
Materialized View Maintenance and Integrity Constraint

Checking: Trading Space for Time

Kenneth A. Ross* Divesh Srivastava S. Sudarshan

Columbia University AT&T Research Indian Institute of Technology, Bombay

kar@cs.columbia. edu divesh@research .att .com sudarsha@cse.iitb. ernet.in

Abstract

We investigate the problem of incremental maintenance of

an SQL view in the face of database updates, and show

that it is possible to reduce the total time cost of view

maintenance by materializing (and maintaining) additional

views. We formulate the problem of determining the optimal

set of additional views to materialize as an optimization

problem over the space of possible view sets (which includes

the empty set), The optimization problem is harder than

query optimization since it has to deal with multiple view

sets, updates of multiple relations, and multiple ways of

maintaining each view set for each updated relation.

We develop a memoing solution for the problem; the so-

lution can be implemented using the expression DAG repre-

sentation used in rule-based optimizers such as Volcano. We

demonstrate that global optimization cannot, in general, be

achieved by locally optimizing each materialized subview,

because common subexpressions between different material-

ized subviews can allow nonoptimal local plans to be com-

bined into an optimal global plan. We identify conditions

on materialized subviews in the expression DAG when local

optimization is possible. Finally, we suggest heuristics that

can be used to efficiently determine a useful set of additional

views to materialize.

Our results are particularly important for the efficient

checking of assertions (complex integrity constraints) in the

SQL-92 standard, since the incremental checking of such

integrity constraints is known to be essentially equivalent

to the view maintenance problem.

1 Introduction

The problem of incremental view maintenance has seen

renewed interest in the recent past (see, e.g., [4, 8, 11,

*The research of Kenneth Ross was supported by a grant
from the AT&T Foundation, by a David and Lucile Packard

Foundation Fellowship in Science and Engineering, by a Sloan

Foundation Fellowship, by NSF grants IRI-9209029, CDA-90-

2473.5, and by an NSF Young Investigator award.

Permission to make digital/hard tmpy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notlca is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
01996 ACM 0-89791 -794-4/96/0006 ...$3.50

12]). Given a materialized view defined using database

relations, the problem is to compute and perform the

updates to this materialized view when the underlying

database relations are updated.

In this paper we show that, given a materialized

SQL view V to be maintained, it is possible to reduce

the time cost of view maintenance by materializing

(and maintaining) additional views. Obviously there is

also a time cost for maintaining these additional views,

but their use can often significantly reduce the cost of

computing the updates to V, thereby reducing the total

cost. This paper addresses the following question:

Given a materialized view V, what additional

views should be materialized (and maintained)

for the optimal incremental maintenance of V?

The SQL-92 standard permits the specification of

complex integrity constraints (called assertions) [16].

These integrity constraints have to be checked on

updates to the underlying database relations; hence

it is very important that they be checked efficiently.

Integrity constraints can be modeled as materialized

views whose results are required to be empty. Our

results are particularly important for the efficient

checking of SQL-92 assertions.

Example 1.1 (Additional Materialized Views)

Consider a corporate database with two relations:

● Dept (DName, MName, Budget), which gives the

manager and budget for each department, and

● Erttp (ENante, DName, Salary), which gives

partment and the salary of each employee.

Consider the materialized view ProblentDept:

CREATE VIEW ProblemDept (DName) AS

SELECT Dept. DName

FROM Emp, Dept

WHERE Dept. DName = Emp. DName

GROUPBY Dept. DName, Budget

HAVING SUM(5alary) > Budget

the de-

447

This view determines those departments whose expense

(i.e., the sum of the salaries of the employees in the

department) exceeds their budget. When the database

relations Emp and Dept are updated, view maintenance

of ProblemDept, even using incremental techniques

(e.g., [2, 8, 12]), can be expensive. For example, when

a new employee is added to a department that is not

in ProblemDept, or the salary of an employee in such a

department is raised, the sum of the salaries of all the

employees in that department needs to be recomputed

and compared with the department’s budget; this can

be expensive!

The view ProblemDept can also be used to specify

the integrity constraint “a department’s expense should

not exceed it’s budget”, by requiring that ProblemDept

be empty. This can be specified in SQL-92 as follows:

CREATE ASSERTION DeptConstraint CHECK

(NOT EXISTS (SELECT * FROM ProblemDept))

The efficiency of incremental view maintenance of the

view ProblemDept (and therefore also the efficiency of

checking the integrity constraint DeptConstraint) can

be considerably improved if the view SumOfSals below,

is additionally kept materialized.

CREATE VIEW SumOfSals (DName, SalSum) AS

SELECT DName, SUM (Salary)

FROM Emp

GROUPBY DName

When new employees are added, existing employ-

ees are removed, or salaries of existing employees are

modified, efficient incremental view maintenance of

SumOf Sals is possible by adding to or subtracting from

the previous aggregate values. View ProblemOept can

also be efficiently maintained by performing a natural

join of the changed tuples of view SumOfSals with the

Dept relation (on DName), and checking whether the

newly computed sum of salaries exceeds the depart-

ment’s budget. Similarly, when a department’s budget

is modified, the changed tuple of the Dept relation can

be joined with the materialized view SumtI-f Sals for effi-

cient view maintenance of ProblemDept. This improved

efficiency of view maintenance of ProblemDept comes at

the expense of

● additional space to represent SumOf Sals, and

● additional time to maintain SumOf Sals.

When the time cost of maintaining SwnOfSals is

less than the time benefit of using SumofSals for

maintaining ProblemDept, the overall time cost of view

maintenance/integrity constraint checking is reduced.

We present a detailed cost model and an analysis for

this example in Section 3.6. On a sample dat aset,

we shall show how a greater than threefold decrease

in (estimated) materialization cost can be achieved

by maintaining the additional view SumOf Sals. Thus

maintaining a suitable set of additional materialized

views can lead to a substantial reduction in maintenance

cost. ❑

1.1 Contributions and Outline

Given a materialized view V, there are several possible

views that can be additionally materialized and used

for the incremental maintenance of V. We show how to

formulate the problem of determining what additional

views to materialize as an optimization problem over the

space of possible view sets. We develop an exhaustive

memoing algorithm to solve the optimization problem

that works under any cost model; the algorithm can be

implemented using the expression DAG representation

used in rule-based optimizers such as Volcano [7]

(Section 3).

We present a principle of local optimality that allows

problem solutions for subviews to be combined to

determine the solution for the top-level view. (In

general, local optimization does not ensure global

optimization.) We identify conditions, based on the

expression DAG representation, when this principle

can be used to restrict the search space explosion

(Section 4).

We suggest heuristics that can be used to prune the

search space, and reduce optimization cost (Section 5).

Unlike purely heuristic techniques proposed in the

past, these techniques are still cost-based, but are less

expensive than the exhaustive algorithm since they do

not explore some parts of the full search space.

Finally, we discuss possible extensions to our tech-

niques in Section 6.

1.2 Related Work

View maintenance (and the closely related problem of

integrity constraint checking) has been studied exten-

sively in the literature (e.g., [2, 4, 8, 11, 12, 18, 22]) for

various view definition languages, e.g., Select-Project-

Join (or SPJ) views, views with multiset semantics,

views with grouping/aggregation, and recursive views;

for various types of updates, e.g., insertions, deletions,

modifications, to the database relations; and for modifi-

cations to the view definition itself. For a recent survey

of the view maintenance literature, see [10].

The problem of what additional views to materialize,

in order to reduce the cost of view maintenance, has

been studied in the context of rule-based systems based

on the RETE, TREAT and A-TREAT models [23, 13].

These models are based on discrimination networks for

each rule (view); the RETE model materializes selection

and join nodes in the network, while the TREAT model

materializes only the selection nodes. The A-TREAT

model chooses (for a fixed discrimination network) what

nodes to materialize using a selectivity based heuristic,

448

while [6] actually chooses a discrimination network

and nodes to maintain, using “profitability” heuristics.

Similar issues have been studied earlier in the context of

maintaining integrity constraints [3, 17]. However, none

of the above have explored how to choose the best set

of materialized views (the best choice of discrimination

network and the nodes to be maintained in it) in a truly

cost-based manner; a cost-based choice is particularly

important in a large database environment. To our

knowledge, ours is the first paper on the topic.

The supplementary relations used in the bottom-up

evaluation of recursive queries [1] can be viewed as ad-

ditional materialized views that are maintained (during

query evaluation) in order to efficiently maintain the

view relations defining the original query. However, sup-

plementary relations are introduced as part of a query

rewriting step and do not take cost into consideration.

They may be introduced when they are not required for

efficient view maintenance, ‘or not be introduced even

when they are useful for efficient view maintenance.

The maintenance of a collection of simple (Select-

Project) views in a distributed system is discussed

in [20], where a very simple form of multi-query

optimization is used to screen updates that need to

be sent to remote sites. The work is extended

in [19], which considers using the updates to one view

to maintain other views, rather than using database

relation updates; the applicability conditions presented

are however very restricted.

A related, but quite different, problem is to make

use of available materialized views in order to efficiently

evaluate a given query, and there has been considerable

work in this area (e.g., [5, 9, 14]).

2 Background

2.1 Expression Trees and DAGs

Our algorithms for determining what views to addition-

ally lmaterialize (and maintain) use expression trees and

expression DAGs developed for performing cost-based

query optimization (although the problem of query opti-

mization is quite different from our problem). We briefly

describe the expression tree and expression DAG repre-

sentations here, and in Section 3 we describe in more

detail how we use the trees and the DAGs.

An expression tree for a query/view V is a binary

tree; each leaf node corresponds to a database relation

that is used to define V; each non-leaf node contains an

operator, and either one or two children; the algebraic

expression computed by the root node is equivalent

to V. (While we have called them trees here, it is

possible that they could have common subexpressions,

and hence be directed acyclic graphs.) Expression trees

are used in query optimizers to determine the cost of a

particular way of evaluating the query. Our techniques

are independent of the actual set of operators; in

our examples we consider operators from an extended

relational algebra, that includes duplicate elimination

and grouping/aggregation, in addition to the usual

relational operators.

Expression DA Gs are used by rule-based optimizers

such as Volcano [7, 15] to compactly represent the

space of equivalent expression trees as a directed acyclic

graph. An expression DAG is a bipartite directed

acyclic graph with “equivalence” nodes and “operation”

nodes. An equivalence node has edges to one or

more operation nodes. An operation node contains an

operator, either one or two children that are equivalence

nodes, and only one parent equivalence node. An

equivalence node is labeled by the algebraic expression

it computes; operation nodes correspond to various

expression trees that give a result that is algebraically

equivalent to the label of the parent equivalence node.

The leaves of an expression DAG are equivalence nodes

corresponding to database relations.

An important aspect of an expression DAG is its

similarity to an AND/OR tree. An equivalence node

can be “computed” by computing one of its operation

node children. An operation node can be computed only

by computing all of its equivalence node children.

Given an expression tree for the query, rule-based

query optimizers generate an expression DAG repre-

sentation of the set of equivalent expression trees and

subexpressions trees by using a set of equivalence rules,

starting from the given query expression tree. Details of

how this step is carried out maybe found in [15]; the in-

tuition is as follows. The initial DAG is generated from

the query expression tree by adding an equivalence node

between each operation node and its parent, adding an

equivalence node above the root of the expression tree,

and replacing each relation by an equivalence node. A

new expression tree is incorporated into the DAG by

making each operation node of that tree a child of an

existing equivalence node whose label is equivalent to

the expression tree (or of a new equivalence node if

there is no such existing node), and replacing each of

its operands by their equivalence nodes. The cost of

generation is greatly reduced when generating new ex-

pression trees using equivalence rules since the rules op-

erate locally on the DAG representation. For details on

how query optimization uses expression DAGs, see [15].

Example 2.1 Two expression trees for the view Prob-

letiept of Example 1.1 are given in Figure 1.1 The

expression DAG representation of those trees is given in

Figure 2. The bold nodes Ni are equivalence nodes,

and the remaining nodes are operation nodes. In

practice, an expression DAG would represent a much

larger number of trees; we have used a small example

for simplicity of presentation. ❑

10ne can be generated from the other by using equivalence
rules such as those proposed by Yan and Larson [24].

449

Seleot (SumSal > Budget)

I
Join ~DName)

Aggregate (SUM Salary by DName) Dept

I
Emp

Select (SumSal > Budget)

I
Aggregate (SUM Salary by DName, Budget)

I
Join (DName)

~
Emp Dept

Figure 1: Two trees for the view ProblentDept

N1

I
El: Select (SumSal > Budget)

~N\
E2: Join (DName) E3: Aggregate (SUM Salary by DName, Budget)

‘wTame

Ed. Aggregate (SUM Salary by DName)

N5(Emp) N6(Dept)

Figure 2: Expression DAG for trees of Figure 1

2.2 Incremental Updating of Expression Trees

Materialized views can be incrementally maintained

when the underlying database relations are updated

using the techniques of, e.g., [2, 8, 12]. The basic

idea is to use differentials ARi for each relation Ri

that is updated, and compute the differential AV for

a materialized view V as an expression involving the

updates to the database relations (ARi), the state of

the database relations prior to the updates (R~ld), and

the state of the materialized view prior to the updates

(} ’o’d).

In this paper, we consider differentials that include

inserted tuples, deleted tuples, and modified tuples.

Our technique follows the approach of [2, 18].

To compute the A on the result of an operation,

queries may have to be set up on the inputs to the

operation. Consider, for example, a node N for the

operation El C40 E2, and suppose an update AE1 is

propagated up to node Ar. When N is not materialized,

in order to compute the update to the result of El NO

E2, a query has to be posed to E2 asking for all tuples

that match AE1 on the join attributes; informally, this

set of tuples can be defined as E2 Ke AE1,

When E2 is a database relation, or a materialized

view, a lookup is sufficient; in general, the query must

be evaluated. The case where both inputs to the join

have been updated can be handled by a simple extension

of the above scheme. Similar techniques apply for other

operations, such as selection, projection, aggregation,

duplicate elimination, union, intersection, difference,

etc.

The exact way to generate the queries and to compute

the updates can be rather subtle; see for example

[8, 10, 12]. This issue will be addressed in more detail

in the full version of this paper.

Consider now an expression tree. Given updates

to the databaee relations at the leaves of the tree,

the update to the result of an expression tree can

be computed by starting from the updated databaee

relations and propagating the updates all the way up

to the root of the tree one node at a time, At each

node, the update to the result of the node is computed

from the updates to the children of the node. Given

one or more database relations that are updated, the

set of affected nodes in the tree are those that have an

updated relation as a descendant.

At each operation node where an update is computed,

there is a A on one or more of the inputs to the

operation. We assume that the sizes of the A on the

inputs are available. Given statistics about the inputs

to an operation, we can then compute the size of the

update to the result of the operation, for each of the

above operations. Our techniques are independent of

the exact formulae for computing the size of the A,

although our examples use specific formulae.

3 Exhaustive Enumeration

Given a materialized view V, it may be worthwhile

materializing and maintaining additional views, as

illustrated in Example 1.1. In general, there are several

possible views that can be additionally materialized

and used for the incremental maintenance of V. For

example, suppose we want to maintain the SPJ view

RI N R2 N R3. There are several choices of sets of

additional views to maintain, namely, { }, {Rl M R2},

{R2 w R3}, {Rl RI R,}, {Rl W R2, R2 M R3}, {R2 W

R3, R1 w R3}, {Rl w R2, R1 M R3}. Different

choices may have different costs associated with them.

In this section we present an exhaustive approach to the

problem of determining the optimal set of additional

views to materialize.

The following example illustrates some of the issues

that arise when determining what views to additionally

materialize.

450

Join (DName)

Aggregate (SUM Salary by DName) Dept

I
Join (DName)

,De~
Emp

Query Optimization

Join (DName)

VI = Join (DName) ADepts

Dept Aggregate (SUM Salary by DName)

I
Erhp

View Maintenance

Figure 3: Query optimization versus view maintenance

Example 3.1 Consider a database with the relations

Dept and Emp of Example 1.1, and an additional relation

ADepts (DName), which gives the departments of type

A. Let ADeptsStatus (DName, Budget, SumSal) be

the view defined by the following query:

SELECT Dept .DName, Budget, SUM (Salary)

FROM Emp, Dept, ADepts

WHERE Dept .DName = Emp. DName AND

Emp. DName = ADepts. DName

GROUPBY Dept. DName, Budget

A likely plan for evaluating ADeptsStatus, when

treated as a query, is the tree labeled “Query Optimiza-

tion” in Figure 3, if the number of tuples in ADepts is

small compared to the number of tuples in Dept.

When ADeptsStatus is a materialized view that has

to be maintained under updates only to the relation

ADepts, the cost of processing updates would be reduced

significantly by materializing the view defined by VI

in the tree labeled “View Maintenance” in Figure 3.

This is because an update to ADepts only needs to look

up the matching tuple in VI to incrementally maintain

ADeptsStatus, whereas if VI were not maintained, a

query would have to be invoked on VI to compute the

matching tuples. Since there are no updates to the

relations Dept and Emp, view VI does not need to be

updated. In this example, {Vi} is likely to be the

optimal set of additional views to maintain.

If there were updates on the relations Dept and

Emp, the cost of maintaining view Vi would have to

be balanced against the benefit of using VI to process

updates on ADepts. Based on the cost of propagating

updates, an optimal set of additional views to maintain

has to be chosen.

Note also that the expression tree used for processing

updates on a view can be quite different from the

expression tree used for evaluating the view (se a query),

as illustrated in this example, Hence we cannot simply

use the optimal expression tree for evaluating the view

in order to propagate updates. u

3,1 Space of Views

We first define the space of views that we consider for

possible additional materialization.

Let Dv denote the expression DAG obtained from

view V by using a given set of equivalence rules, and

a rule-based optimizer such as Volcano. 2 The first step

in determining the additional views to materialize for

efficient incremental maintenance of V is to generate

Dv, and the algorithms in the rest of the paper assume

the availability of DV.

Definition 3.1 (View Set) Given a view V, let EV

denote the set of all equivalence nodes in Dv, other than

the leaf nodes. A view set is a subset of EV.

The space of posstble views to matertahze is the set

of all subsets of Ev that include the equivalence node

corresponding to V. ❑

We always materialize the root node V, and the leaf

nodes correspond to database relations, which are

already materialized.

Consider a materialized view V that needs to be

maintained, and suppose the set of materialized views

we decide to maintain is V (where V ~ Ev, and V 6 V).

The views in V \ {V} are the additional views that

are maintained in order to reduce the total cost of

view maintenance; each additional view in V is thus a

subexpression of an expression algebraically equivalent

to v.
Each materialized view (including V) corresponds to

a distinct equivalence node in Dv; hence these equiva-

lence nodes can be “marked” to indicate their material-

ization status. The equivalence nodes corresponding to

the database relations are also considered “marked”.

3.2 Update and Query Models

We assume a set of transaction types Tl, T2, Tn

that can update the database, where each transaction

type defines the relations that are updated, the kinds

of updates (insertions, deletions, modifications) to the

relations, and the size of the update to each of the

relations.3 We also assume that each of the transaction

types Ti has an associated wetght fi that could reflect

2Our results are independent of the actual set of equivalence

rules used, though a larger set of rules would obviously allow us

to explore a larger search space.

3The size information is needed for purposes of cost estimation.

451

the relative frequency of the transaction type, or the

relative importance of efficiently maintaining view V

when that transaction is executed.

Consider a view V, a transaction type T,, and let V be

the set of views to be maintained, It would be inefficient

to compute the updates to each view in V independently,

since they have a lot of commonality and updates to

one can be used to compute updates to others. Our

approach to maintaining a set of views V is based on

the expression DAG Dv of V; this approach takes into

account the possibility of shared computation between

the update computations for the different materialized

views in V.

For each transaction type Ti we propagate database

relation updates up the expression DAG. We examine

the issue of how to propagate the updates more closely

in Section 3.3.

In order to propagate database relation updates up

an expression DAG, additional queries may need to be

posed for many of the operations. When updates

are propagated up the nodes of the expression DAG,

the inputs to an operation node are equivalence nodes;

queries are thus posed on equivalence nodes. A query on

an equivalence node can be evaluated using any of the

operation nodes that are the children of the equivalence

node; they all generate the same result, but can have

different costs.

Each transaction type defines the database relations

that are updated. Given a transaction type, one can

go up the expression DAG, starting from the updated

relations, determining the queries that need to be posed

at each equivalence node. We omit the straightforward

details of this process. Since each query is generated by

an operation node, the query can be identified by the

operation node that generates it, the child on which it

is generated, and the transaction type. In what follows

we assume that we have augmented the expression DAG

by attaching to each operation node the set of queries

needed for each possible transaction type.

Example 3.2 Consider the expression DAG of Examp-

le 2.1, shown in Figure 2, The following are the queries

that may need to be posed. In each case we label the

query by the number of the operation node and “L” or

“R’, if the node has two operands, to denote whether

the query is on the left operand, or the right operand.

We consider two transactions, one which modifies the

Salary of Emp tuples and one which modifies the Budget

of Dept tuples. We further (redundantly) label the

query with “e” or “d” to denote whether relation Emp or

Dept was updated (i.e., to identify the transaction that

generates the query).

Q2Ld: At E2, find the sum of salaries of the depart-

ment(s) that have been updated.

Q2Re: At E2, find the matching Dept tuple of the

department whose sum of salaries has changed.

Q3e, Q3d: At E3, find the sum of salaries of the

department(s) of the updated join tuple(s).

Q4e: At E4, find the sum of salaries of the depart-

ment(s) from which the updated Emp tuple(s) came.

Q5Ld: At E5, find the employees of the updated Dept

tuple(s).

Q5Re: At E5, find the matching Dept tuple of the

updated Emp tuple(s). ❑

3.3 Relevant Parts of the Expression DAG

Consider a materialized view V and a given set T of

transaction types T1, T2, Tn. We must be able to

determine the cost of maintaining a given set of views

V for a given transaction type Ti.

To maintain V, updates must be propagated up

the expression DAG from updated database relations

to every materialized view in V. However, it is not

necessary to propagate an update along every path

up the DAG, since each operation node below an

equivalence node will generate the same result, and only

one need be chosen to propagate the update. Update

tracks, introduced below, make precise the different

minimal ways of propagating updates up an expression

DAG to maintain a set of materialized views V, given a

transaction type Ti.

First, we introduce the notion of a subdag of an

expression DAG, which identifies the different ways of

propagating updates up the expression DAG to the

set of views V, independent of the specific database

relations updated by the transaction type.

Definition 3.2 (Subdags) Given an expression

DAG Dv and a set V of equivalence nodes in Dv, a

subdag of Dv containing V is any subset of the DAG

Dv satisfying the following properties:

● each equivalence node in V is in the subdag.

● for each non-leaf equivalence node in the subdag,

exactly one of its child operation nodes is in the

subdag.

● for every operation node in the subdag, each of its

child equivalence nodes is in the subdag.

● no other nodes are in the subdag.

● edges in Dv connecting the nodes in the subdag are

edges in the subdag.

SubDags(DV, V) denotes the set of all subdags of Dv

containing V. ❑

452

The intuition behind subdags is that it suffices for

each equivalence node to compute its update using

one of its child operation nodes; computing updates

using other child operation nodes at the same time

would be redundant. So would computing updates

to nonmaterialized equivalence nodes used only in

operation nodes that are themselves not used.

The notion of subdags is a generalization of the notion

of an expression tree, to handle multiple materialized

views. If V contains only the view V, a subdag is merely

any expression tree represented by the DAG, rooted

at the equivalence node corresponding to the view V.

Just as the set of all expression trees represented by

an expression DAG for a singie query is the set of

all ways to compute the query, the set of all subdags

of a DAG defines the set of all ways of computing

a set oj queries (or materialized views, in our case).

Moreover, in our model, each way of computing the

materialized views corresponds to a way of propagating

updates to the materialized views. Hence the set of

subdags SzADags(Dv, V) also defines the set of all ways

of propagating updates to the materialized views.

If the expression DAG Dv of V has nodes that do not

have any descendant nodes updated by transactions of a

given type, updates need not be propagated up to these

nodes.

Definition 3.3 (Update Track) Consider a marked

expression DAG Dv for view V with the set of marked

nodes being V, and a transaction of type Ti, Let WV

denote the subset of equivalence/operation nodes of DV

whose results are affected by transactions of type Ti.

Given any subdag SD of DV including V, the subset of

SD consisting of affected nodes and the edges between

them in SD is an update track of Dv for transactions of

type Ti. ❑

Given an update track SD as above, and a set of

updates to database relations by a transaction of type

T,, the updates can be propagated up the nodes of the

update track. At each node, the update to the result is

computed based on the updates to its inputs using the

incremental techniques described in, e.g., [2, 18].

3.4 Cost of Maintaining a Set of Views

Consider the time cost of maintaining a set of views

V for a given transaction type Ti, There are multiple

update tracks along which updates by transactions of

type Ti can be propagated; these could have different

costs. We now discuss the issue of computing the cost of

propagating updates along a single update track. This

cost can be divided into two costs: (a) computing the

updates to the various nodes in the update track, and

(b) performing the updates to the views in V.

Cost of Computing Updates: The computation

of updates to nodes in an update track poses queries

that can make use of the other materialized views in V

(which is the reason for maintaining additional views).

Determining the cost of computing updates to a node

in an update track in the presence of materialized views

in V thus reduces to the problem of determining the
cost of evaluating a query Q on an equivalence node

in Dv, in the presence of the materialized views in

V. This is a standard query optimization problem, and

the optimization techniques of Chaudhuri et al. [5], for

example, can be easily adapted for this task.

When propagating updates along an update track,

many queries may need to be posed. This set of

queries can have common subexpressions, and multi-

query optimization techniques (see, e.g., [21]) can be

used for optimizing the evaluation of the collection of

queries. Shared work between the queries could lead to

locally nonoptimal plans being globally optimal. Note

that the presence of common subexpressions in the

expression DAG influence a solution to the problem of

determining what additional views to materialize in two

distinct ways:

●

●

First, subexpressions can be shared between differ-

ent views along a path for propagating updates. The

notions of subdags and update tracks were used to

deal with such subexpressions.

Second, subexpressions can be shared between dif-

ferent queries generated along a single update track.

Multi-query optimization is used to deal with such

sub expressions.

Our technique and results are applicable for any cost

model for evaluating the queries. Hence, we omit

details of the exact way of determining the cheapest

way of evaluating the set of queries generated, and

computing their costs. The plan chosen for computing

the updates will of course depend on the cost model

used. In our examples, we describe and use a specific

cost model for estimating the costs of the queries.

Cost of Performing Updates to V: The cost of

materializing a view also includes the cost of perform-

ing updates to the materialized view. The cost of per-

forming updates depends on the physical storage model,

including the availability of suitable indices (which must

themselves be updated too). The cost also depends on

the size of the incoming set of updates, that is, the size

of the “delta” relations. The size can be estimated from

the transaction type, and the definition of the deltas;

the actual size is independent of the way the delta rela-

tions are computed.

For example, at node N4 in Example 2.1 we might

expect one update tuple for an update to the Emp

453

relation, but 10 update tuples for an update to the

Dept relation if the average department contains 10

employees. Another example is node N3, where the

cost of materialization is zero for updates to the Dept

relation. There are a number of reasonable cost models

for calculating the cost of performing updates; our

techniques apply no matter which is chosen.

Space Cost: In addition to the above costs, there

is clearly a space cost associated with maintaining

additional materialized views. There is no unique way

of combining space and time costs to get a single cost;

economic models based on assigning “monetary” costs

to the space and time costs can be used to generate a

combined cost for a view set. Although our techniques

can work with such a combined cost, for simplicity we

do not explicitly refer to the space cost in the rest of

the paper.

3.5 Exhaustive Algorithm

Algorithm OptimalViewSet, in Figure 4, is an exhaustive

algorithm for determining the optimal set of additional

views to materialize for incremental maintenance of V.

The cost of maintaining a view set V for transaction

type T, is obtained as the cost of the cheapest update

track that can be used for propagating updates to V;

let C(V, Ti) denote this cost. By weighting the cost

C(V, Z) with the weight j’i of transaction type T~, the

weighted average cost of maintaining materialized views

Y can be computed as:

The optimal view set V“pt to be materialized for

maintaining V can be chosen by enumerating all

possible markings of equivalence nodes of DV, and

choosing one that minimizes the weighted average cost.

(Recall that the root equivalence node of Dv is always

marked.)

Theorem 3.1 Given a view 1’ and an expression DAG

DIF for V, the vtew set VOPt selected by Algorithm

OptimalViewSet has the lowest estimated maintenance

cod among all v~ew sets that are subsets of Ev and

Contatn v. ❑

TIIe optimality of OptimalViewSet naturally depends

on the assumed optimality of the underlying multi-

query optimization subroutine. The complexity of

OptimalViewSet depends on the set of equivalence rules

used, and could be doubly exponential (or more) in the

number of relations participating in the view definition;

clearly the algorithm is not cheap. However, the cost

can be acceptable if the view uses a small number

of relations, or if the optimizations and heuristics

discussed later are used.

The need for update tracks that are not trees in

Algorithm Optima lViewSet results in cost calculations

that are inherently nonlocal. We shall return to this

issue in Section 4.

3.6 Motivating Example Revisited

Let us consider Example 1.1 once more. The expression

trees and expression DAG are given in Figures 1 and 2.

The subqueries generated are given in Example 3.2. For

the sake of clarity, we shall use a simplified cost model

described below. In practice, more realistic cost models

would be used. We assume all indices are hash indices,

that there are no overflowed hash buckets, and that

there is no clustering of the tuples in the relation.

We count the number of page 1/0 operations. Look-

ing up a materialized relation using an index involves

reading one index page and as many relation pages as

the number of tuples returned. Updating a materialized

relation involves reading and writing (when required)

one index page per index maintained on the material-

ized relation, one relation page read per tuple to read

the old value, and one relation page write per tuple to

write the new value.

Let us suppose that we have 1000 departments, 10000

employees, and a uniform distribution of employees to

departments. Further, let us assume that none of the

data is memory-resident initially. We have two types

of transactions: DEmp that modifies the salary of a

single employee, and DDept that modifies the budget

of a single department. We shall consider four possible

additional view sets to materialize: (a) 0, (b) {N2},

(c) {N3}, and (d) {N4}. (The exhaustive algorithm

would consider all possible view sets.)

The total incremental maintenance costs of various

materializations are summarized in the following table,

assuming that each of the materializations has a single

index on DName. (We do not count the cost of

updating the database relations, or the top-level view

ProblemDept.) For example, the cost of incrementally

maintaining N4 when a Dept tuple is modified involves

reading, modifying and writing 10 tuples; this has a

cost of 21 page 1/0s (including one index page read;

no index page write is necessary). Similarly, the cost

of incrementally maintaining N3 when an Emp tuple

is modified involves reading, modifying and writing 1

tuple; this has a cost of 3 page 1/0s (again, no index

page write is necessary). The cost of maint aining N4 in

response to an update of an Emp tuple is 12, representing

reading an index page for the given department, reading

the 10 tuples of N4 with that department, and writing

back the modified tuple corresponding to the changed

employee.

0 {N2} {N3} {N4}

bEmp o 3 3 12

bDe~t o 3 0 21

454

Algorithm OptimalViewSet (V) {

/“ compute cost of performing updates “/

for each equivalence node N of Dv

for each transaction type T]

calculate the update cost for N and store in Ikf[iV, ~];

coPt = ~;

/* compute weighted total cost for each view set, and compare with best so far */

for each possible view set V {

for each transaction type Tj {

compute the total update cost mj for all members of V; /* mj computation uses kf[*, j] */

find the update track from the marked nodes to the leaves with minimum total accumulated

query cost qj along the update track; /* q, computation utilizes multi-query optimization*/
associate with V the cost gj + mj for updates to transactions of type ‘Tj;

}
calculate the weighted cost c for V according to the weights jj for each T,;

if (c < CO@) then { VOPt = V; CO@ = c; }

}

}

Figure 4: Exhaustive algorithm for determining optimal view set

We consider the following four update tracks.4

Track I Transaction I Queries

N1,E1,N2,E2,N3, E4,N5] bEmp] Q4e, Q2Re

N1,E1,N2,E3,N4, E5,N5 b-Emp Q5Re,-Q3e
N1,E1,N2,E2,N6 PDept Q2Ld
Nl,131,N2,133,N4, E5,N6 bDept Q5Ld, Q3d

On each update track several queries are posed, as

indicated in the table, We must perform multi-query

optimization on each collection of queries. Further,

the optimization should take advantage of the fact

that certain index and main relation pages from the

materialized views are available for- free (given sufficient

buffer space) since those pages are needed for view

maintenance anyway. The following table gives the total

query costs for each update track,

Let us examine more closely how some of these numbers
were derived. Query Q3d can be evaluated very eff-

iciently on the update track N1,E1,N2,E3,N4, E5,N6:

Since Dname is a key for the Dept relation, the A result

propagated up along E5 and N4 contains all the tuples

in the group. Thus no 1/0 is generated for Q3d. (The

conditions under which keys can be used to reduce the

set of needed queries will be presented in the full ver-

sion of this paper.) On thi~ same track, Q5Ld can be

4There are additional update tracks that are not simple

paths, such as N1,E1,N2,E3,N4, E5,N5 U N3,E4,N5 when N3

is materialized.

answered by looking up the Emp relation: since each de-

partment has an average of 10 employees, an indexed

read of the Emp relation has a cost of 11 page 1/0s (in-

cluding one index page read). However, in the case that

N4 is materialized, we can reuse the pages of N4 read

for view maintenance (contributing to the maintenance

cost of 21 above), leading to no additional query cost.

The update track N1,E1,N2,E2,N3, E4,N5 involves

queries Q4e and Q2Re. Both of these queries can be

answered with no additional cost when either N2 or N4

is materialized, using the pages previously counted for

maintenance. When N3 is materialized, Q4e can be

answered without additional cost, but Q2Re needs two

page reads to get the required tuple from Dept. When

nothing is materialized, we need 11 pages for Q4e and

2 for Q2Re, a total of 13.

Combining the materialization and query costs, and

minimizing the costs for each updated relation we

get the following table. For example, the cheap-

est way of maintaining the view set {N3} for trans-

action type DEmp involves using the update track

N1,E1,N2,E2,N3, E4,N5 (for a cost of 2 page 1/0s);
the cost of maintaining N3 itself for transaction type

bEmp is 3 page 1/0s; the total is 5 page 1/0s.

~

Independent of the weighting for each transaction

type, materializing {N2} or {N3} wins over not main-

taining any additional views, w ivell as over maintaining

the view set {N4}; {N3} corresponds to maintaining

the view SumOf Sals from Example 1.1. Maintaining

{N4} is usually (depending on the transaction weights)

455

worse than not materializing any additional views; by

making a wrong choice of additional views to materialize

the cost of view maintenance may be worse than mate-

rializing no additional views. The choice between mate-

rializing {N2} and {N3} can be made quantz’taiiveiy on

the basis of the transaction weights, If we assume that

the top-level view changes rarely, because the integrity

constraint is rarely violated, then by materializing {N2}

we use an average of 3 page 1/0s per transaction for

maintenance compared with 12 when materializing no

additional views, assuming an equal weight for the two

transactions. That’s a reduction to 25% of the cost in-

curred when no add~tional views are maintained.

4 Impact of Common Subexpressions

A close examination of Algorithm Optima lViewSet re-

veals that it computes the minimum cost query plan

for an operation node once for every update track being

considered. It would certainly be more efficient to com-

pute the minimum cost plans only once for a given set of

marked nodes, and not repeat the computation for each

update track. Unfortunately, such a computation would

not, be correct in that it may ignore a globally optimal

plan for propagating updates that is composed of plans

that are not locally optimal. Locally suboptimal plans

may be part of a globally optimal plan due to the costs

of common subexpressions being amortized by multiple

uses.

Common subexpressions between two views in the

view set V can arise because the view V itself had

common subexpressions. Even when V itself does not

have common subexpressions, it is possible for the

expression DAG Dv to have common subexpressions.

In estimating the cost of maintaining an arbitrary

view set (i.e., a set of equivalence nodes) V, a similar

argument shows that suboptimal plans for maintaining

individual views in V can be combined to obtain an

optimal plan for maintaining V.

As a consequence, it appears that there is inherently

little scope for reuse of lower-level cost computations

in deriving globally optimal costs. We next look at a

special case where there is a higher degree of locality.

Definition 4.1 (Articulation Node) An articula-

tion node of a connected undirected graph is a node

whose removal disconnects the graph. ❑

When the expression DAG Dv (viewed as an undi-

rected graph) of a view V has equivalence nodes that

are articulation nodes, it turns out that only optimal

cost expression trees for the materialized subviews cor-

responding to articulation nodes are used in determining

the optimal choice for V.

The intuition is as follows: Consider an equivalence

node N that is an articulation node of Dv; let N1

denote any descendant equivalence node of N; and N2

Join (Item)

Aggregate (SUM (S.Quantity +T.Price) by T. Item) R

Join (Item)

/\
s T

Figure 5: Articulation node

denote any ancestor equivalence node of N1 that is

not also a descendant of N. Then N 1 can be part

of an expression tree with root N2 only if N is also

part of that expression tree. Consequently, the subview

corresponding to node N can be optimized locally. This

intuitive notion is formalized in the following principle

of local optimality, Recall that Ev denotes the set of all

subviews of view V. We let Opt(V) denote the optimal

subset of Ev chosen for maintenance of V.

Theorem 4.1 (Local Opt imality Principle) : If

V 1 E Opt(V), and the equivalence node corresponding

to VI is an articulation node of Dv, then Opt(Vl) =

Opt(V) n Evl. ❑

A similar argument establishes that query costs can

be minimized at articulation nodes.

Given a materialized view V, the algorithm Opti-

ma lViewSet presented previously operated on the ex-

pression DAG Dv of view V, and computed update

costs and query costs separately for each update track

in DV. When DV has equivalence nodes that are ar-

ticulation nodes, the Local Optimality Principle can be

used to considerably optimize this algorithm. For each

equivalence node N in Dv that is an articulation node,

let DN denote the subset of Dv consisting of N, its

descendant nodes, and edges between them. Then, for

each DN, update costs and query costs can be com-

puted for update tracks independently of (update and

query) cost computations for other DN ‘s. These costs

can be directly combined to compute the update and

query costs for update tracks in Dv. This can consider-

ably restrict the search space that needs to be explored

to obtain an optimal solution!

Articulation nodes often arise in expression DAGs

of complex views, especially when the view is defined

in terms of other views with grouping/aggregation.

Consider, for example, the expression tree in Figure 5.

The aggregation cannot be pushed down the expression

tree because it needs both S. tJmntity and T. Price. If

Item is not a key for relation R, then the aggregation

cannot be pushed up the expression tree because the

multiplicities would change. Hence, the equivalence

node that is the parent of the grouping faggregation

456

node in the expression DAG is a natural articulation

point.

5 Heuristic Pruning of the Search Space

The exhaustive approach, even with the optimizations

described above, can be expensive for complex SQL

views since the search space is inherently large. By

the very nature of the problem, optimization does

not have to be performed very often, and hence the

exhaustive approach may be feasible even for complex

views. If, however, the view is too complex for

an exhaustive search strategy to be feasible, or the

optimization time is required to be small, heuristics can

be used to drastically reduce the search space. The

heuristics described below reduce, but (intentionally)

do not eliminate the search space entirely, so that at

least several different view sets are considered and the

best one chosen.

Using a Single Expression Tree: Using a single

expression tree equivalent to V for determining a view

set can dramatically reduce the search space: the

number of equivalence nodes that need to be considered

is smaller than in the expression DAG IIv, and each

equivalence node has only one child operation node

whose costs need to be computed. One possibility is

to simply use the expression tree that has the lowest

cost for evaluating V when treated as a query, ignoring

the potential suboptimality outlined in Example 3,1.

Choosing a Single View Set: Given an expression

tree, a marking of its nodes can be chosen heuristically.

A simple heuristic is to mark each equivalence node

of the tree that is the (unique) parent of operations

that are expensive to compute incrementally if their

result is not materialized. Examples of such operations

are grouping/aggregation and duplicate elimination.

Finally, the set of marked nodes can be chosen w the

additional views, provided that the cost of this option is

cheaper than the cost of not materializing any additional

views. This approach is similar to the rationale used in

TREAT, but unlike TREAT, the set of all expressions

trees can still be explored to find the best.

Approximate Costing: An alternative to using the

heuristics described above is based on approximate

costing. One possibility is to use a greedy approach

to costing, and only maintain a single update cost with

each equivalence node, and a single cost with each query

at an equivalence node during the exhaustive procedure,

even when the equivalence node is not an articulation

node of expression DAG Dv (see Section 4). The result

of the greedy approach of associating a single cost with

each query, on Algorithm Optima lViewSet, is to move

the query cost computation out of the inner-most loop,

which reduces the complexity of the algorithm.

6 Discussion

The problem of efficient view maintenance is especially

important for implementing SQL-92 assertions. These

assertions are simply queries that return true/false, and

the database is required to be such that the assertions

are always true. When the database is updated, it is

important to check if the update will make the assertion

false. An assertion can be modeled as a materialized

view, and the problem then becomes one of computing

the incremental update to the materialized view. While

the materialized view corresponding to the root of

the assertion expression must always be empty, the

remaining nodes can correspond to non-empty views.

Standard integrity constraint checking techniques can

be used for simple assertions. However, if assertions

are complex, incrementally checking them may be

quite costly unless additional views are materialized, as

illustrated in the motivating example (Example 1.1).

Our results can be applied in a straightforward

fashion to the problem of determining what views to

additionally materialize for efficiently maintaining a set

of materialized views. The key to this is the fact that

the expression DAG representation can also be used to

compactly represent the expression trees for a set of

queries, not just a single query. The only change will be

that the expression DAG will have to include multiple

view definitions, and may therefore have multiple roots,

and every view that must be materialized will be marked

in the expression DAG. Other details of our algorithms

remain unchanged.

Materializing additional views has benefits beyond

those addressed here. In particular, additional views

could be used to speed up ad-hoc queries. Algorithm

OptimalViewSet can be extended to take query benefits

into account by performing an additional optimization

step (given a set of queries with weights) for each

possible view set, and incorporating this query cost into

our total cost.

7 Conclusions and Future Work

We have examined the problem of reducing the cost

of maintaining a materialized view by materializing

(and maintaining) additional views, and presented an

exhaustive algorithm for finding the best set of views

to materialize. We have presented optimizations for the

algorithm, as well as some heuristics. Our techniques

are important for maintaining complex SQL views and

for checking complex SQL-92 assertions. Our techniques

are cost-based, but independent of the cost model used;

any cost model can be “plugged in.” We showed that

the problem is inherently nonlocal and that the cost

457

must be globally optimized. Our work should stand as

a foundation for future work in the area.

The view sets chosen using our (non-heuristic) tech-

niques are optimal under the update propagation model

we have used. The model is a complete and powerful

one, but there are other models for propagating updates

based on defining update expressions, such as the one

described in [8]. It would be interesting to consider how

to find the optimal way to maintain a view (or set of

views) under such a model.

Another direction for future work is to use a more

general abstraction of database relation updates than

the insert/delete/modify abstraction used in this pa-

per. Abstracting other types of updates, such as in-

crement/decrement, and recognizing the type of a given

update, can lead to better view maintenance techniques.

The issue of space cost also needs further study.

Acknowledgements

We thank Zoltan Somogyi for pointing out how our

techniques could be extended to incorporate user-query

weights. We also thank the anonymous referees for

their many insightful comments.

References

[1]

PI

[3]

[4]

[5]

[6]

[7]

[8]

[9]

C. Beeri and R, Ramakrishnan, On the power of Magic,

Journal of Logic Programming, 10(3&4):255-300, 1991.

J. A. Blakeley, P.-A. Larson, and F. W. TomPa.

Efficiently updating materialized views. In Proceedings

of the ACM SIG MOD Conference on Management of

Data, pages 61-71, Washington D. C,, May 1986.

B. Blaustein. Enforcing database assertions: Tech-

ntgues and applications. PhD thesis, Harvard Univer-

sity, 1981.

S. Ceri and J. Widom. Production rules for incremental

view maintenance. In Proceedings of the International

Conference on Very Large Databases, Barcelona, Spain,

1991.

S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and

K. Shim. Optimizing queries with materialized views.

In Proceedings of the IEEE International Conference on

Data Engineering, 1995.

F. Fabret, M. Regnier, and E. Simon. An adaptive

algorithm for incremental evaluation of production

rules in databases. In Proceedings of the International

Conference on Very Large Databases, Aug. 1993.

G. Graefe and W. J. McKenna. The Volcano optimizer

generator: Extensibility and efficient search. In

Proceedings of the IEEE International Conference on

Data Engineering, Vienna, Austriaj 1993.

T. Griffin and L. Libkin. Incremental maintenance

of views with duplicates. In Proceedings of the ACM

SIGMOD Conference on Management of Data, 1995.

A. Gupta, V. Harinarayan, and D. Quass. Aggregate-

query processing in data warehousing environments. In

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

458

Proceedings of the International Conference on Ver~

Large Databases, 1995.

A. Gupta and 1. S. Mumick. Maintenance of materi-

alized views: Problems, techniques and applications.

IEEE Data Engineering Bulletin, 18(2), June 1995.

SpeciaJ Issue on Materialized Views and Data Ware-

housing.

A. Gupta, I. S. Mumick, and K. Ross. Adapting

materialized views after redefinitions, In Proceedings

of the ACM SIGMOD Conference on Management of

Data, San Jose, CA, May 1995.

A. Gupta, I. S. Mumick, and V. S. Subrahmanian.

Maintaining views incrementally. In Proceedings of the

ACM SIGMOD Conference on Management of Data,

pages 157-166, 1993.

E. Hanson. Rule condition testing and action execution

in Ariel. In Proceedings of the ACM SIGMOD Confer-

ence on Management of Data, June 1992.

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D, Srivas-

tava. Answering queries using views. In Proceedings

of the ACM Symposium on Principles of Database Sys-

tems, San Jose, CA, May 1995.

W, J, McI{enna. Eficient search in extensible database

query optimization: The Volcano optimizer generator.

PhD thesis, University of Colorado, 1993.

J. Melton and A. R. Simon. Understanding the new

SQL: A complete guide. Morgan Kaufmann, San

Francisco, CA, 1993.

R. Paige. Applications of finite differencing to database

integrity control and query/transaction optimization.

In Aduances in Database Theory. Plenum, 1984.

X. Qian and G. Wiederhold. Incremental recomputa-

tion of active relational expressions, IEEE Transac-

hons on Knowledge and Data Engineering, 3(3):337-

341, 1991.

A. Segev and W. Fang. Currency-based updates to

distributed materialized views. In Proceedings of the

IEEE International Conference on Data Engineering,

pages 512-520, 1990.

A. Segev and J. Park. Updating distributed material-

ized views. IEEE Transactions on Knowledge and Data

Engineering, 1(2):173-184, June 1989.

T. Sellis. Multiple query optimization. ACM Transac-

tions on Database Systems, 13(1):23-52, Mar. 1988.

L. Vieille, P. Bayer, and V. Kiichenhoff. Integrity

checking and materialized views handling by update

propagation in the EKS-V1 system. Technical report,
CERMICS - Ecole Nationale Des Ponts et Chaussees,

France, June 1991. Rapport de Recherche, CERMICS

91.1.

Y.-W. Wang and E. Hanson. A performance compar-

ison of the Rete and TREAT algorithms for testing

database rule conditions. In Proceedings of the IEEE

International Conference on Data Engineering, 1992.

W. P. Yan and P.-A. Larson. Performing groupby

before join. In Proceedings of the IEEE International

Conference on Data Engineering, pages 89-100, 1994.

