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In the bottom-up evaluation of logic programs and recursively defined views on databases, all

generated facts are usually assumed to be stored until the end of the evaluation. Discarding facts

during the evaluation, however, can considerably improve the efficiency of the evaluation: the

space needed to evaluate the program, the 1/0 costs, the costs of mamtammg and accessing
indices, and the cost of eliminating duplicates may all be reduced. Given an evaluation method

that is sound, complete, and does not repeat derivation steps, we consider how facts can be

discarded during the evaluation without compromising these properties. We show that every

such space optimization method has certain components, the first to ensure soundness and

completeness, the second to avoid redundancy (i.e., repetition of derivations), and the third to

reduce “fact lifetimes” (i.e., the time period for which each fact must be retained during

evaluation). We present new techniques based on providing bounds on the number of derivations

and uses of facts, and using monotonicity constraints for each of the first two components, and

provide novel synchronization techniques for the third component of a space optimization

method We describe how techniques for each of the three components can be combmed m

practice to obtain a space optimization method for a program. Our results are also of importance

in applications such as sequence querying, and in active databases where triggers are defined

over multiple “events.”
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1. INTRODUCTION

Bottom-up evaluation of a query on a recursively defined view/logic program

proceeds by repeatedly applying program rules to generate facts until no new

facts can be computed. Bottom-up evaluation has been shown to have several

advantages over Prolog-style top-down evaluation in the area of deductive

databases (see, for example, [Unman 1989]). The primary advantages are: (a)

the evaluation is set-oriented and can benefit from efficient join techniques;

(b) repeated computation is avoided as a result of storing answers to sub-

queries and reusing them; and (c) cyclic subqueries are detected and the

resulting infinite loops are avoided, making the evaluation not only terminat-

ing, but also complete, in many cases where Prolog-style top-down evaluation

would loop.

However, a disadvantage of bottom-up evaluation is that all generated

fact,s are usually assumed to be stored until the end of the evaluation.

Because the number of facts generated can be extremely large in the case of

many programs, reducing the space requirements of a program by discarding

facts during the evaluation may be very important. In addition to improving

the space requirements, discarding facts that are no longer needed can have

other advantages. 1/0 costs may be reduced, even eliminated, if the program

can be evaluated in main memory; the costs of maintaining and accessing

indices, eliminating duplicates, and the like are also reduced. Thus, discard-

ing facts during the evaluation can result in time as well as space improve-

ments. We refer to evaluation methods that discard facts during the course of

the evaluation of a logic program (instead of just at the end of the evaluation)

as space optimization methods.~

Naughton and Ramakrishnan [1994] introduced the subject of space opti-

mization methods in database program evaluation, and presented one method,

Sliding Window Tabulation, that reduces the space utilized during the evalu-

ation of a restricted class of programs rewritten using Magic Sets [Beeri and

Rannakrishnan 1991],

Our paper provides a general framework for, and identifies the key compo-

nents of, space optimization methods. Prematurely discarding a fact could

mean that some derivation that uses this fact may not be made; this could

1ln this paper, we do not consider other space-saving approaches, such as allowing facts ‘0 ‘hare

parts of their structure with other facts.
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affect the set of answers to the user’s query. Intuitively, we have the

following condition for correctness of any space optimization method (the

condition is formalized later):

Soundness and Completeness. For each generated fact, it must be ensured

that all facts that can be derived using it are actually derived. Further, no

fact should be derived that would not be derived without space optimization.2

Even if soundness and completeness are ensured, repeated derivations of a

discarded fact may not be recognized as yielding duplicates; this could lead to

repeated inferences using this fact. Intuitively, it is desirable to also ensure

the following:

Nonredundancy. Repeated occurrences of the same derivation must be

avoided.

Given techniques for discarding facts while ensuring soundness, complete-

ness, and nonredundancy, we can readily use them in conjunction with any

evaluation method, for example, semi-naive fixpoint evaluation. However, the

opportunities for discarding facts can often be increased significantly by

modifying the order in which the derivations are made in a program evalua-

tion in order to ensure that derivations of facts are “close” to all their uses;

this could be used to reduce the necessary “lifetime” of the fact. Thus a third

aspect of any space optimization method is:

Reducing Fact Lifetimes. It is desirable to make derivations of facts be

“close” to all their uses.

Indeed, every space optimization method has certain components, the first to

ensure soundness and completeness, the second to avoid redundancy, and the

third to reduce fact lifetimes. This decomposition provides a framework in

which to reason about space optimization methods. It also gives us the

flexibility of choosing different techniques for each component, and synthesiz-

ing new space optimization methods.

In this paper, we present several novel techniques and program evaluation

strategies for ensuring the soundness, completeness, and nonredundancy

requirements, and for reducing fact lifetimes. We also discuss how to mix and

match various techniques useful for different parts of a program to get a

space optimization method for the full program in a modular fashion. This

has the following important benefits:

(1) We obtain a much deeper understanding of how space optimization can be
achieved.

(2) Concretely, by instantiating our “mix-and-match” algorithm with specific
techniques and evaluation strategies corresponding to each of the pre-

ceding three components, we can optimize a much larger class of pro-

grams than the Sliding Window Tabulation method of Naughton and

Ramakrishnan [1994] (see Examples 1.2.1 and 8.3.1). In fact, we show

2This point is relevant if nonmonotonic constructs such as negation and aggregation are present.
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that Sliding Window Tabulation is just one particular way of combining

techniques for each of the three components.

1.1 Applications

Space optimization is important, in general, for query evaluation in deductive

databases, as the examples later in the paper illustrate.

An application area where space optimization methods are particularly

important is sequence querying (e.g., Roth et al. [1993] and Seshadri et al.

[ 1994]). The longest common subsequence problem (Example 1.2.2) is repre-

sentative of many problems that arise in DNA sequence analysis. Example

8.3.1 considers the problem of computing N-day averages, which is represen-

tative of many problems that arise in querying stock market sequence data

(see, e.g., Roth et al. [1993]). In each of these cases, space-efficient evaluation

techniques enable the answering of queries on larger sequence databases

than were feasible without the use of our space optimization techniques.

Space optimization methods can also be used in active databases. Active

data,base models, such as Compose [Gehani et al. 1992], permit users to

specify patterns of events (event expressions) that trigger specific actions.

Compose only allows regular expressions as patterns to ensure constant

additional storage requirements. However, the need for more complex pat-

terns, in particular, dealing with time and sequences, soon became evident

[Jagadish et al. 1992]. Space optimization is very important to bound the
space utilized for detecting such complex patterns. Such patterns can be

expressed using logic programs, and our techniques (in particular the

monotonicity-based techniques described in Section 6) are then directly appli-

cable. Our techniques also can be extended to deal directly with the syntax

usecl for specifying such complex events, avoiding the need to translate the

patterns into logic programs.

1.2 Motivating Examples

We present some examples that underscore the importance of space optimiza-

tion in deductive databases.

E~cample 1.2.1. Consider the problem of computing the ancestors of a

given person, an important problem in deductive database literature. We are

given a binary relation fhther(X, Y), with the intended meaning that Y is

the father of X. Then the following program defines the relation anc(X, Y),

Withl the intended meaning that Y is an ancestor of X.

anc(X, Y):–father(X, Y).

anc(X, Y) :–father(X, Z), anc(Z, Y).

Query: ?-cme(n, X).

Suppose that the father relation is an acyclic relation, with the functional

dependency father: $1 -+ $2, that is, each person has at most one father.
Consider a database with the following facts in the father relation:

father(n, n - 1), father(rz – 1, n - 2),..., father(2, 1), father(l, O).
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If we take the bottom-up approach of rewriting by Magic Sets [Rama-

krishnan 1988] followed by semi-naive bottom-up evaluation [Bancilhon 1985],

the space and time required is 0(n2 ). This is because the evaluation com-

putes the following 0(n2) cmc facts: anc(n, n – 1),..., cmc(rz, 1), arzc(n, O),

anc(n–l, n– 2),..., anc(n – 1, 1), anc(n – 1,0), . . . . Cmc(l, o).

Sliding Window Tabulation, as described in Naughton and Ramakrishnan

[1994], is not applicable to this program because the program does not exhibit
any monotonicity. The techniques described in this paper can reduce the

space required to answer the query to O(n). [However, the asymptotic time

complexity remains 0( nz ).] The intuition is as follows:

—In an SCC-by-SCC bottom-up evaluation of the Magic Sets rewritten

program, each anc fact can be used only in the iteration subsequent to the
iteration in which it is derived. (This can be deduced from the fact that

each of the program rules is linear.)

—The program is “duplicate-free”; that is, no anc fact is derived using two

different rule instances. (This can be deduced from the acyclicity of the

father relation, along with the functional dependency between the argu-

ments of the father relation. The actual facts in the father relation are not

needed to infer the duplicate-freedom property.)

Hence, we can discard those anc facts that are not answers to the query one

iteration after they are computed. This results in an 0(n) space complexity.3

Retaining all the computed anc facts until the end of the evaluation results

in an 0( nz ) space complexity.

The following example is from Naughton and Ramakrishnan [ 1994]. This is

a complex program, and can be omitted in a first reading without loss of

continuity,

Example 1.2.2. Consider the problem of computing the length of the

longest common subsequence (LCS) of two strings a and b. This problem is

significant because it is representative of a number of problems that arise in

DNA sequence analysis, an area that has been identified as a promising

application for deductive database technology (e.g., Tsur et al. [ 1990]).
We are given two strings, say A = aOal . . . a~.l and B = bObl . . . b~.l,

where the a, and b~ are drawn from some common alphabet. We use the

standard algorithm of Hirschberg [1975] to compute the LCS of two strings.

3The program “factoring” transformations described in Naughton et al. [ 1989] and Kemp et al.

[1990] also result in an 0(n) space complexity for evaluating th,s query, although no facts need

be discarded before the end of the evaluation. If space optimization is applied to the “factored

program, and answers are returned to the user as they are computed, then the query can be

evaluated in constant space!
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To express the problem in deductive database notation, we use the represen-

tation that if letter j of string a (resp. b) is a, then the database contains the

fact a(j, a) (resp. b(j, a)). Then the following program defines the relation

lcs( M, N, X), with the intended meaning that the longest common subse-

quence of A beginning at aM and B beginning at b~ is of length X.

lcs(m, iv, o).

lcs(iw,n,,o).

lcs(M, N,x):–M< ln, N<n, a(M, c), b(N, c),lcs(M+l, N+ 1,X– 1).

lcs(M, N, X):-M <m, N<n, a(M, C), b(N, D), C#D,lcs(M+l, N, Xl),

lcs(M, N + 1,X2),X= max(Xl, X2).

Query: ?-lcs(O, O, X).

If the strings are of length m and n, then evaluating the program using the

top-down Prolog evaluation strategy gives a running time that is fl((~ ~” )).

()
The function ~ ~ ‘ grows extremely quickly. For example, if m = n = 20, we

have (~:”) > 275 X 109; if m = n = 100, we have
()
‘n;” > 1.8 X 1059.

Clearly, the Prolog evaluation strategy cannot be used on this program for

any but the shortest of strings.
If” we take the bottom-up approach of rewriting by Magic Sets [Beeri and

Ramakrishnan 1991] followed by semi-naive bottom-up evaluation, the run-

ning time is reduced to 0( inn). This is a dramatic improvement; unfortu-

nately, the space required is also 0( inn), In DNA sequence analysis, compari-

son of strings of over 104 bases will be routine. (The human genome is

estimated to contain over 109 base pairs.) Even if each fact to be stored fits in

a single byte, on strings this size, the standard bottom-up approach will

require over a hundred megabytes (108 bytes) of storage.

Slliding Window Tabulation, as described in Naughton and Ramakrishnan

[1994], evaluates this program in O(m + n) space (which is just 104 bytes)

and 0( mn) time, by discarding facts in the course of the evaluation. Thus this

improvement in the space complexity is very important if the program is to be

run over such large databases.

Slliding Window Tabulation is effective on the LCS example, but it does not

work on many simple variations. For instance, suppose we extend the LCS

program so that instead of being base predicates, a and b are defined by

additional rules in the program-this will be the case if the program prepro-

cesses “rough” base data before searching for common subsequences, Sliding

Window Tabulation cannot be used on this extension of the LCS program.

Similarly, if the preceding program is embedded in a larger program that

uses the length of the longest common subsequence to perform further

analysis, such as finding the region of a given DNA sequence that best

matches the given test sequence, Sliding Window Tabulation is again inappli-

cablee. The techniques described in this paper can handle such extensions and
are applicable to a much larger class of programs.
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2. DEFINITIONS

In this paper, we consider Horn clause logic programs,4 and assume the usual

definitions including those of terms, atoms, and rules (clauses). We assume

some familiarity with semi-naive evaluation and, in some of the sections of

the paper, with the Magic Sets transformation. We refer the reader to Unman

[ 1989] for more details.

We present intuitive definitions of some well-known concepts in logic

programming; see Lloyd [1987] for formal definitions. Informally, the uni-

verse of a program consists of all the values (such as integers, reals, and

strings) that the program can manipulate. A substitution o is a mapping

from a set of variables to values in the universe of the program; it is extended

to handle syntactic objects (such as terms/literals) containing variables in a

straightforward manner. For example, m = {X/4, Y/’’j”o~n”} is a substitution,

and p(X, Y)[ m ] (the result of applying m to p(X, Y)) is p(4, “jo~n”). The

result of applying a substitution to a syntactic object is called an instance of

the object. In this paper, we only use substitutions that map all the variables

in the input term to values in the universe (ground values).

A program is treated as a set of rules and database (EDB) facts. While

analyzing the program, we do not need to know the specific EDB facts, but we

often make use of information such as functional dependencies on EDB

relations. A program fact is used to mean any fact that is used or derived by

the program. In this paper, we assume that all program facts are ground,

that is, they do not contain any (universally quantified) variables. A suftlcient

condition that guarantees this is range-restrictedness of the program, that is,

for each rule in the program, each variable that appears in the head of the

rule also appears in the body of the rule.

2.1 Program Evaluations

The meaning of a program is defined as its least fixpoint in

universe [Lloyd 1987]. The least fixpoint of a program can

the Herbrand

be computed

iteratively, using a bottom-up evaluation. Bottom-up evaluation of a program

computes all facts that can be inferred starting from the facts in the database,

and using the program rules repeatedly.

In this paper we describe several bottom-up evaluation techniques for logic

programs-each has some advantages and some disadvantages. However, we

would like to make several claims that are applicable to each of these

evaluation techniques and hence we need an abstract notion of an evaluation
of a program. For this purpose, we first define program states and state

transitions.

A state in a program evaluation is a pair (~, ~), where F and 2 are

disjoint sets of facts: intuitively, ~ denotes the facts that are available for

use in derivations from this state, %?denotes the facts that have been derived

40ur techniques can be extended to include some classes of programs with negation and

aggregation; we do not do so for simplicity.
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but are hidden, and hence not available for use in derivations from this state;

hiding of facts is used in some of the evaluation strategies we describe later.

The body of a rule instance R[ a ] is satisfied in a state (~,~) if each

positive literal in the body of R[ a ] is present in the set 3.5 For example, if R

is the rule:

q(x) :–p(x).

and the substitution u is {X/a}, then the body of R[ a ] is satisfied in the

state ({p(a)}, {p(b)}). However, if y is {X/b}, then the body of R[ y] is not

satisfied in that state.

Definition 2.1.1 (Derivation Step). A derivation step at state (~,~)
consists of a rule R along with a substitution a on its variables, such that

the body of R[ u ] is satisfied.

The head of R[ u ] is referred to as the fact derived in this step, and the

instantiated body literals are referred to as the facts used in this derivation

step.

We often use the term “derivation” to refer to a derivation step.

A state transition is defined as a mapping from one state to another

(Fl,%l ) -+Y (~z ,%?2). ~ is the collection of derivation steps, possibly empty,

associated with this transition. We require exactly one of the following

conditions to hold in each state transition:

New Available Facts: Fz = FI U facts derived in 9, and %ZZ= 31.

New Hidden Facts: %f = XI u facts derived in Y, and YS = SI.

Show Hidden Facts: Y= +, Yz = FI U%, and ~z =&l –%,

where z G 21.

Discard Facts: P = ~, Fz c Yl, and %j = XI.

In the initial state, ~ is the set of EDB facts in the program, and # is empty

(because no facts are hidden initially).

Definition 2.1.2 (Evaluation). Consider a program P. An evaluation of P

is a sequence of state transitions starting from the initial state. Each of the

states in this sequence is referred to as a point in the evaluation of P.

The notion of earlier and later points with respect to a given point in an

evaluation is the natural one.

We discussed the idea of derivation steps earlier; in an actual bottom-up

evaluation, a set of derivation steps using a rule are typically performed

together in a “rule application.” The following definition formalizes rule

applications.

Definition 2.1.3 (Rule Application). An application of rule R in state

(Sl,%l ) is a transition (YI,21 ) ~Y (Zz ,Zz ) such that all derivation steps in

5When negation is allowed, we also require that each instantiated negative literal is not present

in ~, in addition to other requirements.
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S are performed using rule R, and ~z U %fZ contains all facts that can be

derived using rule R in the state (@l,#l ).

An application of a set of rules Y? is a transition as shown, where all

derivation steps in JY are performed using rules R = ~, and ~z U %2 contains

all facts that can be derived using the rules R = J? in the state (Sl, XI ).

Notice that the preceding definition does not require Y to contain all the

derivation steps that can be performed. Thus derivations that have been

made earlier need not be repeated. Actually, if a fact is present in (91 ,~1 ),

there is no need to perform a derivation step that derives the fact, regardless

of’ whether the derivation step was performed earlier.

We often say “apply rule R“ (resp. “apply a set of rules %“) in a given state

to indicate that the state transition defined by the application of rule R (resp.

W) must be carried out. Specific details of how a rule application is carried

out, such as the order of the join operations and the technique used for each

join operation, are not relevant to the results in this paper.

Definition 2.1.4 (S-Evaluation). An S-evaluation is an evaluation that

satisfies:

(1) Each state transition where new facts are derived is carried out by an
application of a rule or a set of rules.

(2) In each state transition that discards facts, precisely one fact is discarded.

The motivation for the second requirement is discussed later.

In general, the evaluation of a program depends upon the evaluation

method that is used. For simplicity, in this paper we only consider evaluation

methods that produce a unique S-evaluation for each program and initial

state. In the rest of this paper, an evaluation is implicitly assumed to be an

S-evaluation unless otherwise stated.

2.2 Semi-Naive Evaluation

Definition 2.2.1 (Semi-Naive Evaluation). We say that an evaluation “has

the semi-naive property” if (a) no derivation step occurs more than once in

any transition, and (b) no two transitions in the evaluation contain the same

derivation step. We call such an evaluation a semi-naive evaluation.

An evaluation is said to be semi-naive with respect to a predicate p if the

preceding two conditions hold for all derivation steps that derive p facts.

Note that an evaluation is semi-naive if and only if it is semi-naive with
respect to each of the predicates defined in the program.

Several techniques for evaluating programs in a semi-naive fashion have

been proposed, for example, Bancilhon [1985], Balbin and Ramamohanarao

[1987], and Ramakrishnan et al. [ 1994]. We briefly outline the semi-naive

evaluation method presented in Bancilhon [1985] and Balbin and Ramamo-

hanarao [ 1987], which we call Basic Semi-Naiue (BSN) evaluation.

The BSN technique has the following phases. The first is a compilation

phase that generates semi-naive rules from the given program. From each
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rule in the program, a set of rules, which we call the semi-naiue uersions of

the original rule, is generated. The second phase is performed at run-time;

the evaluation keeps track of “new facts,” that is, those that have not been

used to make derivations. The evaluation proceeds in iterations; each itera-

tion applies (semi-naive versions of) all program rules and makes all new

derivations that can be made by using facts derived up to (and including) the

previous iteration. Derivations using only facts generated two iterations (or

more) earlier would have been made already, so only derivations that use at

least one fact derived for the first time in the previous iteration are made.

Some bookkeeping is performed at the end of each iteration to track which

facts are new. This bookkeeping involves deletions from “differential” rela-

tions that keep track of which facts are new. Strictly speaking, deletions are

not modeled in our definition of an evaluation. However, our notion of an

evaluation is a high-level one, and semi-naive evaluations can be modeled

using our definition by ignoring low-level details of the evaluation method.

States in a BSN evaluation have a one–one correspondence with iterations,

where so is the set of EDB facts, and ~ = y~. ~ U the set of all facts derived

in the ith iteration of BSN. For all i, ~ = 0, and facts are not discarded

before the end of the evaluation.

For positive programs, 13SN evaluation computes (in the limit) the meaning

of a program as given by its least fixpoint semantics. BSN evaluation, as

previously described, can be refined to work on a strongly connected compo-

nent (SCC) of the program. The SCCS of a program are partially ordered, and

the whole program is evaluated by evaluating the SCCS in a total order

consistent with the partial order. This is referred to as SC C-by-SCC evalua-

tion of the program.

Some of the techniques that we propose in this paper lead to evaluations

that do not have the semi-naive property; however, they satisfy the following

weaker notion.

Definition 2.2.2 (Locally Semi-Naive Evaluation). An evaluation is said to

be a locally semi-naive evaluation if (a) no derivation step occurs more than

once in any transition, and (b) for each derivation step 11 that appears in the

ith transition, either: (1) D does not appear in any prior transition, or (2)

there is a j < i such that D uses at least one fact that is present in ~ – ~. ~,

and derivation step D does not appear in any transition k, j < k < i.

Essentially a locally semi-naive evaluation is one where once a derivation

step is carried out, it is not repeated unless one of the facts used in the

derivation is discarded, and rederived subsequently.

To understand the intuition behind locally semi-naive evaluations, consider

a variant of a BSN evaluation where a fact is deleted and later rederived. The

fact would be considered a newly derived fact when it is rederived, and the

evaluation may repeat some derivation that uses this fact. The evaluation

would thus not be a semi-naive evaluation, but it would be a locally semi-naive
evaluation.
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PROPOSITION 2.2.3. Every semi-naive evaluation is locally semi-naive. Ev-

ery locally semi-naive evaluation is semi-naive if no facts are discarded during

the evaluation.

PROOF. The first part follows from the definitions, inasmuch as Parts (a)

and (bl) in the definition of a locally semi-naive evaluation hold for every

derivation step in a semi-naive evaluation.

For the second part, consider a locally semi-naive evaluation in which a

derivation step l) appears in transition i and also at some previous transi-

tion h. By the definition of locally semi-naive evaluations, there is a transi-

tion .j, k < j s i such that a fact used in D is derived in transition j, and is

not available in the antecedent state of transition j. However, because D

appeared in transition h < j, this fact must have been derived in some

transition prior to h and therefore, it must have been discarded in some

transition 1, k s 1 <j. ❑

2.3 Base and Derived Predicates

In an evaluation, the facts for the EDB predicates are typically fixed for the

duration of the evaluation. No new facts are derived for these predicates

during the evaluation; hence EDB predicates are also referred to as “base”

predicates (and predicates defined by rules are referred to as “derived”

predicates). The knowledge that the set of facts in a “base” predicate is fixed

is utilized during rule evaluation (e.g., this can simplify the form of semi-naive

rewritten rules).

In some cases, predicates that are defined by rules can be treated as “base”

predicates for the purposes of a number of optimization and evaluation

methods. For instance, in an SCC-by-SCC BSN evaluation, predicates defined

in lower SCCS can be treated as “base” in rules in higher SCCS. We present a

generalized definition of “base” predicates, which is applicable for a variety of

evaluation strategies.6

Definition 2.3.1 (Base Set). Consider an S-evaluation generated using an

evaluation method A?’, and a set of predicates ql, ..., q.. Let D, be the set of

all possible derivation steps that can be made using rule R in state (~, ~).

Similarly, let D be the set of all possible derivation steps that can be made

using R in state (Y; u @, ~), where & is the set of all facts for predicates

ql, ...> q. in the meaning of the progam.
The set of predicates ql, , ,,, q. is said to be a base set with respect to rule

R if for each transition (~,~) - (~, ~) where R is used to perform

derivation steps, D, = D:.

Note that a rule may have more than one base set; however, the union of

base sets is not necessarily a base set. The following example illustrates this.

6This definition is strictly weaker than the usual definition. Hence, the use of the traditional

definition does not affect the correctness of any of the results in this paper.
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Example 2.3.2. Consider the following program.

p(o).

p(x+ I):–p(x), x <100.

q(o).

q(x+ 1) :–q(x), x <100.

r(X) :–p(x), q(x).

In a BSN evaluation, where all program rules are applied in each iteration,

{P} is a base set with respect to the last rule. For example, consider the point
in the semi-naive fixpoint evaluation when we have just derived r(m), for

some integer m, The set of available facts is P(O), p(l),..., p(m) and

q(o), q(l), . . . . q(m). Even if all p facts in the least fixpoint of the program

were available, that is, we had p(0), p(l),.,,, P(1OO), we could not derive

r(n), for n > m. Similarly, {q} is a base set. However, the set {p, q} is clearly

not a base set.

Although the definition of base set is with respect to a particular evalua-

tion, we only make choices that are correct with respect to any evaluation

that can be generated by the evaluation method that we use. For example, in

an SCC-by-SCC evaluation of the preceding program, both p and q would

(trivially) be in the base set of the last rule of the program, because p and q
would be “fully” evaluated before the first application of rule r.

Among all the base sets, one base set is chosen for each rule, and is

referred to as the base set for the rule;7 each predicate in it is said to be base

with respect to the rule. The other predicates in the rule are said to be derived

with respect to the rule.

A predicate pz is said to be derived with respect to another predicate pl if,

either (1) there is a rule R such that p ~ is the head predicate of R and p ~ is

derived with respect to R, or (2) there is a predicate p3 such that p3 is

derived with respect to p ~ and p2 is derived with respect to p3.

A literal p(t) in the body of rule R is said to be a derived literal (resp. base

literal) if p is derived with respect to (resp, base with respect to) R. Note

that the relation “derived with respect to” is not necessarily reflexive or

symmetric.

3. ENSURING SOUNDNESS, COMPLETENESS, AND NONREDUNDANCY

In general, discarding a fact p(ti) in an evaluation could result in the

nonderivation of other facts that would have been derived, had the fact P(E)

not been discarded. Thus, discarding facts could compromise completeness.s

The following condition is the key for ensuring that facts are used in all

possible derivations, and is used to ensure completeness of an evaluation.

71t is possible for predicates to be classified as being in a base set in a nonintuitive manner.

However, such a choice does not affect the correctness of the results in this paper.

8In the presence of negation, discarding a fact could compromise soundness as well.
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Condition U. Consider a point el in an evaluation E where a fact P(E) is

discarded. Fact p(ti) satisfies Condition U at el iffl

(1) Every derivation step using p(ti) has been made at or before el in E, or

(2) There is some later point e2 in E such that p(ti) is recomputed at e2 and

any derivation step that can be made using p(ti) (given all the facts in the

meaning of the program) but that has not been made before e 1 is made

after e 2.9

The restriction of Condition U to a literal in the body of a rule is defined in

a straightforward manner, by considering only uses of a fact in a particular

literal in the body of that rule. It is straightforward to show that Condition U

is satisfied by a fact p(ti) at a point e 1 in an evaluation iff, for each body

occurrence of p in every rule, the restriction of Condition U to that literal is

satisfied by p(ti) in the evaluation,

If a fact is discarded and subsequently rederived, we may not detect the

duplicate derivation and thus may repeat some derivations that use this fact.

This could compromise the semi-naive property. Further, not detecting dupli-

cate derivations of a fact could compromise termination if cyclic derivations

are possible. If each fact that is discarded satisfies the following condition

when it is discarded, then multiple derivations of facts will be detected, which

can be used to ensure the semi-naive property:

Condition D. Consider a point el in an evaluation E where a fact p(ti) is

discarded. Fact P(E) satisfies Condition D at point el in E, iffi

(1) it is not derived again at or after the point e 1 in E; or

(2) no derivation using P(E) made at or before el is repeated after el, even if

P(E) is rederived at some later point e2 in E,

The restriction of Condition D to a rule is defined in a straightforward

manner, by considering only derivations of a fact by that rule. Again, it is

straightforward to show that Condition D is satisfied by a fact p(ii) at a point

e 1 in an evaluation iff, for each rule defining predicate p, the restriction of

Condition D to that rule is satisfied by p(a) in the evaluation,

For an evaluation of a program to be complete, all nonredundant deriva-

tions that can be made using the program must in fact be made by the

evaluation. In the case where the number of derivations of a fact do matter,

as when the multiset semantics of Maher and Ramakrishnan [1989] is used,

no derivation is redundant, although in other cases some derivations may be
redundant. We say that an evaluation is derivation-complete if all derivations

that can be made using the program are, in fact, made by the evaluation.

The following results summarize how ensuring Conditions U and D while

discarding facts during an evaluation guarantees soundness, derivation-

completeness, and the semi-naive property of the evaluation.

—
9If the program has negation, Condition U should also include the condition that any derivation

that would have been prevented by the presence of p(~) is not made in the evaluation.
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Definition 3.1 (Terminated Evaluation). An evaluation of a program is

said to be terminated if its last statel” (-,%? is such that (a) 27=0, and (b)
no fact p @E can be derived using the facts in R and any rule in the

program.

PROPOSITION 3.1.1. Consider a terminated S-evaluation E. Evaluation E is

derivation-complete iff Condition U is satisfied by each fact whenever it is

discarded.

PROOF. (If ): Let fact p(ii) be discarded at point e 1 in the evaluation E. If

p(?i) satisfies Condition U (1) at point el in E, then all derivations that use
p(d) have been made before el in E. If p(ii) satisfies Condition U (2) at point

e 1 in E, then those derivations that use p(ti) but have not been made before

point el, will be made after p(a) is rederived in E. In either case, the

evaluation E is derivation-complete.

(Only if): We prove the contrapositive. Assume that there is some fact p(ti)
that does not satisfy Condition U when it is discarded at point e 1 in the

evaluation E. The fact p(ii) does not satisfy Condition U (1) at point e 1, and

hence not all derivations using this fact have been made at or before el. Also,

this fact does not satisfy Condition U (2) at point e 1, Hence, exactly one of the

following hold: (a) this fact is not recomputed after point e 1 in the evaluation,

or (b) this fact is recomputed in E after point e 1, but there is at least one

derivation using p(ti) which was not made before e 1, and will not be made

after p(ti) is recomputed. In either of these cases, evaluation E is not

derivation-complete. ❑

PROPOSITION 3.1.2. Consider a locally semi-naive S-evaluation E. Evalua-

tion E has the semi -naiue property iff Condition I) is satisfied by each fact

whenever it is discarded.

PROOF. (If ): If a fact p(ii) satisfies Condition D (1) when it is discarded at

point el in evaluation E, no derivations that use p(d) are made after el in E

because E is locally semi-naive. Hence, to prove the semi-naive property of E,

we need only consider rederivations of facts in E.

Our proof ie by induction on the order in which facts are rederived after

being discarded in E. Let pl(~) be the first fact rederived (say, at point e2)

after being discarded (say, at an earlier point e 1) in the evaluation E.

Evaluation E is locally semi-naive, therefore no derivation step (including

the derivation of pl(al) at e2) is repeated at or before point e 2 in the

evaluation E. Fact p ~(al) must satisfy Condition D (2) at point e 1 in E.

Hence, derivations using p ~(~) made before el in E are not repeated after

e 2. Also, there are no derivations using p ~(~) between points e 1 and e 2 in E.

Consequently, no derivation step that uses p ~(~) is repeated in evaluation E.

Consider now the induction step. Let pn(~) be the nth fact rederived after

being discarded in the evaluation E. The induction hypothesis guarantees

10The notion of last state is well defined only for finite evaluations. Our definitions can be

extended to handle infinite evaluations as well, but the details are tedious.
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that this derivation step is a new derivation step (because it has to use

previously computed, possibly rederived, facts). Inasmuch as p.(~) must

satisfy Condition D (2) when it is discarded, the argument used for the base

case also shows that no derivation step that uses p~(~) is repeated in

evaluation E. This completes the induction step and hence the proof of the

claim that E has the semi-naive property.

(Only if): We prove the contrapositive. Assume that there is some fact p(a)

that does not satisfy Condition D when it is discarded at point el in the

evaluation E. The fact P(E) does not satisfy Condition D (1) at point e 1, and

hence it is derived again (say at point e2) in the evaluation E. Also, this fact

does not satisfy Condition D (2) at point e 1. Hence, some derivation made

using p(ii) before e 1 is repeated after e 2 in E. Hence, evaluation E does not

have the semi-naive property. ❑

The following result is a consequence of these two propositions.

THEOREM 3.1.3. Consider a locally semi-naive, terminated S-evaluation E.

Evaluation E is sound, derivation-complete, and has the semi-naive property

iff Conditions U and D are satisfied by each fact whenever it is discarded.

THEOREM 3.1.4. Given a program P, and an arbitrary point el in an

evaluation of program P, it is undecidable whether a given fact satisfies

Conditions U and/or D at el.

PROOF. Consider an arbitrary logic program L that defines p. Add the fact

P 1 and the rule P~: –p, p ~ to L to get program L1. (Neither p ~ nor p ~ should

occur in L.) The fact p ~ can be used to compute P2 iff ?P is satisfiable in L.

Because satisfiability is not decidable for logic programs [Shmueli 1987], it is

undecidable if p ~ will be used again after any point e1 in the evaluation.

Because there is no other derivation of Pl, Condition U is undecidable.

To show undecidability of Condition D, add the fact p and the rule R:

p ~ :–p to the logic program L to get L2. Consider a point el in a semi-naive

evaluation of L2 after p ~ has been derived using the given fact p and rule R.
Because it is undecidable whether ?p is satisfiable in L, if p is discarded at el

it is undecidable whether the derivation of p ~ (using R) is repeated after e1.

❑

Consequently, it is undecidable whether discarding a fact during an evalu-

ation will compromise the soundness, completeness, or semi-naive property of

the evaluation. Hence, we must look for sufficient conditions for ensuring

Conditions D and U for program facts. Even the stronger conditions that test

only the first parts of Conditions U and D are undecidable. Our sufficient

conditions are often based on the first parts of Conditions D and U.

4. OUR APPROACH TO SPACE OPTIMIZATION

4,1 Discarding Facts Based on Conditions U and D

The general framework of our approach for discarding facts during an

evaluation of a program is as follows.
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Consider an evaluation method. The evaluation method performs certain

tests before discarding facts during an evaluation. Facts are discarded only if

they satisfy these tests. Some of these tests guarantee that if a fact satisfies

the test when is discarded, then, in the evaluation generated by the evalua-

tion method, the fact satisfies Condition U when it is discarded. We call such

tests techniques for ensuring Condition U. Similarly, we have techniques for

ensuring Condition D.

Each technique we describe for ensuring Conditions D and/or U is typi-

cally applicable only to certain classes of programs. Hence, at compile time

we analyze the program, and decide on the applicability of each technique for

ensuring Conditions D and U. We then generate a specific evaluation method

for a program by choosing which techniques to use. These techniques perform

tests at run-time to decide when a fact satisfies Conditions D and/or U. Facts

are discarded at run-time as soon as the tests determine that they satisfy

Condition U and (if nonredundancy is desired) Condition D, The run-time

tests we describe are quite efficient-see Section 9 for more details.

The discarding of one fact at a point in the evaluation could affect whether

another fact is rederived at a later point in the evaluation. Hence, for

simplicity, we have assumed that facts are discarded one at a time in the

evaluation. The run-time tests for whether a given fact satisfies Conditions D

and U are performed under the assumption that no other fact is discarded at

the same point in the evaluation.

4.2 Summary of Our Techniques

In the rest of the paper, we describe several techniques for ensuring Condi-

tions D and U, as well as several synchronization techniques.

Ensuring Condition D (Nonredundancy). Techniques for ensuring Condi-

tion D can be chosen on a per-rule basis, and different techniques can be used

for different rules in a given program, Applicable techniques include the

following:

(1) Providing a bound on the total number of derivations of a fact.
If a program is duplicate-free [Maher and Ramakrishnan 1989], we know

that once a fact is defived it will not be derived again. We look at this

technique (and some extensions) for ensuring Condition D in Section 5.1.

(2) Using monotonicity constraints.
Monotonicity constraints ensure some monotone ordering on the deriva-

tion of facts. We look at this idea in Section 6.3.

Ensuring Condition U (Correctness). Techniques for ensuring Condition U

can be chosen on a per-body-literal basis, and different techniques can be

used for different literals in a given program. Applicable techniques include

the following

(1) Providing a bound on the total number of uses of a fact.
Suppose a rule in linear, that is, there is only one literal in the body of the

rule whose predicate is derived with respect to the rule. Once a fact for
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the derived predicate is used (along with all the facts for the “base”

predicates in that rule), we know that no new derivations can be made

using that fact in that rule. We look at this and more general ways of

ensuring Condition U in Section 5.2.

(2) Using monotonicity constraints.
In Section 6.4 we consider using monotonicity constraints to ensure

Condition U.

If none of these approaches for ensuring Conditions D or U succeeds for p

facts, we always have the option of not discarding any p facts. We can still

optimize the rest of the program, unlike the method described in Naughton

and Ramakrishnan [1994].

Synchronization. If (all) derivations of facts are “close” to all their uses,

facts can be discarded soon after being derived (and used). In Section 7 we

consider techniques that can be used to order an evaluation to ensure that

derivations of facts are close to their uses, and we call them synchronization

techniques. These include:

—Delaying first use of facts: The idea is to partition the set of derived facts

into a set of “active” facts used in derivations and a set of “hidden” facts

whose use is delayed (until they become “active”). The goal is to balance

the derivation of new facts against the identification of facts that can be

discarded so that the number of facts that are stored at any one point in

the evaluation is reduced (Section 7.1).

—Nested-Unit synchronization: This technique identifies “subgoals” that are

to be evaluated by a “subprogram” on each call. The idea is to generate

(answer) facts using the subprogram as and when they are needed by the

“main” program (Section 7.2).

—Interleaved-Unit synchronization: The acyclic graph of SCCS of a program

suggests a natural producer/consumer relationship. B y interleaving the

evaluation of producers and consumers, it is sometimes possible to ensure

that facts are generated in a producer as and when they are needed by the

consumers. This is generalized to work with “units” instead of SCCS

(Section 7.3).

Combining Techniques. The various techniques for synchronization and

for ensuring Conditions D and U are applicable to parts of a program (such as

rules, literals, etc.). These need to be combined to get a space optimiza-

tion method for the full program. This issue is discussed in some detail in

Section 8.2.

5. BOUNDS ON DERIVATIONS AND USES OF FACTS

In the following, we use the notion of functional dependencies on variables

and literals in rule bodies.

Definition 5.1 (Functional Dependencies on Rules). We say tha~ a set of

variables ~ in a rule R functionally determines a set of variables Y in R if
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the following condition is met: given any rule instances R[ d ] and R[ y ] such

that the bodies of R[ 6 ] and R[ y ] are satisfied in the meaning of the program,

if ~[~] =~[y], then Y[6] = ~[y].

A set of literals j5 in R functionally determines a set of literals ~ in R if

MU-S( j5) functionally determines vars(~).

The preceding notation is abused to allow single variables or literals in

place of sets of variables or literals.

5.1 Duplicate Freedom and Condition D

The simplest technique to ensure Condition D for a fact p(ti) at a point in a

locally semi-naive evaluation of a program is based on the following condition

on the predicate p:

Condition Dl?l, A predicate satisfies condition DF1 if (1) No fact for p is

derived by more than one rule, and (2) there is at most one derivation for

each p fact by any rule.

The essential idea is to make sure that no fact for p is derived more than

once in the evaluation. The techniques of Maher and Ramakrishnan [1989]

can be used to test the condition—part (1) can be tested by determining that

no two rule heads unify 11 and part (2) by checking that the head of a rule

functionally determines the body of the rule.

PROPOSITION 5.1.1. If a predicate p in a locally semi-naive S-evaluation

satisfies Condition DFl, and the evaluation is semi-naive with respect to p,

Condition D is satisfied by each p fact at any point at which it is discarded.

PROOF. conditions DF1 (1) and DF1 (2) together ensure that there is at

most one derivation of any p fact. Because the evaluation is semi-naive with

respect to p, such a derivation step is not repeated. Hence, predicate p

straightforwardly satisfies Condition D (l). 0

We can weaken Condition DF1 in several ways. If part (1) does not hold, we

can still ensure Condition D using a run-time check to determine that a fact

has been derived once by every rule that could possibly derive it.

DF1 can also be weakened by modiffing the requirement that “there is at

most one derivation for each fact by any rule” to the requirement that “if

there is more than one derivation for any fact by a rule, then the facts for the

derived literals in the corresponding rule instances are the same.” Thus

multiple derivations would be allowed within a rule application. To test this

weaker requirement, we can check whether the head of a rule functionally

determines all derived body predicate occurrences in the rule; the head need

not functionally determine the base predicate occurrences. To summarize:

Condition DF2. Part (1) as in DF1, and (2) if there is more than one

derivation for any fact by a rule, then the facts for the derived predicate

occurrences in the corresponding rule instances are the same.

11This can be generalized using the techniques of Debray and Warren [1989], for example.
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A proposition similar to Proposition 5.1.1 also holds in the case of DF2.

Again, if part (1) does not hold, we can ensure Condition D using run-time

checks.

5.2 Bounds on Uses and Condition U

If we can determine a bound on the number of uses of p facts in a body

predicate occurrence p‘ of p, once a p fact has been used in that many

derivations in p‘, we know that it can no longer be used in this occurrence.

The following condition seeks to capture this intuition.

Condition Bounds-U. Consider a program P, and a rule R which has a

body predicate occurrence p(i). Let R be denoted as:

R: p2(~) :-p(i), b(~),pl(~),

where b(~) denotes the set of all the predicate occurrences in R (other than

P(Z)) that are base with respect to the rule, and p l(~) denotes the set of all
predicate occurrences (other than p(i)) that are derived with respect to the

rule.

Then the predicate occurrence p(l) in rule R satisfies Condition Bounds–U

if it satisfies either of

BU1: p(l) functionally determines p l(t 1) in R, or

BU2: p(i) functionally determines the head p 2(E) of R.

PROPOSITION 5.2.1. Consider a locally semi-naive S-evaluation of a pro-

gram P, and a rule in P:

R: p2(~) :–p(i), b(~),pl(~).

Suppose body predicate occurrence p(i) in R satisfies Condition BU~ and the

evaluation is semi-naive with respect to p 2. Then no derivation step in any

transition after a point e 1 will use fact p(ii) in the body literal p(?) if (1) there

is no instance RI 6 ] whose body is satisfied in the meaning of the program and
p(~)[ ~ ] = P(z), or (2) an application of R that uses a dermation step where

p(i) is instantiated to p(?i) has been made at or before e 1.

PROOF. If no instance R[ O] whose body is satisfied in the meaning of the

program is such that p(~)[ /3] = p(?i), then p(=) cannot be used in any

derivation step; this proves Part (1) of the result. If the fact has been used in

a derivation step, all derivation steps that it can be used in must have been
carried out in the same rule application by the definition of base with respect

to a rule. Because the evaluation is semi-naive with respect to p 2, none of

these derivation steps can be repeated in the evaluation; this proves Part (2)

of the result. ❑

Consider the (important) special case of linear recursive rules. For such

rules, Condition Bounds–U is always satisfied-p(i) is the only derived

predicate occurrence in the rule R and BU1 is satisfied trivially. If we use

BSN evaluation, any p fact is either used in a derivation step using R in the
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iteration after it is derived, or there is no instantiation of the rule R with this

p fact, such that the body is satisfied in the meaning of the program.

Consequently, by the preceding proposition, every p fact satisfies Condition

U if it is discarded at any point after the end of the iteration subsequent to
the iteration in which it is derived.

Now suppose some derivations using R and p(ti) need to be repeated. If we

discard the fact p(ti) after a derivation step, we would prevent repetitions of

that derivation and hence not satisfy Condition U.

If the occurrence p(i) in R satisfies Condition BU2, and a fact p(ti) has

been used in this occurrence in a derivation step, then no new facts can be

generated by any subsequent derivations that instantiate p(i) to P(E). Con-

dition U is not satisfied if the fact is discarded, as it is possible that there

are other derivations of the same head fact using p(ti) in this predicate

occurrence. However, if we are not interested in the number of derivations,

we may effectively consider Condition U to be “satisfied,” without compro-

mising soundness or completeness (although we do sacrifice derivation-

completeness).

The following result is a direct consequence of the preceding proposition.

COROLLARY 5.2.2. Suppose a literal p(?) in the body of rule R satisfies

Condition Bounds–U, and in a point in a locally semi-naive S-evaluation a

fact p(d) satisfies the tests described in Proposition 5.2,1, Then p(ii) satisfies

the restriction of Condition U to the literal p(~) if it is discarded at that point.

The following example illustrates the use of bounds on derivations and uses
of facts in space optimization.

Example 5.2.3. Consider the program for computing the ancestors of a

given person and the father relation, from Example 1.2.1.

anc(X, Y):–father(X, Y).

anc(X, Y) :–father(X, Z), arzc(Z, Y).

Query: ?-anc(n, X).

Suppose the father relation is an acyclic relation, with the functional depen-

dency father: $1-$2, that is, each person has at most one father.

We can deduce the following about the program:

—The body occurrence of anc(Z, Y) in the linear recursive rule satisfies

Conditions Bounds–U. Hence, in an evaluation of the program, each anc
fact can be used in at most one rule application (although, possibly, in

several derivation steps), in the iteration subsequent to the iteration in

which it is derived.

—The definition of anc satisfies Condition DF1, that is, no anc fact is

derived more than once. The functional dependency between the argu-

ments of the father relation shows that each anc fact can be derived at
most once by each rule, and the acyclicity of the father relation along with
the functional dependency shows that each fact can be deduced by at most
one rule. (Techniques such as those presented in Maher and Ramakrish-
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nan [1989] may be used to deduce this; this is outside the scope of our

paper.)

Hence, we can discard anc facts that are not answers to the query at the end

of the iteration after they are computed.

Consider a father relation with the following facts: father(rz, n – l), fa-

ther(n–l, n– 2),..., father(2, 1), father (1, O). A bottom-up evaluation of

the Magic Sets transformed program would have asymptotic space and time

complexity of 0( nz ). This is because the evaluation computes the follow-

ing anc facts: anc(n, n – 1),...,anc(n, 1),anc(n, O), anc(n – 1,n – 2), . . . .

anc(n – 1,1),anc(n – 1,0), . . . . cmc(l, O). In an SCC-by-SCC evaluation of

the Magic Sets transformed program, we can discard cznc facts one iteration

after being derived. This results in an 0(n) space complexity. (The time

complexity remains unchanged.)

Note that the use of functional dependencies is conservative; for example, if

literal p functionally determines literal q in the body of a rule R, we know

that there is at most one q fact that can be used in a derivation step with a
given p fact. In fact, there may be no such q fact (as the following example

illustrates). Conditions BU1 and BU2 for the literal p can be refined by using

a notion of dependencies that requires the existence of exactly one such q fact

for each p fact, but we do not pursue the extension further.

Example 5.2.4. Consider the following program, P~Ch, that computes the

Ackermann function:

Rl: ack(O, Q,2*Q).

R2: ack(P, O, O):–P >0.

R3: ack(P,l,2):–P >0.

R4: ack(P, Q, N):–P > O,Q > l,ack(P, Q – l, Nl), ack(P – l, N1, N).

Here, the FDs czck: {$1,$2} + $3 and {$1, $3} ~ $2 hold.12 As a consequence,

each body occurrence of ack functionally determines the other occurrence of

ack in rule R4. Also, each occurrence of ack in the body of rule R4

functionally determines the head of that rule. Both Conditions BU1 and BU2

are therefore applicable; because ack can also be shown to be duplicate-free,

we can discard each ack fact after two uses. However, there are several ack

facts that can be used only once, and based on these conditions they are never

discarded.

6. MONOTONICITY

In this section we look at how to use monotonicity to ensure Conditions D and

U. Our results on the use of monotonicity extend the results of Naughton and

Ramakrishnan [1994].

12The FD ack: {$1, $2} + $3 holds because the third argument denotes the result of the

Ackermann function on the first two arguments. The FD ach: {$1, $3} + $2 holds because (it can

be easily shown that) for a given value of the first argument, the value of third argument M

strictly monotonic on the value of the second argument.
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6.1 @ Functions

We make extensive use of the class of @ functions defined in Naughton and

Ramakrishnan [1994]; we present it now for completeness. The ~ functions

are similar to the “size” functions that have been used for detecting termina-

tion of logic programs.

We let @ denote a class of functions that map ground atoms to integers

(Y). Individual functions in the class @ are typically denoted as ~, and we
often refer to @ as the class of ~ functions.

Consider a predicate p(Xl, Xz,..., X.), where ~i denotes the domain of

X, ,13A function + that is applied to atoms of predicate p can then be viewed

as a function:

&Zl xg2 x ... x~n +3.

For simplicity, we consider only functions that can be expressed as arith-

metic expressions on the variables Xl, Xz, ..., X., possibly with predefine

functions (such as term-size) applied to the variables. An example of a

function in @ is one that maps fiac(l, IV) to 1.

Intuitively, ~ functions are used to formalize monotonicity that is present

in the use or generation of facts. Monotonicity can be used to discard facts

once they are no longer needed. In order to characterize the monotonicity in

the generation or use of facts for a given predicate, we choose a @ function for

that predicate. There are of course many candidate functions from which to

choose.

An important question is, hovv do we choose such a function automatically.

In general, the task is quite difficult. In this paper, we deal with the issue as

follows. We enumerate all choices from the subclass of @ functions that sum

up the “sizes” of a subset of the arguments of the predicate. (We define the

“size” of an argument later.) From this set of functions, we choose a function

that lets us infer “monotonicity of rules.” (We discuss the testing for mono-

tonicity later.) If there are multiple functions that enable us to infer mono-

tonicity, we make an arbitrary choice between them. The specific choice made

can certainly affect the efficiency of the space optimization method. How

precisely to make such a choice is outside the scope of this paper.

We now present the definition we use for the size of a term; other

definitions are possible, and our choice is merely a convenient one. To define

the size of a term, we divide terms into three types: those that contain

integers, those that contain structured terms, and others. The “size” of an

argument is defined as follows:

(1) The size of an integer is itself.

(2) The size of a structured term jltl, t,,..., tP) is defined by

(size f(tl, tz, ..., tP)) = 1 + max(size(tl), si.ze(t~),... , size(tP)).

(3) The size of a term that is neither an integer nor a structured term is 1.

13In this section we assume that we know the domain from which facts take values. If the

domain is not known, we simply assume that it is the universe.
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For example, suppose that the function @ chosen for a predicate p(X, Y, Z) is

size(X) + size(Y). If we know that the first two arguments are integers, the

function ~ merely becomes X + Y. If we do not know the types of arguments

a priori, the computation may proceed as shown in the following:

@(p(f(g(c), a),4, b)) = size(f(g(c), a)) + 4

= 1 + max(size(g(c)), size(a)) + 4

= 1 + max(l + size(e),l) + 4

=3+4

= 7.

Applying @ to a structured fact (such as a fact with lists) could take time

proportional to the size of the arguments of the fact. However, it may be

possible to compute the @ value for a fact incrementally, by carrying along

additional information during derivations. For instance, consider the follow-

ing program that appends two lists:

append (nil, L, L).

append([Hl T], L,[HIL1]) :–append(T, L, Ll).

If we use a function ~ that sums the sizes of the first two arguments of

append, it is possible to compute the ~ value for a newly derived append fact

incrementally by using the ~ value of the append fact in the body of the

recursive rule. We do not discuss this issue further in the paper.

The cost of complete enumeration of the #1 functions in the aforementioned

subclass, for a single predicate, is exponential in the number of arguments of

the predicate; with multiple predicates we have to multiply together the

number of choices for each predicate in order to enumerate all possible

choices. However, the number of arguments of a predicate is typically small

and because we analyze program units (Section 8.2) with only a few predi-

cates, we expect that the cost will be reasonably small in practice. A heuristic

that we have found useful is the following. We analyze the “mode” (or,

equivalently in the context of evaluation using Magic Sets, the adornment) in

which a predicate is used, and choose as a ~ function the sum of the sizes of

all the input arguments (equivalently, “bound arguments).

6.2 Local Saturation

Consider a Basic Semi-Naive evaluation, and any point in that evaluation.

We know that some facts are “old” and other facts are “new,” and each new

derivation step must use at least one new fact. We may be able to infer that

any fact that is derived after this point in the evaluation will have a @ value

greater than any “new” fact that is available, and thereby deduce which facts

will not be derived again, and which facts will not be used again.

This intuition behind our use of monotonicity information is not limited to

Basic Semi-Naive evaluation. We would like to use monotonicity information,

independent of the specific evaluation method used. Hence, we use the

following definition of “locally saturated” facts, which corresponds to the “old
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facts in BSN; the idea is that each new derivation step must use at least one

fact that is not in the set of “locally saturated” facts.

Definition 6.2.1 (Locally Saturated). A set of facts S for derived body

predicate occurrences of a rule R defining p is said to be locally saturated

with respect to R at a point e 1 in the evaluation if every derivation step that

can be made using: (1) the rule R, (2) all facts for the base predicate

occurrences in R, and (3) the given set of facts S for the derived predicate

occurrences in R, has been made at or before e 1.

A set of facts is said to be locally saturated with respect to a set of rules at a

point in the evaluation if it is locally saturated with respect to each of the

rules at that point in the evaluation.

Note that there can be more than one set of locally saturated facts at a

state in an evaluation. Because all derivations that could be made using a set

of locally saturated facts have been made at a point in the evaluation, any

new derivation after that point in the evaluation requires at least one fact

(for a derived predicate occurrence) that is not in the set of locally saturated

facts.

In the case of a Basic Semi-Naive evaluation of an SCC (where the set of

predicates derived with respect to p is just the set of predicates defined in

the SCC of p), at any point in the (n + l)th iteration, the set of facts derived

in or before the (n – l)th iteration is a set of locally saturated facts for p. If a

different evaluation technique is used, the sets of locally saturated facts may

change, but each new derivation would still have to use at least one fact that

is not in the set of locally saturated facts. Thus, we achieve a certain degree

of independence from specific evaluation techniques in the following results.

6.3 Monotonicity and Condition D

Definition 6.3.1 (Monotonicity). A rule

R:p(Z):–.. .> PL(Z), -..

is said to be monotonically increasing with respect to predicate occurrence

p,(~) in its body if, for every instance R[ 0 ] of the rule where the body is

satisfied in the meaning of the program, 4( p(i)[ 6]) > +( pi(~)[ o ]).14 A rule is

said to be monotonically increasing if it is monotonically increasing with

respect to all body occurrences of predicates that are derived with respect to

the rule.

The following is a sufficient algorithmic test for monotonicity. Consider a

rule R:

R: p(i) :–pl(~), . . . ,pm(~).

14It would probably be better to use the term “inflationary” rather than “monotonicity.” How-

ever, we use “monotonicity” for consistency with earlier work in this area [Naughton and

Ramakrishnan 1994].
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The rule is guaranteed to be monotonically increasing if for each derived

literal p,(~), the arithmetic expression 4( p(i)) – 0( p,(z)) is always nonneg-

ative. This can be tested using symbolic manipulation on each expression

O(P(~)) – 0( p,(~)), along with the arithmetic literals in the rule body.

Condition Monotonicity-D. Consider a program P. Let p be a predicate

defined in P, and let the set S include p and the set of all predicates in P

that are derived with respect to p. Let ~ be the set of all the rules of P

defining the predicates in S. The predicate p satisfies Condition Monotonic-

ity–D iff each rule in Y is monotonically increasing.

Definition 6.3.2 (Min-Head-Gap Bounding Function). For a predicate p

satisfying Condition Monotonicity–D, a function y mapping ground atoms to

integers is said to be a rein-head-gap bounding function for p if for each

instance R‘ of any rule R defining p, if p(?i) is the head fact and q(~) is the
fact for any derived literal in the body of R’, (~(p(ti)) – O(q(z))) z y(q(~)).

Note that the constant function y = O is always a rein-head-gap bounding

function for such predicates—however, one might be able to determine a

“better” function for the purpose of the subsequent theorem.

We can algorithmically determine a rein-head-gap bounding function as

follows. Suppose for each rule R defining p and for each derived predicate

p,(~) in the body of R, each expression #Xpti))– ~(p,(~)) not only is

nonnegative but also (after simplification) has as argaments only variables

from ~. Then we can derive a rein-head-gap bounding function for p by

symbolic arithmetic manipulations on these functions. For instance, if we

have the rule

fiic(X, X* N):-X> O, Y= X- l,~ac(Y,lV),

and a o function that maps fac(X, Y ) to X, simplification of O(X) – c)(Y)

using Y = X – 1 gives us the constant function 1 as a rein-head-gap bound-

ing function for fat.

Tmomm 6.3.3. Consider a locally semi -naiue S-evaluation where predi-

cate p satisfies Condition Monotonicity–D, the evaluation is semi-naive with

respect to p, and y is a rein-head-gap bounding function for p. Let S and H

be as in Condition Monotonicity-D. In this evaluation, let F be the set of all

the facts that have been computed for predicates defined in S, and F’ c F be a

set of facts such that F’ is locally saturated with respect to the set of rules A?.

Let

m=min{~(f) +y(f)\f=F\F’}.

If a fact p(d) is such that ~(p(ti)) < m, then p(?i) will not be derived again.

PROOF. The set of facts F’ is locally saturated with respect to the set

of rules AZ. Hence, for any predicate q G S (i.e., p, or a predicate derived

with respect to p) any derivation of a q fact using some rule R e %

must use at least one fact that is not in F‘. Because the rules in 3? are mono-

tonic, for any new fact q(~), ~(q(~)) > min{~( f) I f = F – F’}. Because y is
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a min-head-gap bounding function for p, no p fact with a ~ value less than

rein{+(f) + y(f) If’ = F – F’} will be derived. ❑

An analogous theorem holds with monotonically decreasing rules in place

of monotonically increasing rules in Condition Monotonicity–D. The theorem

gives us a way of ensuring Condition D for facts when the conditions on

monotonicity are satisfied.

In an iteration of Basic Semi-Naive evaluation of an SCC, the set of facts

derived two or more iterations prior to the current iteration constitutes F‘ (as

mentioned earlier) and the set of facts derived either in the previous or in the

current iteration constitutes F – F‘.

Note that although the set of derived predicates as well as the set of locally

saturated facts depends on the actual evaluation used, the theorem holds

independent of the specific evaluation.

Example 6.3.4. Consider the following program that computes a list of

factorials of even integers, and an iterative evaluation of all the rules in the

program.

Rl: ~ac-list(O, [1]).

R2: fac-list(N, [Vl L]) :–N >0, N < n, fac-list(N – 1, L), ~ac(2 * N, V).

R3: fac(O, 1).

R4: fac(N, N * V) :–N > O,N < 2* n, fac(N – l, V).

Let the @ function map fac-list(N, -) to N, and fac(N, -) also to N. We

deduce that rules R3 and R4 are monotonically increasing. In rule R2, fac

can be treated as “base.” Hence we deduce that R 1 and R2 are monotonically

increasing. Thus Condition Monotonicity–D is satisfied by predicates fac as

well as fat–list. We also deduce rein-head-gap bounding functions: the con-

stant function 1 for fac as well as for fat–list.

From Theorem 6.3.3 we deduce that once a fac fact with index n is derived,

no fac fact with index less than n + 1 will ever be derived again. We deduce

similar results for fat–list.

6.4 Monotonicity and Condition U

In this section we discuss how to use monotonicity of rules to ensure

Condition U. We make use of the definitions and results in Section 6.3. Let ~

be a function as before.

Definition 6.4.1 (Body--Gap). Let R be a rule and let p‘ and q‘ be

predicate occurrences in its body. Let R‘ be an instance of R with facts p(~)

and q(~) used in the occurrences p‘ and q‘, respectively. We then define

body–gap(R’, p‘, q‘) = +( p(~)) – ~(q(~)). If R has at least one derived
predicate occurrence in its body, we define:

body -gap(R’, q‘)

= max{body–gap(R’, p‘, q‘) Ip‘ is a derived predicate occurrence
in R}.

If R has no derived predicate occurrence in its body, body–gap(R’, q‘) ~ ~.
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Note that if there is only one derived predicate occurrence q‘ in the body of a

rule R, and R‘ is any instance of R, then body–gap(R’, q‘) = O.

Monotonicity can be used to infer that a fact can no longer be used in a

body predicate occurrence q‘ based on Condition Monotonicity-U and Theo-

rem 6.4.2.

Condition iMonotonicity-U. Consider a program P. Let R be a rule with a

body predicate occurrence q‘ having predicate q. Let p;, . . . . p; be the

derived predicate occurrences in the body of the rule R. Let y be a function

that maps q facts to integers. The predicate occurrence q‘ in R satisfies

Condition Monotonicity-U with function y iff, for each instance R‘ (with

q(ti) used in the occurrence q ‘):

body -gap(R’, q’) < y(q(ii)).

Intuitively the theorem states that if two facts are used in a rule to perform a

derivation step, the indices of the facts are fairly “close” to each other. The

function y provides an upper bound on the gap.

Suppose for each derived predicate occurrence p: in the body of rule

R, O( p{ ) – ~(q’) (after simplification) involves only the variables in the

literal q‘. Then, by a process similar to the derivation of rein-head-gap

bounding functions in Section 6.3, we can derive a function y as in Condition

Monotonicity–U.

THEOREM 6.4.2. Consider a point in a locally semi-naive S-evaluation of a

program P. Let R be a rule in P, q‘ be a body predicate occurrence in R, and

p;,... , p; be the deriued predicate occurrences in the body of the rule R, such

that q‘ satisfies Condition Monotonicity–U with function y. Let m be an

integer such that no fact for any p:, 1 < i < n with index (under the function

4) @s than m will be derived again. 15 Suppose that the set of all facts

{p,(b) ~1< i < n and $(p,(~)) < m] is locally saturated with respect to R at

the given point in the evaluation.

Thenj every derivation step that instantiates predicate occurrence q‘ to q(al)

must have been made before the given point in the evaluation if $[q(~)) +

y(q(~)) < m.
If the evaluation is semi-naive with respect to the head predicate of R, the

fact q(al) will not be used in the predicate occurrence q‘ after the given point

in the evaluation.

PROOF. Because the set of facts {p,(~) I 1< i < n and ~(p,(~)) < m} is

locally saturated with respect to R, and no p, fact with ~ value less than m

will be derived again, any new derivation must use at least one derived fact

with @ value of m or more. But by Condition Monotonicity–U if a fact q(~)

is used to make a derivation, all derived facts used with it are such that their

+ values are less than or equal to ~(q(~)) + y(q(~)). Hence, a fact q(~) will

not be used in the predicate occurrence q‘ beyond this point in the evaluation

if @(q(al)) + y(q(al)) < m. ❑

15Theorem 6.3.3 may be used to ensure this
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Note that the theorem makes no mention of whether q is derived with

respect to the head of the rule. An analogous theorem holds when the

body-gap of the rule with respect to q‘ is bounded from below, and no fact for

any p: with index (under ~) greater than some m will be derived again.
A special case of the function y is the constant function k (for some h).

Theorem 6.4.2 generalizes the conditions of Sliding Window Tabulation

[Naughton and Ramakrishnan 1994], as only such constant functions could

be used for y in Sliding Window Tabulation. Example 6.4.3 shows the

importance of allowing general functions.

Example 6.4,3 We use the program from Example 6.3.3 again. Consider

Rule R4:

R4: ~ac(~,~*V):–~> 0,1’J< 2*n, fac(~– I, V).

There is only one derived literal in the body of this rule, hence a fac fact can

be used at most once in this rule (Condition Bounds-U). Another way of

looking at this is using monotonicity. A y function on fac that bounds

body-gap is the constant function O. Hence if no fac fact with index less than

n will be derived henceforth, fac facts with indices less than n will no longer

be used in this rule. A similar result holds for uses of fat-list facts in rule

R2 shown in the following:

R2: fac-list(N, [VI L]) :–N > O,N < n, fac-list(N – I, L), fac(2*N, V).

The one predicate occurrence left is the occurrence of fac in rule R2. Now we

derive a function y on fac facts that satisfies Condition Monotonicity-U,

using the technique described earlier: y maps fac(2 * N, –) to N – 1 – 2 * N,

and hence fac( M, –) to M/2 – M – 1. Using this we deduce that if no

fat-list facts with index less than n will be produced and there are no

fat-list facts with index less than n that have not been used to make

derivations, then fac facts fac(M, -) such that M + (M\2 – M – 1) < n will

no longer be used. But from Example 6.3.3 we know how to find what fat–list

facts will no longer be produced: if a fact fac–list(n, –) has been produced in

an iteration, no fat–list fact with index less than n + 1 will be produced

hence.

Thus, in a Basic Semi-Naive evaluation of the program where all program

rules are applied in each iteration, one iteration after fac–list( n, –) has been

produced we know that any fac(m, –) fact with m/2 – 1 < n can no longer

be used in the occurrence of fac in rule R2.

7. SYNCHRONIZATION

A synchronization technique orders derivations in the evaluation of a pro-

gram so that derivations of facts are “close” to their uses; this helps reduce

the “lifetimes” of facts. Intuitively, if each fact computed in an evaluation is

stored for only a short while during the evaluation, the total space required

for the overall evaluation can be reduced. We begin with an example where

synchronizing helps in improving the space utilization of a program evalua-
tion. In the rest of this section, we present three techniques for achieving

synchronization.
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Example 7.1. Consider the following program, where n is some constant,

and an iterative BSN evaluation of all the rules in the program.

Rl: fac(O, 1).

R2: fac(N, N* Xl) :–N >0, fac(N – 1, Xl).

R3: facl(n, 1).

R4: facl(N, N * Xl) :–N > n, facl(N – 1, Xl).

R5: fac2(n, 1).

R6: fac2(N + l,Y* Y1* Y2) :–N > n, fiac2(N, Y), fac(N, Yl),

fac(N, Y2).

Query: ?-fac2(m, X).

Let us consider the case when m > n; for m < n, the answer set to the

query is empty. If each fact in this evaluation is used as soon as it is derived

(or in the following iteration as when Basic Semi-Naive evaluation is used),

we would have to store n + 6 facts at any point in the evaluation (from the

n + lth iteration onward, although less in previous iterations) based on

satisfaction of Conditions U and D. However, if all uses of a fac 1(N, –) fact

are delayed until fac(N, –) has been derived, we need store only six facts at a

point in the evaluation. Because n can be arbitrarily large, synchronizing the

evaluation helps considerably in improving the space utilization of the pro-

gram evaluation.

In order to handle the complexity of choosing a synchronization technique

for a given (possibly large) program, we partition the rules of the program

into subprograms which we call units, then decide on the synchronization

techniques to be used between units. We describe how to partition the rules of

a program into units in Section 8.2. The applicability of synchronization

techniques depends on semantic properties of this partitioning, and we

describe these properties when presenting the various synchronization tech-

niques.

An example of the partitioning of a program into units is the partitioning

defined by the SCCS of the program; each SCC contains a maximal set of

mutually recursive predicates, along with the set of rules defining the predi-

cates.

7.1 Delaying First Use of Facts

An integral part of the Sliding Window Tabulation technique for space

optimization [Naughton and Ramakrishnan 1994] is the idea of keeping all

uses of a derived fact “close” together in the evaluation—this is done by

delaying the first use of a (derived) fact. Each fact is assigned an integer

index by a ~ function. At each point in the evaluation, there is an active

“window” of facts; a fact whose index is not in this window is not available for

immediate use in rule applications—it is hidden and can be used only when
its index falls in the current window. In this section, we generalize this idea

of Naughton and Ramakrishnan [1994] and see how it helps in synchroniza-

tion of evaluation.
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Condition Hiding-Facts. A unit satisfies Condition Hiding-Facts if

(1) All the rules of the unit are monotonically increasing.

(2) There exists a function y‘ mapping facts to integers such that for each
derived body predicate occurrence p‘ of an instance R‘ of a rule in the

unit, where fact p(~) is used in p‘, body–gap(R’, p’) s -y‘(p(~)).

(3) There is a finite bound mino such that d(p(~)) > rein+ for all facts P(z)

for each predicate p defined in the unit.

PROPOSITION 7’.1.1. Consider an S-evaluation of a unit that satisfies Condi-

tion Hiding–Facts. Let m~ be any integer. Let F be the set of p(~) facts for

which ~(p(~)) + -y’(p(~)) = m~. Facts q(~) with @(q(F)) < m~ must be made

available to rule applications, for facts in F to be completely used. q(~) facts

with @(q(E)) > m~ cannot be used along with any fact from F in any rule

application.

PROOF. Because for rule instance l?,’ (with p(~) used in predicate occur-

rence p‘) body–gap(R’, p‘) < y ‘(p(~)), any derived fact used in R‘ must

have a @ value less than or equal to O( p(~)) + y ‘(p(~)). Hence for any fact

p in the set F, if a derived fact q is used in an instance of a rule in the unit

along with p, then ~(q) < m~. Facts with greater ~ values cannot be used in

a rule application with any fact from F. ❑

7.1.1 Evaluation With Hiding Facts. Proposition 7,1 provides a basis for

the hiding of facts to reduce space utilization. Consider a unit S that

satisfies Condition Hiding–Facts. The value mind may be determined in one

of several ways: it may be determined by program analysis (as in Example

7.1); or, if S is an SCC in a Magic rewritten program and the Magic

predicates corresponding to the predicates in S are in a lower SCC, it maybe

determined based on an evaluation of the SCC containing the Magic predi-

cates.lG

At a point in the evaluation of S, let m~ be the greatest integer such that

the set of all program facts with C) values < m~ is locally saturated with

respect to all the rules in the unit. Initially, m~ is set to mino. Because the

unit S has monotone rules, the value of m~ can be determined at later points

in the evaluation as discussed in Section 6.3. We modify the evaluation of S

by always hiding derived facts with indices greater than m~. (The hidden

facts are part of the hidden component of a program evaluation state.) The

value m~ could increase each time facts are derived; it can be updated, for

instance, at the end of each iteration in a Basic Semi-Naive evaluation of the

unit.

Extensions of BSN evaluation to handle hiding of facts, and rule ordering

are presented in Ramakrishnan et al, 11994]. The details do not concern us in

this paper.

To see how delaying the first use of facts can improve space utilization,

consider q(~) facts with @(q(Z)) > m~. Any p(~) fact that can be used in a

lb This can be generalized to work with units, instead of SCCS, in a straightforward fashion.

ACM Transactions on Database Systems, Vol. 20, No. 4, December 1995.



502 . D. Srwastava et al,

rule application with such a q(~) fact would have 4( P( ~)) + y‘( p(~)) > m~.

Because facts with a + index of m~ can still be derived, such a p(~) fact

cannot be discarded at this point in the evaluation based on Theorem 6.4.2 to

ensure Condition U, If these q(E) facts are used along with p(~) facts in a

rule application, new facts can be derived but none of the (p(~) or q(~)) facts

used to derive these new facts can be discarded. By hiding q(~) facts with a ~

value greater than m~, derivations that use these facts are delayed until

some of the p(~) facts that can be used along with the q(~) facts can be

discarded; this can improve the space utilization of the program. Note that if

the facts with a ~ index of m~ are also hidden, the set of locally saturated

facts would not change, the value of mD would not increase, and evaluation

would not proceed any further. As seen in Example 7.1, hiding facts in this

fashion could greatly reduce the space utilized by a program.

Our contribution in this section is twofold. First, we isolate the synchro-

nization achieved by hiding facts in an evaluation from other components of

space optimization methods. Second, Naughton and Ramakrishnan [1994]

had the restriction that the body-gap be bounded above by a constant. We

generalize this to handle the body–gap being bounded by an arbitrary

function of facts.

7.2 Nested-Unit Synchronization

Programs that have been rewritten using Magic rewriting [Beeri and Ra-

makrishnan 1991] present opportunities for certain kinds of synchronization,

which we present later. Familiarity with Magic rewriting is important for

understanding the rest of this section.

Consider a Magic rewritten program P ‘ng obtained from a program P.17

Let S be an SCC of P ‘g such that S contains predicates from exactly two

SCCS SI and Sz of P, such that predicates defined in S’z are used in S1. Let

~ denote the rules in S. Let 3,, i = 1,2, denote the rules in W obtained by

the Magic rewriting of rules in S1. M?I can be partitioned into two sets of

rules: q~x ~ containing the rules defining predicates of the form m–p, where

p is defined in Sz, and &Z’jnt containing the rest of the rules in A71.
The Magic facts computed using the rules ~~’~ are referred to as external

subgoals, in contrast to the Magic facts computed using the Magic rules in

#;”t and %Z which are referred to as internal subgoals. The Nested-Unit

technique essentially views the rules in 9; ‘t as generating subgoals, and

solves them by obtaining the fixpoint of ~2 augmented with these external

subgoals. Nested-Unit synchronization should be used only if W2 is safely

computable [Krishnamurthy et al. 1988].

Algor~thm Nested- Unit– Synchron~ze (=1, 92)

Let Rl, ..., R. be the rules in i??~nt.

Let mR,,l, . . , mRl, ~ , be the (Magic) rules In ~~xt derived from

rule R,, In the left– to– right ordering of the llterals in

R, from which they are derived.

17We assume a left-to-right sip order in the Magic rewriting of the program.
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Repeatedly apply the rules In @jnt, subject to the following re-

strictions, until a fixpoint is reached.

(1) Before applylng a rule l?~from$%?~’~,do for k=l...mzj

(2) ApplyntBJ,h and then compute a fixpolnt of the rules 37?2.

end Nested– Unit_.Synchronize .

PROPOSITION 7.2.1. Consider SCCS SI cmdS~ in aprogramwith%l and

%Zdefined as in thepreceding. If%land~g are evaluated usingNested-Unit

synchronization, each predicate defined in %2 is base with respect to every
rule in S7?1.

PROOF. =2 is safely computable, therefore the correctness of the Magic

sets transformation ~arantees that all answers to subgoals generated using

a rule in 9Z~Z~ are computed before anyrule uses any of the answers to the

subgoals in a rule in al. The external Magic rules corresponding to predi-

cates in Sz are applied in the left-to-right order, which is the sip-order used

in the Magic rewriting, and no facts for predicates in SI are computed in this

phase. An induction on the sip order then shows that the possible set of

derivation steps using the rule applications in al would not change even if

all the facts in the meaning of the program for predicates defined using Sz

were available. ❑

Although the preceding algorithm and proposition assume that S contains

only predicates from two SCCS, S’l and Sz, they can be extended to synchro-

nize evaluation in the case where S contains predicates from multiple SCCS

Sl,... , S. of the original program. Multiple sets of rules ~,, 1< i < n are

defined, and the synchronization technique ensures that if S= defines a

predicate used in S~, a + b, then the evaluation of the rules in ~~ will treat

~. in a nested fashion as before. The algorithm and proposition can also be

extended in a straightforward manner to the case where S contains rules

from multiple SCCS of a Magic rewritten program, rather than just a single

SCC as was assumed earlier.

Several of the techniques for ensuring Conditions D or U used the notion of

predicates being base with respect to rules. By using Nested-Unit synchro-

nization we may enable the use of one of those techniques in a place where it

may not otherwise be applicable.

Nested-Unit synchronization can be combined with the following straight-

forward technique for ensuring Condition U, which we call Nested-Unit

Discarding. While computing the fixpoint of the rules in ~z, discard facts,

other than the external subgoals and answers that match the external

subgoals, based on the restrictions of D and U to the rules of ~z. Discard the

external subgoals after computing the fixpoint of the rules in ~z. Discard the

answers to an external subgoal after applying the rule in ~1 that generated

the external subgoal.

The preceding technique may discard a fact before it has been used to make

all the derivations that can be made using that fact. However, the use of
Nested-Unit synchronization ensures that such a fact will be recomputed

when required, and will be used to make any further required derivations.
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Because derivations may be repeated, the resulting evaluation is not a

semi-naive evaluation; however, it is a locally semi-naive evaluation.

7.3 Interleaved-Unit Synchronization

Interleaved-Unit synchronization is a form of synchronization that exploits

the SCC structure of the program, The intuition behind the technique is as

follows. Consider a predicate p defined in an SCC. A p fact must be retained

until Conditions U and D are satisfied by it in this (“producer”) SCC; in

addition, it must be retained until it has been used completely in all occur-

rences of p in other (“consumer”) SCCS. If the evaluation proceeds SCC-by-

SCC, the producer SCC evaluation must be completed before evaluation of

the consumer SCCS can begin, and p facts must therefore be retained at least

until the end of the evaluation of the producer SCC. However, it is sometimes

possible to use the p fact in all consumer SCCS soon after it is produced, by

interleaving the evaluation of SCCS, thereby making it possible to discard the

p fact sooner, while retaining the advantages of an SCC-by-SCC semi-naive

evaluation.

The preceding intuition can be extended to the case where the producer

and the consumers can be units containing rules from multiple SCCS, rather

than just one SCC. A unit of a program P is the producer for a predicate p if

it contains all the rules from P that define p. A unit of a program P is a

consumer for a predicate p if it is not the producer of p, and contains at least

one body occurrence of p.

We present the technique by describing the interleaving of a producer unit

(defining a single predicate p) and one or more consumer units for p. Any

unit (other than the producer) that contains occurrences of p must be treated

as a consumer and the producer and all consumer units must satisfy the

following condition for the technique to be applicable.18

Condition Interleaved-Units,

—The producer and each of its consumer units must contain only monotoni-

cally increasing rules.

—The rules in the producer unit do not depend (directly or indirectly) on any

predicates defined by rules in any of the consumer units.lg

—In each consumer unit S’j, for each rule R that contains a body predicate

occurrence p‘ of p, either (1) if there is an occurrence of a derived

predicate in the body of R, then for each occurrence q‘ of any derived

predicate q in the body of R, there exists a function yP., ~~ that maps q

facts to integers such that for each instance R‘ of R (where say, q(~) is

used in the occurrence q ‘), body _gap(R’, p‘, q‘) < yp,, ~,(q(~)); or (2) there

is a bound maxP such that for any fact p(~) that can be used in the

occurrence p‘, @(p(T)) S maxPi.

18Although we consider only a single predicate defined m a producer unit and require that all

consumers of the predicate satisfy Condklon Interleaved-Units, It is possible to extend the

condition as well as the synchronization technique to relaz these restrictions,
19This condition is automatically satisfied if the units are SCCS of the program.
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We now describe the Interleaved-Unit synchronization technique, which

works on any subprogram that satisfies Condition Interleaved-Units. Con-

sider a rule R in a consumer unit S1. Let p‘ and q‘ be occurrences in the

body of R of predicates p and q; let p be defined in a producer unit (of SJ)

and q be derived with respect to R. We define the following indices:

m(p’, q’)
= max{{–~} U {o(q(Z)) + YPJ,q(q(~)) I q(~) is an available fact}}

M(p’)
= min{nz( p‘, q‘) I q‘ is a derived predicate occurrence in the body of R}

= maxP, if there is no derived predicate occurrence in the body of R

*(P? s,)
– max{M( p‘) Ip‘ is an occurrence of p in the body of any rule in SJ}—

rn( p‘, q‘) is the index of the largest (under the @ function) p fact that can

possibly be used in p‘ with an available q fact in q‘. M( p‘) is the index of

the largest p fact that can be used in the occurrence p‘ (with the set of

currently known facts in S~). The index of the largest p fact that can be used

with the set of currently known facts in Sj is given by +( p, SJ ) and this index

is available to the unit that defines p. Using these indices, Interleaved-Unit

synchronization can be expressed as follows:

Algor~thm Interleaved- Unit_ Producer (S)

( 1 ) repeat

(2) Let top . min~{v(p, tl~) I fl~ uses p and IS waiting on s}.

(3) Evaluate S till no facts p(~) such that +(p(~)) < top can

be derived.

/“ Tested using monotonicity; any technique may be

used to evaluates. * /

(4) Release any units S~ waiting on S such that *(p, SJ) = top.
(5) forever

end Interleaved–Unit–Producer

Algorithm Interleaved- Unit_ Consumer (SJ)

(1) Evaluate S~ with the followlng restriction:

(2) Whenever new facts are made available for derived predi-

cates in SJ do

(3) Update the Indices m, M and Q.

(4) Wait on producer units of S1.

end Inter leaved– Unit_ Consumer

The previous description of the algorithm uses concurrent threads of

execution for generality. It is straightforward to reformulate it, with a loss of

concurrency and some extra checks, as a demand-driven sequential iteration.

In this case, the evaluation of the consumer unit invokes the producer unit,

rather than waiting on it; the evaluation of the producer units returns after

computing all facts requested by a consumer.

Although the discussion so far assumed “monotonically increasing,” if

“increasing” is uniformly changed to “decreasing,” the previous results and

algorithms hold with simple modifications.
In the special case when all the consumer units of a given producer unit SO

contain only nonrecursive rules using EDB predicates and predicates from
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SO, each of these consumer units is evaluated exactly once in an ordering

determined by the ~ values of the consumer units. In such a situation, it is

often beneficial to merge all the (nonrecursive) rules in the consumer units of

SO with the rules in So. Further, these nonrecursive rules do not need to

satisfy any bound maxP ~ (as defined in Condition Interleaved-Units). Exam-
ple 8.3.1 describes a program where this merging is very useful.

THEOREM 7.3.1, It units So, Sl,... , Sm are evaluated using Interleaved-

Unit synchronization with SO as the producer and Sl, . . . . S~ as its con-

sumers, each predicate defined in SO is base with respect to every rule in

Sl,..., sm.

PROOF. Consider a single predicate p and a single consumer unit S~ that

uses p. In order to prove the theorem, we need only show that 4( p, S]) is

indeed the largest @ value of any p fact that can be used in a derivation with

any of the current set of derived facts in S~. It then follows from the

algorithm that any p fact that could possibly be used in a derivation step is

indeed made available, and hence p is base with respect to every rule in S~.

We show that V( p, S1 ) works as claimed by starting with m( p‘, q ‘). By the

body–gap requirement of Condition Interleaved-Units and the definition of

m( p‘, q‘ ), m( p‘, q‘) is indeed the index of the largest (under the @ function)

p fact that can possibly be used in p‘ with an available q fact in q‘. For a

given rule R, if p facts with an index greater than some value n cannot be

used in predicate occurrence p‘ with the available q facts for some predicate

occurrence q r, they cannot be used in a derivation step with the available

facts for the derived predicates. Hence in the definition of M( p‘) we take the

minimum over all derived body predicate occurrences q‘; M( p‘) is then the

index of the largest p fact that can be used in the occurrence p‘ with the set

of currently available facts in S~. In the definition of +( p, SJ ) we take the

maximum over all predicate occurrences, therefore, @(p, S’j ) works as claimed.

❑

Example 7.3.2. Consider again the program from Example 6.3.4, and an

SCC-by-SCC evaluation of the program.

RI: fac-list(O, [1]).

R2: fac-list(N, [V IL]) :–N > O,N < n, fac_list(N – l,L), fac(2*N, V).

R3: fac(O, 1).

R4: fac(N, N*V) :–N> 0, N<2*n, fac(N– l, V).

This program has two SCCS, the lower one containing the predicate fac and

the upper one containing fat–list. Let us call the lower SCC which is a

producer of fac as S 1 and the higher SCC, which is a consumer of fat, as S2.

There is only one rule R2 in S2 that uses the predicate fat. This rule has a

derived predicate fat–list. We assume that we use Basic Semi-Naive evalua-
tion for the consumer SCC.

We derive the function -y that maps fac-list(N – 1,-) to 2 * N – (N – 1),

(and hence fac-list(N, -) to N + 2) to bound body -gap(R2, fac(2 * N, V),

ACM TransactIons on Database Systems, Vol 20, No 4, December 1995



Space Optimization in Deductive Databases . 507

fac-list(N – 1, L)). SCCS S1 and S2 satisfy Condition Interleaved-Units

with this function y that bounds body gap. We can then use Interleaved–Unit

evaluation to evaluate this ‘program.

After each Basic Semi-Naive iteration of the consumer SCC (in Procedure

Interleaved_Unit_ Consumer) new facts are produced. Using these facts we

find the maximum value of @(fat-list(N, -)) + Y( fac-list(N, -)). But this

function simplifies to 2 * N + 2. Thus if ~ac–list(n, –) has been produced, we

need ~ac facts with indices up to 2 * n + 2. We then call Procedure Inter-

leaved–Unit–Producer( Sl). SCC S1 then iterates, producing fac facts. Due

to monotonicity of rules in S1, we knc)w that when fac(2 * n + 2, –.) has been

produced, all fac facts with indices <2 * n + 2 have been produced. Hence

Procedure Interleaved–Unit–.Producer returns, and Procedure Interleaved–

Unit–Consumer continues with its next iteration.

Suppose we use Interleaved-Unit synchronization on this program, along

with monotonicity to ensure Conditions D and U. The next question is, how

much space is used? It is easy to see that in SCC S2, only two fat–list facts

are retained at any point in the evaluation; each fat–list fact uses 0(n)

space. As for SCC S 1, we store at most facts with indices from 2 *(n – 1) to

2 *n, which means at most 3 facts are stored. Thus we use a total of O(n)

space using this space optimization technique. If we do not discard any facts

during the evaluation, we would use O(n2 ) space. By discarding facts during

the evaluation, we have achieved an order of magnitude improvement in the

space utilized in evaluating this program.

7.4 Using Inverted Rules

In several cases (such as monotonically increasing units that have been

rewritten using the Magic Sets transformation), Condition Interleaved-Units

is almost satisfied, except that the two units are monotonic in opposite

directions. By using the notion of inverted rules introduced in Naughton and

Ramakrishnan [1994], we can still use Interleaved-Unit evaluation in some

cases.

Suppose that units S’l and S2 are monotonic in opposite directions, and

rules in S2 use predicates defined by rules in S’l. We can in some cases use

the rules in S1 in reverse—feed them the head facts and regenerate the body

facts. This is done using “inverted rules created by swapping the head and

one of the body Iiterals in a rule.

The intuition is to evaluate S1 iteratively, discarding facts computed in SI

based on Condition D and the restriction of Condition U to this unit. How-

ever, certain facts, that is, fringe facts, are retained during the evaluation of

S1. The “inverted” rules generated from S1 are then evaluated (using the

previously computed fringe facts) in an interleaved fashion with the con-

sumer unit S2. In general, the inverted rules may compute more facts than

were computed earlier by the rules in S1. However, computing a superset of

the desired set of derived facts may be acceptable in some cases, for example,

when the rules in S1 compute magic facts; see Naughton and Ramakrishnan

[1994] for a further discussion.
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We present a generalized notion of inverted rules in Srivastava et al.

[1994], and show how inverted rules could be used to ensure Condition U.

8. COMBINING TECHNIQUES

8.1 Sliding Window Tabulation

The Sliding Window Tabulation scheme of Naughton and Ramakrishnan

[1994] is an example where the technique of adding inverted rules to a
program is used in conjunction with delaying the first use of facts for

synchronization and monotonicity of derivations and uses to ensure D and U.

Sliding Window Tabulation works on programs that satisfy the following

condition:

Condition Sliding–Window– Tabulation :20

(1) The Magic program P ‘g has exactly two SCCs—the lower SCC S’z only

containing the Magic predicates (and rules defining them), and the higher

SCC S1 only containing the (derived) predicates (and the corresponding

rules) of the original program.

(2) The rules in S’l are monotonic in the opposite direction to the rules in S’z.

(3) The set of rules %Z in S’z can be inverted to get 2Zj-the set of fringe
facts being those Magic facts derived using SZz that do not generate any

new Magic facts, and

(4) In Ping, the body-gap in each rule with respect to each of the (nonMagic
and corresponding Magic) predicates is bounded by a constant.

If the rewritten Magic program P ‘g satisfies these conditions, the evaluation

can be understood as follows:

Algorithm Slidlng–Window–Tabul ation_Eval (Sl, S2)

Let the set of inverted Magic rules obtained from the set of

rules~2 In S2 be@’2 .

(1) Evaluate the rules S%’z using monotonicity to ensure Condl -

tlons D and the restriction of U to the uses of Magic

facts In S2, while discarding facts; however, frxnge

facts are not discarded. The first use of facts ~s de-

layed by hiding facts based on the body_ gap of the

(Magic) rules in S2.

(2) @~ and the set of rules in SI are evaluated using Inter-

leaved- Unit Synchronization. 20 ~onotonlcitY is used tO

ensure Conditions D and u and the first use of facts is

again delayed by hldlng facts. The ‘ ‘lowest ‘ ‘ fact de-

fined in SI can be determined because~a IS evaluated be-

fore S1.

end Sliding_Window_ Tabulatlom Eval

20Actually, we need to extend Interleaved Evaluation a little to handle the fully generality of

Sliding Window Tabulation. Sliding Window Tabulation can handle some exit rules for which no

bound max, ~ (defined in Condition Interleaved-Units) exists. It treats these rules as though they

were derived rules, and makes only some Magic facts available to them at a time. Although

Interleaved-Unit evaluation can be extended to handle such cases, we omit the tedious details of

the extension.
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Because ~j is the set of inverted rules generated from ~z, any facts

discarded in Step (1) of the preceding algorithm are rederived when required

in Step (2).

Using our generalized techniques for ensuring Conditions U, D and achiev-

ing synchronization based on monotonicity, the basic techniques of Sliding

Window Tabulation can be extended in many ways beyond the class of

programs described in Naughton and Ramakrishnan [1994]. One possible

extension is based on synchronization of multiple consumer units with a

single producer; another extension permits the body–gap of the rules to be

bounded by some function of the facts, not just a constant.

8.2 A Framework for Combining Techniques

Recall that every space optimization method has three components—ensur-

ing Condition U for facts before they are discarded, ensuring Condition D for

facts before they are discarded, and synchronization techniques to ensure

that as new facts get computed, others become eligible for discarding. We now

discuss how these techniques (for synchronizing evaluation and for ensuring

Conditions D and U for parts of a complex program) can be combined to

obtain a space optimization method for the full program, and present a

heuristic algorithm for this purpose.

The importance of our algorithm is twofold, First, it carefully incorporates

the interactions between different space optimization methods in a modular

fashion. There are several distinct walys to improve space utilization, but not

all of them can be used on a given program in a consistent manner; the

algorithm ensures that a consistent set of techniques is chosen. Second, the

algorithm uses heuristics to prune the combinatorial explosion that would

result in naively considering arbitrary combinations of methods.

8.2.1 Orthogonality of Techniques. The first point to note is that the

choice of synchronization techniques affects the choice of the techniques for

ensuring Conditions U and D—some techniques for ensuring U and D may be

applicable only with certain synchronization techniques. For instance,

Nested-Unit synchronization sets up subgoals when some facts are needed in

a rule application; when the answers are computed (in a nested fashion) and

used in the rule application, they automatically satisfy Condition U with

respect to this predicate occurrence. This technique for ensuring Condition U,

however, may not be applicable with other synchronization techniques. Fur-

ther, because synchronization techniques determine which predicates can be

treated as base (with respect to a rule or predicate) in an evaluation, they

could affect the applicability of techniques (to ensure U and D) that depend

on which predicates are base and which derived. This suggests that tech-

niques for ensuring U and D for a subprogram be chosen after choosing a

synchronization technique (for that subprogarn).

The second point to note is that, given a synchronization strategy for a

subprogram, the choice of a technique for ensuring U does not affect the
correctness of a technique chosen for ensuring D, and vice versa. The applica-

bility of techniques to ensure U for subprogram facts may depend on ensuring
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D for (possibly other) subprogram facts; however, it does not depend on which

techniques are used for this purpose.

The third point to note is that more than one technique maybe applicable

for ensuring D or U for a single literal (or rule), and a choice has to be made.

The choice for one literal may affect the efficiency of the choice for another

literal in that some of the overhead costs may potentially be shared by some

combination of techniques but not by others.

In the process of obtaining a synchronization technique for an entire

program, many choices have to be made, such as what synchronization

techniques to use and what techniques to use for ensuring U or D for each

literal and each rule. We do not address the issue of how to make an optimal

choice in this paper, and leave it as an important open problem. However, in

Section 8.2.2 we describe a heuristic for choosing synchronization techniques

as well as techniques to ensure Conditions D and U, to obtain a space

optimization method for the full program.

8.2.2 A Heuristic for Combining Techniques. In the following discussion

we assume that we are given a program-query pair (P, Q). We expect Magic

rewriting (or some variant thereof) to be used quite extensively in query

optimization, and hence we describe how to obtain a space optimization

method for the Magic rewritten form P mg of program P rather than for P

itself. We also assume that no rewriting is done on the program subsequent

to Magic rewriting (although rewritings such as existential query optimiza-

tion [Ramakrishnan et al. 1988] may be done prior to Magic rewriting). This

assumption helps in presenting the algorithm concisely, but is not essential

for the use of space optimization methods on the program.

We divide the program into units (i.e., subprograms), then determine the

synchronization techniques to be used between units, and finally for each

unit we choose the techniques to ensure U and D.

In order to describe the synchronization techniques to be used between

units, we define a unit graph as follows: the units U, form the nodes of the

graph, and the edges are directed and are given labels from the following set:

Sequential, Nested, Interleaved. 21 The edge labels specify how the Program

must be evaluated. If there is a Sequential edge from unit UI to unit Uz, then

unit UI must be evaluated before the evaluation of unit Uz is begun. The

meaning of the other edges is defined similarly. This graph is required to be

acyclic.

Later we describe a heuristic order in which to make the various choices for

synchronization between units and techniques to ensure Conditions U and D
for each umt. We then describe an algorithm that synchronizes the evalua-

tion of a program based on the unit graph chosen. In the next section we

present examples of the use of the heuristics.

Bottom-up evaluation of logic programs is typically performed using SCC-

by-SCC BSN evaluation. Our heuristic for obtaining a space optimization

method starts by initializing the units to be the SCCS of the program P ‘g,

2’ In Srivastava et al. [1994], we also consider edges labeled Inuerted.
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with Sequential edges between units. The evaluation of this unit graph

corresponds to an SCC-by-SCC BSN evaluation of the program.

Initialize: Start with the SCCS Sl,... , S~ of P‘~ as the initial units

Ul,... , U~. Create a directed labeled edge (U,, UJ, Sequential), if a predicate

defined in U, is used in a rule in Uj.

Create–Nested–Edges: If a unit U, (of P ‘g) contains predicates from

multiple SCCS of P, split U, into units U,l, . . . . U,. as described in Section

7.2, Each unit ~~ is nested within unit U,. For each ~,j, if a predicate defined

in U,J is used in U,h, j # k, create a clirected labeled edge ( U,j, U,h, Nested).

Create–Interleaved-Edges: Consider a unit U such that all edges from

U are labeled Sequential. If Condition Interleaved-Units is satisfied by U (as

a producer unit) and all its consumers U,, 1 < i < n, relabel the edges from U

to U, as Interleaved. If all consumers of unit U have only nonrecursive rules,

which use only EDB predicates andl predicates defined in U, merge the

consumer units into U, and collapse the nodes in the unit graph correspond-

ing to the consumer units into the nocle corresponding to U. (Also change the

edges in the unit graph to reflect this collapsing of nodes.)

Create–Nested–Sub- Units: The nested units created in the preceding

steps are now reanalyzed by recursively applying the preceding steps inde-

pendently to each nested unit treated as a program by itself.

Decide-Hiding-Facts: Analyze each unit (and sub-unit) U, for the appli-

cability of delaying the first use of facts during an evaluation of U,, based on

Condition Hiding–Facts.

Analyz e_ UD_Appl i cabi 1 i ty: Check the applicability of all the techniques

for ensuring U for each body predicate occurrence and for ensuring D for each

rule in the resultant program.

Choos e–UD.-Techniques: Examine the set of applicable techniques for en-
suring Conditions U and D and make suitable (heuristic) choices based on

their relative “efficiency” and the overheads incurred. If a unit U has only

Nested edges out of it, the rules in U use only EDB predicates and predicates

defined in U, and no nontrivial technique for ensuring Condition D is

applicable to predicates defined in U, use Nested-Unit Discarding.zz

Evaluat e–program: We describe the evaluation of the program in a recur-
sive fashion, starting from the unit U~ containing the rules defining the query

predicate. Let U be the unit to be evaluated.

First consider the case when either V is U~ or the evaluation of U is called

from a unit U’ such that the label of the edge from U to U’ is not Interleaved.

Recursively evaluate all units U, such that there is an edge labeled Sequen-

tial or Inverted from U, to U. Next, if U has subunits, recursively evaluate

each of the subunits of U that has no edges out of it. Next, if unit U has an

edge labeled Interleaved into it, evaluate U using Algorithm Inter 1 caved -

22Note that in this case, not ensuring Condition D for this unit does not adversely affect ensuring

U for facts in other units.
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Unl t–consumer in a demand-driven fashion, or else evaluate U iteratively.

In either of these two cases, if there are units Uj such that the edges from U~

to U are labeled Nested, use Algorithm Nested- unit–Synchroni ze to

synchronize the evaluation of the U]s with the evaluation of U. Next consider

the case when 77 is not U~ and the evaluation of U is called from a unit U’

such that the label of the edge from U to U’ is Interleaved. In this case, the

evaluation of U is as described in the first case except that the evaluation of

U proceeds until all facts required by U’ have been computed, instead of

computing until a fixpoint is reached.

We have described the synchronization for the various units in the pro-

gram. Discarding of facts proceeds based on ensuring of Conditions U and D

as described previously. This results in a space optimization method for the

full program.

8.3 Obtaining a Space Optimization Method for an Example Program

The following program and query is typical of sequence querying in stock

market applications (see, e.g., Roth et al. [1993]). In this domain, queries

often require a scan over the entire dataset computing summary statistics.

We demonstrate that a space-efficient evaluation can reduce the space re-

quired to evaluate this query from linear in the size of the database to a

constant independent of the size of the database.

Example 8.3.1 (N-Day Averages). We are given a binary relation se-

quence( D, V ), with the intended meaning that V is the value of the sequence

on day D. We are interested in computing the average for each N day period

beginning from a given day (this is indicated by the single fact in the from(D)

relation); each period begins the day after the end of the previous period. The

following program P~V~ solves this problem. It defines the relation

ndayaug(N, D, A), with the intended meaning that A is the N day average

of the sequence beginning on day D.

ndayaug(N, D, A) :–tl(N, D, N, V), A = V/N.

tl(N, Dayl, 1,V) :–from(Dayl), sequence(Dayl, V).

tl(N, D2, 1,V2) :–tl(N, D, N, Vi), D2 = D + N, sequence(D2, V2).

tl(N, D, M,V) :–Ml =M– l,M1 <N, M1 > O,tl(N, D, Ml, Vi),

D2 = D + Ml, sequence(D2, V2), V = V1 + V2.

The Magic rewritten form of the preceding program for the query

?ndayavg( n, D, A) (where n is a constant) is as follows:

Rl: m-tl(N, N) :– m–ndayavg(N ).

R2: ndayavg(N, D, A) :–m–ndayavg(N), tl(N, D, N, V), A = V/N.

R3: tl(N, Dayl, l,V) :– m–t 1(N, 1),from(Dayl), sequence(Dayl, V).

R4: m-tl(N, N) :–m–tl(N, 1).

R5: tl(N, D2, 1,V2) :–tl(N, D, N, VI), D2 =D +N, sequence(D2, V2).

R6: m-tl(N, Ml) :–m–tl(N, M), Ml=M– l,M1 <N, MI >0.
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R7: tl(N, D, M,V) :–m.tl(N, M), Ml = M – l,M1 <N, Ml >0,

tl(N, D, Ml, Vi), D2 = D + Ml,

sequence(D2, V2), V = V1 + V2.

R8: m–ndayavg(n).

Choosing Synchronization Techniques. The unit structure (and edge la-

bels) obtained using the method outlined in Section 8.2.2 is shown in Figure

1. Each unit in the figure indicates tlhe predicates and rules it contains. All

the edges in the unit graph are labeled Sequential. Though Condition Hid-

ing–Facts is satisfied by unit Us, each rule in this unit is linear, and hence

delaying first use of facts is not useful.

Choice of Techniques for Ensuring Condition D. The rule in UI computes

a single fact, and the fact is not discarded during the evaluation. Similarly,

the rules defining m–t 1 do not satisfy monotonicity or duplicate-freedom, and

m–t 1 facts are not discarded durin~ the evaluation. The rules in Us are

monotonically increasing, with the fi.mcticm ~ mapping t1(N, D, M, V) to

D + M, and ndayaug(N, D, A) to N + D; this is the only ~ function, ob-

tained by summing up the sizes of a subset of the arguments, that ensures

monotonicity of the rules in Us. Hence, Condition Monotonicity–D can be

used to ensure Condition D for facts computed in Us. The rein-head-gap

bounding function for the predicate ndavavg is O, and for the predicate t1

is 1.

Choice of Techniques for Ensuring Condition U. Facts computed in UI and

Uz are not discarded. The rules defining t1 and ndayavg (in Us) are linear,
and Bounds–U applies trivially. The rules are also monotonically increasing,

and Condition Monotonicity–U can also be used to ensure Condition U.

Bounds–U is easier to test, therefore we use it.

Evaluation. Given the choice of synchronization techniques and tech-

niques to ensure Conditions U and D, Pa~~ is evaluated as follows. The

evaluation starts with Us (which contains rules defining the query predicate),

which first recursively invokes the evaluation of UZ; this in turn first

recursively invokes the evaluation of U1. Now the rules in UI are iteratively

evaluated; no facts are discarded. Then the rules in Uz are evaluated; again,

no facts are discarded. Finally, the rules in Us are evaluated. During this

evaluation, t1 facts are discarded based on Conditions Monotonicity–D and
Bounds–U. It turns out that t1 facts are discarded at the end of the iteration

following the iteration in which they are derived; the monotonicity ensures

that these facts will not be derived again, and linearity of the rules ensures

that they will not be used again. Similarly, ndayavg facts are returned to the

user as they are computed, and discarded; monotonicity ensures that these

facts will not be derived again. Facts for ndayavg are not used in the

program, and hence satisfy Condition U trivially.

Note that the space optimization method for this program does not discard

facts for all predicates defined in the program, unlike in previous examples.
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Fig. 1. Unit structure for Pa~~.

Improvements in Space Complexity. Given a query ?ndayavg(n, D, Al, on

a sequence database of size s, and a single fact from(l), this evaluation stores

a total of n + 4 nonEDB facts (1 fact for m–ndayavg, n facts for m–t 1 of the

form m–t l(n, i), 1 s i s n, 1 fact for ndayavg, and 2 facts for t1 computed in

successive iterations). Note that the total space utilized in storing the nonEDB

facts is independent of the size of the sequence database. If the space

optimization methods described were not used, the total number of nonEDB

facts computed would be s + n + 1s/n] + 1,which is proportional to the size

of the sequence database.

Note that Sliding Window Tabulation [Naughton and Ramakrishnan 1994]

is not applicable in this example.

9. OVERHEADS

There are three aspects to the overheads involved with these techniques.

Compile-Time Time Overheads. Suppose we are given (a) dependency

information about all predicates in the program, (b) duplicate-freedom infor-

mation, (c) ~ functions for all predicates in the program, and (d) y functions

for different predicates as necessary. Then the cost of testing various condi-

tions is linear in the size of the input. We have indicated briefly how to derive

some of the functions, and we expect our algorithms to be efficient in practice.

Run-Time Time Overheads. These overheads are minimal for tests based

on bounds—in some cases there is no overhead for any of the tests, and in

other cases, at most a few simple counts need to be maintained for each fact,

and updated when the fact is used. Tests based on monotonicity are a little

more complicated. When a fact is derived we need to compute its ~ value,

and possibly its value under some of the y functions. This computation is

quite efficient, in the absence of function symbols. The only important cost

here is the cost of secondary indices on the 4 value so that facts can be

discarded when index m (from Theorem 6.3.3) reaches a certain value.

Run-Time Space Overheads. For bounds-based techniques, there is no

overhead in some cases, and a constant overhead of one to a few integers per

stored fact in other cases. For monotonicity-based techniques, we can choose

to either store various function values with each stored fact, or recompute

them on demand and thus avoid all space overheads. There is at most a

constant space overhead per stored fact, even if we decide to store the
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function values. When the number c,f facts stored is reduced by an order of

magnitude, a constant space overhead per stored fact is clearly negligible.

10. CONCLUSION

In this paper we have described how to reduce the space required during

bottom-up evaluation of logic programs and recursively defined views on

databases by discarding facts. We showed that any space optimization method

that discards facts during the evaluation has these basic components:

(1) ensuring that all derivations are made, (2) ensuring that derivations are
not repeated, and (3) synchronizing the derivation and use of facts. We

presented some techniques for ensuring each of these three components, and

showed how they can be combined to get a space optimization method for the

full program. Because Sliding Window Tabulation [Naughton and Ramakr-

ishnan 1994] can be shown to be just one way of combining techniques for

each of these three components, our results subsume those in Naughton and

Ramakrishnan [1994]. We presented a variety of techniques to ensure Condi-

tions D and U. These are, of course, not exhaustive, and other useful

techniques may be discovered, such as the one mentioned in Example 5.2.3.

An important direction of research is to define a set of evaluation primi-

tives that can be implemented easily, and in turn can be used to implement

the space optimization methods described in this paper. Future work also

includes finding more techniques for ensuring each of the three components

of an effective space optimization method. For instance, the generate and test

paradigm could benefit from a form of synchronization where facts are

generated and tested in a synchronize d fashion, and may be discarded once

they have been tested. Work is also needed in determining which technique to

use when more than one technique is applicable to a given part of the

program.

Finally, another direction of research is space optimization in active

databases with complex rules, and in temporal databases, where facts that

are “old” may no longer be required to support a predefine set of queries.
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