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1 Introduction 

Abstract 

Performance needs of many database appli- 
cations dictate that the entire database be 
stored in main memory. The Dali system is 
a main memory storage manager designed to 
provide the persistence, availability and safety 
guarantees one typically expects from a disk- 
resident database, while at the same time pro- 
viding very high performance by virtue of be- 
ing tuned to support in-memory data. Dali 
follows the philosophy of treating all data, in- 
cluding system data, uniformly as database 
files that can be memory mapped and directly 
accessed/updated by user processes. Direct 
access provides high performance; slower, but 
more secure, access is also provided through 
the use of a server process. Various features 
of Dali can be tailored to the needs of an ap- 
plication to achieve high performance - for 
example, concurrency control and logging can 
be turned off if not desired, which enables 
Dali to efficiently support applications that re- 
quire non-persistent memory resident data to 
be shared by multiple processes. Both object- 
oriented and relational databases can be im- 
plemented on top of Dali. 
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There are a number of database applications, par- 
ticularly in the telecommunications industry, where 
very high performance access to data is required. 
Such applications typically require high transaction 
rates, coupled with very low latency for transac- 
tions, and stringent durability and availability require- 
ments. As as example, consider a real phon+company 
application where phone call data is recorded, and 
queries against the data can be issued. The applica- 
tion requires several thousand (albeit small) requests 
(lookups/updates) to be processed per second, with 
less than 50 milliseconds latency for lookups, and less 
than a few minutes of downtime a year. Such applica- 
tions have been previously implemented as stand alone 
programs that run in main memory and provide their 
own (usually limited) forms of sharing and persistence 
mechanisms. It is increasingly being realized that the 
core requirements of these type of applications would 
best be met by using an underlying main-memory 
storage manager that supports full functionality such 
it9 transaction management, concurrency control and 
recovery services. Using the same storage manager 
across multiple applications can greatly reduce devel- 
opment costs. 

The increasing availability of large and relatively 
cheap memory also suggests that more database ap- 
plications could reside entirely or almost entirely in 
main memory. Such applications will experience 
performance benefits by having data cached in main 
memory. However, if the storage manager supporting 
such applications is tailored to main memory, signifi- 
cant additional performance benefits can be achieved, 
as shown in [LSC92]. Thus, storage managers tailored 
to main memory would also be ideally suited for such 
databases. 



The Dali’ system, implemented at AT&T Bell Lab- 
oratories, is a storage manager for persistent data 
that has been optimized for environments in which 
the database is main-memory resident. Dali uses a 
memory-mapped architecture, where the database is 
mapped into the virtual address space of the process. 
While Dali can be used in systems where the database 
is larger than main-memory, the architecture of Dali, 
in particular its recovery mechanism, has been de- 
signed to deliver high performance when the database 
fits into main memory. Parts of the Dali architec- 
ture that differ from storage manager architectures for 
disk-based systems include the following: 

l The use of the recovery mechanism of [JSS93], 
which is tailored to ‘high-performance main- 
memory databases. 

l The partition of the database into database files 
that can be memory mapped into shared memory 
by user processes. The benefits of this are: 

- Data can be accessed directly by user pro- 
cesses, avoiding costly interprocess commu- 
nication. 

- User processes can memory map selected 
database files rather than the whole 
database, enabling users to map into mem- 
ory only the parts of the database relevant 
to the application. 

- System data, such as log records and lock 
structures, are themselves stored in a system 
database file, and can be memory mapped 
and manipulated directly by user processes. 

- Multiple processes can concurrently access 
the database. 

l Tolerance to software faults. Fault-tolerance fea- 
tures are particularly important in the context of 
Dali since processes may access and update shared 
data directly for performance reasons. The fault- 
tolerance features provided by Dali include recov- 
ery from processes that fail while updating shared 
data, and detection and recovery from corruption 
of shared data. 

l Tunability of the system, which enables tailoring 
of the database to achieve high performance. Dali 
allows various features, such as concurrency con- 
trol and logging, to be turned off if not required. 
Users can also control the partition of Dali sys- 
tem code between libraries linked with the user 
process, with direct access to the database, and 
code executed at server processes. 

1 Named in honor of Salvadore Dali, for his famous painting, 
“The Per&tencc of Memory”. 

0 Support for compression of individual data 
‘items’. Data items are structured as a fixed 
size header and a variable sieed data component, 
which facilitates data compression. 

Dali provides many other useful features. For in- 
stance, high availability is achieved through support 
for remote backups and hot spares and support for 
online schema and software changes. 

By providing direct access to data, Dali is weil 
suited for a “client as server” environment [CD+94], 
where users add software on top of the storage man- 
ager to build a server with a higher level of functional- 
ity. Dali also provides an interface to access data from 
remote sites, based on remote procedure calls. Cou- 
pled with the ability to split the database into files, 
this feature can be used to implement a network of 
Dali systems in case the sise of the database is larger 
than the maximum physical memory availability on a 
machine. 

The architecture of the Dali storage manager is not 
tailored specifically to a particular data model. Thus, 
it is possible to build relational as well as object- 
oriented database systems on top of Dali. 

A prototype of Dali is operational, and incorporates 
most of the features described in this paper. A proto- 
type of MM-Ode [GLS94], a main-memory version of 
the Ode object-oriented database system [AG89], has 
been built on top of the Dali. We are in the process of 
implementing a relational interface as well, on top of 
Dali. 

2 Related Work 

A storage manager provides the core functionality of a 
database system, such as concurrency control, recov- 
ery mechanisms, storage allocation and deallocation, 
and transaction management. There have been nu- 
merous implementations of storage managers for diik 
resident data. These include the storage managers of 
Exodus [CDBS89], Starbumt [HCL+SO], ObjectStore 
[LLOWSl], EOS [BP93], Texas [SSP92], the Cricket 
[SZ90], and QuickStore [WD94]. 

Independently, there has been much work in the 
area of main-memory databases. Much of this work 
has concentrated on recovery schemes and on indexing 
and query evaluation issues; Garcia-Molina and Salem 
[GMS92] provide an excellent overview of research on 
main-memory databases. Lehman et al. [LSC92] and 
Gottemukkala and Lehman [GL92] discuss the relative 
costs of operations such as locking and latching in the 
main-memory storage component of the Starbumt ex- 
tensible database system. They demonstrate that once 
the I/O bottlenecks of paging data into and out of the 
database are removed, other factors such as latching 
and locking dominate the cost of database access, and 
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they provide techniques for reducing such costs. Thus, 
they provide an excellent motivation for closely exam- 
ining the system desigd of a main-memory database 
and tuning it to remove bottlenecks, and have thereby 
influenced our work significantly. 

With the exception of the Starburst main memory 
storage component. [LSC92] we are not aware of any 
storage manager that is tailored for main memory res- 
ident data.2 The Starburst main memory storage com- 
ponent is a relational storage manager used as a com- 
ponent of the Starburst database system. Its emphasis 
is on data allocation and structuring issues, and (as of 
when [LSC92] was published) the main memory stor- 
age component usea the recovery manager of Starburst 
rather than implementing its own recovery manager. 
In contrast, the recovery mechanisms of Dali are based 
on a recovery algorithm tailored to main memory, pro- 
posed in [JSS93]. We point out additional differences 
later in the paper. 

Unlike Dali and the Starburst main memory storage 
component, the other (existing or proposed) storage 
managers we are aware of are not tailored for memory 
resident data. The storage managers for disk-resident 
data can be divided into two groups. The first group 
consists of traditional storage managers, such as Exo- 
dus and EOS, that provide their own buffer manage- 
ment facilities. The second category consists of storage 
managers that map the database into virtual memory. 
Included in this category are the storage manager of 
ObjectStore, the Texas system, Cricket, and Quick- 
Store. 

Storage managers in this second category are more 
closely related to Dali, since Dali also uses a memory 
mapped architecture. However, the architecture of ex- 
isting memory mapped storage managers, in particular 
their recovery mechanism, does not take advantage of 
the database being resident in main memory. For in- 
stance, ObjectStore uses pagewise checkpointing, and 
Texas uses a shadow paging architectures which, while 
providing support for old versions of data, results in 
slow commit processing. Also, the storage managers 
were designed for CAD environments where transac- 
tions are long, concurrency control at the level of pages 
is sufficient, and fast sharing of data is not, a primary 
concern. 

Dali, on the other hand, is designed for high perfor- 
mance applications similar to traditional transaction 
processing applications but with much lower latency 
and higher throughput requirements. In a typical Dali 
application, transactions are small, multiple processes 
may access shared data and high concurrency, espe- 
cially on index structures, is important. As a result, 

2System M [SGMSO] is a transaction processing test-bed for 
memory resident data, but is not a full feature storage manager. 

Dali supports item ievel locking. Also, the recovery 
algorithm used in Dali is designed to work well with 
small transactions. 

3 The Dali System Architecture 

A Dali storage management system (or Dali system, 
for short) consists of a set of “database file& along 
with one or more server processes. A Dali system runs 
in a shared vktual memory that guarantees sequential 
consistency3 [Lam791 for reads and writes. Server as 
well as user processes with access to the shared virtual 
memory can map data into their virtual memory ad- 
dress space; other processes can access data only via 
server processes that have access to the shared virtual 
memory. 

3.1 Database Files 

In a file system, a file is typically used to store related 
data, and users keep unrelated data in distinct files. 
Correspondingly, we believe it is natural, even in a 
database context, to store related data in a single unit, 
which we call a database file, and unrelated data in 
distinct database files. A user process can access 
and update the data in a database file by mapping 
the file into its virtual address space using the mmap 
call provided by most standard Unix based systems. 
Further, in such systems it, is possible to ensure that 
the data is in fact memory resident (provided it fits in 
memory) using an mlock call.4 

There are several benefits from viewing a database 
as a set of database files. Typically an application is 
not interested in all the data in a database. The entire 
database may be much bigger than memory, but the 
part of the database required by an application may 
fit into memory. If a database presents a flat address 
space and related data is scattered over the address 
space, it is hard to locate what data should be kept in 
memory for an application. Database files thus help 
organize the data in a database. 

A database file can be memory mapped by multiple 
proceeses in the Dali system, provided they have access 
to the same shared virtual memory, with sequential 
consistency guarantees. On uni-processor and shared- 
memory multiprocessor machines, the Unix mmap 
function call guarantees sequential consistency. Thus, 
a database file can be accessed directly only by user 
or server processes on one (shared-memory) machine. 
Processes running on other machinesccan access it only 
via a server process running on the local machine. 

A database file consists of several partitions, each 
with its own protection mode (see Figure 1). The head 

3Sequentid consistency requires that operations (reads / 
writes) to auy memory location can be serialized, and the opera- 
tions from a single processor are serialized in the order in which 
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Figure 1: Database File Structure 

of the database file contains a partition table that con- 
tains partition-related information and is in a partition 
of its own. Partitions need not be contiguous, to allow 
room for expansion if a partition runs out of space. 

Memory allocation information is stored in a ‘meta- 
data partition’, separate from the data itself. Cor- 
ruption of unprotected allocation information by stray 
writes has been observed to occur in object-oriented 
database environments, leading to severe loss of data. 
Hence, the meta-data partition can be write protected 
for all but server processes and trusted user processes. 

Dali currently stores database files in the host file 
system. This provides a smooth interface between the 
Dali storage manager and the host file system, and op- 
erating system facilities can be used for some database 
functionalities such as cold backups. 

3.2 System Database 

All data related to database support, such as log data 
and lock data, is stored as a database file, which we call 
the system dot&se file. Ugiformity of data access is 
thereby provided. The scheme is inspired by the Plan 
9 [PPTTSl] philosophy of treating all data uniformly 
as files. The system state is thus contained entirely in 
the database files in the system. 

As a result of storing system data in database files, 
user processes that run in the same shared memory 
as the Dali system can access and share the data in 
the system database (e.g., lock information) directly, 
and use library routines that provide storage alloca- 
tion services to allocate locks and log data. Therefore, 
apart from server processes to support reniote accesses, 
the only server process required in a Dali system is a 
system server process that performs initialization and 
recovery services. Storage manager services may be ac- 
cessed through a server process for protection reasons, 

they are generated at the processor. 
‘Super user permissions are usually required to mlock a file 

in memory. 

Item Head- 
Item Data , 

Data 
Partition 

Figure 2: Item Layout 

but at the cost of inter-process communication. 

3.3 Database File Identifiers and Pointers 

Each database file has a unique identifier. To enable 
identifier allocation to be performed in a distributed 
manner, the identifier currently consists of a Cbyte 
machine address and a Cbyte local-identifier. 

Locations within database files are accessed in Dali 
via database pointers. The Dali architecture has two 
kinds of database pointers, one of which is a direct 
pointer to data, which we call a DBPtr, and the other 
is an indirect pointer, which we call an ItemID. Both 
types of pointers can cross database files. Since an ap- 
plication may access multiple different database files, 
it is not reasonable to assume that a database file is 
mapped to a fixed point in process address space. For 
the above reasons, DBPtrs in Dali contain a database 
file identifier and an offset within the database file. 
The ItemID is a DBPtr to an item header, which in 
turn contains a DBPtr to the item data. The structure 
of items is described in Section 3.4. 

Database pointers are untyped pointers. Dali also 
provides typed database pointers to C++ applications 
built on Dali. These are implemented as a template 
class built on top of database pointers, and use over- 
loading on dereferencing operations to present the ap- 
pearance of an in-memory typed pointer (see, e.g., 
[DAG93]). Thus, one can declare a variable p to be of 
type DBPtr,of<Person>, and use the syntax p+name 
if name is an attribute of the class Person.5 A similar 
template class is also provided for ItemIDs. 

3.4 Items 

An item consists of an item header and item data. 
Figure 2 depicts the structure of an item. Database 
pointers to an item (i.e., item identifiers) must point 
to the item header, and must not point to the item 
data directly. As in a slotted page scheme (used in 
most storage managers), the separation between fixed 

5This technique, by itself, does not support virtual function 
invocation. The virtual function table pointers embedded in the 
object must also be “fixed” [BDG93]. 
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size slots and variable sized data provided by our item 
structuring scheme helps with compaction and reloca- 
tion. 

However, our scheme differs from a slotted page 
scheme. First, the item header is stored in a sep- 
arate partition from the data for the item, and can 
be provided a higher degree of protection. Second, 
as in the main memory storage component of Star- 
burst [LSC92], the item header can be used to store 
additional information such as lock information; for 
example Dali stores type identifiers for items in the 
item header, and can store a pointer to lock informa- 
tion for the item. The lock pointer helps avoid the 
hashing costs normally associated with lock acquisi- 
tion in a disk-based database. Other data that can be 
stored in the item header includes access control infor- 
mation, compression/decompression information, and 
extra data pointers to implement versioning. 

We shall use the term item in the rest of this paper 
to refer to a data item that is the fundamental logi- 
cal unit of storage. In the case of a relational system 
an item typically refers to a tuple. In the case of an 
object-oriented system an item typically refers to an 
object. It is sometimes useful to have an item corre- 
spond to a portion of an object/tuple or a collection of 
them. Hence, we use the neutral term “item” rather 
than “object” or “tuple”. An item identifier can be 
used to implement tuple identifiers in a relational sys- 
tem, or object identifiers in an object-oriented system. 
Item identifier do not guarantee referential integrity; 
however, referential integrity checking as done in Exo- 
dus [CDRSSS] and EOS [BP931 can be built into item 
identifier, if desired. 

3.5 Pointer Dereferencing and SwixeIing 

It is crucial for performance that mapping from 
database pointers to virtual memory addresses be done 
efficiently. In Dali, each process maintains a database 
start-address table, which specifies where in memory 
each database is mapped. Given a database pointer, 
to get a virtual memory pointer the offset within the 
database that the database pointer specifies is added 
to the starting virtual address (obtained from the 
above table) of the database it specifies. The table 
itself is implemented as a fixed size array indexed by 
the (integer) database file local-identifier, along with a 
tree structure for identifiers larger than the size of the 
array. As long as database local-identifiers are small 
integers (which we expect will be the case) the ta- 
ble implementation provides very fast translation from 
database pointers to virtual memory addresses. 

The overhead of mapping database pointers to 
virtual memory addresses can be reduced by swiz- 
zling the pointers when the database is mapped 

into virtual memory. This approach is adopted in 
Texas [SSP92], ObjectStore [LLOWSl] and Quick- 
Store [WD94]. Swizzling, being specific to where a 
database is mapped, can be problematic if different 
concurrently running processes map a shared database 
to different address locations; coordination to avoid 
such an occurrence becomes hard .when there are 
multiple databases. Also, pointer swizzling requires 
knowledge about the data types, which Dali does not 
have (although the storage design does provide space 
for storing type tags). Therefore, Dali does not itself 
provide pointer swizzling, but it is possible to build a 
layer on top of Dali to do so. 

Databases can be mapped into memory “on de- 
mand”, that is, the first time a pointer to the database 
is accessed, by modifying Dali’s database pointer 
translation scheme. Such a facility can help trans- 
parently access a database that is larger than virtual 
memory, provided it is split across multiple database 
files. Such a scheme is reminiscent of the tech- 
nique used in ObjectStore and Texas Store to handle 
databases larger than virtual memory. 

4 System Code Structure 

The Dali system code is modular and is organized as 
follows. 

Recovery Manager. This layer provides recov- 
erable main-memory via logging, checkpointing 
and recovery services. We discuss the recovery 
manager in more detail in Section 4.1. 

Memory Manager. This layer provides mem- 
ory allocation and deallocation facilities. Mem- 
ory allocation is managed in several layers. The 
bottom layer deals with changing the size of the 
database, the next layer performs functions simi- 
lar to malloc and above it is a layer which allocates 
items. Dali supports the use of different memory 
allocation techniques in different partitions of a 
database file. 

Concurrency Control Manager. This layer 
implements concurrency control; some details of 
its interface and implementation are described in 
Section 4.2. 

Transaction Manager. Thii layer provides rou- 
tines that coordinate the concurrency control and 
recovery managers to implement transaction be- 
gin, pm-commit, commit, and abort. 

Item Manager. This layer provides routines for 
creating, deleting and accessing items. Some de- 
tails are discussed in Section 4.3. 
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4.1 Recovery Manager 

The recovery manager is responsible for ensuring the 
atomicity and durability properties of transactions. It 
provides support for physical logging (i.e., before/after 
image logging), as well as logical logging (i.e., logging 
of operations). Recovery must be performed using 
logical logging for high concurrency structures such as 
storage allocation tables and indices. 

If the database is resident in memory, database 
pages never need to be written to or read from sec- 
ondary storage during normal processing, except for 
the purpose of checkpointing. Recovery related pro- 
cessing is then the only component in the system that 
deals with disk I/O, and it must be designed with care 
so that it does not impede the overall performance. 

4.1.1 Default Algorithm 

The default recovery manager of Dali uses the main- 
memory recovery scheme described in [JSS93]; the key 
features of the scheme are as follows: 

l The persistent log contains only the redo records 
of committed transactions; this policy minimizes 
I/O during logging as well as during recovery. The 
redo and undo records of active transactions (that 
is, transactions that have neither committed nor 
aborted) are maintained separately in main mem- 
ory. Undo records of a transaction are discarded 
once the transaction has committed. Undo as well 
as redo records of a transaction are discarded once 
it has aborted. The undo records of a transac- 
tion are written to disk only if a checkpoint takes 
place (more specifically, a page updated by the 
transaction has to be written to disk) while the 
transaction is active. 

l The recovery actions after a system crash make 
only a single pass over the log. The usual back- 
wards pass on the log to find “winners” and 
“losers” and undo the actions of losers is avoided 
by keeping the undo log separate from the redo 
log. 

l It is possible to repeat history if required (e.g., for 
functions supported by the memory manager). 

l A checkpoint can take place at almost any point 
(namely, in any state that is logical action consis- 
tent, i.e., in the checkpointed state any action for 
which a logical redo or undo log is generated either 
must not have started or must have completed). 
The database is partitioned into small caunb 
(checkpointing units) that can be checkpointed 
separately. Interference with normal transaction 

processing is thereby kept small; a further opti- 
mization, applicable if hot spares are used, is de- 
scribed in Section 6.1. 

l Our checkpointing algorithm follows a ping-pong 
scheme, that is, consecutive checkpoints are writ- 
ten to separate locations on disk. As a result, 
support from the underlying system for pages to 
be written atomically is not required. 

4.1.2 Checkpointing Units 

A database file is subdivided in two different ways. 
First, a database file is subdivided into units of check- 
pointing, as mentioned above, which we call chunks. 
Second, a database file is subdivided into units of pro- 
tection, which we call partitions. The two ways of 
dividing the file are orthogonal. Partitions have to 
be multiples of operating system pages, since memory 
protection is in units of pages. Chunks should be mul- 
tiples of disk pages, for efficiency reasons. The size of 
a chunk is a tunable parameter, and different chunks 
can have different sizes. In this respect, a chunk is a 
more flexible and general concept than a page.6 

Different chunks in a database file can have differ- 
ent recovery modes. The following recovery modes are 
supported: 

Non-recoverable. No checkpointing or logging is 
done for actions on such chunks. They are used to 
implement transient system structures such as in- 
memory logs, transaction tables, and lock lists. 
User may store other data in non-recoverable 
chunks; for example, indices that are recomputed 
on database recovery in order to reduce I/O, as 
suggested in [LC871. 

Physical-action-fuzzy. Such chunks are check- 
pointed in a state where no update actions that 
are logged logically are in progress on the chunk, 
but actions that are logged physically may be in 
progress. This is the mode required by our default 
recovery algorithm. 

Action-consistent. Such chunks are checkpointed in 
a state where no update. actions are in progress on 
the chunk. However, uncommitted data may get 
checkpointed. 

4.2 Concurrency Control Manager 

The concurrency control manager interface supports a 
simple but high level interface which hides underlying 
implementation details. The interface functions begi- 
nAccessXC and endAccess-CC must be used to bracket 

6Currently databasea are &z&pointed as single units, but 
checkpointing in tem~ of chunks is beiig implemented and will 
be operational shortly. 
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Figure 3: Example of Process Structuring 

actions. The arguments to beginAccess-CC specify the 
item being accessed and the mode of access. The func- 
tion endAccess-CC is implicitly executed on all items 
at end of transaction, and need not be explicitly ex- 
ecuted; however, if a high concurrency lock mode is 
used, endAccess_CC must be executed in order to re- 
lease lower level latches acquired for the duration of the 
update action. The default implementation is based on 
two-phase locking, and provides a simple mechanism 
to introduce new lock modes with associated compat- 
ibility information for specific operations that require 
high concurrency (e.g., index insertion). 

4.3 Item Manager 

The item manager provides item-based access to the 
database and transparently implements concurrency 
control and logging. The interface may be bypassed if 
concurrency control and logging are to be performed 
explicitly. To support direct access to data, the item 
manager provides functions beginAccess (with ItemID 
and access mode as parameters) and endAccess, which 
can be used to bracket access to data. The interface 
functions get-item and put-item are built on top of the 
above functions, and can be used to get items from or 
put updated items into the database, without having 
direct access to the database. The item manager also 
implements data access paths such as hash indices. 

5 The Dali Process Interface 

Access to a database file (whether a user database file 
or a system database file) from a user process can be 
done either directly to the database file mapped into 
virtual memory, or indirectly through a server process. 
The server process itself could be either a server sup- 
plied with the Dali system, or a busled user process 
(i.e., one trusted not to corrupt the database acciden- 
tally) that runs as a server. This is illustrated in Fig- 
ure 3. The mode of access (direct or through server) 

Figure 4: Direct And Indirect Access 

is set by a flag at the time the database is opened by 
the user process. 

Dali offers the flexibility of choosing (at system con- 
figuration time) which Dali functions from a user pro- 
cess are executed locally, and which are handled re- 
motely by a server. Note that how the functions are 
executed does not affect the interface provided by Dali; 
it only changes the process boundaries for the execu- 
tion of the interface routines. 

At one extreme, the entire functionality of the inter- 
face can be executed at a server process (via remote 
procedure calls). Such a process structure would be 
used by processes that execute on a remote machine, 
or that are not trusted (i.e., may have bugs). A draw- 
back of access via a server is that interprocess commu- 
nication, which is expensive in today’s computer ar- 
chitectures, is needed for every access to the database. 
Further, all data has to be copied from the database to 
user buffers, and updated data has to be copied back 
into the database. Consequently, the performance of 
the system in this case suffers. 

At the other extreme, all access to the database 
files (including the system database file) can be done 
directly from user processes. There is then no need 
for a server process except for recovery from crashed 
processes. This mode offers high performance with a 
higher risk of corrupting the database. Mechanisms to 
minimize the chances of corruption with direct access 
are discussed in Section 7. 

We anticipate that most applications will choose 
a configuration in between the above extremes. Fig- 
ure 4 shows a Dali configuration where the most fre- 
quently used operations (such as reading data, obtain- 
ing locks, and writing log records) are executed in the 
user process (we assume the process runs on the ma- 
chine where the database is resident). Less frequently 
invoked functions (e.g., commit/abort) are executed 
by a Dali server process. Storage allocation, which in- 
volves changes to high-concurrency system structures, 



is also executed at the server process. 
Finally, Dali provides to applications the ability 

to associate call-back functions with Dali functions. 
These call-back functions, referred to as hook functions 
[HCL+SO, BP93], can be used to implement triggers 
and maintain views. 

6 Availability 

Several of the target applications for Dali require not 
only high performance, but also very high availabil- 
ity (down times of not more than a few minutes a 
year). Dali features that support high-availability are 
described below. Mechanisms for recovery from cor- 
ruption of system data-structures (Section 7) also help 
improve availability. 

6.1 Hot Spare 

Dali supports hot spare systems (see, e.g., [GR93]). 
Hot spares systems receive log records from the pri- 
mary system, and use the log records to keep their copy 
of the database synchronized with the primary; if the 
primary system fails, the hot spare can take over al- 
most instantaneously. Hot spare systems are a conv+ 
nient way to achieve high availability, since they can be 
implemented via simple changes to a storage manager 
without changing the internals of applications built on 
top. Also, by performing checkpoints at hot spares, in- 
terference of checkpoints with normal processing can 
be eliminated, thereby improving the overall perfor- 
mance of the system. Hot spares are often placed at 
remote locations, and communication costs may be a 
consideration. The optimizations carried out by the 
recovery algorithm used in Dali in order to reduce disk 
I/O help reduce communication costs as well. 

6.2 Online Schema and Software Change 

Software and schema changes are inevitably required 
in any long-lived database system. Bringing the entire 
database down to incorporate such changes is entirely 
unacceptable in many application domains of Dali. 
Dali supports online software and schema changes in 
two distinct ways. 

First, since Dali supports hot spares transparently, 
one solution is to use a hot spare to perform the soft- 
ware and schema changes, while the primary continues 
to execute transactions. Either no updates must be 
allowed while the software/schema changes are being 
implemented, or operation logging must be used for 
the spare to ‘catch up’ - log records that refer to di- 
rect memory addrezses are useless if the items referred 
to were modified or moved around during schema re- 
organization. Dali’s support for logical logging makes 
this feasible. 

Second, some software changes can be performed 
while the database is up and running. Performing soft- 
ware changes without schema changes is facilitated by 
the Dali approach of storing all system data in a sys- 
tem-database, rather than in the private memory of a 
process. Dali server processes therefore have no state 
stored internally, much as in the Network File System 
protocol [SunSS]. Thus new software can be brought 
up in a new server which takes over from an old server 
process. 

7 Protection 

Giving user processes direct access to the database im- 
proves efficiency by avoiding interprocess communica- 
tion with a server, which may be crucial for perfor- 
mance in some applications of Dali. However, direct 
access also increases the risk of corruption of data. We 
model the corruption of data by user processes which 
have direct access to databases and system data as 
occurring in one of the following two ways. 

1. 

2. 

Software errors in user programs could result in 
stray writes into the database via bad pointers. 

A user process may fail while manipulating system 
data structures, and leave them in an inconsistent 
state. 

We consider below schemes to protect against such cor- 
ruption. We are in the process of implementing the 
schemes described below. 

7.1 Preventing Data Corruption 

Hardware write protection on memory can be used 
to protect data from erroneous writes. Two variants 
may be used. The first is to perform updates via an 
unprotect-write-reprotect sequence. If an item is re- 
peatedly updated during a transaction, changing the 
protection on each access would be quite inefficient, 
since the cost of unprotecting and reprotecting is quite 
significant. Hence updates are best done in a deferred 
fashion. The second variant is to unprotect relevant 
pages when obtaining a write lock and reprotect the 
pages at the end of the transaction. 

The second variant is more efficient, but offers a 
lower degree of protection - the user code could er- 
roneously write onto other data contained in a page 
for which protection was turned off. Further, hard- 
ware write protection does not help with corruption 
due to processes failing while updating shared system 
data structures. The next section describes schemes 
supported by Dali for detecting and recovering from 
corruption of either form. 
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7.2 Detection and Recovery from Data Cor- 
ruption 

Corruption of items in a page can be detected by main- 
taining a cLecbum of an item in its header. The check- 
sum can be verified whenever an item is read, to ensure 
consistency of the data, and is updated when a trans- 
action that wrote the item commits. The checksum 
of an item is also verified at checkpoint time to en- 
sure that only uncorrupted items are written to disk. 
If corruption is detected, transactions with write ac- 
cess to the page containing the item are aborted, the 
item is exclusive locked, and recovered by replaying 
the log starting from the last checkpoint of the chunk 
containing the item. 

In order to recover system structures corrupted due 
to a process failure, before images of updated parts of 
structures are logged. The undo information is stored 
in slafically allocated shared memory rather than in 
the process undo log. This is not only more efficient, 
but is also required in order to avoid a loop for updates 
ofthe undo log. If a process crashes before complet- 
ing the update, the update can be undone using the 
before image. The before images are erased by the 
process after finishing the update, but before releasing 
semaphores. 

Semaphore recovery is handled as foll- 
ows. Semaphores owned by a failed process need to 
be released after other system structures updated by 
the process have been recovered [GR93]. To do this, 
one needs to know exactly who owned a semaphore. 
System semaphores provide thii information, but are 
slow, while test-and-set semaphores, which are fast, do 
not provide this information. In Dali, we implement 
our own fast crash-safe exclusive semaphores on top of 
atomic instructions such as teat and set [BLS94]. 

8 Other Features 

This section describes a few other interesting features 
of the Dali main-memory storage manager. 

8.1 Bulk Loading 

Dali provides special facilities for bulk loading of data, 
that is, the creation of a large number of items, often 
by loading data from another source such as a file or 
a database. 
, First, logging and checkpointing can be completely 
turned off for a chunk (or several chunks) of the 
database during a bulk load in Dali. No other access 
to the chunk is allowed during bulk load, which is usu- 
ally not a problem since the data is only being created. 
A checkpoint is taken at the end of the bulk load; the 
checkpoint does not overwrite the previous checkpoint, 
and hence can be aborted safely if required. The com- 

mitting of the bulk load is performed by atomically 
noting that the new checkpoint is now the latest com- 
pleted checkpoint. Performance figures presented in 
Section 9 demonstrate the benefits of bulk loading. 

8.2 Data Compression 

Compression of stored data is gaining increasing im- 
portance in today’s commercial world. Compression 
becomes all the more important in a main-memory 
storage system since main memory is more expensive 
than disk. Due to the fixed size of a disk block, and 
the consequent page orientation of disk-based storage 
systems, there often are constraints imposed on the 
nature of compression that can be performed at the 
lower levels of the system. A main memory storage 

system has no such restrictions, simplifying the task 
of data compression. 

Dali supports data compression for the persistent 
log, as well as the storage of data in compressed form. 
Hook functions associated with the item manager func- 
tions beginAccess and endAccess can be used to com- 
press and decompress stored data. The item manager 
interface automatically performs decompression on ac- 
cess to a compressed item,’ and can perform compres- 
sion after access to the data has ended. The separation 
between item headers and item data helps in this re.- 
gard since the data can be moved to where space is 
available for decompression, without making pointers 
to the item invalid or requiring forwarding addresses. 

8.3 Database Larger Than Memory 

Dali can be used even if the database cannot fit en- 
tirely into main memory, since the database is mapped 
into virtual memory. Dali’s default recovery algorithm 
still works correctly, but several factors need to be 
taken into account. Since the database pages cannot 
be latched into main memory, the operating system 
may swap dirty pages between main memory and the 
mapped database file at any time. If we were to map a 
checkpoint image directly, it would get corrupted.s A 
naive solution (currently implemented) is to copy the 
checkpoint image to a new file, and memory map the 
copy during recovery. However, with this approach, 
pages may be swapped to the file, and then brought 
back in again during checkpointing only to be writ 
ten back to a checkpoint file. If we have control over 
what pages to flush to disk to make space for a new 
page (the Mach operating system provides such facili- 
ties [BGJ+92]), we can checkpoint a chunk to disk and 

‘The same mechanism is available for other operations that 
must modify the data before access, for instance decryption and 
fixing hidden pointers [BDG93]. 

WE Copy-On-Update memory mapping mode does not 
solve our problem since it is performed on a per-process baais. 
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free up the memory it occupies. We do not have such 
a facility in standard Unix systems, but some of this 
functionality can be supported through a special pur- 
pose NFS server. We are currently designing such a 
facility. The QuickStore [WD94] technique of using a 
memory mapped file as a buffer, along with memory 
protection to detect page faults, cannot, be used when 
the buffer is shared by multiple processes. 

In case the database size is even greater than the 
size of virtual memory, the database can be logically 
divided into multiple database files, each of which is 
small enough to be mapped into the virtual address 
space of a process. Dali function invocations can then 
be directed to the appropriate process. The processes 
can be on multiple processors, or even in a distributed 
system. 

8.4 Support for Large Items 

Dali does not impose a priori limits on item sizes, and 
items are allocated as a contiguous sequence of bytes. 
However, it is a bad idea to allocate large items as 
contiguous sequences of bytes because of the resultant 
storage management and fragmentation problems. As 
a result, large items are allocated in non-contiguous 
pages, and a data-titructure is maintained to keep track 
of the pages of a large item. To support a contiguous 
view of a large item, Dali provides an item-mmap func- 
tion, which uses the mmap facility to map the pages of 
the item to a contiguous address range. 

Recovery can be quite complicated for large items 
if we want to perform logical redo logging, since large 
items may span multiple chunks. Since chunks are 
written independently during a checkpoint operation, 
it is possible that the effects of a committed operation 
are reflected in the checkpoint images of only a sub- 
sef of the chunks spanned by a large ifem. In such a 
situation, during restart recovery the effects of the op- 
eration on the large item (in all the chunks it spans) 
have to be undone, and then the operation’s effects 
must be redone from the logical redo logs. Dali’s re- 
covery manager maintains additional log record types 
for undo logging for large items. 

9 Implementation and Performance 

Dali is written in C++, and uses only standard operat- 
ing system functionality. Most of the features of Dali 
described in this paper have been implemented.‘. 

We ran a series of teats to gauge the performance of 
the Dali storage manager and to understand the costs 
better. 

9Univemiti~ interested in obtaining a no-fee license for the 
syrtem should wad mail to sndusha~nsouch . at. cm. 

1 Where Lookups/trans. Lookups/sec. 
Local 1 26,110 

25 
J 

Local 116,000 
Local 100 1 130;ooo 
Remote 100 1 24,100 

Table 1: Lookup Performance 

9.1 Performance Benchmark 

We use a phone number lookup/update applicatidn, 
which is representative of several applications we have 
seen for a main-memory database system, as our 
benchmark application. Our benchmark application 
models typical environments in which main-memory 
databases may be used, for instance in a communica- 
tions network. The TPC family of benchmarks [Gra93] 
does not model such an environment. The application 
demands very low latency, forcing data to be stored in 
memory, and requires durability of updates, and high 
availability and at least rudimentary concurrency con- 
trol. The application doea not require query process- 
ing and other high level database functionality, and is 
fairly compact,, so we implemented it directly on top 
of the Dali storage manager, rather than on top of a 
full feature DBMS. 

Our test database consisted of 100,000 tuples, each 
comprising an 8-byte key and an &byte non-key field. 
A hash index was constructed on the key field. A 
transaction either looked up the value of the non-key 
field associated with a specified key field, or modified 
the information in the non-key field associated with a 
specified key field. We did not use a hot spare during 
our measurements, because our initial implementation 
of hot spares require performance and functionality 
improvements before numbers would be meaningful. 

The test waz run on a two-processor SPARC 10 
model 51 running SunOS 4.1.3, with the database en- 
tirely in memory. All but the last test were run on a 
single processor. All numbers presented in this section 
are in terms of elapsed time on a lightly loaded system, 
unless otherwise noted. 

The requests on the database would be generated at 
remote sites in a real system. Our tests do not include 
the cost of communication associated with remote gen- 
eration of requests, and are meant to quantify the per- 
formance of the core functionality of Dali. Instead of 
using full-fledged concurrency control, the implemen- 
tation used shared semaphores since they suffice for 
the application. 

9.2 Results of Perfo rmauce Study 

Table 1 shows the throughput on lookup queries, 
varying fhe number of lookups run as one trans- 
action. When doing one lookup/transaction with 
all proceseing performed locally, we obtained 26,110 
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10% 1 1 1 7j140 
10% 1 100 1 18,180 

Table 2: Update Performance 

lookups/second. Typically we expect several requests 
to be received at the same time, so we can combine 
multiple lookups into a single transaction. Through- 
put then increases significantly to 130,000 lookups 
per second. Using multiple lookups in a transaction 
amortized the cost of transaction startup between the 
lookups. 

The results in the row labeled ‘remote’ are for the 
case where only transaction begin/commit are per- 
formed remotely. Even though reads and concurrency 
control are performed locally. there is a significant re- 
duction in performance, bearing out our claim that 
direct acceas to the database is important for high per- 
formance. 

We also ran an experiment using two proces- 
sors simultaneously performing lookups (but not 
updating) a database. We were able to obtain 
98,000 lookups/second each, for a total of nearly 
200,000 lookups per second, as compared to 130,000 
lookups/second using only one processor at a time. 
The loss of speed on each processor is primarily 
attributable to contention on the transaction table 
(guarded by a test-and-set based semaphore). 

Table 2 shows the throughput rates when updates 
are present; a single process executed all transactions 
serially. For this test, we used group commit, with 
100 update requests per log flush. For both the 10% 
and the 100% update case we found the system to be 
I/O bound, the culprit being the I/O for logging. The 
fact that the recovery manager in Dali does not write 
undo log records to disk (except during checkpointing) 
is therefore important for performance. The difference 
between running one update per transaction (720 up- 
dates/second) and 100 updates per transaction (1,900 
updates/second) is due to the transaction-start and 
commit log records generated by the recovery manager 
that must be written to disk. 

We expect the performance on updates to be con- 
siderably improved once we fix the following problem. 
We used regular Unix files for the redo log; every log 
flush ended up performing (at least) two disk writes 
- one for the data and one to update the inode of 
the file. This in turn resulted in seeks occurring on 
every write, limiting performance to around 70 seeks 
per second, or at most 35 log flushes per second. We 
are currently implementing support for raw diik par- 
titions to hold the redo log, which would eliminate the 

Load type Where Elapsed Time (sets.) 
Normal Local 320 
Bulk Local 23 
Bulk Remote 540 

Table 3: Loading times 

inode update; log flushes would then not require any 
seeks, improving performance. 

Table 3 illustrates the benefits of bulk loading. In 
our test, we created the database (100,000 tuples) both 
in bulk load mode (no logging during loading, and a 
checkpoint after loading) and normal mode (100 trans- 
actions, each of which loaded 1000 tuples with logging 
on, and a checkpoint after loading). Bulk loading was 
an order of magnitude faster than normal loading since 
the I/O to diik had been greatly reduced. The tradeoff 
between bulk loading and logging is primarily deter- 
mined by how much delay can be tolerated for commit- 
ting updates, and the relative size of the checkpoint as 
against the log that is generated. 

The numbers for remote bulk loading are for a con- 
figuration where a server process handled all requests 
except read/write of items. The time difference be- 
tween local (23 seconds) and remote execution (540 
seconds) during bulk loading again underlines the ar- 
guments made earlier in the paper that avoiding the 
use of server processes has significant performance 
benefits. 

As argued in [JSS93], the recovery algorithm we 
use is quite fast. It required only 3 seconds to replay 
a log containing 100,000 records, each with a total of 
44 bytes of data. We expect that a significant part 
of the log was cached in the file system buffers before 
recovery started, so the only costs measured are the 
cpu costs. 

10 Conclusion 

We have provided an overview of Dali a high- 
performance storage manager for main memory resi- 
dent data. Dali delivers very high transaction rates 
with low latency, and yet provides high availability and 
data protection at least as good as in a disk-based sys- 
tem. Through modular design and multiple levels of 
interfaces, Dali facilitates the construction of appliciir 
tions which select the functionality and performance 
they desire. 

MM-Ode, a main memory version of the object- 
oriented database Ode, is already operational on top 
of Dali. We are ‘in process of implementing a relation 
manager on top of Dali, and are alo considering port- 
ing an SQL query engine to run on Dali. Also planned 
is a version of Dali tailored for multiprocessors such as 
the NCR 3600, which have board level shared memory, 
and high speed interconnects between boards. 
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