
Implementation of the CORAL Deductive Database System*

Raghu Ramakrishnant Divesh Srivastava

University of Wisconsin, Madison University of Wisconsin, Madison

S. Sudarshan$ Praveen Seshadri

AT&T Bell Labs, Murray Hill. University of Wisconsin, Madison

Abstract

CORAL is a deductive database system that supports a rich

declarative language, provides a wide range of evaluation meth-

ods, and allows a combination of declarative and imperative pro-

P amming. The data can be persistent on disk or can reside in

main-memory. We describe the architecture and implementation

of CORAL.

There were two important goals in the design of the CORAL

architecture (1) to integrate the different evaluation strategies

in a reasonable fashion, and (2) to allow users to influence the

optimization techniques used so as to exploit the full power of the

CORAL implementation. A CORAL declarative program can be

organized es a collection of interacting modules and this modu-

lar structure is the key to satisfying both these goals. The high

level module interface allows mod&s with different evaluation

techniques to interact in a transparent fashion. Fhrther, users

can optionally tailor the execution of a program by selecting from

among a wide range of control choices at the level of each module.

CORAL also has an interface with C++, and users can pre

gram in a combination of declarative CORAL, and C++ extended

with CORAL primitive. A high degree of ezterwibi[ity is provided

by allowing C++ prograrmnenr to use the class structure of C++

to enhance the CORAL implementation.

*This research wss supported by a David and Lucile Packard

Foundation Fellowship in Science and engineering, a Presidential

Young Investigator Award, with matching grants from D@al

Equipment Corporation, Tandem and Xerox, and NSF grant IRI-

9011563.

tThe addresses of the authors are Computer Sciences

Department, University of Wisconsin, Madison, WI 53706,

USA, and AT&T Bell Laboratoriez, 6Q0 Mountain Av-

enue, Murray Hill, NJ 07974, USA. The authors email

addresses are {raghu,divesh,praveen} @cs.wise.edu and sudar-

shafhesearch .att .com.

$The work of this author was performed largely while he was

at the Univerzit y of Wlsconein, Madison, and was partially sup-

ported by the grants listed above.

Permission to copy without fee ell or pert of this material is

granted providad that the copias are not made or distributed for

direct commercial advantaga, the ACM copyright notice and the
title of tha publication and its date appear, and notice is given
that copying ia by permission of tha Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
SIGMOD 151931Washington, DC, USA
81993 ACM 0-89791-592-5/93/0005/01 67...$1.50

1 Introduction
In this paper, we dwuee the design and implementation of

the CORAL deductive database system. CORAL combines

featurea of a database query language, such se efficient treat-

ment of large relations, aggregate operations and declara-

tive semantics, with those of a logic programming language,

such aa more powerful inference capabfities and support for

structured data. Support for peraietent relationa is provided

using the EXODUS storage manager [2]. A unique feature

of CORAL is that it provides a wide range of query eval-

uation strategies (top-down evaluation and several variants

of bottom-up evaluation) and allowa uaera to optionally tai-

lor execution of a program through high-level annotationa.

Applications in which large amounts of data must be ex-

tensively analyzed are likely to benefit from thie combina-

tion of features. In comparison to other deductive database

systems such as Aditi [28], EKS-V1 [29], LDL [27], LOLA

[4] and Nail-Glue [11], CORAL provides a more powerful

language and supports a much wider range of optimization

techniques.

We highlight several de,ign decisions that allowed us to

integrate diverse evaluation techniques and optimization in

a nearly seamless fashion. Specifically, we consider the fol-

lowing issues:

1.

2.

3.

4.

Data representation (e.g. constanta, lieta, eeta).

Relation representation and implementation (e.g. main-

memory and dwk-reeident).

Index atructurea (e.g. haeh-structures and B-trees).

Evaluation techniques (e.g. materialization and pipelin-

ing)

In the CORAL implementation, we dhide evaluation into

a number of distinct aubt asks, and provide a clean interface

between the aubtaeka; relevant optimization techniques can

be (almost) independently applied to each subt aak. Extenai-

btity in database systems has received much attention lately,

and we believe that the CQRAL experience offers guidelines

for addreeeing several important issues.

One of our goals was to allow users to exploit the full

167

=--F--52-
Er- =
‘=\

q

\
-#

El0.s.
-a

r-

/

B
Figure 1: CORAL System Architecture

power of the implementation. CORAL supports a very rich

language, and we believe that some user guidance is criti-

cal to effectively optimizing many sophisticated programs.

The problem is to provide users with the ability to choose

from the suite of optimizations supported by CORAL in a

relatively orthogonal and h~h-level way, and to use a combl-

nation of optimizations for different parts of a program. The

module structure was the key to solving this problem. The

interface between modules is kept at a high level; evaluation

techniques can be chosen on a per-module basis through (OP

tional) annotations, and modules with different evaluation

techniques can interact in a nearly transparent fashion.

An overview of the CORAL declarative language is pre-

sented in [22]. The query language supports general Horn

clauses with complex terms, set-grouping, aggregate opera-

tions, negation and data that contains universally quantified

variables. The details of the language are outside the scope

of this paper. Many features of the implementation ranging

from low-level structures to the interactive system environ-

ment have also been omitted due to shortage of space, and

are described in the full version of the paper. In Sections 2–

5, we discuss some important aspects of the system imple-

mentation. Section 2 contains an overview of the CORAL

system architecture, Section 3 describes the underlying rep-

resentation of the data and Section 4 provides an overview

of query evaluation and optimization. Section 5 is the main

section that deals with implementation issues. It covers the

basic strategies used in evaluating a module, as well aa sev-

eral important refinements. It also addresses user guidance

of query optimization, and the interaction in the evaluation

of different modules. The CORAL/C++ interface and sup-

port for extensibilky in CORAL, includlng the addition of

new data types and operations, and new relation and in-

dex implementations, are discussed in Sections 6 and 7. We

discuss related systems in Section 8. Finally, we provide a

retrospective discussion of the CORAL design and outline

future research directions in Section 9.

2 CORAL System Architecture
The architecture of the CORAL deductive system ia shown

in Figure 1. Persistent data is stored either in text files, or

using the EXODUS storage manager [2], which has a client-

server architecture. Each CORAL single-user process is a

client that can access the common persistent data horn the

EXODUS server. Multiple CORAL processes could inter-

act by accessing persistent data stored using the EXODUS

storage manager. Transactions and concurrency control are

supported by the EXODUS toolkit, and thus by CORAL.

However, within each CORAL process, all data that is not

managed by the EXODUS storage manager is strictly lo-

cal to the process. Most of the effort of design and imple-

mentation in CORAL has concentrated on the single-user

client, and the implement ation has focused on operation out

of main memory. CORAL incorporates several optimiza-

tion, such as using pointers to avoid copying data, that are

useful when operating out of main-memory. However, it is

important to note that the basic design of the CORAL sys-

tem does not assume operation out of main-memory, and

can use join algorithms and access methods tailored to dwk-

resident data.

Data stored in text files can be ‘consulted’, at which point

the data is converted into main-memory relations. Data

stored using the EXODUS storage manager is paged into

client EXODUS buffers on demand, making use of the in-

dexing and scan facilities of the storage manager.

The query processing system consists of two main parts

— a query optimizer and a query evaluation system. Simple

queries (selecting facts from a base relation, for instance) can

be typed in at the user interface. Complex queries are typ

ically defined in declarative ‘program modules’ that export

predicates (views) with associated ‘query forms’ (i.e. speci-

fications of what kinds of queries, or selections, are allowed

on the predicate).

The query optimizer takes a program module and a query

form as input, and generates a rewritten program that is op

timized for the specified query forms. In addition to doing

rewriting transformations, the optimizer adds several control

annotations (to those, if any, specified by the user). The

rewritten program ia converted into an internal representa-

tion that is used by the query evaluation system.

The query evaluation system takes aa input annotated

declarative programs (in an internal representation), and

database relations. The annotations in the declarative pr~

grams provide execution hints and directives. The query

evaluation system interprets the internal form of the opti-

mized program. We also developed a compiled version of

CORAL, that generated a C++ program from each user

program. (Thw is the approach taken by LDL [13, 3].) We

found that this approach took a much longer time to compile

programs (compilation in LDL is also quite slow). Moreover,

the resulting gain in execution speed in CORAL was minimal

since declarative CORAL currently is not strongly typed,

and data manipulation is essentially interpretive. (The is-

sue is discussed further in

focused on the interpreted

Section 9.) We have therefore

version; ‘consulting’ a program

168

t alkes very little time and is comparable to Prolog systems,

which makes CORAL convenient for interactive program de-

velopment.

The query evaluation system has a well defined ‘get-next-

tu pie’ interface with the data manager for access to relations.

This interface is independent of how the relation is defined

(w3 a base relation, declaratively through rules, or through

system- or user-defined C++ code). In conjunction with the

modular nature of the CORAL language, such a high level

interface is very useful, since it allows the dtierent modules

to be evaluated using different strategies. It is important to

stmas that CORAL does manipulate data in a set-oriented

fashion, and the ‘get-next-tuple’ interface is merely an ab-

straction provided to support modularity in the language.

CORAL supports an interface to C++, extended with

several feat ures that provide the abstraction of relations and

tuples. C++ can be used to define new relations as well as

manipulate relations computed using embedded declarative

CORAL rules. The CORAL/C++ interface is important for

the development of large applications.

3 The Data Manager
The data manager (DM) is responsible for maintaining and

manipulating the data in relations. In discussing the DM,

we also dwcuss the representation of the various data types.

Whale the representation of simple types is straight-forward,

complex structural types and variables (used to model in-

complete data) present interesting challenges. The efficiency

with which such data can be processed depends in large part

on the manner in which it is represented in the system. This

section therefore presents the data representation at a fairly

detailed level, and th~ facilitates the d~ussion of evaluation

techniques in the subsequent sections.

The CORAL system is implemented in C++, and all data

types are defined as C++ classes. Extensibility is an impor-

tant goal of the CORAL system. In particular, we view

support for user-defined abstract data types as important.

In order to provide this support, CORAL provides the class

Arg that is the root of all CORAL data-types.

3.1 Representation of Terms
The primitive data types provided in the CORAL system

include integers, doubles, strings, and arbitrary prectilon

integers. 1 The current implementation restricts data that

is stored using the EXODUS storage manager to be lim-

ited to terms of these primitive typea. Such data is stored

on disk in its machine representation, whale in memory, the

data types are implemented as subclasses of Arg.

The evaluation of rules in CORAL is baaed on the opera-

ticm of unification that generates bindings for variables based

on patterns in the rules and the data. An important feature

of the CORAL implementation of data types is the support

1Arbitrary precision integem are supported using the BigNum

package provided by DEC France.

for unique identifiers to make unification of complex terms

very efficient. Such support is critical for efficient declara-

tive program evaluation in the presence of complex terms.

In CORAL, each type can define how it generates unique

identifiers, independent of how other types construct their

unique identifiers; due to this orthogonality, no further in-

tegration is needed to generate unique identifiers for terms

built using several different kinds oft ypes. Thw is very im-

portant for supporting extensibility and the creation of new

abstract data types.

Terms built from a function symbol, or functor, are impor-

tant for representing structured information. The following

fact contains a functor term built from a symbol addr:

person(’John’, addr(’1 Main St.’, ‘NY’, ‘NY’, ‘10000’)).

A functor term models a C++ struct (or a Pascal record);

functor terms can be used to construct complex structures

such as lists. The addr(. ..) term above is represented by a

record cent aining (1) the function symbol addr, (2) an array

of arguments, and (3) extra information to make unification

of such terms efficient. The last item is important for large

terms such as lists. The current implementation of CORAL

uses a modified version of hash-consing ([5]) that operates

in a lazy fashion. Hash-consing assigns unique identifiers to

each ground (i.e. variable free) functor term, such that two

(ground) functor terms unify if and only if their unique iden-

tifiers are the same. We note that such identifiers cannot be

assigned to functor terms that cent sin free variables, and

these have to be handled differently.

Variables are primitive values in CORAL, since CORAL

allows facts (and not just rules) to contain variables; in thw,

CORAL differs from most other deductive database systems.

The semantics of such non-ground facts is that all variables

are universally quantified in the fact. Although the basic

represent ation of variablea is fairly simple, the represent a-

tion is complicated by requirements of efficiency when using

non-ground facts in rules (see [26]). Suppose we want to

make an inference using a rule. Variables in the rule may

get bound in the course of an inference. A naive scheme

would replace every reference to the variable by its bin-

ding. It is more efficient however to record variable bhdmgs

in a binding environment, at least during the course of an

inference. A binding environment (often referred to as a

bindenv) is a structure that stores bindings for variables.

Therefore, whenever a variable is accessed during an infer-

ence, a corresponding binding environment must be accessed

to determine if the variable has been bound. In Figure 2, we

show the representation of the term ~(X, 10, Y), where X is

bound to 25 and Y is bound to Z, and Z is bound to 50 in a

separate bindenv.

3.2 Representation of Relations

CORAL currently supports in-memory hash-relations, as

well as persiatent relations (the latter using the EXODUS

storage manager [2]). Multlple indices can be created on re-

lations, and can be added to existing relations. The relation

169

/ — \ -—.
F&l

types of hash-based indices: (1) argument form indices, and

(2) pattern form indices. The first form is the trtiltional

multi-attribute hash index on a subset of the arguments of

a relation. All facts that contain a variable in an indexed

argument are hashed to a special value. The second form is

k~;m=
more sophisticated, and allows us to retrieve precisely those

facts that match a specified pattern, where the pattern can

contain variables. Such indlcee are of great use when deal-

ing with complex objects created using functors. One can

Q--=’ “5Z-.L—

Figure 2:

I 1 I
l—

l–––l_._J-–_J

r@,10.VI X—+25. Y—>z Z—>50

Representation of an Example Term

interface is designed to make the addition of new relation

implement ations relatively easy.

CORAL relations support the abfity to get marks into a

relation, and distinguish between facts inserted after a mark

was obtained and facts inserted before the mark was ob-

tained. Thm feature is important for the implementation

of all variants of semi-naive evaluation [1, 20]. The imple-

ment ation of this extension involves creating subsidiary re

lations, one corresponding to each interval between marks,

and transparently providing the union oft he subsidiary rela-

tions correspondhg to the desired range of marks. A benefit

of th~ organization is that it can be combined with the in-

dexing mechanisms used for the relation (the indexing mech-

anisms are used on each su~ldiary relation).

CORAL uses the EXODUS storage manager to support

persistent relations. Currently, tuples in a persistent relation

are restricted to have fields of primitive types only. EXO-

DUS uses a client-server architecture; CORAL is the client

process, and maintains buffers for persistent relations. If a

requested tuple is not in the client buffer pool, a request

is forwarded to the EXODUS server and the page with the

requested t uple is retneved.z

3.3 Representation of Indices
Hash-based indices for in-memory relations and B-tree in-

dices for persistent relations are currently available in the

CORAL system. CORAL allows the specification of two

2The b=ic m~tectu of the CORAL system tiOWS data to

be accessed directly from the pages in the EXODUS buffer pool as

is traditionally done in database systems. In CORAL, copying of

data has largely been replaced by sharing using pointers. Pointers

should not refer to data in the EXODUS buffer pool since buffer

pool space may get reused. Hence CORAL copies data from the

butTer pool into the program heap space. A lot of this copying is

unnecessary (namely copying data that is not referred to in any

facts that are created). We plan to change the implementation

to store primitive data types directly in tuples and thereby avoid

the need for copying data except when creating new facts.

retrieve, for example, those tuples in relation append that

have as the first argument a list that matches [Xl[l, 2, 3]]. A

tuple ([51[1, 2, 3]], [4], [5,1,2,3, 4]) would match thw pattern

(see [24]).

4 Overview of Query Evaluation
A number of query evaluation strategies have been developed

for deductive databases, and each technique is particularly

efficient for some classes of programs, but may perform rela-

tively poorly on others. It is our premise that in such a pow-

erful language, completely automatic optimization can only

be an ide~ the programmer must be able to provide hints

or annotation and occasionally even override the system’s

decisions in order to obtain good performance across a wide

range of programs. Since atmotations can be expressed at a

high level, they give the programmer the power to control

optimization and evaluation in a relatively abstract man-

ner. A detailed description of the annotations provided by

CORAL is found in [22]; we mention some of them when

d~ussing the query evaluation techniques.

The CORAL programmer decides (on a per-module ba-

sis) whether to use one of two basic evaluation approaches,

namely pipelining or materialization, which are dxussed in

Section 5. Many other optimizations depend upon the choice

of the basic evaluation mode. The optimizer generates an-

notations that govern many run-time actions, and, if mate-

rialization is chosen, does source-to-source rewriting of the

user’s program. We discuss these two major tasks of the

optimizer below.

4.1 Rewriting Techniques
Materialized evaluation in CORAL is essentirdly a fixpoint

evaluation using bottom-up iteration on the program rules

(see, for instance, [23]). If this is done on the original pro-

gram, selections in a query are not utilized. Several program

transformations have been proposed to ‘propagate’ such se-

lections, and many of these are implemented in CORAL.

The desired selection pattern is specified using a query form,

where a ‘bound’ argument indicates that any bkding in that

argument position of the query is to be propagated.

The default rewriting technique is Supplementary Magic

Templates [16]. The rewriting can be tailored to propagate

bindings across subgoals in a rule body using different sub-

goal orderings; CORAL uses a left-t-right ordering within

the body of a rule by default. Other selection-propagating

rewriting techniques supported in CORAL include Magic

170

Templates [16], Supplementary Magic With GoalId Index-

ing [24], and Context Factoring [14, 7]. By default, CORAL

also applies Existential Query Rewriting [17], which seeks to

propagate projections.

4.2 Decisions On Run-time Alternatives
In addition to choosing rewriting techniques for material-

ized evaluation, the optimizer makes a number of decisions

that afect execution. The optimizer analyzes the (rewrit-

ten) program, and identifies some evaluation and optimiza-

tion choices that appear appropriate.

The default fixpoint evahation strategy is called Basic

Semi-Naive evaluation (BSN), but a variant, called Predi-

cate Semi-Naive evaluation (PSN), which is better for pro-

grams with many mutually re&rsive predicates, is also avail-

able. With respect to semi-naive evaluation, the optimizer

is responsible for: (1) join order selection, (2) index selec-

tion, (3) deciding whether to refine the basic nested-loops

join with intelligent backtmcking (see, for instance, [13, 3]).

These aspects are dwueaed in detail in the full version of

the paper.

The optimizer also decides on the subsumption checks to

be carried out on each relation. The default is to do sub

sumption checks on all relations. A user can ask that a rela-

tion be treated aa a multiset, with as many copies of a tuple

aa there are derivations for it in the original program.3 This

semantics is supported by carrying out duplicate checks only

on the ‘magic’ predicates; some version of Magic Templates

must be used (see [12]).

5 Module Evaluation Strategies
The evaluation of a declarative CORAL program is divided

into a number of distinct subcomput ations by expressing

the program aa a collection of modules. Each module is

a unit of compilation and its evaluation strategies are in-

dependent of the rest of the program. Modules ezport the

predicates that they define; a predicate exported from one

module is visible to all other modules, and can be used by

them in rules. Since different modules may have widely vary-

ing evaluation strategies, some relatively high level interface

is required for interaction between modules. The basic ap

preach used by CORAL is outlined here.

During the evaluation of a rule r in module Af, if a query

is generated on a predcate exported by module N, a call is

set up on module If. The answers to this query are used

iteratively in rule r; each time a new answer to the query is

required, rule r requests a new tuple from the interface to

module IV. The interface makes no assumptions about the

e~aluaticm of the module. Module N may have rules that are

evaluated in any of several different ways. The module may

choose to cache answers between calls, or choose to recom-

pute answers. All thw ia transparent to the calling module.

3On non -_ve quefies, this semantics is consistent with

SQL when duplicate checks am omitted.

Similarly, the evaluation of the called module N makes no

assumptions about the evaluation of calling module M. This

orthogonalit y permits the free mixing of different evaluation

techniques in dtierent modules in CORAL and is central to

how different executions in different modules are combined

cleanly.

Two basic evaluation approaches are supported, namely

pipelining and materialization. We describe them in follow-

ing sections. Pipelining uses facts ‘on-the-fly’ and does not

store them, at the potentird cost of recomputation. Mater-

ialization stores facts and looks them up to avoid recompu-

tation.

5.1 Pipelining

For pipelining, which is essentially topdown evaluation as in

Prolog, the rule evaluation code is designed to work in a co-

routining faahlon — when rule evaluation ia invoked, using

the get-nezt-tuple interface, it generatee an answer (if there

is one) and transfers control back to the consumer of answers

(the caller). Control is transferred back to the (suspended)

rule evaluation when more answers are desired.

At module invocation, the first rule in the list associated

with the queried predicate is evaluated. This could involve

recursive calls on other rules within the module (which are

also evaluated in a similar pipelined fashion). If the rule

evaluation of the queried predicate succeeds, the state of the

computation ia frozen, and the generated answer is returned.

A subsequent request for the next answer tuple results in

the reactivation of the frozen computation, and processing

continues until the next answer is returned. At any stage, if

a rule fails to produce an answer, the next rule in the rule list

for the head predicate is tried. When there are no more rules

to try, the query on the predicate fails. When the topmost

query fails, no further answers can be generated, and the

pipelined module execution is terminated.

Pipelining guarantees a particular evaluation strategy,

and order of execution. While the program is no longer truly

‘declarative’, programmers can exploit this guarantee and

use imperatively defined predicates that have side-effects.

5.2 Materialization

Several variants of materialized evaluation are supported in

CORAL: Basic Semi-Naive, Predicate Semi-Naive [20], Or-

dered Search [21], and the non-ground fact optimizations

described in [26]. The variants of materialization are all

bottom-up fixpoint evaluation methods. Bottom-up evalua-

tion iterates over a set of rules, repeatedly evaluating them

until a fixpoint is reached. In order to perform incremental

evaluation of rules across multiple iterations, CORAL uses

the semi-naive evaluation technique [1, 20]. This technique

consists of a rule rewriting part performed at compile time,

which creates versions of rules with de2ta relations, and art

evaluation part. (The delta relations contain changes in re-

lations since the last iteration.) The evaluation part evalu-

171

atez each rewritten rule once in each iteration, and performs

some updates to the delta relations at the end of the itera-

tion. An evaluation terminates when an iteration produces

no new facts.

The basic join mechanism used in the current implement-

ation of CORAL is nested-loops with indexing, where the

indices are automatically generated by the optimiier. In a

manner similar to Prolog, CORAL maintains a trail of vari-

able bindings when a rule ia evaluated; thw is used to undo

variable bkdings when the nest cd-loops join considers the

next tuple in any loop.

5.3 Module and Rule Data Structures
The compilation of a materialized module generates an in-

ternal module structure that consists of a list of structures

corresponding to the strongly connected components (SCCS)

of the modnle4 , and each SCC structure contains struc-

tures corresponding to semi-naive rewritten versions of rules.

These semi-naive rule structures have fields that specify the

arguments of each body literal, and the predicates that they

correspond to. Each semi-naive rule also contains evalua-

tion order information, pre-computed backtrack points, and

pr~computed offsets into a table of relations. In the case of

modules to be evaluated using pipelining, the orighml rules

of the module are stored as above, rather than their semi-

naive rewritten versions.

5.4 Module Level Control Choices

At the level of the module, a number of choices exist with

respect to the evaluation strategy for the module, and the

specific optimiiations to be used. We describe the imple-

mentation of some of these strategies.

5.4.1 Ordered Search

Ordered Search is an evaluation mechanism that orders the

evaluation of generated subgoals in a program and thereby

provides an important strategy for handling programs with

negation, set-grouping and aggregation, that are left-to-right

modularly stratified. Full details of Ordered Search are not

presented here, but the reader is referred to [21]. The princi-

ple of Ordered Search is that the computation is ordered by

‘hiding’ subgoals. This is achieved by maintaining a ‘con-

text} that dores subgoals in an ordered faahlon, and that

decides at each stage in the evaluation, which subgoal to

make available for use next. The order in which generated

subgosk are made available for use is somewhat similar to

a top-down evaluation.

From an implementation perspective three main changes

have to be made. First, the ‘context’ has to be maintained,

and subgoals inserted into it and deleted from it at appr-

opriate points of time. Second, the rewriting phase must use

a version of Magic tailored to Ordered Search — the basic

rewriting is modified to introduce ‘done’ literals guarding

4 ~ SCC is a maxid set of mutually recursive predicates.

negated lit erals and rules that have grouping and aggrega-

tion. Third, the evaluation must add a goal (’magic’ fact) to

the corresponding ‘done’ predicate when (and only when) all

answers to it have been generated. (The context mechanism

is used to determine the point at which a goal is considered

done.) These changes ensure that rules involving negation,

for example, are not applied until enough facts have been

computed so that when we make an inference using such a

rule, any fact not present may be aesumed false.

5.4.2 The Save Module Facility

In most cases, facts (other than answers to the query) com-

puted during the evaluation of a module are best discarded

at the end of the call to the module to save space (since

bottom-up evaluation stores many facts, space is generally

at a premium). Module cslls provide a convenient unit for

d~ardhg intermediate answers. By default, CORAL does

precisely this. However, there are some cases where thw

leads to a significant amount of recomputation. Thw is es-

pecially so in cases where the same subgoal in a module is

generated in many dWeren& invocations of the module. In

such cases, the user can tell the CORAL system to maintain

the state of the module (i.e. retain generated facts) across

calls to the module, and thereby avoid recomputation; we

call thw facility the save module facility.

In the interest of efficient implementation, we have the

following restriction on the use of the save module feature:

if a module uses the save module feature, it should not be

invoked recursively. (Note that the predicates defined in the

module can be recursive; this does not cause recursive in-

vocations of the module). From an implementation point

of view, the challenge is to ensure that no derivations are

repeated across multiple calls to the module. ThE requires

significant changes to semi-naive evaluation; while the de-

tails are omitted here for lack of space, they can be found in

the full version of the paper.

5.4.3 Lazy Evaluation

In the traditional approach to bottom-up evaluation, all an-

swers to a query are computed by iterating over rules until

a fixpoint is reached, and then returning all the answers.

Lazy evaluation tries to return the answers at the end of

every iteration, instead of at the end of computation. Lazy

evaluation is implemented by freezing the state of the com-

putation at the end of an iteration, and returning the answer

tuples generated in that iteration. The state is stored with

the iterator that is created for the query (recall the ‘get-

next-tuple’ iterative interface). The iterator then iterates

over the tuples returned, and when it has stepped through

all the tuples, it reactivates the ‘frozen’ computation that it

has stored. Thw reactivation results in the execution of one

more iteration of the rules, and the whole process is repeated

until an iteration over the rules produces no new tuples.

172

module s-p.
export s.p(bfff, ffff).
@aggregate-selection p(X, ~ P, C) (X, Y) rr6in(C).

S-p(x, Y, P, c) :- s-pJength(X, Y, C), p(X, Y, P, C).

{

s.pJength(X, Y, min < C >)) :- p(X, Y, P, C).

I

p(x, Y, PI, cl :- p X, Z, P, C), edge(Z, Y, EC),
append(edge(Z, Y)], P, PI), Cl = C + EC.

p(X, ~ [edge(X, Y)], C) : – edge(X, ~ C).

end-module.

Figure 3: Program Shortest-Path

5.5 Predicate Level Control

CORAL also provides annotations at the level of individual

predicates in a module. Annotations to control what indices

are created for a predicate were described in Section 3.3. We

discuss below a class of predicate-level annotations which we

call aggregate selections.

Consider the program Shortest-Path in Figure 3. To

compute shortest paths between points, it suffices to use

only the shortest paths between pairs of points — path

facts that do not correspond to shortest paths are irrele-

vant. CORAL permits the user to specify an aggregate se-

lection on the path predicate pin the manner shown. When

a path fact is generated, the aggregate selection causes the

system to check if there is a path fact of lesser cost C

with the same value for X, Y (i.e. between the same pair

of points). If there is such a fact, the costlier path fact

is discarded. This aggregate selection is extremely impor-

tant for efficiency — without it the program may run for

ever, generating cyclic paths of increasing length. With

thw aggregate selection, along with the choice annotation

@aggregate-selection p(X, Y, P, C)(X, Y, C)a9ay(P), a single

source query on the program runs in time O(E . V), where

there are E edge facts, and V nodes in the graph. As shown

here, CORAL’s aggregate selection mechanism can also be

used to provide a version of the choice operator of LDL, but

with altogether different semantics [18].

5.6 Inter-Module Calls

The interaction between modules merits some discussion.

Suppose that p is a predicate defined in module Ml, and

p appears in the body of a rule of module M2. Evaluation

wit hin a rule proceeds left-to-right 5 and can be thought of

as a nested-loops join. (While this is not entirely accurate

with respect to pipelined evaluation, it is an accurate enough

description for our purposes.) When evaluation reaches the

p literal, a scan is opened on p. A p tuple retrieved by the

scan is used to instantiate the rule. When evaluation returns

5More ~ener~y, in m order determined by the optimizer or

user.

to the p literal on backtrackings, the scan on p is advanced

to get the next p tuple.

This ‘get-next-tuple’ interface to a relation p via a scan is

the only interface presented to M2 by any relation, regard-

less of the nature of the relation, or the evaluation technique

used. For example, if p is a derived relation defined in an-

other module, the interface is still the same as if p were a

base relation.

The point at which the called module returns answers,

depends on its evaluation mode. If the called module is

pipelined, an answer is returned as soon as it is found, and

the computation of the called module is suspended until an-

other answer is requested by the caller. For materialized

evaluation, the use of certain features, such as ‘save mod-

ule’ and ‘aggregate selections’ can result in all answers be-

ing computed before any answers are returned by the called

module. Otherwise, answers are returned at the end of each

fixpoint iteration (in the called module) in which au answer

is generated; further iterations are carried out if more an-

swers are requested by the calling module.

6 Interface with C++
The CORAL system has been integrated with C++ in or-

der to support a combination of imperative and declarative

programming styles. We have extended C++ by providing

a collection of new classes (relations, t uples, args and scan

descriptors) along with associated functions. There is also a

construct to embed CORAL commands in C++ code. This

extended C++ can be used in conjunction with the declar-

ative language features of CORAL in two distinct ways:

● Relations can be computed in a declarative style using

declarative modules, and then manipulated in imper-

ative fashion in extended C++ without breaking the

relation abstraction. In this mode of usage, typically

there is a main program written in C++ that calls upon

CORAL for the evaluation of some relations defined in

CORAL modules. The main program is compiled (after

some preprocessing) and executed from the operating

system command prompt; the CORAL interactive in-

terface is not used.

● New predicates can be defined using extended C++.

These predicates can be used in declarative CORAL

code (and incrementally loaded).

Thus, declarative code can call extended C++ code and

vice-versa. The above two modes are further discussed in

the following sections.

6.1 Extensions to C++

CORAL provides a collection of classes and associated func-

tions to programmers who use the (extended) C++ lan-

guage. The new classes are:

13B~tr~~ i.q OflY intra-~e unless evaluation in M2 is

pipelined.

173

Arg : All CORAL data types are subclasses of Arg. A num-

ber of functions are provided to convert between C++

primitive types and CORAL data types.

Tuple : A tuple is a listof args (i.e. arguments).

Relation : The Relation class allows access to relations

from C++. Relation values can be constructed through

a series of explicit inserts and deletes, or through a call to

a declarative CORAL module. The associated methods

allow manipulation of relation values from C++ without

breaking the relation abstraction.

C-ScanDeac : This abstraction supports relational scans

in C++ code. A C_ScanDesc object is essentially a cursor

over a relation.

In addition to the new classes, any sequence of commands

that can be typed in at the CORAL interactive command

interface can be embedded in C++ code, bracketed by SPe-

cial delimiters. A file containing C++ code with embedded

CORAL code must first be passed through a CORAL pre-

processor and then compiled using a standard C++ com-

piler.

6.2 Defining New Predicates
As we have already seen, predicates exported from one

CORAL module can be used freely in other modules. Some

times, it may be desirable to define a predcate using ex-

tended C++, rather than the declarative language sup

ported within CORAL modules. Extended C++ provides

an export mechanism for this task.

The predicate definition can use all features of extended

C++. The source file is pm-processed into a C++ file, and

compiled to produce an object file. If t hw object file ia con-

sulted from the CORAL prompt, it is loaded into a newly

allocated region in the data area of the executing CORAL

system.’

7 Extensibility in CORAL
The implementation of the declarative language of CORAL

is designed to be extensible. The user can define new ab-

stract data types, new relation implementations, or new in-

dexing methods, and use the query evaluation system with

minimal changes. The user’s program will, of course, have

to be compiled and linked with the system code. We ‘assume

a set of standard operations on data types, and all abstract

data types to be manipulated by CORAL must provide these

operations.

7.1 Extensibility of Data Types
The type system in CORAL is designed to be extensible;

the class mechanism and virtual functions provided by C++

help make extensibility clean and local. ‘Locality’ refers to

the abfity to extend the type system by adding new code,

without modifying existing system code — the changes are

7That is, the new code is incrementally loaded into CORAL.

thus local to the code that is added. All abstract data types

should have cert sin virtual functions defined in their inter-

face, and all system code that manipulates objects operates

only via thw interface. Th~ ensures that the query eval-

uation system does not need to be modified or recompiled

when a new abstract data type is defined. The required func-

tions include a function for checking if two objects are equal,

a function for printing the object, a function for r~creating

objects from a printed representation, a function for hashing

objects, and some memory management functions. A sum-

mary of the virtual functions that constitute the abstract

data type interface is presented in [19]. In addition to cre-

ating the abstract data type, the user can define predicates

to manipulate (and possibly display in novel ways) objects

belonging to the abstract data types. These predicates must

be registered with the system; registration is accomplished

by a single command.

7.2 Extensibility of Access Structures
CORAL currently supports relations organized as linked

lists, organized as hash tables, defined by rules, or defined by

C++ functions. The interface code to relations makes no as-

sumptions about the structure of relations, and is designed

to make the task of adding new relation implementations

easy. The ‘get-next-tuple’ interface between the query eval-

uation system and a relation is the basis for adding new rela-

tion implementations and index implementations in a clean

fashion. The implementation of persistent relations using

EXODUS illustrates the utility of such extensibility.

S Related Systems
There are many similarities between CORAL and deductive

database systems such as Aditi [28], EKS-V1 [29], LDL [13,

3], GIu*NAIL! [11, 15], Starburst SQL [12], DECLARE [9],

ConceptBase [6] and LOLA [4]. However, there are several

import ant differences, and CORAL extends all the above

systems in the following ways:

1.

2.

3.

CORAL supports a larger class of programs, including

programs with non-sound facts, non-stratified nega-

tion and set-generation.

CORAL supports a wide range of evaluation tech-

niques, and gives the user considerable control over the

choice of techniques.

CORAL is extensible — new data and relation types

and index implementations can be added without mod-

ifying the rest of the system.

EKS-V1 supports integrity constraint checking, hypothet-

ical reasoning and provides some support for non-stratified

aggregation [10]. ConceptBase supports DATALOG, along

with locally stratified negation (but no set-generation), sev-

eral object-oriented feat ures, integrity constraint checking,

and provides a one-way interface to C/Prolog, i.e. the im-

perative language can call ConceptBase, but not vice versa.

174

LOLA supports stratified programs, integrity constraints,

several join strategies, and some support for type informa-

tion. The host language of LOLA is Lisp, and it ie linked

to the TransBaae relational database. Aditi gives primary

importance to disk-resident data and supports several join

st rategiea.

Unlike GIu*NAIL! and LDL, where modules have only

a compile-time meaning and no run-time meaning, modules

in CORAL have important run-time semantics, in that eev-

eral run-time opttilzations are done at the module level.

Modules with run-time semantics are also found in several

production rule systems (for example, RDL1 [8]). LDL++,

a successor to LDL under development at MCC Austin, is

reportedly also moving in the direction taken by CORAL in

many respects. It will be partially interpreted, support ab-

stract data types, and use a local semantics for choice (Carlo

Zaniolo, personal communication). XSB is a system being

developed at SUNY, Stony Brook. It will support several

features similar to CORAL, such as non-ground terms and

modularly stratfied set grouping and negation. Program

evaluation in XSB will use OLDTNF, which has been imple

mented by modifying the WAM (David S. Warren, pereonal

communication). DECLARE and SDS are early efforts to

commercialize deductive database technology.

In comparison to logic programming systems, such as var-

ious implementations of Prolog, CORAL provides better in-

dexing facilities and support for persistent data. Most im-

portantly, the declarative intended model semantics is sup

ported (for all positive Horn clause programs, and a large

class of programs with negation and aggregation aa well).

9 Conclusions
The CORAL project is at a stage where one version of the

system has been released in the public domain, and an en-

hanced version will soon be released. The effects of e=veral

design decisions are becoming increasingly evident. On the

positive side, most of the dectilons we made seem to have

paid off with respect to simplicity and ease of efficient im-

plementation.

Modular Design : The concept of modules in CORAL

was in many ways the key to the successful implement a-

tion of the system. Given the ambitious goal of combining

many evaluation strategies in an orthogonal fashion, the

module mechanism appears to have been the ideal ap

preach.

Annotations : The strategy of allowing the users to ex-

press control choices was a convenient approach to solving

the otherwise difficult problem of making optimization

decisions.

ExtensibHity : The decision to design an extensible sye-

tem seems to have helped greatly in keeping our code

clean and modular, in addition to its utility from an ap

plication development perspective.

System Architecture : The architecture concentrated on

the design of a single user database system, leaving issues

like transaction management, concurrency cent rol and

recovery to be handled by the EXODUS toolkit. Thus

CORAL could buiId on these facilities that were already

available, and focus instead on the subtleties of deductive

databases and logic rules. The overall architecture was

reasonably successful in breaking the problem of query

processing into relatively orthogonal tasks.

On the negative side, some poor decisions were made, and

some issues were not addressed adequately.

Type Information : CORAL makes no effort to use type

information in its processing. No type checking or infer-

encing is performed at compile-time, and errors due to

type mismatches lead to subtle run-time errors. Typing

is a desirable feature, especially if the language is to be

used to develop large applications. Type information can

be used when compiling declarative programs, and can

improve execution speed greatly. Typing is one of the is-

sues addressed by a proposed extension to CORAL [25].

Memory Management : In an effort to make the sye-

tem as efficient aa possible for main-memory operations,

copying of data has largely been replaced by sharing us-

ing pointers. This makes evaluation more efficient when

using large data items such as lists, but it requires ex-

tensive memory management and garbage collection. For

simplicity and uniforrnit y, we used pointer-based sharing

even for primitive data types such as integers, where the

benefit is small, and the cost of memory management

is large. The time and ,space cost of th~ approach has

turned out to be rather Klgh; hence we plan to modify

the tuple structure to store data of primitive types in

the tuple itself and thereby reduce memory management

overheads. Another motivation for this change, related

to EXODUS buffers, was discussed in Section 3.2.

There are a number of directions in which CORAL could

be, and in some cases needs to be, extended. These include

better support for persistent data, improved memory man-

agement> enhanced C++ interface features, object-oriented

extensions and support for constraints. While performance

measurements of a prelimi~ary nature have been made, an

extensive performance evaluation of CORAL is planned for

the near future.

Acknowledgements
We would Iike to acknowledge our debt to Aditi, EKS-V1, LDL,

NAIL!, SQL, Starbnrst, and various implementations of Prolog

from which we have borrowed numerous ideas. We would aleo

like to acknowledge the contributions of the following people. Per

Bothner was lrmgely responsible for the initial implementation of

CORAL that served as the basis for subsequent development;

Joseph Albert worked on ecme aspects of the set-manipulation

code; T- Arora implemented several utilities and built-in li-

175

braries; Tom Ball implemented an early prototype of the semi-

naive evaluation system; Lai-thong Chan did the initial imple-

mentation of existential query optimization Sumeer Goyal imple-

mented embedded CORAL constmcts in C++; Vish Karra imple-

mented pipelining; Robert Netzer did the initial implementation

of Magic rewriting, and Bill Roth implemented the explanation

tool along with Tarnn, and added user-interface features.

References

[1]

[2]

[3]

[4]

[5]

[6]

[m

[8]

[9]

[10]

[11]

[12]

[13]

[14]

I. Balbm and K. Rarnamohan=ao. A generalization of the

differential approach to recursive query evaluation. Journal

of Logic Programming, 4(3), September 1987.

M. Carey, D. DeWltt, G. Graefe, D. Haight, J. Richardson,

D. Schuh, E. Shekita, and S. Vandenberg. The EXODUS ex-

tensible DBMS project: An overview. In Readings in Object-

Oriented Daiabaaes. Morgan-Kaufman, 1990.

D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi,

S. Tsnr, and C. Zaniolo. The LDL system prototype. IEEE

lkmwaction$ on Knowledge and Data Engineering, 2(1):76-

90, 1990.

B. Frekag, H. Schiitz, and G. Specht. LOLA - a logic lan-

guage for deductive databases and its implementation. In

Proceedings of 2nd International Sympoaivm on Database

Syatema jor Advanced Applications (DA SFAA), 19W.

E. Goto. Monocopy and associative algorithms in an ex-

tended lisp. Technical Report 7403, Information Science

Laboratory, Univ. of Tokyo, Tokyo, Japan, May 1974.

M. Jeusfeld and M. Staudt. Query optimization in deductive

object bases. In G. J.C. Iheytag, G. Vossen and D. Maier,

editom, Que~ Processing for Advanced Databaae Applica-

tions. Morgan-Kaufmann, 1993.

D. Kemp, K. Ramamohanarao, and Z. Somogyi. Right-, left-

, and multi-linear rule transformations that maintain con-

text information. In Proceedings of the International Con-
ference on Very Large Databases, pages 380-391, Brisbane,

Australia, 1990.

G. Kiernan, C. de Maindreville, and E. Simon. Making de-

ductive database a practical technology: a step forward. In

%oceeding8 of the ACM SIGMOD Conference on Manage-

ment of Data, 1990.

W. Klet31ing and H. Schmidt. DECLARE and SDS: Early

efforts to commercialize deductive database technology. Sub-

mitted to the VLDB JonrnaL, 1993.

A. Lefebvre. Towards an efficient evaluation of remive ag-

gregates in deductive datab=es. In Proceedings of the In-

ternational Conference on Fifth Generation Compnter S31#-

tems, June 1s92.

K. Morris, J. D. Unman, and A. Van Gelder. Design overview

of the NAIL! system. In Proceedings oj the Third Interna-

tional Conference on Logic Programming, 1986.

I. S. Mmnick, H. Pirahesh, and R. Ramakrisbnan. Dupli-

cates and aggregates in deductive databases. In Proceed-

ing of the Sirteenth International Conference on Very Large

Databases, Aug. 1990.

S. Naqvi and S. Tsur. A Logical Language for Data and

Knowledge Basea. Principles of Computer Science, Com-

puter Science Press, New York, 1989.

J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Unm-

an. Argument reduction through fzctoring. In Proceed-

ings of the Fifteenth International Conference on Very Large

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Databaaea, pages 173-482, Amsterdam, The Netherlauds,

August 1969.

G. Phipps, M. A. Derr, and K. A. Ross. Glue-NAIL!: A de-

ductive database system. In Proceeding of the ACM SIG-

MOD Conference on Management oj Data, pages 308-317,

1991.

R. Ramakn “shnan. Magic Templatwx A spellbinding ap-

proach to logic programs. In Proceedings of the International

Conference on Logic Programming, pages 140-159, Seattle,

W&n@on, August 1988.

R. R8UUdfl%b, C. Beeri, and R. Krishnamnrthy. OF

timizing existential Datalog queries. In Proceedings of the

ACM Sympo8ium on Principles of Database Syaiema, pages

89-102, Austin, Tex=, March 1988.

R. Ramakrishnan, P. Bothner, D. Srivastava, and S. Su-

darshan. CORAL: A database programming Iznguage. In

J. Chomicki, editor, Proceedings oj the NA CLP ‘9o Work-

ehop on Deductive Databa8e8, October 1990. Available as

Report TR-CS-90-14, Department of Computing and Infor-

mation Sciences, Kansas State University.

R. Ranmkrishnan, P. Sesha&i, D. Srivaatava, and S. Sudar-

shan. The CORAL user manual: A tutorial introduction to

CORAL. Manuscript, 1993.

R. Raxnakrishnan, D. Srivastava, and S. Sudarehan. Rule

ordering in bottom-up fixpoint evaluation of logic programs.

IEEE Tran8action8 on Knowledge and Data Engineering (to

appear). A shorter version appeared in VLDB, lggo.

R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Control-

ling the search in bottom-up evaluation. In Proceedings of

the Joint International Conference and Symponiam on Logic

Programming, 1992.

R. RamakrMman, D. Srivastava, and S. Sudarshan.

CORAL: Control, Relations and Logic. In Proceedings oj the

International Conference on Very Large Databa8e8, 1992.

R. R.amakrMman, D. Srivastava, and S. Sudarshan. Efficient

bottom-up evaluation of logic programs. In J. Vandewalle,

editor, The State of the Art in Computer Systems and Soft-

ware Engineering. Kluwer Academic Publishers, 1992.

R. Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-

Up Revisited. In Proceeding of the International Logic Pro-

gramming Sympo8itcm, 1991.

D. Srivastava, R. Ranmkrkhnan, P. Seshadri, and S. Su-

darshan. CORAL++: Adding object-orientation to a logic

databaae language. Submitted.

S. Sudarahan and Raghu Ranmkrkhnan. Optimization of

bottom-up evaluation with non-ground teqna. In JICSLP’92

Post-Conference Work8hop on Deductive Daiaba8c8, 1992.

S. Tsur and C. Zaniolo. LDL: A logic-based data-language.

In %oceeding8 of the Tweifth International Conference on

Very Large Data Banes, pages 33-41, Kyoto, Japan, August

1966.

J. Vaghani, K. Ramamohanarao, D. Kemp, Z. Somogyi, and

P. Stuckey. The Aditi deductive database system. In Pro-

ceeding of the NA CLPf90 Workshop on Deductive Database

sy8tem8, 1990.

L. Vieille, P. Bayer, V. Kiichenhoff, and A. Lcfebvre. EKS-

Vl, a short overview. In AAAI-90 Workshop on Knowledge

Base Management System8, 1990.

176

