithms to be used on standard workstations without 
hardware modifications, which is very beneficial. IIow- 
ever, if stable main-memory is available, we can use it 
for storing the log tail, and thereby achieve better per- 
formance in a manner similar to [ll] and [S]. 

Unlike other algorithms that we are aware of, we do 
not require the redo log to be flushed on every check- 
point. This reduces the per-checkpoint overhead and 
the time taken per checkpoint, which is important when 
segments are checkpointed individually. 

Unlike many other recovery techniques that support 
logical operations (such ss Aries [14]) our technique 
does not use Log Sequence Numbers (LSNs). Instead, 
we log ( end operation i ) records in the undo log, and 
look it up to find whether a logical action haa been car- 
ried out already or not. An undo of a logical operation 
also removes the ‘end operation’ (atomically) from the 

undo log, PO repeated uudo opt:rations are also avoided. 
These operations are feasible in our environment (un- 
like in a disk-resident database) since the undo log will 
most probably reside in main-memory. 

The removal of undo records from the undo log, and 
the removal of redo records of aborted transactions can 
be viewed as a form of garbage collection of the log [4]. 
The garbage collection can theoretically be done in a 
disk-resident database as well, but is inefficient since it 
involves disk reads and is typically not used. 

9 Discussion 
Recent TPC benchmark numbers from Oracle indicate 
the benefits of not writing undo records to disk [l]. In 
the Oracle database system, pages are locked into mem- 
ory and thereby prevented from being flu?hed, for the 
entire duration of certain kinds of transyctions (‘dis- 
crete transactions’). This forces a bound bn the num- 
ber of such transactions that can be exe&ted concur- 
rently. We noted earlier that our schemeican be used 
for disk-resident databases as well. By aliowing pages 
to be flushed when required, our scheme cati provide the 
benefits of reduced undo logging while allowing flush- 
ing of pages to disk whenever required. We would not 
have to bound the number of such transactions execut- 
ing concurrently. We therefore expect our technique to 
provide significant performance benefits. 

There are other techniques that can be used to avoid 
undo logging [4]. However, all such techniques that we 
are aware of require’ transaction consistent checkpoint- 
ing. We believe that our technique will be significantly 
better than the others in environments where many 
transactions access some ‘hot’ pages/segments, acquire 
write locks on different objects in the page/segment, 
and hold the locks for some non-trivial amount of time 
(for instance, waiting for messages from remote sites as 
in two-phase commit, or waiting for disk reads). In such 
an environment, transaction consistent checkpointing 
of the hot pages/segments would interfere greatly with 
regular processing since transaction consistent check- 
pointing would have to acquire a read lock on the entire 
page/segment. In other environments, we believe, our 
techniques will be at least comparable to other tech- 
niques that do not perform undo logging. 

We have completed a prototype implementation of 
the recovery technique, and will present a performance 
analysis in the full version of the paper. We expect 
our recovery scheme to form the core of a main-memory 
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database system currently being implemented at AT&T 
Bell Labs. 

10 Conclusion 
With the general availability of dozens to hundreds of 
megabytes of main memory on relatively inexpensive 
and widely used systems, it is rapidly becoming the 
case that many useful database applications today fit 
entirely (or largely) within the available main mem- 
ory. A major factor in performance, and almost the 
sole cause of disk I/O, is the recovery sub-system of the 
database, responsible for maintaining the durability of 
the transactions. In this paper we have presented a re- 
covery scheme for main-memory databases that places 
no special demands on the hardware, and imposes little 
overhead at run-time, yet promises the ability to per- 
form a fast recovery. 
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