
Incremental Organization for Data Recording and
Warehousing

H. V. Jagadishl P. P. S. Narayan2t4 S. Seshadri3
Rama Kanneganti2

S. Sudarshan3t5

‘AT&T Labs ’ Bell Laboratories
180 Park Avenue, Murray Hill, NJ 07974

Florham Park, NJ 07932-0636 ppsn@research.bell-labs.com
jag@research.att.com rama@emailbox.lucent .com

31ndian Institute of Technology,
Mumbai 400 076, India

{seshadri,sudarsha}@cse.iitb.ernet.in

Abstract

Data warehouses and recording systems typ-
ically have a large continuous stream of in-
coming data, that must be stored in a manner
suitable for future access. Access to stored
records is usually based on a key. Organizing
the data on disk as the data arrives using stan-
dard techniques would result in either (a) one
or more I/OS to store each incoming record (to
keep the data clustered by the key), which is
too expensive when data arrival rates are very
high, or (b) many I/OS to locate records for a
particular customer (if data is stored clustered
by arrival order).

We study two techniques, inspired by exter-
nal sorting algorithms, to store data incremen-
tally as it arrives, simultaneously providing
good performance for recording and querying.
We present concurrency control and recovery
schemes for both techniques. We show the
benefits of our techniques both analytically
and experimentally.

1 Introduction

A fundamental characteristic of many data warehouses
and data recording systems ([JMS95]) is that they

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and ita date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

record data by appending new data observations to
a database. Examples of such systems include point-
of-sale data collection systems used in large retail busi-
nesses, tracking and billing of telephone calls, collec-
tion of stock trading data, and operational-data col-
lection systems in factories and computer networks,
which record data from a large number of sensors.

A challenge for these systems is to support very
high recording rates (of the order of millions of record-
ings an hour) while simultaneously providing efficient
access, based on a pre-specified search key, to the
recorded data. For instance, a system recording tele-
phone calls must not only be able to record information
fast, but must also be able to efficiently retrieve all call
information for a specified customer.

There are two ways of organizing the records: clus-
tered by search key, or clustered by arrival order. Clus-
tering by arrival order results in records for a particu-
lar search key being scattered at random locations on
disk, and therefore does not meet our requirements.

The standard way to implement clustering by a
search key is to organize the records into a B+-tree
file (or hash file) organization, with the search key at-
tributes as the clustering/indexing attributes, and to
insert records into the tree (respectively, hash index)
as they arrive. In the application domains mentioned
above, the values of the indexed attribute of the incom-
ing records are typically randomly distributed over the
population. As a result, each successive record in the
input stream is likely to end up in a different leaf of
the B+-tree (different hash bucket). Since buffer space
is likely to be much smaller than the size of the index,
at least one I/O is needed for fetching the appropriate
leaf node (hash bucket) for each incoming record, one

4The work of this author was done while he was at the Indian
Institute of Technology, Mumbai

5The work of this author was done partly while he was at
what was then AT&T Bell Labs.

16

I/O for writing it back, and possibly more I/OS for
internal nodes. Performing disk I/O for each record in
the input stream is very costly, greatly reducing the
rate at which data can be recorded.

A commonly used work-around in data warehouses
is to collect the records and update the database only
periodically (such as each night) using bulk-load tech-
niques. The obvious drawback is that the database
is significantly out-of-date. Further, bulk loading is
done off-line, during which time the database is typi-
cally unavailable.

Our goal is to design a technique that supports both
insertion and queries with reasonable efficiency, and
without the delays of periodic batch processing.

In this paper we study two techniques, based on ex-
ternal sorting algorithms, to achieve these objectives:

1. The first technique stores the records lazily in a
B+-tree file organization (clustered by the speci-
fied key), and is based on external merge-sort. In-
stead of inserting records into a B+-tree as they
arrive, they are organized in-memory into sorted
runs. Runs are written to disk when memory is
full, and runs on disk are merged to get larger
runs. After several levels of merging, when the
merged runs have grown relatively large, they are
merged into the final B+-tree file organization.

This technique is based on the same idea as the
Log-Structured Merge tree (LSM tree) proposed
by O’Neil et al [OCG096]. However there are sig-
nificant differences, which we discuss in Section 8.

2. The second technique stores records lazily in a
hash file organization, and is based on external
distribution sort with several levels of partition-
ing. The hashing based technique is conceptually
a dual of the merging based technique, but the
implementation details are very different.

As compared to direct insertion, both techniques
reduce the number of blocks of data that must be read
from and written to disk for insertion and further, per-
form mainly sequential I/O, rather than random I/O,
thereby reducing seek costs as well.

Although the techniques are based on well-known
external sorting algorithms, there are important dif-
ferences from sorting:

1. Unlike external sorting, where an entire file is
sorted, records must be organized incrementally,
as they arrive.

2. Queries must be allowed on the records, and must
be able to retrieve all relevant records that have
already been inserted.

3. Concurrency control and recovery must be han-
dled efficiently; neither of these is an issue for
external sorting algorithms. We present effi-
cient concurrency control and recovery schemes
for both our techniques.

We compare our schemes with the standard scheme
of directly inserting records into a B+-tree (respec-
tively, hash file) analytically, as well as empirically by
implementing our techniques in a relational storage
manager called Brahma developed at IIT Bombay.

Our performance results show that, over a wide
range of parameters, our techniques can significantly
reduce the cost of insertion as compared to direct inser-
tion, while not impacting queries unduly. The results
also show that the sorting-based technique outper-
forms the hashing-based technique-a somewhat un-
expected result. Both techniques are of greatest value
when the records are small compared to the page size;
record sizes of tens to a few hundred bytes, with a page
size of 4KB to 8KB, are typical examples.

2 Stepped-Merge Algorithm

Incoming records are stored lazily in a relation whose
records are organized in a Bt-tree file organization.
We call the Bt-tree in which the records must finally
reside as the root Bt-tree or more simply, the root
relation. There are also several intermediate B+-trees,
organized into multiple levels, as we will see below.

2.1 Insertion

The insertion algorithm is shown below. The values
K and N are parameters to the algorithm.

Algorithm Stepped-Merge-Insertion

1.

2.

3

Collect incoming data in memory in a current run,
organized as an in-memory tree. When memory is
full, call it the previous run. Start a new run (initially
empty) and make it the current run.

Write out the previous run to disk, constructing a
Bt-tree on the run as it is written out. The B+-
tree is constructed bottom up since the data is
sorted. Both the in-memory run and the one just
constructed are called Level 0 runs.

When Ii Level i runs, for 0 5 i < N - 1, accu-
mulate on disk read back the sorted runs from disk,
perform a (K-way) merge and write back a single
larger sorted run to disk, calling it a Level i+ 1 run.
Delete the old Level i runs. As before, the run is
stored in a Bt-tree file organization.

When Ii Level N - 1 runs accumulate, merge them,
but instead of writing them to a new run, insert the

17

entries into the root relation. The root relation is
also organized using a B+-tree file organization.

The rationale behind the above algorithm is that
a large number of records are inserted at a time, in
sorted order, into the root B+-tree. As a result mul-
tiple records would end up in each leaf, and the num-
ber of I/O operations per record is reduced, at the
(smaller) cost of increased I/O to create the interme-
diate runs. A more detailed analysis is presented later.

A run-index stores pointers to all the runs currently
in existence, including the run currently being con-
structed in memory. When Ii runs are merged to get
a single run at a higher level, pointers to the Ii runs are
deleted from the run-index, and replaced by a pointer
to the single higher-level run. And when a new run
is created in memory, a pointer to it is added to the
run-index. All the trees together with the run index
constitute a multi-tree index.

We now consider some simple optimizations. While
creating the li’th run of a Level i, instead of writing
it out to disk and reading it back again for merging,
it can be directly merged with the other Level i runs.
As a result of recursively applying this optimization,
runs of several different levels may get merged simulta-
neously. Applying the optimization to multiple levels,
one in-memory run of level 0, and Ii - 1 runs of each
of levels 0.. . i on disk, will get merged to form a sin-
gle run of level i + 1 on disk. With li’ = 2, this will
save about half the I/O operations required otherwise
for merging. Furthermore, no level (except level 0)
will have more than li’ - 1 runs at a time with this
optimization.

The average length of a Level 0 run in Stepped-
Merge can be increased to double the size of memory
by using the run length doubling trick developed for
external merge-sort (see, e.g., [Knu73]). All disk ac-
cesses, except for the writes to the root relation, in
Step 3, are sequential writes. If more than one run is
allocated on the same disk, the disk arm may have to
move to fetch from or write to different runs. This seek
overhead is easily reduced by using large disk buffers,
and can be eliminated by using multiple disks, with a
careful allocation of runs to different disks. Further
implementation details are described in the full version
of this paper.

The idea of having intermediate levels of B+-trees
and merging them is the same as that used in the
LSM tree [OCG096]. H owever, Stepped-Merge and
the LSM tree differ in significant details; Section 8 de-
scribes the differences.

2.2 Queries

Queries can be executed even as data is being orga-
nized into runs. In general, there are up to Ii’ - 1 runs

at each level 0 < i < N. Further, there is newly in-
serted data in memory that has not yet been inserted
into a run. We store the data in memory indexed by
the specified key; for simplicity, we assume it is indexed
by a B+-tree, although this is not essential and other
in-memory tree structures or hash structures may be
used.

Instead of looking up a single relation, queries have
to (a) lookup the root relation and (b) search the run-
index to find (up to) I(- 1 runs at each of the N levels
(including the current in-memory run), and perform
a lookup on each of these runs. (Assuming that the
optimization of merging runs from multiple levels at
once is used.) This is an acceptable price if (K - 1). N
is not too large, and lookups are relatively infrequent.

2.3 Deletion

Aged records must be deleted from a data warehouse
(and possibly archived). Fortunately in most such ap-
plications, deletion can be done lazily, and does not
have an impact on correctness - either the applications
themselves may ensure that logically deleted records
are not accessed, or a view mechanism may be used
to filter out these records from the applications. Ei-
ther way, applications do not query data that is old,
and could have been deleted. In such an environment
deletion can be done efficiently in the background by
a batch process that sequentially scans the root rela-
tion. If user transactions perform deletions, the idea of
having special records to indicate deletions described
in [OCG096] could be used.

2.4 Analysis

We derive an estimate of the number of I/OS incurred
for each insertion by the Algorithm Stepped-Merge.
Table 1 lists the parameters we use in estimating the
I/O costs of various operations. We assume that the
root relation is large enough that we can assume its
height remains constant during one round of the algo-
rithm. We have the following theorem:

Theorem 2.1 The total I/O cost of Algorithm
Stepped-Merge for inserting S pages-full records into a
@-tree of (final) height h, with L pages and a fanout
of d, with s being the size of the final level run and N
the number of levels of runs before insertion into the
root relation, is

(2 + ;) * N .s. Tt + (ch + 5 ci) . (s/s) . (T, + z)
i=l

where Ci denotes the number of node I/OS from level
i of the root P-tree, and is obtained as

ci=r+ l.(l-(I- ,&,I
m

)

18

IndeDendent Parameters (Both Algorithms\
M Size of memory in pakes ” ’

E
Number of records per page
Time to seek to a specified (random) lo-
cation on disk

Tt Time to transfer one page to/from disk
Size of input stream, in pages (in the pe-
riod of interest)

N Maximum levels before records are in-
serted into root relation

Independent Parameters (Stepped-Merge)

Average fanout of internal nodes of B+-

Number of memory pages reserved for

Dependent Parameters (Stepped-Hash)

440 Number of memory pages available for
managing insertions (A40 = A4 - R)

X Number of ways final level bucket is par-
titioned when inserted into root relation
(X = Number of buckets in the root rela-
tion / (M~li’~))

Table 1: Parameters Used in Analysis
where m is the number of distinct keys in the s pages
of records inserted at a time into the root relation. •I

The first term in the formula measures the cost of
insertion of a record into the various intermediate runs.
The second term measures the cost of insertion into the
root relation. Details of the derivations are presented
in the full version of the paper.

Consider now the cost of direct insertion of records
into a B+-tree, without using Algorithm Stepped-

Merge. Since the order of insertion of records is ran-
dom, and the final B+-tree is likely to be much larger
than memory, the probability of finding a page in
memory is very small. However, to be conservative
in our comparison, we will assume that the root node
of the B+-tree as well as the next level node are in
memory; the rest must be read from disk, and coupled
with a write of the leaf page, the cost of inserting S
pages worth of records directly into a B+-tree of height
h is S. T. (h - 1) . (T, + G).

Numerical comparisons of the two costs will quickly
demonstrate the benefit of Stepped-Merge over direct
insertion, for a wide range of parameter values. This is
borne out by experiment as we will discuss in Section 7.

2.5 Cost of Look-Up

Now let us consider the I/O cost of looking up records
when using algorithm Stepped-Merge. Instead of look-
ing up a single relation, queries have to look up the
root relation and up to li runs at each level. (This is
conservative; (Ii - 1)/2 is a better average-case esti-
mate.) We assume for simplicity that the index on
each run has the same height as the root B+-tree,
the root node of each is in memory, and records with
the specified key value fit into a single leaf page in
each tree. Thus the total cost of a single lookup is
(Ii . N + 1) . (h - 1) . (T, +x).

Contrast this with the cost of (h - 1) . (T, + Z)
in a single B+-tree index. For a fixed value of s,
N depends on Ii, and it can be shown that Ii . N =
K[logK(s/M)l, h’ h. w ic is an increasing function of Ii’,
for li’ > 2. Therefore, it is minimum at Ii’ = 2. This is
experimentally confirmed by our performance analysis
in Section 7, which also shows that the actual increase
in cost with a small number of levels is quite low.

3 Concurrency Control and Recovery
in Stepped-Merge

To implement the Stepped-Merge algorithm in a
database system, the transactional issues of concur-
rency control and recovery must be handled. We deal
with these issues in the next two subsections.

3.1 Concurrency Control

There are two aspects to concurrency control for
Stepped-Merge - that between normal transactions
(by which we mean inserts and queries), and between
normal transactions and reorganization.

Concurrency control between insertions and queries
can be handled in the traditional manner, through
key-value locking or interval locking, with a few mi-
nor caveats.

For example, some techniques, such as next-key
locking [MohSO], are not efficient in our context, since
they require inserters to traverse a B+-tree, which in-
curs I/O that we are trying to avoid.

Alternatively multi-version 2PL can be used to en-
sure that reads do not interfere with updates (see
database textbooks, such as [SKS96], for details). Ver-
sioning is particularly simplified because update trans-
actions in our environment merely append new records
and thus there exists only one version for each record.

19

If multi-versioning 2PL is used, records must con-
tain a timestamp corresponding to the time when the
transaction that inserted them committed. Read-only
transactions read the system timestamp as of when
they start, and see all and only relevant records with
a timestamp less than their start timestamp.

Concurrency control between normal transactions
and index reorganization cannot be handled as eas-
ily, since index reorganization is time consuming and
potentially involves large parts of the database. We
discuss below the interaction between index reorgani-
zation and normal transactions, first for updates, and
then for queries.

The only type of update performed by normal trans-
actions (in our model) is an insertion into the current
in-memory run. Before performing such an insert, the
updater finds and shared-locks the pointer to the cur-
rent in-memory run. The shared-lock is held until
transaction commit. Reorganization acquires an ex-
clusive lock on the pointer before transferring the con-
tents of the run to disk; the lock can be released early,
after creating an empty in-memory run and updating
the pointer in the run-index to point to it.

Queries access the run-index to find what runs they
have to search, in addition to the root relation. Con-
currency control on the run-index must ensure that:

1. A transaction does not search a given run as well
as one of the runs that was merged to get the given
run, since a record could then be found twice.

2. A transaction does not miss data in a run be-
cause the run got deleted, due to absorption in a
higher level run that was accessed by the transac-
tion prior to the absorption.

A naive solution is for query transactions to shared-
lock the run-index, and reorganization to exclusive-
lock the run-index so that no reorganizations can occur
while a transaction is running. However this would
result in very poor concurrency since reorganizations
take time.

A better alternative is to use versioning of the run-
index. When runs are reorganized, instead of updat-
ing the existing run-index, a new version is made and
is updated. Thus each version of the run-index con-
tains pointers to a consistent set of runs, which cover
all data that has been inserted when the run-index
version was created, and without any duplication of
records in two or more runs pointed to by the ver-
sion. A pointer to the current run-index cur-index is
also maintained. Versioning of the run-index, and can
be performed whether or not the data itself is being
versioned.

Runs (including the current in-memory run) can
be deleted only after (a) all the records in them have

been inserted into later runs, (b) the current version of
the run-index does not contain the run, (c) no further
transactions will find the run, and (d) no transaction
is using the run. Straightforward latching mechanisms
are used to enforce these rules.

Whereas versioning of the run-index ensures that a
consistent set of runs is accessed by a query, it does
not ensure that the root relation is accessed in a state
consistent with the runs - without additional mech-
anisms, a query could find records in the root relation
that it saw earlier in some run. We have two alter-
natives. The first solution is based on key-value lock-
ing; the basic idea is that queries share-lock the range
of key values accessed, while reorganization exclusive
locks them. However, this solution provides less con-
currency. See the full version of the paper for details.

The second solution, which we call epoch numbering,
requires insertions into the root relation to be done as
follows: all records in some set of runs are inserted into
the root relation, and then the set of runs is deleted
from (a new version of) the run-index. The epoch
number starts from 0, when the first run-index is cre-
ated. The epoch number is incremented when a new
version of the run-index is created such that some set
of final-level runs from the previous version have been
deleted (because all the records in the runs have been
added to the root relation). Thus, multiple versions of
the run-index may have the same epoch number.

Further, the records inserted into the root relation
have an epoch number stored with them, which indi-
cates the epoch during when they were inserted. The
first version of the run-index where the runs have been
deleted will have an epoch number higher than the
epoch number stored with these records.

Given the above property, a lookup reads the epoch
number of its version of the run-index, and simply re-
jects a record if its epoch is greater than or equal to
the epoch of run-index version; any such record would
either have been read from the runs in which they
were stored earlier, or would have been inserted af-
ter the transaction started and due to the serialization
requirements they should not be retrieved.

3.2 Recovery for Stepped-Merge

We assume that records are inserted by update trans-
actions, which each insert one or more records. Then
each transaction merely inserts its records into the
current run transactionally. Logging of the insertion
is straightforward. We assume that some recovery
technique, such as Aries [MHL+92], is used. The in-
memory run is reconstructed from the log records upon
recovery from a system crash.

When a new run is created by either merging old
runs, or by copying an in-memory run to disk, logging

20

can be suppressed since a crash during the run creation
will not lead to information about the records getting
lost; on restart recovery, we can delete the partially
constructed run and restart the merge/copy. Hence,
instead of logging the creation of the run, it is more
efficient to create the run without any logging, and
flush the run to disk to make it persistent.

Finally, merging of runs into the root relation can be
executed as a normal transaction, logging the changes
to the root relation.

All versions of the run-index must be recoverable,
since (a) they may point to data that has not yet been
moved to the root relation, and (b) they may point to
runs that no other run-index points to. Hence updates
to the run-index must be logged in the usual fashion.

Now consider the logging overhead for our tech-
niques. Each record gets logged once when it is first
inserted into the database, and once when it is inserted
into the root relation. Thus, the total logging overhead
is about twice that of direct insertion into a relation.
The I/O for logging is sequential, and only full blocks
of data are written. Overall, the extra cost of logging
is not a big overhead.

If records are transferred incrementally from a run
to the root relation (using the key-value locking tech-
nique) the deletion from the run has to be logged as
well, so that, records get inserted into the root relation
at most once.

4 Stepped-Hash Algorithm

The Stepped-Hash algorithm, presented in this section
is the equivalent of Stepped-Merge algorithm for the
case when the final clustering of data is based on a hash
file organization. Data finally resides in a root hash
table, which is also referred to as the root relation. The
insertion algorithm is similar in spirit to an external
distribution sort and is shown below.

Algorithm Stepped-Hash-Insertion

1. When a record is received, compute its hash value
h, and store it in an initial hash table, which we call
the Level 0 hash table. That is, add the record to
bucket h mod MO of the hash table.

Each bucket consists of up to K blocks, the last of
which is in-memory. In-memory blocks are written
out only when they are full, and the blocks for a
bucket on disk are kept doubly-linked.

2. When a bucket Bi,j of Level i, where 0 5 i < N -
1 accumulates K full blocks of data, partition the
bucket Ii ways into Level i + 1 buckets. A record
with hash value h is added to bucket Bi+l,m where
m = h mod (Alo. K’“+l).

Each of the Ii buckets to which records in Bi,j may
be distributed has one block in the memory buffer.
After processing all records of Bi,j, all h’ in-memory
buffer blocks are flushed to disk, even if they are
not full. After records in bucket Bij have been
partitioned, the blocks in Bi,j are freed.

3. When a bucket at Level N-l, BN-l,j, accumulates
I< blocks, the data is inserted into the root hash
table using a hash function h mod (it40 . KN . X),
where X can be any value.

X can be chosen such that each bucket in the root
hash table does not have more than K blocks. X
can be dynamically changed, for instance with ex-
tensible hashing.

Intuitively, the hash tables form a tree, where nodes
are hash tables. During partitioning, records move
from a node to its children; which child a record goes
to is based on its hash value. Each final level bucket
is partitioned X ways when inserting into the root re-
lation. The number of buckets in the root relation is
MrJ . Ii’N . x.

An extra data structure, which we call the bucket-
index, is used to keep track of the last block (on disk) of
each bucket. Available memory (M pages) is divided
into two parts: R pages are reserved for partitioning
of buckets, and the remaining Ms = M - R pages are
available to hold the Level 0 hash table.

Queries calculate the hash value h for the lookup
key and search the appropriate hash buckets at each
level, before searching the root hash table. The bucket-
index is used to find the hash buckets at each level.

4.1 Cost of Insertions

Table 1 lists the parameters we use in the cost esti-
mate for Stepped-Hash. For simplicity, we assume that
the directory on each intermediate level has the same
height as the directory for the root hash table, and the
height is represented by Hd for all the hash tables.

Some of the blocks of a partition at level i + 1 may
overflow as records are inserted into it during parti-
tioning at Level i. The fraction of overflow blocks to
K is represented by the term 6.

Theorem 4.1 The total I/O cost of Algorithm
Stepped-Hash for inserting S pages-full of records, into
a root hash table of directory height Hd is,

S*(T, +Tt)
+~.(T,+li’.T,+(Ii.(2+6)+Hd).(T,+Tt)).(N-1)
+~.(T,+Ii.~+(x.(2+6)+Hd).(T,+Tt))

where N is the number of levels before records are in-
serted into the hash table and A’ is the maximum num-
ber of disk blocks for a hash bucket. cl

21

The three components of the formula above respec-
tively estimate costs for: (a) insertion into the Level
0 hash table, (b) insertion into the intermediate hash
tables, and (c) insertion into the root relation. Al-
though the value of 6 is non-trivial to compute, we can
overestimate it as 1.

Consider now the cost of direct insertion of records
into the root hash table without using Algorithm
Stepped-Hash. The cost of inserting S pages worth of
records directly into a root hash table is S . T . (Hd +
1) . (T, + Tt).

The analytical formulae here are even more involved
than for Stepped-Merge, but once more through nu-
merical substitution it is possible to convince oneself
of the benefit of Stepped-Hash over direct insertion into
a hash table. This expectation is confirmed by exper-
iments we performed, as we will present in Section 7.

4.2 Cost of Look-Up

Now let us consider the I/O cost of looking up records
when using Stepped-Hash. Apart from looking up the
root relation, the hash tables on each of the interme-
diate levels will also have to be looked up. Instead of
looking up a single relation, queries have to look up
the root relation and up to Ii’ blocks at each level. So,
we get a total of K . (N + 1) operations to scan the
buckets and Hd . N to read the directories. (Level 0
directory need not be read).

Thus the total cost of a single lookup, assuming that
records with the specified key value fit into a single
bucket and no partitioning is in progress is ((K + Hd) .
N + Ii) . (T, + Tt).

5 Concurrency Control and Recovery
for Stepped-Hash

As in the case of Stepped-Merge, concurrency control
between transactions is straightforward, and is han-
dled by conventional means such as key-value locking.

Although concurrency control between normal
transactions and reorganization in the case of Stepped-
Hash bears some similarity to the corresponding
scheme for Stepped-Merge, the schemes are different
since during reorganization records are inserted into a
hash table that already contains other records. For the
same reason recovery is also a little more complicated
in the case of Stepped-Hash. For lack of space we do
not describe either: see the full version of the paper
for details.

6 Discussion

Bloom filters (bitmap filters) can be used to avoid
looking up many of the runs that do not contain any
records for a query key, as is done in, e.g., [SL76].

The direct insert algorithm clearly benefits from a
parallel disk system, since such a system supports a
larger number of seeks per second. Parallel I/O can
also be used with our techniques. The output runs or
buckets can be striped across multiple disks, so that
they transfer data out in parallel. Since I/O units are
large (multiple pages) the main benefit here is from
the increased disk bandwidth due to striping, rather
than the larger number of seeks that can be supported.

Although our cost formulae give a single time esti-
mate, they can be decomposed into the number of I/O
operations (terms multiplied by T,) and the amount of
data transferred (terms multiplied by Tt). The compo-
nents can then be used to derive time estimates for a
parallel disk system, assuming requests are distributed
uniformly across all disks.

Both Algorithm Stepped-Merge and Stepped-Hash
can handle temporary periods of high insertion loads
very well, by simply postponing the merging of runs
or partitioning of buckets at intermediate levels. In
such a situation inserters are favored at the expense
of queries, which have to perform more I/OS at inter-
mediate levels. Conversely, at times when the insert
load is less, the number of levels can be dynamically
reduced, thereby making queries faster.

Although our techniques are described for a pri-
mary index organization which stores records, it can
equally well be used for secondary indices, storing in-
dex entries instead of records. If our techniques are
used on a primary index of a relation, the entries in
a secondary index should store the primary key of the
record rather than a disk pointer, since the disk loca-
tion of the record keeps changing.

It is possible to create a hybrid of the B+-tree and
hash schemes: Attach one or more “bins” to the “in-
ternal” nodes of a B+-tree, into which records could be
inserted, rather than carrying them all the way to the
leaves. When a bin gets full, distribute the contents
over the bins of the child nodes (as happens with hash
buckets between levels) l.

7 Performance Study

In order to measure the actual benefits of Stepped-
Merge and Stepped-Hash, we implemented them on top
of the Brahms database storage manager developed
at IIT Bombay. We used the existing B+-tree im-
plementation, which supports bottom-up building of
the trees, for run creation. For Stepped-Hash, a sim-
ple hash table implementation on top of the database
storage manager was used.

We have not yet implemented the concurrency con-
trol schemes, but we ran insertions and lookups seri-

‘This enhancement was suggested by David Maier, to whom
we express our gratitude

22

ally, intermixed with each other. With multi-version
concurrency control, queries will cause minimal inter-
ference with on-going transactions, so there should be
no significant effects due to lock contention. We have
not yet implemented the recovery schemes. However,
the logging overheads of our schemes are low, and with
a separate disk for logs our performance results should
not be affected excessively.

The datasets we used for the experiments comprised
a sequence of 20-byte records, each with an eight byte
primary key consisting of a search key value and a
unique identifier to distinguish records with the same
key value. Insertions were generated using a uniform
random distribution of key values. The page size was
fixed at 4KB.

The total buffer memory was 328KB. In the case
of direct insert, all 328KB was used for the database
buffer, while in the caSe of Stepped-Merge, 128KB was
used for in-memory runs. While the buffer memory
size is a small number, it was purposely kept so, to
stay in scale with the size of the datasets we have used
for experimentation. In Stepped-Hash, MO wits fixed at
32 buckets and the final hash table was fixed at 8192
buckets.

7.1 Cost of Insertion

Our first set of experiments measured the cost of in-
serting records. The cost of inserts was measured
at each stage as the root relation grew from 0 to 3.2
million records during the course of the experiment.

In Figures 1 and 2 we compare the total cost of
record insertion for Stepped-Merge and Stepped-Hash

(with different values for h’ and N) with direct inser-
tion into a B+-tree and hash table respectively as the
size of the B+-tree/hash table grows. The costs are
averages of the insertion cost from the beginning up
to the measurement point. The graphs show that the
I/OS per record for direct inserts in both cases are sig-
nificantly higher than the stepped algorithms. Observe
that the I/OS per record for direct insertion starts off
at around 1 when the height of the root B+-tree is
around 1, and increases quickly to over 2.

Although both the stepped algorithms are much
better than direct insert, the Stepped-Merge algorithm
had a significantly lower number of I/OS per record,
almost half the number of I/OS as Stepped-Hash in the
case of It’ = 2,N = 2. The curve for the Stepped-Merge

algorithm shows a steady increase in the cost of inserts
as the size of the root relation increases, whereas the
Stepped-Hash algorithm shows a near constant cost.
This is mainly an artifact of our implementation of
hashing, where we start off with a fixed number of
buckets, which does not grow. The relevant numbers
to study are towards the end of the curves, where the

number of leaves in the B+-tree is roughly the same as
the number of blocks in the hash table.

As N, the number of intermediate levels, and Ii,
the fanoutlfanin increase, the I/OS per record decrease
significantly with both the stepped algorithms.

Figures 3 and 4 highlight the cost of inserting into
the root relation, ignoring the cost of creating of the
intermediate levels, for Stepped-Merge and Stepped-

Hash respectively. (Unlike the previous two graphs,
the values in these are not averages from the begin-
ning but are costs at the measurement point.) It can
be seen that these costs are just a little over 1 even
at a ratio of 122 of root relation size to final run size
(for Ii’ = 2,N = 2), for Stepped-Merge. The costs are
lower for smaller ratios (that is, with higher K and N).
The results are similar for Stepped-Hash. In contrast,
the cost is about 2 for direct insert even at fairly small
sizes of the root relation.

7.2 Cost of Querying

The next set of experiments were designed to find
the overhead of querying data using our technique.
Batches of 20 record lookups (with records present
in the data set) were repeatedly performed as more
records were inserted. As a result, for Algorithm
Stepped-Merge queries were forced to look up interme-
diate runs. For the case of Algorithm Stepped-Hash,

queries were forced to look up buckets being parti-
tioned.

Twenty queries were run after every 16000 records
were inserted, and this was repeated until an addi-
tional 1,600,OOO records had been inserted into an ex-
isting root relation of 3.2 million records. For A’ = 2
and 3, the value of N was varied such that the size of
the final run went from 250 pages to 8000 pages. For
Ii = 4 it is not possible to get such an N, so we have
points at 128 and 512 pages. The Bloom filters used
a bitmap per run with 4 times as many bits as records
in the first level run.

The results in Figure 5 show that the number of
I/OS with our Stepped-Merge technique, especially
with the Bloom filter optimization, are within reason-
able distance of the number of I/OS with a single B+-
tree lookup for smaller Ii’ and N. The number of
I/OS for Ii’ = 2, N = 3 without Bloom filters works
out to a little over four I/OS per look up, but reduced
to 3.125 with Bloom filters, which is about one I/O
more than the cost with a single B+-tree. Comparing
the results in Figure 5 and Figure 6 clearly show that
Stepped-Hash performs significantly worse on lookups
than Stepped-Merge.

23

0 500 lwo 1500 2000 2500 3OW 3500
Number of Records in the Root Relalion (in IWOs)

Figure 1: Stepped-Merge: Total Insertion Cost Figure 2: Stepped-Hash: Total Insertion Cost

2.5-
wrecr +-

‘bbee NC, K-2’ -c-.
‘btree N=2 KS+ -0..

s 2.0 “bbee NS KS” .s...

E

‘bbee N=4 K=2’ * -
“blree N=4 Kz3’ -*.-

0 500 loo0 1500 2000 25W 3ooO
Number of R3cmls in the Root Relatim (in tOOOs)

Figure 3: Stepped-Merge: Cost of Insertion into Root
Relation

7.3 Sensitivity to Record Size

The final set of experiments were designed to study the
sensitivity of insertion costs to the size of the records.
As expected, the benefit of our techniques decreases
as the number of records that fit in a page decreases.
But even with as few as 16 records per page, Stepped-
Merge continues to outperform direct insertion; for
Stepped-Hash, the crossover point is around 45 records
per page. For lack of space we omit details.

In summary, our experimental results demonstrate
that Stepped-Merge and Stepped-Hash provide a signif-
icant win with respect to insertion costs over the cor-
responding direct insertion algorithms, in return for
a small increase in look-up cost. Stepped-Merge has a
slight edge in terms of insertion cost over Stepped-Hash
and a considerable benefit in terms of look-up cost.

8 Related Work

The idea of maintaining a log of recent changes sep
arately from the main data file is quite old; see for
example [SL76], which discusses differential files. The
idea of using Bloom filters has also been explored in
[SL76]. However, their goal was not to save I/O as

2.5-

wrecr -e
‘hash N=, KS’” -+-.
‘hash N=2 KS .a--

2.0- ‘hash NS? KS’ .-a,--
‘hash N=4 KS” * -

+I+- ‘hash N=4 K=3’ -*

;’
2 1.5- i

%
O..,~..O...D..Q..G...~...~..~..~...~...~.-~..~...~...~

u)
2

,:’

1 ,.o- .,’

E d *... *. .* x- -.I x- x--. * x- x- ..x
,** x x.--.-*

0.5- :;
*

flp

-1 _) -*.- *-.* -..- a- -, - .--a- -A -a--*--* - .

” 1 o.. ” _ ._ *- *-.* -*.-I.-.*-.*- *--* -* -*-*-*--*-a

0 500 3ooo 3
Number’o~ecc~d ,?%,a,~~ ,CC&)

‘direct” c
‘ha,, N=, Kz2’ -+-.
“hash N&? KS” -0..

s 2.0- ‘hash Nz2 K=3” .e

:
‘hash N=4 KS’” *
‘hash N=4 KS” -K-.-

0

lo

Figure 4: Stepped-Hash: Cost of Insertion into Root
Relation

compared to standard structures like B+-trees, but to
avoid changing the main file. They do not consider
issues of multi-level organization of differentials, and
concurrency control and recovery issues.

Lists of updates-to-be-applied are maintained by
online index construction/reorganization techniques
(e.g., [SCSl]). Th ese, however, are temporary struc-
tures, existing only while the index is being con-
structed/reorganized, and are not used by queries; im-
proving insert speeds is not a goal.

The work that is most closely related to ours is the
LSM-tree, described by O’Neil et af [OCG096]. Our
first technique, Stepped-Merge, although developed in-
dependently, can be seen as a variant of the LSM tree:
both are based on the same core idea of a multi-level
organization of B+-trees. Our hash-based algorithm
is, however, novel.

An important difference is that the LSM tree has
a single B+-tree at each level whereas Stepped-Merge
has up to K B+-trees at each level. The LSM tree is
therefore better for queries, since only one tree need
be looked up at each level whereas Ii’ trees may need
to be looked up in Stepped-Merge. However, the LSM
tree is likely to be costlier for inserts since data may

24

Figure 5: Stepped-Merge: Cost of Lookups

be read and written back up to Ii times at each level.
[OCG096] t d s u ies issues of how much memory and
how many disks should be used to support a given
load at the cheapest cost; we do not consider this is-
sue, and measure instead the number of I/O operations
and data volume to be transferred. The analytical for-
mulae for Stepped-Merge and the LSM tree therefore
measure different quantities, and cannot be compared
directly.

The LSM tree handles updates, whereas we have
not addressed updates so far. Conversely, we have
described a concurrency control scheme, whereas
[OCG096] does not - it only outlines features that
a concurrency control scheme must have. Transfer of
data from one level to another is more incremental for
the LSM tree but the price paid is that concurrency
control is more complicated. We believe our recovery
technique makes fewer changes to standard recovery
techniques and should be easier to implement.

Unlike [OCG096], we have presented a performance
study of our techniques based on an actual implemen-
tation. Future work includes implementing the LSM
tree in our system and empirically comparing its per-
formance with Stepped-Merge.

9 Conclusions and Future Work

We studied two techniques to cluster data incremen-
tally as it arrives, one based on sort-merge and the
other on hashing. We have presented efficient con-
currency control and recovery schemes for both tech-
niques. We have demonstrated the benefits of our
techniques both analytically and through an empiri-
cal performance study of an actual implementation.
One contribution of this paper has been to show that
a well-designed sort-merge based scheme performs bet-
ter than hashing.

We believe it should be reasonably easy to integrate
our techniques into an existing database system. Fu-
ture work includes extending our techniques beyond
insert-only environments, to allow updates of existing

14-

12-

lo-

6-

6-

Figure 6: Stepped-Hash: Cost of Lookups

data. We believe our techniques will play an impor-
tant role in the design of data recording systems and
data warehouses in the future.

References
[JMS95] H.V. Jagadish, Inderpal Singh Mumick, and

Abraham Silberschatz. The chronicle data model. In
Prow of the ACM Symp. on Principles of Database
Systems, 1995.

[Knu73] D.E. Knuth. The Art of Computer Program-
ming, Vol.3 - Sorting and Searching. Addison-
Wesley (Reading MA), 722pp., 1973.

[MohSO] C. Mohan. ARIES/KVL: A key-value locking
method for concurrency control of multiaction trans-
actions operating on B-tree indexes. In IBM Almaden
Res. Ctr, Res. R. No.RJ7008, 27pp., March 1990.

[MHL+92] C. Mohan, D. Haderle, Bruce Lindsay, Hamid
Pirahesh, and P. Schwarz. ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Lock-
ing and Partial Rollbacks Using Write-Ahead Log-
ging. ACM Transactions on Database Systems, 17(l),
March 1992.

[OCG096]
Patrick O’Neil, Edward Cheng, Dieter Gawlick, and
Elizabeth J. O’Neil. The Log-Structured Merge-Tree.
Acta hrformatica, 33:351-385, 1996.

[OW93] Patrick O’Neil and Gerhard Weikum. A Log-
Structured History Data Access Method (LHAM).
High-Performance Transaction Systems Workshop
(HPTS) 1993.

[SKS96] A. Silberschatz, H. Korth and S. Sudarshan
Database System Concepts. McGraw Hill, 3 edition,
1997.

[SL76] D.G. Severance and G.M Lohman. Differential
files: Their applications to the maintenance of large
databases. ACM Transactions on Database Systems,
1(3):256-367, September 1976.

[SC911 V. Srinivasan and M. J. Carey. On-line index con-
struction algorithms. Proc. High Performance Trans-
action Systems Workshop, Sep. 1991.

25

