
NORTH - HrS.,AND

WELL-FOUNDED ORDERED SEARCH:
GOAL-DIRECTED BOTTOM-UP EVALUATION
OF WELL-FOUNDED MODELS

PETER J. STUCKEY AND S. SUDARSHAN

1> There have been several evaluation mechanisms proposed for computing
query answers based on the well-founded semantics, for programs with
negation. However, these techniques are costly; in particular, for the
special case of modularly stratified programs, Ordered Search is more
efficient than the general-purpose techniques. However, Ordered Search is
applicable only to modularly stratified programs. In this paper, we extend
Ordered Search to compute the well-founded semantics for all (non-
floundering) programs with negation. Our extension behaves exactly like
Ordered Search on programs that are modularly stratified, and hence pays
no extra cost for such programs. © Elsevier Science Inc., 1997 <1

I. INTRODUCTION

In the recent past, much attention has been paid to the semantics and evaluation
of programs that use negation. To handle programs that combine the use of
negation with recursion, three-valued semantics, which allow the truth status of
some facts to be undefined, have been proposed. If negation is used in conjunction
with recursion, it is nontrivial to provide semantics to all programs based purely on
logical implication. Early techniques to work around this problem (e.g., [1, 16, 21])
restricted the class of programs for which semantics (and correspondingly evalua-
tion mechanisms) were defined. These semantics were two-valued, in that each fact
(ground atom) is either true or it is false. For the general case of programs with

Address correspondence to Peter J. Stuckey, Department of Computer Science, University of Mel-
bourne, Parkville 3052, Australia, E-mail: pjs@cw.mu.oz.au; S. Sudarshan, Computer Science and
Engineering Department, Indian Institute of Technology, Bombay 400076, India.

Received February 1995; accepted August 1996.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010

0743-1066/97/$17.00
PII S0743-1066(96)00110-0

172 1". J. S T U C K E Y A N D S. S U D A R S H A N

recursion and negation, two-valued semantics were found to be inadequate in many
situations. For example, with a rule p : - ~ p, it is not clear whether p should be
true or false. If it is false, it would imply that it is true. But there is no basis for
deducing it to be true. More recently, three-valued semantics were proposed that
allow the truth value of facts to be undefined. In the case of the rule p : - -~ p, a
three-valued semantics can leave p undefined (if this is the only rule defining p),
thereby solving the problem of whether to make p true or false.

The well-founded semantics [26] is the leading candidate among the three-val-
ued semantics that have been proposed. The well-founded semantics is nontrivial
to compute; in particular, it is nontrivial to make the computation "goal-directed,"
that is, given a query on a program, to make sure that intermediate facts are
generated only if they are relevant to answering the query. Early evaluation
mechanisms, such as the alternating fixpoint technique of [25], were not goal-
directed. Other techniques, such as that of Ross [20], were goal-directed, but (as
with Prolog) could repeat computation of subgoals multiple times and, worse, were
noneffective (i.e., could loop) even for DATALOG programs.

For situations where the cost of recomputation is high (as when computation
goes into a loop), memoing evaluations, which remember subgoals and avoid
recomputation, are important. For the simple case of programs without negation,
several memoing evaluation techniques have been proposed [2, 17, 24, 27]. Several
attempts have been made at extending some of these for computing the well-
founded semantics. These past attempts have the problem that either the computa-
tion is not completely goal-directed [11-13, 15] since some facts that are irrelevant
to the computation may be generated, or they compute only relevant facts, but may
compute some of them multiple times [9]. We present more details on related work
in Section 7. But, in particular, for the important special case of modularly
stratified programs [21], these techniques are less efficient than special-purpose
techniques such as Ordered Search [18].

Although Ordered Search is more efficient than the general-purpose evaluation
techniques proposed in the past, as described in [18] it applies only to modularly
stratified programs, and not to the class of all programs with recursive negation. In
this paper, we extend the Ordered Search evaluation algorithm to compute the
well-founded semantics for all (nonfloundering) programs with negation. We call
our technique Well-Founded Ordered Search. Our technique has the benefits of
performing memoization of facts and being goal-directed.

For the ease of modularly stratified programs, our technique reduces to the
original Ordered Search algorithm, thereby reaping the cost benefits of Ordered
Search. For the general case, our technique has important advantages over evalua-
tion techniques proposed in the past. Recently, Chen, Swift, and Warren [10, 8]
have developed a goal-directed technique for computing the well-founded model.
Our technique was developed independently of theirs. Their technique and ours
each have advantages and disadvantages with respect to the other; we present
details in Section 7.

The rest of this paper is organized as follows. In Section 2, we present some
background material. In Section 3, we present a short background on Ordered
Search [18]. We then present details of the extended Ordered Search algorithm,
Well-Founded Ordered Search in Section 4. The correctness of the algorithm is
shown in Section 5, and in Section 6, we discuss extensions. Finally, in Section 7, we
discuss related work.

W E L L - F O U N D E D O R D E R E D S E A R C H 173

2. BACKGROUND

We assume familiarity with logic programming terminology (see [14]). Familiarity
with Magic Templates rewriting [17], and with semi-naive bottom-up evaluation [2],
would help in reading this paper, but we provide some background information.
For the purposes of this paper, a program is a set of normal clauses which possibly
include negative literals in the rule body. We assume that the programs we
evaluate are nonfloundering, i.e., any subgoal set up on a negative literal is ground.
In the context of deductive databases, this restriction is not severe, as most
programs are allowed, that is, they satisfy a syntactic condition called allowedness
which ensures that they do not flounder. A program is allowed if, in each clause,
every variable appearing in the clause appears in a positive body literal.

As is standard in the deductive database literature, we differentiate between the
extensional database which consists of the facts for relations that are explicitly
stored in the database, and the intensional database which consists of the predi-
cates that are defined using rules. Predicates in the extensional database are called
EDB predicates, and predicates in the intensional database are called IDB predi-
cates. We make the standard assumption that the set of EDB predicates is disjoint
from the set of IDB predicates.

2.1. The Well-Founded Semantics

The well-founded semantics [26] is generally viewed as the desired choice of
semantics of programs with negation from a deductive database point of view,
because it extends the iterated model semantics [1] for stratified programs to
arbitrary normal programs and gives a unique model to any such program.

We extend the definition of the usual consequence operator T I, for definite
programs, to infer information from normal rules using a fixed set M of informa-
tion about negative literals. Let M be a set of atoms:

Tp (M) (I) = {a I where there is a ground instance of a clause in P

a : - q l , ' " , q n , ~ P l ~ Pr

such t h a t V l < i < n qi ~ I a n d V l < j < r , pjC~M}.

Essentially, we do not infer new negative information using Te, but we allow the
use of fixed negative information, the complement of M, in inferring positive
information.

For successor ordinals /3 + 1, Tp(M)$(/3 + 1)(I) is defined as Tp(M)(Tp(M)$
/3(I)), and for limit ordinals /3, Tp(M)$ /3(1) is defined as U , < t~ Tp(M)? a(1).

It is straightforward to show that Te(M)(I) is monotonic and continuous on I
for all M, and Te(M)? o)(Q) (usually written Te(M)$ w) is the least fixpoint of
Te(M).

If A is a set of atoms, then let -1-A be the set of literals {-1 ala ~A}. Given a
program P, its well-founded semantics, denoted We*, is defined using an alternating
flxpoint formulation as below:

Fp(T) JefT (T) ,o(0),

174 P. J. STUCKEY A N D S. S U D A R S H A N

F (V)

, d e f " 2
W; = l f p (F ~) U ~ . (HBe-g fp (FZ)) ,

where lfp and gfp denote the least and greatest fixpoints, respectively, and HB e
denotes the Herbrand base of program P. (The above formulation is adapted from
the alternating fixpoint formulation in [25], and is similar to that of [5].) We shall
denote the true, false, and undefined atoms in the well-founded model of a
program P as TIP], F[P], and U[P], respectively.

The alternating fixpoint determines a method of computing the well-founded
model of a program P (see [25, 11]), by computing the sets Fp(QS),FpZ(O) =
Fe 2 ? 1(•), Fe(F 2 ? I(Q)), F 2 ? 2(Q) The computation terminates with the two
sets: lfp(F 2) = F 2 ? a (Q) for some o~, representing all the true atoms of the
program, and gfp(F 2) =Fe(F ~ ? a(QS)), representing all the true and undefined
atoms of the program (the complement of the false atoms). In general, a could be
transfinite, but so long as the program is a finite D A T A L O G program with finite
relations, the fixpoint terminates with a finite a. The actual set of false facts (which
is typically much larger than the number of true or undefined facts) is never
directly computed.

Define an unfounded set (of P) with respect to T U ~ -F as a set of atoms A
such that, for each a ~ A and each ground instance of a rule in P of the form

a : - - q l qm , ~ Pl ~ P ~ ,

either (i) there exists qi ~ F or pj ~ T, or (ii) there exists qi ~A. The original
formulation of well-founded semantics was in terms of unfounded sets; the intu-
ition is that given any unfounded set (with respect to the set of known true and
false facts) at any point, all facts in the unfounded set can be inferred to be false in
the well-founded semantics. The alternating fixpoint formulation of the well-
founded semantics is better for our purposes, although we occasionally use the idea
of unfounded sets to provide extra intuition.

2.2. Query-Restricted Bottom-Up Evaluation

Query optimization transformations for bottom-up evaluation of programs (e.g.,
[17]) restrict computation to facts that are "interesting" to the query by calculating
the set of queries that the original query "depends on." They were originally
defined only for positive programs, and most such transformations are incorrect
when applied to programs with negation since their notion of "depends on" is not
applicable if negation is used (see [12]). We provide some background on bottom-up
evaluation using the Magic-Templates transformation.

The bottom-up approach to answering queries consists of a two-part process.
First, the program-query pair is rewritten in a form so that the bottom-up fixpoint
evaluation of the program will be more efficient; next, the fixpoint of the rewritten
program is computed by bottom-up iteration. Section 2.3 describes the initial
rewriting, while Section 2.4 investigates the computation of the fixpoint of the
rewritten program.

WELL-FOUNDED ORDERED SEARCH 175

2.3. The Magic Templates Rewriting Algorithm

We present below a simplified version of the Magic Templates rewriting algorithm
[17]. 1 The idea is to compute an auxiliary predicate query that stores subgoals
generated on predicates in the program. A fact of the form query(p(-t)) denotes
that ?p(t) is a subgoal generated on p. In the fact query(p(-t)), p is formally
treated as a function symbol, rather than a predicate, since the language is first
order. We thus have a predicate and a function symbol of the same n a m e - - t h e y
are distinguished based on where they occur in the rule.

The rules in the program are then modified by attaching a literal to the rule
body that uses the query predicate to act as a filter that prevents the rule from
generating irrelevant facts when evaluated bottom-up. Further, the rewriting gen-
erates rules that define how to generate a query fact for a body literal, given a
query fact on the head literal. For efficiency, query facts are only generated for
intensional database (IDB) relations, those defined by rules, and not for exten-
sional database (EDB) relations, defined by sets of facts.

Definition 2.1. The Magic Templates Algorithm. Let P be a program, and ?q(?) a
query on the program. We construct a new program pmg. Initially, pmg is
empty.

1. For each rule in P, add the modified version of the rule to ping. If rule r
had head, say, p 0) , the modified version is obtained by adding the literal
query(p(-t)) to the body.

2. For each rule r in P with head, say, p(t), and for each occurrence of an
IDB literal qi(-ti) in its body, add a query rule to pmg. The head is
query(qi(-ti)). The body contains the literal query(p(-t)), and all literals that
precede qi(-ti) in the rule.

3. Create a seed fact query(q(?)) from the query on the program.

We refer to the rules defining the query predicate as query rules. We sometimes
refer to query rules as magic rules, and the query predicate as the magic predicate,
when we need to be consistent with the terminology used in [4, 6, 17].

The rewriting has the important effect of mimicking Prolog in that (modulo
optimizations such as tail recursion optimization and intelligent backtracking, and
modulo some inefficiencies when nonground facts are generated) only goals and
facts generated by Prolog are generated.

Example 2.1. Consider the following program (in this program, sg stands for "same
generation"):

RI: sg(X , Y)

R2: sg(X , Y)

: - f la t (X , Y) .

:- up(X, U) , sg(U, V), down(V, Y).

? - sg(john, Z).

J As described in [6, 17], the initial rewriting of a program and query is guided by a choice of
sideways information passing strategies, or SIPS. For each rule, the associated SIP determines the order in
which the body literals are evaluated. The version we present is tailored to the case that SIPS
correspond to left-to-right evaluation with all arguments considered "bound" (perhaps to a free
variable), as in Prolog.

176 P . J . S T U C K E Y A N D S. S U D A R S H A N

The Magic Templates algorithm rewrites it as follows:

s g (X , Y) " - q u e r y (s g (X , Y)) , f l a t (X , Y) . [Mod. Rule RI]

sg(X , Y) "- query(sg(X , ' Y)) , up(X , U),

s g (U , V) , d o w n (V , Y) . [Mod. Rule R21

query(sg(U,V)) : - q u e r y (s g (X , Y)) , u p (X , U) . [Query Rule]

query(sg(john, Z)). [Seed Query]

The first two rules above are the original rules, modified by adding filters. The third
rule defines how to generate queries on the body of the second rule (in the original
program), given queries on its head predicate. The last rule is a fact that corre-
sponds to the original query on the program, and it is called the seed query fact.

The following theorem ensures the soundness and completeness of the trans-
formed program P ' g with respect to the query on the original program P.

Theorem 2.1 [17]. If P is a definite clause program without negation, P is equivalent to
ping with respect to the set of answers to the query.

Magic Templates is often presented along with an adornment rewriting that
annotates predicates with a string composed of characters " f " and "b," with one
character for each argument. This step, along with a modification of Magic
Templates rewriting that projects out of query predicates those arguments that
have an " f " adornment, is used to ensure that the rewritten program generates
only ground facts if the original program generated only ground facts. The benefit
of generating only ground facts is achieved at the possible cost of some redundant
computation, but is important since it permits the use of database systems that
handle only ground facts. For simplicity, we omit this step.

2.4. Iterative Fixpoint Evaluation

The fundamental step in iterative fixpoint evaluation is a derivation. A derivation
generates a fact f from a rule R and a substitution 0, given a set of already known
facts W, where

1. the fact f generated by the derivative is the head of R[0], and
2. for each body literal Pi(~) in R, there is a fact in W that subsumes Pi(~)[0],

and
3. 0 is the most general such substitution.

Given a set of facts W, a rule application generates all facts that can be inferred
from the W using a derivation.

A naive evaluation of the fixpoint of a program performs iterations, with each
iteration generating all facts that can be derived using the program rules, base
facts, and the facts derived in earlier iterations. Iteration proceeds until a fixpoint
is reached. In such a naive evaluation of the fixpoint, each iteration repeats all
derivations made in earlier iterations.

Semi-naive evaluation (see, e.g., [3, 2]) is an incremental version of naive fixpoint
evaluation. Semi-naive evaluation avoids the repetition of derivations by perform-
ing in each iteration an incremental computation using facts generated in the

W E L L - F O U N D E D O R D E R E D S E A R C H 177

previous iteration. That is, it only carries out derivations that use at least one fact
generated for the first time in the previous iteration. Any other derivations must
have been performed before and are not repeated. Semi-naive evaluation main-
tains differential relations corresponding to each relation in the program, to keep
track of when each fact in the relation was generated (before the last iteration, in
the last iteration, or in the current iteration).

2.5. The Depends On Relationship
Magic Templates rewriting does not work correctly under the well-founded seman-
tics. The problem is its notion of relevance, which says that a subgoal is relevant
only if there is an instantiated rule prefix whose last literal is the subgoal, and all
literals before the subgoal are satisfied. With the well-founded semantics, even if
the truth of a rule body literal is undecided, it may be necessary to check if a later
literal rule body is definitely false.

The following definition gives the formal meaning of "depends on," and is
applicable to the well-founded semantics. Here we assume, as we do throughout
the paper, a complete left-to-right order on generation of subgoals.

Definition 2.2 (Depends On). Let P be a given program. We say a query .9/)0)
directly depends on ?qi([~i) if there is a rule instance

p(~) :- q,(1),) , . . . , qi(7)i) , . . . , q , (b ,)

where each qi(bi) is a positive or negative literal, such that p(~) is an instance of
p(D, and each literal qj(bj), 1 < j < i - 1 , is either true or undefined in the
well-founded model of P.

We define depends on as the transitive closure of "directly depends on."

The definition essentially says that in order to solve the query ?p(D, answers to
the subquery ?qi(bz) are relevant. In the case of two-valued models, the definition
reduces to the regular definition of "depends on" [18] based on which relevance of
facts is defined [17].

Intuitively, the importance of depends on is this: to correctly compute the
answers to query ?(p(D with respect to (w.r.t.) We*, we only require the correct
answers (w.r.t. We*) of each of the queries ?qfl2 i) that ?p0) depends on. (This is
shown implicitly in the course of the correctness proofs of our technique.) Hence
we would like to restrict computation to only those queries that ?p(D depends on.
This is not possible because the depends on relationship is known only once the
well-founded model is computed. In general, we must use a superset of the queries
that ?p(D depends on. Minimizing this set is one of the main aims of this work.

3. ORDERED SEARCH

We now describe the Ordered Search evaluation method [18], which is applicable
to modularly stratified programs. In the next section, we describe our extension to
the technique to handle the general case. This technique generates subgoals and
answers to subgoals asynchronously, as in bottom-up evaluation, but orders the use
of generated subgoals in a manner reminiscent of top-down evaluation, and is in a

178 P. J. STUCKEY AND S. S U D A R S H A N

sense a hybrid between pure (tuple-oriented) top-down evaluation and pure (set-
oriented) bottom-up evaluation. The Ordered Search evaluation algorithm [18] has
two phases. The first rewrites the program at compile time. The second evaluates
the rewritten program. Unlike the case for programs without negation (Theorem
2.1), the rewritten program is not equivalent to the original program, and ordinary
bottom-up evaluation of the rewritten program does not yield the correct set of
answers to the query. Rather, it is equivalent in the sense that under a special
evaluation mechanism, described below, the correct set of answers to the query is
generated by the rewritten program.

3.1. Modified Magic Templates Rewriting
We describe the rewriting phase using an example rule. Suppose we have the
following rule in a program:

p(X) :- r(X ,Y) , -7 q(Y), s(Y).

The modified Magic Templates rewriting [18] of the rule generates the following
rules:

p(X) "- query(p(X)), r(X, Y), done(q(Y)), ~ q(Y), s(Y).

query(r(X, Y)) :- query(p(X)).

query(q(Y)) : -query(p(X)) ,r(X,Y) .

query(s(Y)) :-query(p(X)) ,r(X,Y),done(q(Y)) , ~q(Y) .

The first rule is basically the original rule, but with two modifications. First, as in
Magic Templates, a literal query(p(X)) has been inserted, which ensures that an
"answer" fact for the predicate p is generated only if there is a corresponding
query fact. This is done to avoid generating irrelevant facts. Second, a literal
done(q(Y)) has been added to the rule to guard the ~ q(Y) literal; this is an
extension to Magic Templates, introduced by Ordered Search. A fact done(q(a)) is
created when Ordered Search decides that all answers to the query ?q(a) have
been generated.

We then use a modification of semi-naive evaluation where a ground negative
literal ~ p(a) is satisfied if p (a) is not known to be true or undefined. Without the
guard literal done(q(Y)), the rule could potentially be used in a semi-naive
evaluation to make an inference, assuming ~ q(a) is true even if a fact q(a) is
indeed generated later. The guard literal ensures that such a derivation is made
only when done(q(a)) is present; by means of inserting facts done(...) at appropri-
ate times, Ordered Search ensures the soundness of derivations.

The next three rules specify how to generate subgoals on the three body literals,
given a subgoal on the head literal. These subgoals need to be solved in order to
answer the subgoal on the head literal. For example, the second rule, read
declaratively, says that if there is a subgoal ?p(X), then a subgoal ?r(X, Y) is
generated. The third rule says that if there is a subgoal ?p (X) and an answer
r(X, Y), then a subgoal ?q(Y) is generated.

W E L L - F O U N D E D O R D E R E D S E A R C H 179

The modified Magic Templates rewriting of a program is the union of the
modified Magic Templates rewriting of all the rules in the program.

3.2. Ordered Search Evaluation

The second phase of the Ordered Search algorithm evaluates the rewritten rules.
We present an intuitive description of the evaluation algorithm here, but refers the
reader to [18] for details. The algorithm makes inferences from the rewritten rules,
and is built on top of the semi-naive evaluation technique. But unlike normal
semi-naive evaluation, it orders the use of generated subgoals in a manner
somewhat like Prolog. Unlike Prolog, Ordered Search performs duplicate elimina-
tion on subgoals and answers. It is, in a sense, a hybrid between pure (tuple-
oriented) top-down evaluation and pure (set-oriented) bottom-up evaluation.

The central data structure used by Ordered Search, the Context, is used to
preserve "dependency information" between subgoals. The Context is a sequence
of Context Nodes. Each ContextNode has an associated set of query facts and each
query fact is associated with a unique ContextNode.

The Context behaves somewhat like a stack in that, for the most part, nodes are
either added to its end or removed from its end. However, other operations such as
collapsing together nodes are also performed on the Context. In the rest of this
paper, when we use adjectives like "earlier," "later," etc. to refer to ContextNodes
in Context, we mean their position in the sequence and not the time at which these
nodes were inserted in Context.

The Ordered Search evaluation algorithm is summarized below.

Algorithm Ordered Search
Input: Rewritten Program pmgJnod (without the seed query fact), and query
?q(D.
Output: Answers to ?q(D.

1. Initialize Context to consist of a single context-node containing the
(unmarked) seed fact query(q(-t)).

2. Repeat
Repeat

Evaluate the rules of the program using semi-naive evaluation.
However for each newly generated query fact, call it query(q(~)),

instead of inserting it into the query relation
2(a) insert query(q(~)) in Context (as described later) and
2(b) perform duplicate elimination on query(q(~)) (as described

later).
/ * query(q(~)) is not made visible to the evaluation yet * /

Until no new derivations can be made
3. Make facts from the context visible (as described later)
4. Until there is no change in the set of visible facts.

/ * At this stage Context is empty, and there are no hidden facts. * /

Newly generated facts other than query facts are inserted in the differential
relations, and made available as usual to the semi-naive evaluation. When query
facts are first inserted into Context, they are "hidden," that is, they are not made
available to the evaluation. The Ordered Search algorithm makes each query fact

180 P. J. STUCKEY AND S. SUDARSHAN

"visible" to the evaluation later; when a query fact that is in the Context is made
available to the evaluation, the copy in the Context in marked. A ContextNode is
said to be marked if any fact associated with the Context is marked. A ContextNode
is said to be marked if any fact associated with the ContextNode is marked.

We now describe some of the context manipulation operations performed in
Steps 2 and 3 of the above algorithm in more detail:

2(a). Insertion: When a new query fact query(q(~)) is inserted in Context, it is
inserted in a new ContextNode. Let query(q(K)) be a query fact derived
from query fact query(p(b)).
(i) If done(q(~)) is present do not insert query(q(~)) in Context (since it

has been fully evaluated already).
(ii) Else, query(p(b)) must be in the Context and must be marked since it

is visible and has just been used to derive query(q(~)). Insert
query(q(~)) in a new unmarked ContextNode immediately before the
next marked ContextNode following the marked node containing
query(p(b)). (If there is no such marked ContextNode, query(q(~)) is
inserted as the last ContextNode in the Context.) Some subsection of
the initial Context is shown at the top of Figure 1, where nodes
marked A and Z are unmarked and the next marked ContextNode
contains query(r(~)). The resulting subsection after the insertion is
illustrated in the bot tom of Figure 1.

2(b). Duplicate Elimination: Duplicate elimination is performed on query(q(~))
in the Context to ensure that there is at most one copy of it in Context. If
there is more than one unmarked copy of query(q(K)) in Context at this
stage, only the last copy of query(q(~)) is retained, and the rest deleted. If
there is a marked copy of query(q(~)) in Context, i.e., if query(q(~)) has
already been made available to the evaluation, there are two possibilities:
(i) If the marked copy of query(q(~)) occurs after the unmarked copy,

only the marked copy of query(q(~)) is retained in Context.
(ii) If the unmarked copy of query(q(~)) occurs after the marked copy,

query(q(K)) depends on itself. We have thus detected a cyclic depen-
dency between the set of all marked facts in Context between the two
occurrences of query(q(~)). Ordered Search deletes the unmarked
copy of query(q(~)) and collapses the above set of marked facts into
the node of the marked copy of query(q(~)) in Context.

3. Making Query Facts Visible: This step makes query facts in the Context
visible to the evaluation when no new facts can be computed using the set
of available facts. Intuitively, this is done as follows:
(i) If the last ContextNode contains at least one unmarked query fact,

Ordered Search chooses one such unmarked fact, marks it, and makes

-~quer~(p(b))* ~ ~ q u e r y (q (- a)) Hquery(r(e))* ~

FIGURE 1. Inserting query(q(~)) in the Context.

W E L L - F O U N D E D O R D E R E D S E A R C H 181

(ii)

it available to the evaluation by inserting it in the corresponding
differential relation. (Note that this fact still remains in the Context.)
If all query facts in the last ContextNode are marked, all the facts in
the last ContextNode can be considered to be completely evaluated in
the case of Ordered Search. Then the node is removed from Context,
and for each subgoal query(q(~)) in the node, a fact done(q(~)) is
created and made available to the semi-naive evaluation.

A major difference between Ordered Search and Well-Founded Ordered Search,
which we describe in Section 4, is in Step 3.

In the above, we consider variants of a fact (i.e., facts that are equal, up to a
renaming of the variables, to the given fact) as being the same as the fact. The
algorithm can be easily extended to perform subsumption checking, and details are
presented in [19]. The insertion step (2(a)) ensures that facts on Context are stored
in an ordered fashion, such that if query fact Q1 depends on the query fact Q2,
then Q2 is stored after or along with Q1 in the Context. But, unlike the stack of
subgoals in Prolog evaluation, cyclic dependencies are handled gracefully by means
of collapsing nodes together. Each subgoal in a node depends on all the other
subgoals in the node, and hence we cannot in general deduce that we have found
all answers for one until we are convinced we have found all answers for the
others. In Step 2(b), on detecting a cyclic dependency between subgoals on the
Context, the associated ContextNodes are collapsed into one ContextNode, and all
the facts associated with these ContextNodes are now kept together. Thus we have
the following property:

• If a subgoal query(q(~t)) depends on another subgoal query(p(-b)), then

either query(p(b)) is completely evaluated before query(q(~t)) is made avail-
able to evaluation (i.e., marked on Context) or at some point in the evalua-
tion query(p(b)) is in a node in Context above a node containing a marked
version of query(q(~)).

The above property is used to show that when a query is declared to be completely
evaluated (i.e., a corresponding done fact is created), all answers to it have indeed
been generated.

The Ordered Search algorithm also satisfies the following property:

Each marked subgoal in the context sequence depends directly on the
following marked subgoal in the Context, and on each unmarked subgoal that
lies between it and the following marked subgoal in the sequence.

The above property is used to show that no false dependencies between query facts
are introduced by the algorithm. The full dependence relation known at any stage
can be computed by a transitive closure on the immediate dependencies. It is clear
that each marked subgoal depends (transitively) on all marked subgoals later in the
context.

Example 3.1. We now give an example of the Ordered Search procedure in action.
Consider the following program, which determines a winning position for games
such as checkers where each player alternately makes a move, and the winner is
the person who makes the last move. Sometimes a player may make extra moves.

182 P. J. S T U C K E Y A N D S, S U D A R S H A N

Board positions are encoded as simple letters:

w i n (X) : - move(X , Y) , ~ w in (Y) .

w i n (X) :- extramove(X , Y) , w in(V) .

move(a, b) .

move(a, d) .

move (b, e) .

extramove(a, e) .

extramove(e, a) .

For simplicity, we will consider the move and extramove relations to be in the EDB
and not determine query facts for them. The Magic Templates rewriting is

w i n (X) : - q u e r y (w i n (X)) , m o v e (X , Y) , d o n e (w i n (Y)) , ~ w i n (Y) .

w i n (X) :- query(win(X)) , extramove(X , Y) , win(Y) .

query (win (Y)) :- query (win (X)), move (X , Y) .

query (win (Y)) :- query (win (X)), extramove (X , Y) .

Given the query ?win(a), Ordered Search evaluation starts by adding query(win(a))
to the Context; query(win(a)) is not made available for inferences yet. Nothing
more can be derived, and hence Step 3(i) marks the fact and makes it available
for making inferences. Using this fact, facts query(win(b)), query(win(d)), and
query(win(e)) then get derived, and each is added to a new node at the end of
Context. First, query(win(e)) is marked and made available for inferences. This
derives the fact query(win(a)) which is initially placed at the end of the Context.
We have discovered a cyclic dependency and the two marked nodes are col-
lapsed together. The Context now looks like {query(win(a))*,query(win(e))*}
{query(win(b))} {query(win(d))}.

Now query(win(d)) is marked and made available for inferences. No inferences
can be made; hence, using Step 3(ii), we add a fact done(win(d)) and the Context
node is removed. We have thus determined -~ win(d). Now we generate the facts
win(a) and win(e). The last Context node is now query(win(b)); this is marked and
the fact query(win(c)) is derived and placed on the end of the context and, as
before, gets marked and made available for making inferences. Similarly to the
win(d) case, we add done(win(c)) (inferring ~ win(c) since win(c) is absent) and
remove the Context node. We now derive the fact win(b), before done(win(b)) is
derived and the query(win(b)) node is deleted. Finally, the last remaining Context
node is {query(win(a))*,query(win(e))*}. All possible facts upon which these facts
depend have been investigated. The last Context node is deleted and the facts
done(win(a)) and done(win(e)) are added. This is the end of computation.

Ordered search is correct for this program because there are no loops through
negation, but if we add the single extra fact move(d, a), Ordered Search is no
longer applicable.

4. WELL-FOUNDED ORDERED SEARCH

We now describe Well-Founded Ordered Search (WF-OS for short), our extension to
Ordered Search. A one-sentence summary (for the expert) of the idea behind

W E L L - F O U N D E D O R D E R E D S E A R C H 183

WF-OS is that it combines Ordered Search with the alternating fixpoint technique
for evaluating the well-founded semantics, and manages to use the (costly) alternat-
ing fixpoint technique on subregions of the program rather than on the entire
program. As with Ordered Search, we split the description of WF-OS into two
parts. The first part describes the extended magic rewriting, and the second part
describes the actual WF-OS evaluation technique.

In the case of a cycle subgoals, Ordered Search keeps track of the cycle, and
when no more subgoals and no more answers can be generated from subgoals in
the cycle, Ordered Search decides that all answers for subgoals in the cycle have
been obtained. If a cycle of subgoals containing a negative subgoal is found,
Ordered Search concludes that the program is not modularly stratified and pro-
ceeds no further. However, to compute the well-founded semantics for all pro-
grams, one cannot stop at a point where a negative cycle has been found.

Well-Founded Ordered Search extends Ordered Search by the actions that are
taken in Step 3 (the "Making Facts Visible" step) of the Ordered Search algorithm,
in the case that a negative cycle is present in the last node of the Context. The
actions are described in more detail later in this section, but the intuition behind
our extension is as follows. There are two parts to the extension--generat ing more
subgoals, and performing "local" alternating fixpoints rather than performing a
single "global" alternating fixpoint.

We describe the intuition for each extension below.
Let us consider the motivation for the first part of the extension. Consider (for

simplicity) a ground rule, with a subgoal that unifies with the head of the rule. In
order to answer the subgoal on the head, subgoals have to be generated on body
literals. In Ordered Search, the left-to-right subgoal generation mechanism gener-
ates a subgoal on a literal only if all preceding literals are true (i.e., for positive
literals p(K), it is known that p(K) is true, and for a negative literal ~ p(~), it is
known that p(K) is false). In order to compute the well-founded semantics, we may
need to know if a literal later in the rule is true or false, even if the truth value of a
literal earlier in the rule is not known [11]. Hence, to extend Ordered Search to
compute well-founded models, we may need to generate a subgoal on a later literal
even in cases where the truth value of earlier literals is not known.

In this respect, WF-OS differs from Ordered Search; in the restricted context of
modularly stratified programs, using Ordered Search one can generate only sub-
goals that the original query depends on, directly or indirectly. In the general case
handled by WF-OS, we may have to generate a superset of these subgoals.

The first part of our extension to Ordered Search is to generate extra subgoals
when required. When WF-OS finds a negative cycle, it starts off the computation of
"possibly true" facts (rather than just true facts) by considering negative literals
that form part of the cycle as "possibly true." This computation ensures that a
superset of all required subgoals is generated. Further, the computation generates
a set of "possibly true" facts that contains the set of true facts.

Note that new subgoals that are generated as above may be added to the end of
the Context, and the node with the negative cycle may no longer be the last node.
But eventually the nodes added above it will be removed, and it will become the
last node again. More new subgoals may then be added, and the cycle repeats. But
eventually a stage is reached when no new subgoals can be added as above. At this
stage, the last node in Context has a negative cycle, and all subgoals on which
subgoals in the node depend have already been generated, and have either been

184 P . J . STUCKEY AND S. SUDARSHAN

solved or are in the node, and the "possibly true" facts are a superset of the true
and undefined facts for subgoals in the last ContextNode.

The second part of our extension of Ordered Search is applied when a stage as
above is reached. The subgoals in the last node define a subpart of the program.
Intuitively, WF-OS applies the alternating fixpoint technique [25, 11] for computing
the well-founded semantics (in a non-goal-directed fashion) to this subpart of the
program. (Since all relevant subgoals are generated and have been taken into
account in defining the subpart of the program, goal-directed evaluation need not
be used for this subpart of the program.) The alternating fixpoint technique (and
other techniques for computation of the well-founded semantics) can be quite
costly, and by applying it only to well-chosen subparts of the full program, we are
able to reduce the cost of evaluation considerably.

4.1. The Undef Magic Templates Rewriting

We now give the intuition behind the Under Magic Rewriting, our extension of
Magic Templates rewriting [17] which we use in WF-OS. In order to compute the
well-founded semantics, we may need to know if a literal later in the rule is true or
false, even if the truth value of a literal earlier in the rule is not known [11]. For
example, with a rule r : - -~ r, s, and no rule defining s, the truth value of s is
needed in order to determine that r is false; a subgoal ?s must be generated to find
the truth status of s, at a point when the truth status of -7 r is not known.

To do so, we use an extended Magic Templates rewriting, which we call Undef
Magic Templates rewriting, which can generate "possibly true" facts (rather than
just true facts) when provided appropriate "seed facts." Undef Magic Templates
rewriting generates facts of the form un(p(~)) and un(-~q(~)). 2 These facts
respectively indicate that p(~) is possibly true (i.e., has not been shown to be false),
and q(~) is possibly false (i.e., has not been shown to be true). Facts of the form
un(...) are used to represent information about the truth value of a fact as of
some point in the evaluation, and unlike other facts, may be present at some point
of an evaluation but absent later. However, a fact un(p(~)) is always present when
p(~) is known to be true (and similarly un(-7 q(~)) is always present when q(~)) is
known to be false). We say a fact p(~) is possibly undefined if a fact un(p(~)) is
present.

We say "possibly" since the fact may not actually be undefined in the well-
founded semantics; it could be true, undefined, or even false. Such facts are needed
to compute an overestimate of what (relevant) facts are true (resp., false).

We consider again the rule used to describe Ordered Search:

p(X) :- r(X , Y) , -7 q (Y) , s(Y) .

Under Magic rewriting of this rule generates the following rules:

query(r(X, Y)) :- query(p(X)).

query ~ (q (Y)) :- query(p(X)) ,un (r (X , Y)) .

query(s(Y)) : - q u e r y (p (X)) , u n (r (X , Y)) , u n (- ~ q (Y)) .

2 In an abuse of no ta t ion , we t rea t the nega t ion symbol ~ as an u n i n t e r p r e t e d func t ion symbol w h e n
it occurs ins ide an u n fact.

WELL-FOUNDED ORDERED SEARCH 185

un(p (X)) : - q u e r y (p (X)) , u n (r (X , Y)) , u n (~ q (Y)) , u n (s (Y)) .

p(X) "- query(p(X)),r(X,Y) ,done(q(Y)), ~ un(q(Y)),s(Y).

Further, for every predicate p (X) , we generate rules

:-p(Y).

un(-7 p(.~)) : - done(p (X)) , ~ p (X) .

The intuition behind the above rules is as follows. The first three rules generate
subgoals, but differ from the rewriting used in Ordered Search in that they can
generate a subgoal on a literal not only when earlier literals are true, but also when
they are possibly undefined (i.e., corresponding un(...) facts have been generated).
Another difference is illustrated in the second rule, where the generated query fact
is tagged with a superscript ~. The tag is used in Context to recognize that the
subgoal is generated from a negative literal. We treat the predicates query 7(. . .)
and query(...) as separate facts in the Context but as synonymous for the purposes
of semi-naive evaluation. The tag is used by the WF-OS evaluation algorithm. The
fourth rule in the rewritten program generates an un(...) fact for the head
predicate in case each literal in the body is possibly undefined. The last rule
generated from the original rule derives answer facts that are definitely true. The
purpose of the two other rules shown above is to make sure a literal is possibly
undefined if it is true.

The general case of the rewriting is as follows.

Definition 4.1. The Undef Magic Templates Algorithm. Let P be a program, and
?q(~) a query on the program. We construct a new program MagUnd(P).
Initially, MagUnd(P) is empty.

1. For each rule in P, add the modified version of the rule to MagUnd(P). If
rule r has head, say, p0) , the modified version is obtained by adding the
literal query(p(-t)) to the body, and for each negative literal ~ q(~) in
the body where q is an IDB relation, adding the literal done(q(~)) before
the literal ~ q(~), and replacing --7 q(~) by ~ un(q(~)).

2. For each rule in P, add the undefined version of the rule to MagUnd(P). If
rule r has head, say, p(D, the undefined version is obtained by adding the
literal query(p(-t)) to the beginning of the body, and for each IDB relation
literal in the rule (including the head) q(~) or ~ q(~), wrapping it with
un(), i.e., un(q(~)) or un(-7 g(~)).

3. For each rule r in P with head, say, p 0) , and for each occurrence of an
IDB literal qi(-ti) (or ~ qi(-ti)) in its body, add a query rule to MagUnd(P).
The head is query(qi(-ti)) (resp., query~(qi(-ti))). The body contains all
literals that preceded un(qi(-ti)) in the undefined version of r.

4. For each IDB relation p in the program, add the rules

un(p(X))
un(~ p(X)) :- done(p(X)), ~ p(X) .

to MagUnd(P).
5. Create a seed fact query(q(~)) from the query on the program.

186 P. J. STUCKEY AND S. S U D A R S H A N

In practice, we would use a variant of the above rewriting that generates
"supplementary rules," to factor out common subexpressions in a manner similar
to Supplementary Magic rewriting [6]. We omit details for simplicity. The rewriting
and evaluation mechanisms contain some redundancies, such as generating un
facts even when it is obvious that they are not needed (e.g., for programs without
negation). Such inefficiencies can be removed fairly easily; but for simplicity, we
describe only the unoptimized but less complicated algorithms.

4.2. Intuition behind the Well-Founded Ordered-Search Algorithm

An inspection of the rules in MagUnd(P) indicates that a fact of the form un(p(~))
can be generated using the rules only if there is already a fact p(~). However,
there is another mechanism to generate facts of the form un(.. .)--the WF-OS
evaluation algorithm described in the next section. Such facts are generated in
order to bypass negative literals so as to generate subgoals on later literals in a
rule, in case cycles containing negative subgoals are encountered.

WF-OS proceeds like Ordered Search, except for ignoring negative cycles of
subgoals, until all subgoals in the top node of context have been made visible. At
this stage, WF-OS starts off the computation of "possibly true" facts (rather than
just definitely true facts) by considering negative literals that form part of the cycle
as "possibly true" (these constitute the "seed facts"). This process eventually
ensures that a superset of all required subgoals [12] is generated.

Eventually, a stage is reached when no new subgoals can be added as above. At
this stage, the last node in Context has a negative cycle, and all subgoals on which
subgoals in the node depend have already been generated, and have either been
solved or are in the node. At this stage, the un(...) facts are a superset of the true
and undefined facts for subgoals in the last ContextNode. The subgoals in the last
node define a subpart of the program. Intuitively, WF-OS now applies the alternat-
ing fixpoint technique [25, 11] for computing the well-founded semantics (in a
non-goal-directed fashion) to this subpart of the program, rather than to the whole
program. The alternating fixpoint technique (and other techniques for computation
of the well-founded semantics) can be quite costly, and by applying it only to
well-chosen subparts of the full program, we are able to reduce the cost of
evaluation considerably.

4.3. The Well-Founded Ordered Search Algorithm

We now present some details of the WF-OS algorithm. The algorithm is basically
the same as the Ordered Search algorithm presented in Section 3.2, except that
(a) the Under Magic rewriting is used instead of Magic rewriting, and (b) Steps 2(b)
and 3 of the evaluation algorithm are modified to be as follows:

2(b). Duplicate elimination: Unmarked copies of query(q(~)) and query ~ (q(~))
are treated as distinct facts, and only the latest unmarked copy of each is
retained. It is important to note that no dependency information is lost
thus - -a direct dependency is replaced by an indirect dependency.

W E L L - F O U N D E D O R D E R E D S E A R C H 187

If there is a marked copy and an unmarked copy of query I ~ l(q(d)) (with
or without tag "-7 ") in Contex t , there are two possibilities:
(i) If the marked copy of query I ~ J(q(~)) occurs after the unmarked copy,

only the marked copy of query[~ l(q(~)) is retained in Contex t if they
are both tagged " 9 " or both untagged; otherwise, they are both
retained.

(ii) If the unmarked copy (tagged or untagged) of query f ~ l(q(K)) occurs
after the (tagged or untagged) marked copy, we have detected a cyclic
dependency involving query [~ l(q(K)) and all marked facts in Contex t
in between the two occurrences of query[~ J(q(K)). The unmarked copy
of query E ~ l(q(~)) and the above set of marked facts are collapsed into
the node of the marked copy of query [~](q(K)) in Context . If one of
the facts collapsed into this node has a negative tag, then the node is
marked as a NEGLOOP. If query~ (q(~)) and query(q(K)) are both
present and one is marked, the other is marked as well.

3. M a k i n g Query Facts Visible
(i) While the last node in Contex t contains at least one unmarked query

fact,
Choose an unmarked fact from the last node
Perform duplicate elimination using the fact (Step 2(b)(ii));
If no marked (tagged or untagged) copy of the fact was found,
break;

If an unmarked fact was found above, mark it and make it available to
the evaluation by inserting it (without tag) in the corresponding
differential relation.

(ii) Otherwise, all facts in the last Con tex tNode are marked. If the node is
not marked NEGLOOP, the node has been completely evaluated. The
node is removed from Contex t , and for each (tagged or untagged) fact
query[~ l(p(~)) in the node, a fact d o n e (p (K)) is created.

Otherwise, executive Procedure A d d U n d e f i n e d . If no new facts
are added by Add_Undef ined , execute Procedure Local_Alternat ion.

The intuition behind the above is that even if we find a cycle with negative
subgoals, we proceed with other subgoals that are generated from subgoals in the
cycle since they may not be recursive with those in the cycle. When we can proceed
no further, we are at a stage where we have to bypass some of the negative
subgoals in order to compute the well-founded model. This is done by means of
Procedure Add_Undef ined , which lets the left-to-right subgoal generation order
skip over negative literals that are in the last node in Contex t , by introducing facts
of the form un(-~ q(~)) .

Procedure A d d U n d e f i n e d
/ * We are at a local fixpoint and there is a negative cycle. * /
For every fact query ~ (q(~)) in the last Contex tNode ,

if neither d o n e (q (~)) nor q(K) is present
Add u n (~ q (~)) to the set of facts.

In case some new u n (. . .) facts are added by Add_Undef ined, evaluation
continues as in Ordered Search. Further subgoals may be generated. If they do not

188 P. J. STUCKEY AND S. S U D A R S H A N

depend on the goals in the negative cycle, they get solved independently. If there is
a dependency, they get collapsed into the node containing the negative cycle.

Eventually, a stage is reached where all negative literals whose subgoals are in
the last node of Context are noted as undefined (and thus bypassed), and no
further subgoals can be generated. At this stage, all relevant subgoals have been
generated. These subgoals define a subprogram that contains a cycle with a
negative subgoal. To compute the well-founded model for this subprogram, WF-OS
evaluation starts an alternating fixpoint evaluation [25, 11] using Procedure
Loca lAl t e rna t ion , shown below. Alternating fixpoint computation by itself is not
goal directed, and if used on the entire program would generate a potentially large
number of irrelevant facts. However, the alternating fixpoint performed in Pro-
cedure L o c a l A l t e r n a t i o n is "local" in that it only involves answers for the sub-
goals in the last node of Context. By restricting the alternating fixpoint to a sub-
programs containing "relevant" facts, we can reduce the time cost of computation
considerably.

Procedure Local_Alternation
1. Repeat
2. For every query fact query ~ (q(d)) in the last ContextNode,
3. If un(q(a)) is not present / * q(d) is definitely false * /
4. Add done(q(d)) to the set of facts.
5. If q(~) is present / * q(a) is true *,/
6. Add done(q(a)) to the set of facts.
7. Remove un(~ q(~))
8. If there is no change in the set of facts Then
9. Break; / * Last node in Context has been fully evaluated * /
10. Else / * Restart to find new upper-bound * /
11. For every fact un(q(~)) that matches a tuple query(q(-b)) in the last

ContextNode, and does not match any fact done(q(?))
12. Remove un(q(d)).
13. /* Note: Facts un(-~ q(a)) are not removed at this step. * /
14. Apply all rules that define un-predicates in the last ContextNode.
15. Do semi-naive evaluation on all rules until fixpoint.
16. Forever;
17. / * Local alternating fixpoint has terminated; Clean up and pop node * /
18. Pop the last node from Context.
19. For every fact query(q(a)) in the node,
20. Add a fact done(q(a)) to the set of facts.

Procedure Local_Alternation tightens the set of un(. . .) and un(. . . .) facts by
removing those whose truth status has been determined to be true or false, and
recomputing the set of un(. . .) facts while keeping the un(. . . .) facts fixed. The
recomputation (lines 14-15) begins by firing all the rules that can produce un(. . .)
facts, and these are used as the differential relations for the semi-naive evaluation.
Our technique, like other techniques that compute the well-founded semantics in a
goal-directed fashion, generates some queries that may not actually be relevant,
but during the evaluation it is not possible to make out whether or not they are
relevant. Specifically, we generate query facts from un facts that may be retracted
later.

W E L L - F O U N D E D O R D E R E D S E A R C H 189

WF-OS behaves nearly identically to OS on left-to-right modularly stratified
programs. In particular, Procedure A d d U n d e f i n e d is never invoked. The only
difference is that for each fact [~]p(~) generated by OS, a fact un([-~]p(~)) is also
generated by WF-OS. This does not result in any change in complexity. The
difference between OS and WF-OS shows up on programs that are not left-to-right
modularly stratified.

Example 4.1. To exemplify the relationship between the WF-OS procedure and
Ordered Search, we now give an example of the WF-OS procedure in action on the
win program from Example 3.1, with a database of moves that makes the program
no longer modularly stratified:

w i n (X) : - move(X , Y) , ~ w i n (Y) .

w i n (X) : - extramove(X , Y), win(Y) .

m o v e (a , b) .

m o v e (a , d) .

move (b, c) .

move (d, a) .

extramove (a, e) .

extramove(e, a) .

The Undef Magic rewriting is

w i n (X) "- query(win(X)) , move (X , Y) , done(win(Y)) ,

~ (w i n (Y)) .

un(win(X)) : - query(win(X)) , move(X , Y) , un(~ win(Y)) .

w i n (X) "- query(win(X)) , extramove(X , Y) , win(Y) .

un(win(X)) : - query(win(X)) , extramove(X , Y) , un(win(Y)) .

u n (w i n (X)) : - w i n (X) .

un(-7 w i n (X)) : - d o n e (w i n (X)) , -7 w i n (X) .

query ~ (win (Y)) : - query (win (X)) , move (X , Y) .

query (win (Y)) : - query (win (X)) , extramove (X , Y) .

The computation starts as in Example 3.1 using Ordered Search. query(win(a)) is
added to the Context, marked, and the facts query ~ (win(b)) , query ~ (win(d)) , and
query(win(e)) are derived; each is added to a new node at the end of Context. First,
query(win(e)) is marked and made available for inferences. This derives the fact
query(win(a)) and the Context is collapsed to become

{ query(win(a)) * , query(win(e)) * } {query ~ (w i n (b)) } {query ~ (win(,~ ;)}

Now, query(win ~ (d)) is marked and made available for inferences. It deriv .~s the
fact query ~ (win(a)) , which is placed on the end of the context; then this nc, c?e and
the marked node {query(win ~ (d))*} are collapsed back into the first node, which is

190 P. J. S T U C K E Y A N D S. S U D A R S H A N

now marked as a NEGLOOP. The Context is now

{ query (win (a)) *, query (win (e))*, query ~ (win (d))*, query ~ (win (a))* },

{query ~ (win(b))}

Execution then proceeds (basically) as in Ordered Search (Example 3.1) marking
query ~ (win(b)), and adding query(win(c)), done(win(c)), win(b), and done(win(b)).
In addition, the facts un(~ win(c)) and un(win(b)) are derived.

Finally, the last remaining Context node is

{ query(win(a))*, query(win(e))*, query ~ (win(d))*, query ~ (win(a))* }

Nothing more can be derived now, and all facts in the node are marked. Since the
node is marked NEGLOOP, there is a negative query in a cycle. Hence, Step 3(ii)
calls Add_Undef ined , which adds the facts un(~ win(d)) and un(~ win(a)) to the
negative query facts. Now facts un(win(a)), un(win(e)), and un(win(d)) are derived.
(In general, new queries may be generated and evaluated at this stage.) Finally, we
enter Local Alternation. Because un(win(a)), un(win(d)), and un(win(e)) are
present and win(a), win(d), and win(e) are not present, no change is made to the
set of facts. Hence, we immediately exit the loop and pop the last Context node
adding done(win(a)), done(win(e)), and done(win(d).

The WF-OS procedure terminates having determined that win(b) is true, win(c)
is false, and win(a), win(d), and win(e) are undefined.

Example 4.2. The above example does not fully illustrate WF-OS. In this example,
we see how A d d U n d e f i n e d and Local_Alternat ion interact with the Ordered
Search part of the procedure. Given the initial program

~ (x) :- ~ s (X) .

s (X) : - q (X , Y) , - ~ r (Y) , t (Y) .

q (X , a) :- -nr (X) .

the Undef Magic rewriting is

r (X) "-

s(X) :-

q (X ,a) :-

un(r(X)) :-

,n(~(X)) :-

u n (q (X , a)) :-

u n (r (X))

.n(s(X))
u n (q (X , a))

.n(-7 ~(x))

. n (~ (x))

un(-7 q(X, a))

query(r (X)) , done(s(X)) , -~ un(s(X)) .

query(s(X)) ,q(X,Y) ,done(r (Y)), -7 un(r (Y)) , t (Y) .

query(q(X, a)), done(r (X)) , -~ un(r (X)) .

query(r(X)) , un(-1 s(X)) .

query(s(X)), un(q(X ,Y)), un(--7 r(Y)), un(t(V)).

query(q(X, a)), un(--7 r(X)).

: - r (X) .

: - s (X) .

: - q (X , a) .

:-done(r(X)), ~ r (X) .

:- done(s(X)), -, s(X) .

:- done(q(X, a)), -7 q(X, a).

WELL-FOUNDED ORDERED SEARCH 191

query ~ (s(X)) : - query(r (X)) .

query(q(X , Y)) : - query(s(X)) .

query ~ (r (Y)) : - q u e r y (s (X)) , u n (q (X , Y)) .

q u e r y (t (Y)) : - q u e r y (s (X)) , u (q (X , Y)) , u n (- ~ r (Y)) .

query ~ (r(X)) : - query(q(X , a)) .

Given the query r(a), WF-OS evaluation starts by adding query(r(a)) to the
Context; query(r(a)) is not made available for inferences yet. Nothing more can be
derived, and hence Step 3(a) marks the fact and makes it available for making
inferences. Using this fact, query ~ (s (a)) then gets derived, added to a new node at
the end of Context, and as before, gets marked and made available for making
inferences. Similarly, a fact query(q(a, Y)) is derived and inserted. Using this query
fact, query ~ (r (a)) is derived. Hence a cycle is detected and the nodes in the cycle
(all the nodes in Context in this case) are collapsed into a single node containing
{query(r(a)), query ~ (s(a)) , query(q(a, Y)) , query ~ (r(a))}. Because the marked facts
query ~ (s (a)) and query ~ (r (a)) are collapsed back into the node, it is marked as a
N E G L O O P .

Nothing more can be derived now, and all facts in the node are marked. Since
the node is marked N E G L O O P , there is a negative query in a cycle. Hence Step
3(ii) calls Add_Undef ined , which adds the fact un(~ s(a)), un(~ r(a)) correspond-
ing to the negative query facts. Now facts un(q(a , a), un(r(a)) , and query(t(a)) get
derived. To determine that s(a) is false, we must examine the subgoal t(a); this is
why we skip over the undetermined literals q(a, a), ~ r(a).

The new query fact query(t(a)) is placed in a new Context node and, after
marking, provides nothing new. Step 3(ii) removes the node f rom the Context and
adds done(t(a)) . Nothing more can be derived, and we are back at Step 3(ii) with
the N E G L O O P marked node as the last in the Context, so we execute Loca l_Al-
ternation.

Line Action Facts

4 Add done(s(a)))
12 Delete un-facts un(q(a, a)), un(r(a))
15 Fixpoint un(q(a, a)), r(a), un(r(a))
6 Add done(r(a)))
7 Remove un(~(r(a)))

12 Delete un-facts un(q(a, a))
15 Fixpoint { }

Since nothing further is produced, we remove the Context Node and add the fact
done(q(a , Y)) . The results for the queries facts r(a), -1 s(a), V Y ~ q(a, Y) , ~ t (a)
agree with the well-founded model of the original program.

5. CORRECTNESS

The correctness of the method relies on two key observations: first, the query facts
set up are large enough so that all the computat ions are correct, and second, .a
number of invariants hold throughout the computation. For simplicity, we do not
consider any special t reatment of EDB relations in this section; every relation is

192 P . J . STUCKEY AND S. S U D A R S H A N

assumed to be IDB. EDB literals present no difficulties since they have a fixed
two-valued model. I~ t W be the ground instances of the set of facts present at any
stage in the computation.

We use a set of invariants to describe correctness properties of the program.
The invariants are shown formally below, but first we consider the intuitive
meaning of the invariants. Invariant 1 ensures that (a) when a done fact is
generated, all true facts in the well-founded model that match the done fact have
been generated, and (b) every true fact generated is true in the well-founded
model. Invariant 2 ensures that when a done fact is generated, among those facts
that match the done fact, all and only those facts that are not false in the
well-founded model have been generated as possibly undefined. Thus, when a done
fact is generated, by Invariants 1 and 2, the facts that match the done fact, and are
generated as possibly undefined but not generated as true, are exactly those that
are indeed undefined in the well-founded model. Hence, Invariants 1 and 2
together help ensure the soundness of the computation with respect to the
well-founded model.

Invariant 3 is a technical condition ensuring that (a) when we have generated a
true fact, it will have a corresponding un fact, and (b) for each fact q(~) whose
truth value has been determined (i.e., done(q(Yt)) • W), the two indicators that it is
possibly false q (K)~ W and u n (~ (q (~))) • W are either both present or both
absent. Invariant 4 ensures that the Context maintains correct dependency infor-
mation.

Invariant 1. (True facts) (a) done(q(~)) • W ~ (q(K) • W ~ q(~) • T[P]),
and (b) q(d) • W ~ q(a) • T[P].

Invariant 2. (False facts) done(q(a)) • W ~ (un(q(a)) ~ W o q(a) • F[P].
Invariant 3. At each fixpoint (that is, step 3 of WF-OS and step 15 of Loca l_

Alternation) (a) q(d) • W -~ un(q(~)) • W,
and (b) done(q(a)) • W-~ (q(~) ~ W o un(~ q(a)) • W).

Invariant 4. When we reach step 3(ii), if query(q(K)) appears marked in the last

node of Context, and depends on query(p(b)), then either

• (a) query(p(b)) is also in the last node of Context, or

• (b) query(p(b)) was on Context earlier and was popped from Context,
and a corresponding fact done(p(-b)) is present, and query(p(b))
does not depend on query(q(K)).

We define notation for referring to the definitely true, false, and undefined facts
given by W:

• T[W] = (p(b)Lp(b) • W}

• F[W] = {p(b)[done(p(b)) • W A un(p(b)) ~ W}

• U[W] = {p(b)]done(p(b)) • W A p (b) ~ WA un(p(b)) • W}

An outline of the proof is as follows: Lemma 5.1 is a technical lemma required
for Lemma 5.2. I_~mma 5.2 shows that every time computation reaches the first line
of L o c a l A l t e r n a t i o n , the un facts are a superset of the true and undefined facts
of the well-founded model (restricted to those in the queries of interest). This
means that if un(p(~t)) is not present, then it is false in the well-founded model.
This is used in Lemma 5.3 to show that the invariants are maintained throughout

W E L L - F O U N D E D O R D E R E D S E A R C H 193

the repeat loop of Local_Alternat ion. Lemma 5.4 is the main lemma of the proof.
It shows how Local_Alternat ion computes the alternating fixpoint of the subpro-
gram of interest (all facts which have a query fact in the last ContextNode). This
result is used in Lemma 5.5 to show that the last lines of Local_Alternat ion
maintain the invariants. The theorem follows straightforwardly from Lemma 5.5.

Lemma 5.1. Suppose the invariants hold at a point when evaluation reaches the first
line in Local_Alternat ion. Let W denote the set of ground instances of all facts
present at that point. Suppose query(p(b)) is an instance of a fact in the last
ContextNode, and consider any ground instance of a rule in P with head p(-b). Then,
either

(a) the rule instances is made false by information in W (i.e., there is a negative
literal ~ s(~) such that (s.t.) s(~) ~ T(W), or there is a positive literal s(~) s.t.
s(~) E F(W)) , or

(b) the query facts for every literal in the body are in Wand un(p(b)) ~ W, or
(c) there is a positive literal r(?) in the rule such that query(r(~)) is an instance of a

fact in the last ContextNode and un(r(?)) ~ W.

Furthermore, un(p(b)) ~ W only if there is a rule for p that is in category (b) above.

The proof of the lemma is based on the Undef Magic rewriting presented
earlier, Step 3 of WF-OS, and on Procedure Add_Undef ined . Details are pre-
sented in the Appendix.

Given a set of facts S, and a set M of query facts, define S / M as follows:
d e f

S / M = [pi(ai)°tlPi(-aii) E S, query(pi(bi)) ~ M, a is a

grounding substitution s.t. Pi(~) ~ = Pi(~) a }.

Whenever evaluation reaches the first line of Local A l t e r n a t i o n , evaluation has
reached a fixpoint; let the ground instance of the set of facts present at the point
be W. Based on Lemma 5.1, we can show that at any such point, if a fact un(p(~))
is absent, either all rule instances defining it have at least one literal that is false
based on T (W) and F(W), or (based on Condition (c) of Lemma 5.1) there is a set
of positive literals that forms an unfounded set. Hence we have the following
lemma.

Lemma 5.2. Suppose the invariants are satisfied before the start of Local_Alterna-
tion. Every time execution reaches the first line in Local_Alternat ion for every
atom q (~) ~ TIP] U U[P], if query(q(K)) is an instance of a fact in the last
ContextNode, then un(q(K)) ~ W, where W is the set of ground instances of facts
present at that time.

The proof is by induction on the stage of the alternating fixpoint computation
when the fact is derived. Details are presented in the Appendix.

Lemma 5.3. Suppose the invariants hold at the time of a call to L o c a l A l t e r n a t i o n .
During the repeat loop of procedure Local_Alternat ion, the invariants are main-
tained and no new query or un facts are generated (hence the Context does not
change throughout the procedure).

Details of the proof are presented in the Appendix.

194 P. J. S T U C K E Y A N D S. S U D A R S H A N

Lemma 5.4. Suppose the invariants are satisfied before a call to Local_Alternat ion.
Let M be the query facts in the last ContextNode, and let N be the union of M
together with all computed query facts, i.e., where query(q(K)) and done(q(K)) are
both present.

Let W i be the ground instances of the set of facts present at the (i + 1)th time
evaluation reaches the first line of Local_Alternat ion during the call to
Local_Alternat ion. Let T o = T[Wo] / (N - M), U o = (HBp - F[Wo])/(N - M) ,
and F o = F[Wo]. Let T 1 = Tp(HBp - F o) T o~(To) and U 1 = Tp(T o) $ w(Uo), and let
Ti+ , = Tp(U~)$ o~(To), i > O, and let U~+ 1 = TI,(T~)$ w(Uo), i > O.

For n > O, q(~) ~ W , / N iff q(~) ~ T, + I /N , and un(q(~)) ~ W , / N iff q(~)
U,+I/N.

The above lemma proves the main results that are needed to show the sound-
ness of our technique. The proof is by induction on the sequence of derivations (for
the "only if" direction), and by induction on the stage of alternating fixpoint at
which a fact is derived (for the "if" direction). Details are presented in the
Appendix.

Corollary 5.1. Suppose the invariants are satisfied before a call to Local_Alternat ion.
At the end of a call to Local_Alternat ion, for every fact p(1)) such that query(p(1)))
is in the ContextNode that is popped at the end of the procedure, p (b) is present iff
p(b) ~ T[P], and un(p(b)) is present iff p(b) ~ TIP] t2 U[P].

PROOF. Clearly, at the fixpoint n, Tn /M and U J M are the restriction of the
well-founded model of P u T o u -7 .F 0 to M. By invariants 1, 2, 3, and 5, T o ___ We*
and ~ -F 0 c We* , and the result follows. []

The following lemma essentially follows from the above corollary, and from the
earlier lemmas.

Lemma 5.5. Invariants 1, 2, 3, and 4 are maintained by Local_Alternat ion.

PROOF. Invariant 1 follows from Corollary 5.1 and Lemma 5.3; the second part
follows by induction. Invariant 2 similarly follows from Corollary 5.1 and Lemma
5.3. Invariant 3 is a simple property of the rewritten program, and the definition of
Local_Alternat ion. Invariant 4 follows trivially since the set of query facts does
not change. []

We have not discussed the maintenance of invariants throughout the remainder
of WF-OS, in particular when in Step 3 the last ContextNode is not marked
NEGLOOP. In this case, we can easily see each of the above lemmas holds
(perhaps in a vacuous manner). In effect, if Local_Alternat ion were applied, it
would immediately terminate; hence, the invariants are maintained. The operations
on Context, such as insertion and duplicate elimination, maintain Invariant 4, and
do not affect Invariants 1 and 2. Invariant 3(a) is a simple property of the rewritten
program, while Invariant 3(b) is unaffected because no done facts are added.

We show, based on the invariants, that WF-OS evaluation is sound. We also
show partial comple teness- - i f evaluation terminates, all facts in the well-founded
model are generated, and for the case of D A T A L O G programs with finite base
relations, evaluation does terminate.

Theorem 5.1. Given any nonfloundering program P and a terminating query ?q(i),
WF-OS evaluation is sound and partially complete w.r.t, the well-founded seman-

W E L L - F O U N D E D O R D E R E D S E A R C H 195

tics of P. That is,

1. q(t)[0] ~ T[P] iff q(-t)[O] is a ground instance of a fact derived by WF-OS.
2. q(t)[~] ~ U[P] iff un(q(-t))[cr] is a ground instance of a fact derived by

WF-OS, and q(t)[o-] is not an instance of any fact that is derived.
3. q(t)[y] ~ F[P] iff un(q(-t))[y] does not unify with any fact derived by WF-OS.

PRoof. The result holds because invariants 1, 2, and 3 are maintained throughout
the operation of WF-OS, and when the procedure terminates, the Context is empty
and thus done(q(-t)) is in the set of facts. []

6. EXTENSIONS

We presented a simple version of WF-OS for ease of exposition. Straightforward
improvements include not generating un facts when it is clear that they are not
needed (e.g., for programs without negation). A number of other improvements are
discussed below.

Subsumption checking on query facts in the Context can be used instead of
duplicate elimination, as described in [18]. In the case of Ordered Search, sub-
sumption checking was done in "one direction" in order to maintain exact
dependencies: if a query fact in a new node in Context subsumes a marked query
fact lower in Context, a collapse operation is initiated. If the subsumption is in the
order direction, the collapse operation is not initiated. In Ordered Search, collaps-
ing Context nodes in such a situation can create spurious negative cycles in
left-to-right modularly stratified programs, which cannot be handled by the evalua-
tion. With WF-OS, the spurious negative cycles do not affect soundness or
completeness, and merely affect efficiency. Hence subsumption checking can be
performed in both directions without affecting correctness, only affecting effi-
ciency.

Procedure Well-Founded Ordered Search is not set-oriented in making gener-
ated subgoals available for further use (although it is set-oriented in generating
subgoals and answers to subgoal). The procedure can be made more set-oriented
by marking a whole set of subgoals at a time (in Step 3), and collapsing the
corresponding nodes in Context together. Unlike in Ordered Search, we can
indiscriminately apply this procedure without affecting soundness or completeness,
because Local_Alternation is a safe method for computing the well-founded
model of any (query-closed) fragment of the program. Marking sets of facts at a
time leads to more set-oriented evaluation but can significantly decrease efficiency
by creating apparent negative cycles where none exist, or making the query sets to
which Local_Alternation is applied larger than necessary. The trade-off between
efficiency of set-oriented evaluation versus more Local_Alternation suggests
marking sets of facts at a time is only worthwhile when the subprogram is positive
or stratified.

Throughout the paper, we have concentrated on evaluating programs with
left-to-right complete SIPS. The results easily extend to arbitrary SIPS, because
query facts depend on un facts rather than the original predicates. Ordered Search
is restricted to left-to-right SIPS since other SIP orderings may produce negative
loops not present in the left-to-right order.

1 9 6 P. J. S T U C K E Y A N D S. S U D A R S H A N

We presented our algorithms based on the Under Magic Templates rewriting.
Supplementary Magic Templates rewriting [6, 17] is a variant of Magic Templates
rewriting, which essentially factors our subexpressions that are common to a
(modified) original rule and the query rules derived from that rule. The Undef
Supplementary Magic Templates rewriting is a straightforward modification of the
Undef Magic Templates Rewriting that factors out common subexpressions in the
query rules and un rules. The supplementary predicates created correspond to
successive increasing prefixes of the (modified) original rule. As a result of
supplementary magic rewriting, we lose the direct connection we had between the
subgoals on the head of the rule and the subgoals generated for the body literals.
Details of how to modify Supplementary Magic rewriting to keep track of the
dependencies of subgoals can be done in a manner similar to that described in the
full version of [18].

To do a well-founded ordered search using Undef Supplementary Magic Tem-
plates, we need to store with each supplementary fact the subgoal on the rule head
that resulted in the generation of the fact. It is an easy modification to the
well-founded ordered search algorithm to insert this information for the first
supplementary fact, and to propagate the information along derivations of facts for
supplementary predicates further down the rule. Given the modifications described
above, Procedure Well-Founded Ordered Search can be used along with Undef
Supplementary Magic Templates rewriting.

Procedure Local_Alternation is roughly equivalent to the magic-sets-based
alternating flxpoint technique of [12] applied to a small part of the program. We
can use the optimization of [12] suggested by [15], which permits some query facts
to be discarded if they are found to be irrelevant due to some facts earlier
(temporarily) assumed undefined being found to be either true or false. There is
some extra work to recompute the set of query facts (the "magic sets"), but the set
is decreasing within the alternating fixpoint, and this may save some irrelevant
computation.

Another possibility for optimization is illustrated by the following example.

Example 6.1. WF-OS generates some un facts that are later retracted. These un
facts are used in the context of the local alternating fixpoint on the last node of
Context. In the following program, query facts are generated unnecessarily using un
facts that are retracted later:

r : - - p , u .
p : - n q , p .
q : - p , s .

The WF-OS evaluation of the above program for a query ?r() generates fact
query(p), which leads to the derivation of query ~ (q), which in turn results in the
derivation of query(p). A local flxpoint is reached, with a negative loop in the last
node of Context containing query(p) and query~(q). At this stage, Add_Unde-
fined adds fact u n (~ q) , which leads to the derivation of un(p), and query(p)
(which is already present). The fact un(p) leads to the derivation of query(s) using
a rule instance

query (s) :- query (q) , un (p) .

but also of query(u) using a rule instance

query(u) :- query(r) , un(p) .

W E L L - F O U N D E D O R D E R E D S E A R C H 197

Of these, query(q) is part of the cycle, and the fact query(s) is required in order to
solve query(q). But r is not part of the cycle and there is no need at this point to
generate query(u) to solve query(r). In terms of Context, the node containing
query(r) is before the node containing query ~ (q) and query(p), and hence query(r)
can be evaluated after query ~ (q) and query(p) are completely evaluated. Indeed,
evaluation proceeds, and q is determined to be false, and so is p. However, the
subgoal query(u) has been generated already and will be solved.

We can avoid unnecessary derivations of the above kind by delaying derivations
where the query(...) fact used in the body is not part of the last Context node.
(Rules in the Undef Magic rewritten program have at most one query literal in the
body.) In practice, in order to coexist with semi-naive evaluation, it is easier to find
that the derivation can be made, and note it without generating the fact, and to
recheck the derivation when the relevant query node becomes the last node in
Context.

While the well-founded model is not recursively enumerable in general, when
restricted to D A T A L O G programs it has size polynomial in the size of the EDB
[26], since all predicates are of fixed arity, and the only elements of the Herbrand
universe are those that are explicitly in the EDB. Actually, the above argument
shows that the Herbrand base of the program itself is of size polynomial in the size
of the EDB. Further, the Magic rewritings can result in at most a polynomial
increase in size of the Herbrand base, since they increase the number of predicates
by at most a constant factor, and each new predicate has arity no more than
existing ones.

We can use this to argue that WF-OS executes in a polynomial time in the size
of the EDB on D A T A L O G programs. Between any two calls to alternating
fixpoint, there are only a polynomial number of steps, since each step computes a
fixpoint on the rules, or makes a new fact visible. Each step can be seen to take
polynomial time. Finally, there are only a polynomial number of calls to alternating
fixpoint since each all results in the addition of some done facts. And because of
the polynomial data complexity of the whole well-founded model, the execution of
a single alternating fixpoint on some subpart of the program itself takes polynomial
time.

Theorem 6.1. For a fixed DA TALOG program P, WF-OS runs in polynomial time in
the size of the EDB.

Note that the Under Magic Rewriting as described translates D A T A L O G pro-
grams to non-DATALOG programs, but this can be avoided by introducing new
predicates query_p, query_neg_p, u n p , and u n n e g _ p and replacing the con-
structions query(p('t)), query~(p(-t)), un(p(-t)), and un(-~p(-t)) by query_p('t),
query_neg_p(-t), un_p(-t), and un neg_p(-t), respectively.

7. RELATED WORK

The most closely related work to that presented in this paper is SLG resolution
(Chen and Warren [10] and Chen, Swift, and Warren [8]). Our work is independent
of theirs, and in fact the two techniques approach the problem from different
directions; while WF-OS is based on bottom-up evaluation made query directed,
SLG is based on top-down evaluation made memoing. Their technique maintains

198 P . J . STUCKEY AND S. S U D A R S H A N

instantiated rules and answers that may contain "delayed" literals. Their "delaying"
step for a negative literal ~ p(~) corresponds to a step where we introduce a fact
u n (~ p(~t)). The answers with delayed literals correspond roughly to our un facts,
but maintain dependency information.

There are three interesting differences between our techniques. The first is that
when they delay a negative literal, they remove the negative dependencies that are
introduced by the literal, in effect dynamically moving the literal back in the SIP
order. They are thus able to relate positive cycles in unfounded sets directly to
positive cycles in their dependency information. Since we do not update depen-
dency information at the time of our equivalent to delaying, we cannot make this
connection. They also optimize some of their actions by incrementally maintaining
dependency information. By combining the above optimizations, they avoid using
the alternating fixpoint technique. We can incorporate some of these optimizations
in our technique as well, but it is not clear how we can avoid the alternating
fixpoint technique since we do not maintain exact dependency information within a
node of Context (if the program is not modularly stratified). Equally interesting is
the question of whether their technique is always better than (local) alternating
fixpoint or not.

The second difference is that their technique does not use exact dependency
information even in the case of modularly stratified programs--a sequence of
strongly connected components (SCCs) in the "depends on" relation may be
merged and viewed as if it were a single SCC. This has bad consequences in cases
where the need to maintain the separation of SCCs is important, as may be the
case if the technique is to be extended to aggregation (even on modularly stratified
programs). Equally importantly, since they do not have exact SCC information,
they may delay a negative literal that is not really in a negative cycle, but appears
to be in a negative cycle due to the merging of SCCs. We maintain the separation
of SCCs, and are thus able to avoid "delaying literals" in some cases where they
delay the literal. Thus there are cases where we compute fewer facts than they do.
Recent extensions to their technique to recover exact dependency information in
the case of modularly stratified programs are discussed in [23].

The third difference is that, using the optimization of [12] proposed by [15], we
can recognize that some queries are irrelevant and delete them in the course of the
alternating fixpoint, as we noted in Section 6. In the technique of Chen et al., once
a query is generated it is never deleted, even if it is irrelevant.

Our technique performs better than that of [12] and its optimization [15] since it
is able to restrict the alternating fixpoint to a subpart of the program. In parts of
the program where there are no cyclic dependencies, WF-OS is able to determine
the status of a fact before using it, and thereby avoid unnecessary computation
caused by treating it as undefined. As a special case of the above, for modularly
stratified programs, WF-OS reduces to Ordered Search, and performs no irrelevant
computation and repeats no computation. Our technique is better than WELL! [7]
and Q S Q R /SLS resolution [22] since both perform repeated computation even for
programs without negation. Unlike XOLDTNF [9], our technique is able to share
answers to subgoals effectively; XOLDTNF repeats computation even for modu-
larly stratified programs. The technique of [13] is not goal directed, although they
mention that they can use a restricted version of Magic sets (where no negative
literals are used in query rules).

W E L L - F O U N D E D O R D E R E D S E A R C H 199

8. CONCLUSIONS AND FUTURE W O R K

We extended the Ordered Search technique to handle well-founded negation. The
extension essentially uses Ordered Search to find dependencies, and when a
circular dependency is found, it applies the alternating fixpoint technique to
compute the well-founded model for the subgoals that are involved in the cycle.
Thus we are able to use the (costly) alternating fixpoint technique only if it is
required. Since implementations of Ordered Search and of the alternating fixpoint
technique are already available, it should be relatively straightforward to combine
them.

The implementation of SLG resolution described in [8] and WF-OS have
advantages and disadvantages over each other in different cases. It would be
interesting to see if the benefits of both techniques can be combined. Another
interesting extension would be to see if the alternating fixpoint technique can be
replaced by some other technique that is more efficient (possibly by exploiting
information that is generated during Ordered Search).

APPENDIX: PROOFS OF LEMMAS FROM SECTION 5

Lemma 5.1. Suppose the invariants hold at a point when evaluation reaches the first
line in Loca lAl t e rna t ion . Let W denote the set of ground instances of all facts
present at that point. Suppose query(p(b)) is an instance of a fact in the last
ContextNode, and consider any ground instance of a rule in P with head p(b). Then,
either

(a) the rule instance is made false by information in W (i.e., there is a negative
literal ~ s(~) s.t. s(~) ~ T(W), or there is a positive literal s(~) s.t. s(~)
F(W)), or

(b) the query facts for every literal in the body are in W and un(p(b)) ~ W, or
(c) there is a positive literal r(~) in the rule such that query(r(~)) is an instance

of a fact in the last ContextNode and un(r(~)) ~ W.

Furthermore, un(p(b)) ~ W only if there is a rule for p that is in category (b) above.

PROOV. Consider a ground instance of a rule in P of the form

p (b) , - B , [- ~] r (e) , B ' .

Case 1: For all literals [~]s(~) in the rule, un([~]s(~))~ W. Now MagUnd(P)
contains a rewritten version of the rule using which (a fact that subsumes)
un(p(b)) is derived, and also has query rules such that for each literal [~]s(~), a
query fact (that subsumes) query(s(~)) is generated. Condition (b) is then satisfied.

Case 2: There is a literal [~]s(~') in the rule such that un([~]s(~))~ W. Let
[-1]r(~) be the first such literal in the left-to-right order. We consider two subcases:
(a) the literal is positive, and (b) the literal is negative. In subcase 2(a), MagUnd(P)
contains rules defining query such that query(r(6)) is generated using the un facts
from earlier literals, and the query fact for the head of the rule. Now, if query(r(~))
is in the last ContextNode, Condition (c) is satisfied. Else, the query must have been
solved already, since any query fact that query(p(b)) depends on cannot be in an
earlier ContextNode. Then the WF-OS algorithm must have inserted a done(r(~))

200 P . J . STUCKEY AND S. SUDARSHAN

fact. Since un(r(?)) is not present, by Invariant 2, the literal is not satisfied, and
hence Condition (a) is met. This completes subcase 2(a).

In subcase 2(b), the first such literal is a negative literal, ~ r(?). A fact
query ~ (r(~)) must then have been generated. If the fact is in the last context node,
a fact un(-7 r(?)) must also have been inserted in Procedure A d d U n d e f i n e d . The
fact cannot be present, since we are in Case 2 of this proof. But removing the fact
could only happen if done(r(?)) is added and r(?) is present. But by Invariant 1,
the literal is not satisfied, and Condition (a) is met. This completes subcase 2(b),
and the proof of the first part of the lemma statement.

We note that in case 2, un(p(b)) could not have been derived from the instance
of the rewritten form of the rule. This proves the last part of the statement of the
lemma, and completes the proof of the lemma. []

Lemma 5.2. Suppose the invariants are satisfied before the start of Local_Alterna-
tion. Every time execution reaches the first line in Local_Alternation for every
atom q(K) c TIP] U U[P], if query(q(~)) is an instance of a fact in the last
ContextNode, then un(q(~t)) ~ W, where W is the set of ground instances of facts
present at that time.

Pnoov. Let M be the set of query facts in the last ContextNode together with all
complete query facts, i.e., query(q(~))~ W such that done(q(~))~ W. We show
q(~) ~ (T[P] U I[P]) / M = (Tp(T[P]) $ o2) / M implies un(q(Ct)) ~ W by induction.

The base case is trivial. Take q (~)~ (Te(T[P])$ h + 1)/M; then there exists a
ground instance of a rule in P of the form

q(a) :- Pl(bl) pm(bm), -~ rl(?1) -1 rk(ck)"

where Pi(bi) ~ Tp(T[P])$ h c_ T[P] U U[P] and rj(?j) ~ T[P]. By Lemma 5.1, the
rule instance must fall in category (a), (b), or (c). Clearly, it cannot fall in category
(a) since this implies either pi(bi) ~ F[W] and hence, by Invariant 2, pi(bi) ~ F[P],
or rj(?j)~ T[W] and, by Invariant 1, rj(?j)~ T[P]. Suppose the rule falls in
category (c); then one of the positive literals Pi(bi) is such that query(pi(b)) ~ M
and un(Pi(bi)) ~ W, but by induction, since pi(bi) ~ (Tp(T[P])$ h) /M, it must be
that un(pi(bi)) ~ W. Thus the rule falls in category (b) and hence un(q(K)) ~ W.

[]

Lemma 5.3. Suppose the invariants hold at the time of a call to Loca lAl t e rna t ion .
During the repeat loop of procedure Local_Alternation, the invariants are main-
tained and no new query or un facts are generated (hence the Context does not
change throughout the procedure).

PROOF. For Lines 3-4, by Lemma 5.2, since un(q(a))~ W, it must be that
q(a) ~ F[P]. Hence, adding done(q(a)) to W maintains Invariant 2. For Lines 5-7,
because q(~) is generated by a ground instance of a rule where ~ p(b) is replaced
by done(p(b)), ~ un(p(b)), then by Invariants 1 and 2, each of the literals in the
rule is true in We* and hence q(6) ~ T[P], maintaining Invariant 1. The mainte-
nance of Invariant 3 follows trivially since we are at a fixpoint, and there are rules
introduced by Undef Magic rewriting that must have derived the necessary facts.
The maintenance of Invariant 4 follows from the second part of this lemma, proved
below.

WELL-FOUNDED ORDERED SEARCH 201

The rules for query facts and un facts are positive, and depend only on the
predicates query and un, except for the rules of the form un(p (~)) : -p (~) and
un(-~ p (~)) : - d o n e (p (~) , ~ p(~). No un fact not present at the call to Local_
Alternation can be created during the repeat loop unless at least one new un fact
arises from a rule like these above, since the execution simply removes un(-1 p(~))
facts. Suppose q(~) enters W. Then it follows by the above that q(~) ~ T[P] and
hence, by Lemma 5.2, un(q(K))~ W at the call to Local_Alternat ion. Suppose
done(q(~)) enters W, then un(~ q(~)) was in W, and could not have been removed.
Hence the sequence of un facts generated is decreasing and no new query facts are
computed. It follows from the structure of Ordered Search that Context does not
change in this period. []

Lemma 5.4. Suppose the invariants are satisfied before a call to Local_Alternat ion.
Let M be the query facts in the last ContextNode, and let N be the union of M
together with all completed query facts, i.e., where query(q(~)) and done(q(~)) are
both present.

Let W i be the ground instances of the set of facts present at the (i + 1)th time
evaluation reaches the first line of Local_Alternat ion during the call to
Local_Alternat ion. Let T O = T[Wo]/ (N - M), U o = (HBp - F[Wo]) / (N - M),
and F o = F[Wo]. Let T 1 = Tp(HBp - F o) $ oJ(T o) and UI = Te(To)$ o)(/2o), and let
Ti+ 1 = Tp(U~) $ w(To), i > 0, and let Ui÷ 1 = Tp(Ti)$ to(Uo), i > O.

For n >_ 0, q(~) ~ Wn/N iff q(~) ~ Tn+I/N, and un(q(~)) ~ W , / N iff q(~)
Un+l/N.

PROOF. Throughout the proof, we restrict attention to facts that match the query
facts M; the results easily follow for the remaining facts matching (N - M) which
are unchanged throughout Local_Alternat ion. Clearly, for each n, q (~) ~ T 0
q(gt) ~ W J (N - M) and q(~) ~ U o ~ un(q(~) ~ W J (N - m) .

We examine the base case, i.e., the conditions for T~ and U~, first.
We show q(K) ~ W o / N implies q(K) ~ T 1 by induction on the order of facts

generated in W 0. Now, q(~) ~ Wo/N means there exists a ground instance of a rule
in MagUnd(P) of the form

q(?t) :- query(q(K)) , p l (b l) p,,, (b, .) ,

done(r1(Cl)) ' -"1 un(r,(Cl)) done(r, (~,)) , -~ un(r k (~,)) .

Each pi(T)i) entered W 0 earlier, and by induction, pi(bi) ~ Tp Now done(rj(gj)) ~ W o
and un(rj(gj)) q~ W0; hence, rj(~j) ~ F[W0]. Consider the ground instance of a rule
in P of the form

q (a) :-- P i (b l) pm(bm), ~ r l (cl) ~ rk(ck).

Then clearly q(K) ~ T 1 because pi([)i) E T 1 and rj(~j) ~ HBp - F o.
We show q(~) ~ (Tp(HBp - F o) T h(To)) /N implies q(~) ~ W 0 by induction on

h. The base case is trivial. Suppose q (~) ~ (Tp (HBp-F0) T h + I(To))/N; then
there exists a ground instance of a rule in P

q (~) :-- p l (b l) pro(bin), --1 rl(Cl) -~ rk(ck)-

202 P . J . STUCKEY AND S. S U D A R S H A N

such that pi(loi) ~ (Tp(HBp - F o) $ h(To)), and q(Fj) ~ HBp - F o. Thus r/(Fj) ~ F 0
and done(rj(g)) ~ W o and un(ri(? fl) ~ W o. By the definition of N (and Invariant

4), pi(loi) ~ (Te(HB P - F o) ? h(To))/N, and by inductive assumption, pi(loi) ~ W o.
Consider the ground instance of a rule in MagUnd(P) of the form

q(2) :- query(q(~)) , p1(7)1) pm(-bm) ,

done(rl(Y~l)), -n 1An(rl(Cl)) done(rk(Fk)), -1 un(rk(Fk)).

Clearly, q(2) ~ W 0 since it would be derived by this rule instance.
We now show un(q(2)) ~ Wo/N implies q(2) ~ U 1 by induction on the order in

which the un facts are generated in W o. un(q(2)) ~ Wo/N means that either there
exists a ground instance of a rule in MagUnd(P) of the form

un(q(2)) :- q(2),

where q(2) ~ Wo/N, from which we have q(2) ~ T 1 c_ U1, or there is a rule instance
of the form

un(q(2)) :- query(q(2)), un(p l(bl)) un(pr,,(bm)),

. u n (- .

where un(pi(7)i)) ~ Wo/N; hence, un(pi(1)i)) ~ U 1 by induction, and un(-7 rj(Fj))
W 0. Either done(rj(Fj))~ W o and rj(gj)q~ W o Invariant 3, or query(rj(~fl) is an

instance of a query in M, and hence, in either case, r/(Y~j) ¢2 T o = T [W o] / (N - M).
Consider a ground instance of a rule in P of the form

q(2) :- pl(1)l) pm(1Jm), -7 r,(F 1) , . . . , -7 r k (ck).

Then, q(2) ~ U 1 since pi(1)i) ~ U 1 by inductive assumption, and rj(Fj)) ~ T o.
We show q(2) ~ (Tp(T o) $ h(Uo))/N implies un(q(2)) ~ W o by induction on h.

The base case is trivial. Suppose q (2) ~ Tp(To)$h + l(U0); then there exists a
ground instance of a rule in P

q(2) :- p , (b,) pm(bm), ~ r,(F,) , . . . , -7 r~(F k) .

such that pi(bi)~ Tp(To)$ h(U o) and r j (Fj)~ T 0. Now we can show pi(1)i)
(Te(T o) $ h(Uo))/N, since query(q(~)) ~ N, and we can show (by an inner level of

induction) that each of query(pi(-Di)) would be generated from query(q(2)). Hence,

by inductive assumption, un (p i (b i))~ W o. Similarly, each of query'(rj(?fl) is
generated from query(q(~)),

If query ~ (rj(6"j)) qE_ M, then by Invariants 4 and 2, done(rj(Y~j)) ~ Wo, r j (c j) q~5 Wo,
and un(~ rj(F.j)) ~ W o. If query ~ (r~(~j)) ~ M, then un(-1 rj(Fj)) ~ W o because it

was added by Add_Undef ined . Consider the ground instance of a rule in Mag-
Und(P) of the form

un(q(2)) :- query(q(2)), un(p~(1),)) , un(pro(bin)),

un(.

Clearly, un(q(2)) ~ W o since it is derived by such a rule.
We have now completed the base case, and now examine the conditions for

T~+ 1 and U~+~.

W E L L - F O U N D E D O R D E R E D S E A R C H 203

We show q(a) ~ W~/N implies q(a) e T.+ ~ by induction on the order of facts
generated in W.. q(a)~ Wn means there exists a ground instance of a rule in
MagUnd(P) of the form

q(~) :- query(q(K)) , p,(T),), . . . , pm(12 m),

done(rl(gl)), -7 un(rl(gl)) done(rk(gk)), ~ un(rk(~k)).

and pi(1)i) enter W n earlier; hence, by induction, pi(T2i) ~ T,+ i. Now done(rj(~j))
W, and un(rj(~j))~ Wn. If query(rj(gj))¢~M, then r j (? j)~ U 0 and also in U,
because these facts were never removed during Loca lAl te rna t ion . Otherwise, at
some Wt, l < n, we derived the fact done(rj(?j)) either because (a) un(rj(Y~j)) ¢2 Wt,
thus un(rj(?j)) ~ W~ (since by Lemma 5.3 the un facts are decreasing) and hence
rj(~j) ~t U~, or (b) rj(?j) ~ Wt, hence rj(~j) ~ W, and un(rj(?j)) ~ W,, a contradic-
tion. Hence rj(g'j) ~ U,. Consider the ground instance of a rule in P of the form

q(a) : - P , (bl) pm(bm), ~ r,(~,) ~ r,(e,).

Then clearly, q(~) ~ Tn+ 1 because pi(1)i) ~ T~+ ~ and rj(gj) ~ U..
We show q(K) ~ (Tp(U.)$ h(To)) /N implies q(K) ~ W~ by induction on h. The

base case is trivial. Suppose q (~) ~ (T e (U .) $ h + I(To))/N; then there exists a
ground instance of a rule in P

q(~) : - p l (bl) pro(bin), -7 El(~1) "n rk(~k)"

such that p l (b l) ~ Tp(U.)?h(To). By the definition of N, p~(b~)~
(Tp(U.)$ h(To))/N, and hence, by inner inductive assumption, p~(b,)~ W.. Fur-
ther, r j(?j)ff U~ and thus, by the outer inductive assumption, un(rj(~j))~ W. ~.
Hence we must have done(rj(~j)) ~ W. and un(rj(~j)) ~ W..

Consider the ground instance of a rule in MagUnd(P) of the form

q(~) :- query(q (~)) , p,(1),) , pro(l) m),

done(rl(K~)), -~ un(r~(el)) done(r,(8,)), -7 un(r,(ek)).

Clearly, q(~) ~ W..
We now show if un(q(~))~ W~/N implies q (~)~ Un+~ by induction on the

order in which the un facts are generated in W.. un(q(~)) ~ W . / N means either
there exists a ground instance of a rule in MagUnd(P) of the form

un(q(a)) :- q(a)

where q(~) ~ W./N , from which we have q(K) ~ T. + 1 _c/.In + l, or there is a rule
instance of the form

un(q(~)) :- query(q(~)), un(p,(1) 1)) un(p,~(T2 m)),

un(rl(<))n(rk()).

where un(pi(12i)) ~ W n and thus pi(T2i) ~ U, + 1 by induction and un(-7 rj(?j)) ~ W n.
If rj(~j) does not match a query in M, then done(rj(~'j)) ~ W o and un(~ rj(Y~j)) ~ W o
and hence rj(~'j) ff T o and rj(?j) ~ T,. Otherwise, un(-~ rj(~j)) ~ W, implies rj(~j)
W,_ 1 and, by outer induction, rj(~j) ~ T n. Consider the ground instance of a rule in

204 P. J. STUCKEY AND S. SUDARSHAN

P of the form

q (a) : - p l (b l) pm(t)m), ~ r l (~ ' l) , ~ rk(C'k).

Then q(f f)~ Un+ 1 since pi(-bi)~ Un+ 1 and rj(?j) q~ T..
We show q(~) ~ (Tp(Tn)$ h(Uo))/N implies un(q(~)) ~ W~ by induction on h.

The base case is trivial. Suppose q(~) ~ (Tp(T~)$ h + I(Uo))/N; then there exists a
ground instance of a rule in P

q(a) :- Pl(bl) pm(13m), ~ :rl(cl) ~ r~(Ck)"

such that pi(bi)E Te(T,)? h(Uo). We can again show by induction that each of

query(pi(19i)) ~ N, and by inductive assumption, each pi(bi) ~ Wn, and hence also

un(pi(bi)) ~ Wn. Further, r~(?~) ~ T~. If query(rj(?j)) ~ M, then by Invariants 4 and

2, done(rj(?j)) ~ Wo, rj(?j) f~ Wo, and un(-~ rj(?j)) ~ Wo, and hence also in W~.
If rj(?j) corresponds to a query fact in M, then un(~ rj(?~)) ~ W o because it was

added by Add_Undef ined and it is only removed if rj(~'j)~ W~; but that would
imply r j (? j)~ T,. Consider the ground instance of a rule in MagUnd(P) of the
form

un(q(K)) :- query(q(a)), un(pl(b,)) un(pm(t) m)),

un(~ rl(?,)) un(~ rk(?k)).

Clearly, un(q(~)) ~ W~.
This completes the proof. []

We would like to thank Divesh Srivastava for useful discussions on some details of the well-founded
ordered search algorithm. We would also like to thank Weidong Chen for discussions that helped us
unders tand better the relationship between SLG resolution and our technique, and for pointing out an
error in our original presentat ion of the WF-OS algorithm.

R E F E R E N C E S
1. Apt, K. R., Blair, H. A., and Walker, A., Towards a Theory of Declarative Knowledge,

in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 89-148.

2. Balbin, I. and Ramamohanarao, K., A Generalization of the Differential Approach to
Recursive Query Evaluation, Journal of Logic Programming 4(3) (1987).

3. Bancilhon, F., Naive Evaluation of Recursively Defined Relations, in: Brodie and
Mylopoulos (eds.), On Knowledge Base Management Systems--Integrating Database and
AI Systems, Springer-Verlag, Berlin/New York, 1985.

4. Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D., Magic Sets and Other Strange
Ways to Implement Logic Programs, in: Proceedings of the A CM Symposium on Principles
of Database Systems, Cambridge, MA, Mar. 1986, pp. 1-15.

5. Baral, C. and Subrahmanian, V. S., Dualities between Alternate Semantics for Logic
Programming and Nonmonotonic Reasoning, in: Proceedings of the 1st International
Workshop on Logic Programming and Non-Monotonic Reasoning, MIT Press, Cambridge,
MA, 1991, pp. 69-86.

6. Beeri, C. and Ramakrishnan, R., On the Power of Magic, in: Proceedings of the ACM
Symposium on Principles of Database Systems, 1987, pp. 269-283.

WELL-FOUNDED ORDERED SEARCH 205

7. Bidoit, N. and Legay, P., WELL! An Evaluation Procedure for All Logic Programs, in:
Proceedings of the International Conference on Database Theory, Dec. 1990, pp. 335-348.

8. Chen, W., Swift, T., and Warren, D. S., Efficient Top-Down Computation of Queries
under the Well-Founded Semantics, Technical Report 93-CSE-33, Southern Methodist
University, Aug. 1993.

9. Chen, W. and Warren, D. S., A Goal-Oriented Approach to Computing the Well
Founded Semantics, in: Proceedings of the Joint International Conference and Symposium
on Logic Programming, 1992, pp. 589-606.

10. Chen, W. and Warren, D. S., Query Evaluation under the Well-Founded Semantics, in:
Proceedings of the ACM Symposium on Principles of Database Systems, 1993.

11. Kemp, D., Srivastava, D., and Stuckey, P., Magic Sets and Bottom-Up Evaluation of
Well-Founded Models, in: Proceedings of the International Logic Programming Sympo-
sium, 1991, pp. 337-351.

12. Kemp, D., Srivastava, D., and Stuckey, P., Query Restricted Bottom-Up Evaluation of
Normal Logic Programs, in: Proceedings of the Joint International Conference and Sympo-
sium on Logic Programming, 1992, pp. 288-302.

13. Leone, N. and Rullo, P., Safe Computation of the Well-Founded Semantics of DATA-
LOG Queries, Information Systems 17(1):17-31 (1992).

14. Lloyd, J. W., Foundations of Logic Programming, 2nd edition, Springer-Verlag,
Berlin/New York, 1987.

15. Morishita, S., An Alternating Fixpoint Tailored to Magic Programs, in: Proceedings of
the 1993 ACM Symposium on Principles of Database Systems, 1993.

16. Przymusinski, T. C., On the Declarative Semantics of Stratified Deductive Databases,
in: J. Minker (ed.), Foundations of Deductive Databases and Logic Programming, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 193-216.

17. Ramakrishnan, R., Magic Templates: A Spellbinding Approach to Logic Programs, in:
Proceedings of the International Conference on Logic Programming, 1988, pp. 140-159.

18. Ramakrishnan, R., Srivastava, D., and Sudarshan, S., Controlling the Search in Bottom-
Up Evaluation, in: Joint International Conference and Symposium on Logic Programming,
1992, pp. 273-287.

19. Ramakrishnan, R., Srivastava, D., and Sudarshan, S., Controlling the Search in Bottom-
Up Evaluation. Full version of [18] submitted, 1993.

20. Ross, K. A., A Procedural Semantics for Well-Founded Negation in Logic Programs, in:
Proceedings of the A CM Symposium on Principles of Database Systems, 1989.

21. Ross, K. A., Modular Stratification and Magic Sets for DATALOG Programs with
Negation, in: Proceedings of the A CM Symposium on Principles of Database Systems, 1990,
pp. 161-171.

22. Ross, K. A., The Semantics of Deductive Databases, Ph.D. Thesis, Department of
Computer Science, Stanford University, Aug. 1991.

23. Swift, T., Efficient Evaluation of General Logic Programs, Ph.D. Thesis, State University
of New York at Stony Brook, Dec. 1994.

24. Tamaki, H. and Sato, T., OLD Resolution with Tabulation, in: Proceedings of the Third
International Conference on Logic Programming (LNCS 225), Springer-Verlag, Berlin,
1986, pp. 84-98.

25. Van Gelder, A., The Alternating Fixpoint of Logic Programs with Negation, in: Proceed-
ings of the ACM Symposium on Principles of Database Systems, 1989, pp. 1-10.

26. Van Gelder, A., Ross, K., and Schlipf, J. S., Unfounded Sets and Well-Founded
Semantics for General Logic Programs, Journal of the ACM 38(3):620-650 (1991).

27. Vieille, L., Recursive Query Processing: The Power of Logic, Theoretical Computer
Science 1-53 (1989).

