Efficient and Extensible Algorithms for Multi Query Optimization

Prasan Roy S. Seshadri S. Sudar shan Siddhesh Bhobe
[.I.T. Bombay Bell Labs. [.I.T. Bombay PSPL Ltd. Pune
{prasan,sudarsh@cse.iitb.ernet.in

seshadri@research.bell-labs.com, siddhesh@pspl.co.in

Abstract several queries, which can be executed as a batch. Data

Complex queries are becoming commonplace, with the growing analysis/reporting often requires a batch of queries to be

use of decision support systems. These complex queries often€Xecuted. The v_vork of [SHTOY] on using relatior_IaI
have a lot of common sub-expressions, either within a single databases for storing XML data, has found that queries on

query, or across multiple such queries run as a batch. Multi- XML data, written in a language such as XML-QL, need to
query optimization aims at exploiting common sub-expressions to be translated into a sequence of relational queries. The task
reduce evaluation cost. Multi-query optimization has hither-to been of updating a set of related materialized views also generates
viewed as impractical, since earlier algorithms were exhaustive, related queries with common sub-expressions [RSS96].

and explore a doubly exponential search space. In this paper, we address the problem of optimizing sets
_ '”hth's_ paper we de_molnstra:jte tha_tde|t'qu$_ry opt;)mma;gon US~ of queries which may have common sub-expressions; this
Ing heuristics Is practical, and provides signi |c.ant enefits. ‘We problem is referred to amulti-query optimizationWe note
propose three cost-based heuristic algorithms: Volcano-SH and here that common subexpressions are possible within

Volcano-RU, which are based on simple modifications to the Vol- inal -~ th hni d | deal with h
cano search strategy, and a greedy heuristic. Our greedy heuristic,a single query; the techniques we develop deal with suc

incorporates novel optimizations that improve efficiency greatly. INtra-query common subexpressions as well.

Our algorithms are designed to be easily added to existing opti- Iraditional query optimizers are not appropriate for op-
mizers. We present a performance study comparing the algorithms,timizing queries with common sub expressions, since they
using workloads consisting of queries from the TPC-D benchmark. make locally optimal choices, and may miss globally opti-
The study shows that our algorithms provide significant benefits mal plans as the following example demonstrates.

over traditional optimization, at a very acceptable overhead in op-)
timization time. Example 1.1 Let ; and@. be two queries whose locally

optimal plans (i.e., individual best plans) di X S) X P
1 Introduction and(R X T) X S respectively. The best p!ans f@n and .
> do not have any common sub-expressions. However, if
Complex queries are becoming commonplace, especiallywe choose the alternative plg® X S) X T (which may
due to the advent of automatic tools that help analyze not be locally optimal) foiQ,, then, it is clear thaR X S
information from Iarge data warehouses. These Complex is a common Sub-expression and can be Computed once and
queries often have a lot of common sub-expressions sinceysed in both queries. This alternative with sharind@of S
i) they make extensive use of views which are referred may be the globally optimal choice.
to multiple times in the query and i) many of them Onthe other hand, blindly using a common sub-expression
are correlated nested queries in which parts of the innermay not always lead to a globally optimal strategy. For ex-
subquery may not depend on the outer query variables, thusample, there may be cases where the cost of joining the ex-
forming a common sub-expression for repeated invocations pressionk X S with 7' is very large compared to the cost of
of the inner query. the plan(R X T) X S; in such cases it may make no sense
The scope for finding common sub-expressions increasesio reuseR X S even if it were availabled
greatly if we consider a set of queries executed as a

batch. For example, SQL-3 stored procedures may invoke Example 1.1 illustrates that the job of multi-query opti-

mization, over and above that of ordinary query optimiza-

. . . _ tion, is to (i) recognize the possibilities of shared compu-
Permission to make digital or hard copies of part or all of this . " . Lo
work or personal or classroom use is granted without fee tation, and (ii) modify the optimizer .search strategy to ex-
provided that copies are not made or distributed for profit or plicitly account for shared computation and find a globally
commercial advantage and that copies bear this notice and the optimal plan

full citation on the first page. To copy otherwise, to republish, to . . L
post on servers, or to redistribute to lists, requires prior specific While there has been work on multi-query optimization

permission and/or a fee. in the past ([Sel88, SSN94, PS88]), prior work has concen-

MOD 2000, Dallas, TX USA
© ACM 2000 1-58113-218-2/00/05 . . .$5.00

249

tratedprimarily on exhaustie algorithms. Otherwork has
concentraten finding commonsubepressionsasa post-
phaseto query optimization[Fin82, SV9§g, but this gives
limited scopefor costimprovement,or hasconsiderednly

the limited classof OLAP queries[ZDNS9§. (We discuss
relatedwork in detail in Section7.) The searchspacefor

multi-query optimizationis doubly exponentialin the size
of the queries,and exhaustve stratgjies are thereforeim-

practical;asa result,multi-query optimizationwas hitherto
consideredoo expensveto beuseful.

In this papemwe shav how to make multi-queryoptimiza-
tion practical, by developingnovel heuristicalgorithms,and
presentinga performancetudythatdemonstratetheir prac-
tical benefits.

Our algorithmsare basedon an AND-OR DAG repre-
sentationfRou82 GM93] to compactlyrepresentslterna-
tive queryplans. The DAG representatioensureghatthey
areextensiblein thatthey caneasilyhandlenew operations
and transformatiorrules. The DAG can be constructedas
in [GM93], with someextensionsto ensurethat all com-
mon sub-epressionsare detectedand unified. The DAG
constructioralsotakesinto accountsharingof computation
basedn “subsumption™— examplesof suchsharinginclude
computingo 4«5 (E) from theresultof o 4<10(E).

The task of the heuristic optimization algorithms is
thento decidewhat subexpressionshouldbe materialized
and shared. Two of the heuristicswe present,Volcano-
SH and Volcano-RJ are lightweight modificationsof the
Volcano optimization algorithm. The third heuristicis a
greedystratgy which iteratively picks the subexpression
that gives the maximum benefit (reduction in cost) if
it is materializedand reused. One of our important
contributions here lies in three novel optimizations of
the greedy algorithm implementation,that make it very
efficient. Our performancestudiesshav that each of
these optimizationsleadsto a greatimprovementin the
performancef the greedyalgorithm.

In addition to choosingwhat intermediateexpression
resultsto materializeandreuse pur optimizationframework
also choosesphysical properties,such as sort order, for
the materializedresults. Our algorithmsalso handlethe
choiceof what(temporary)ndicesto createon materialized
results/databagelations.

Our algorithmscanbe easily extendedto performmulti-
gueryoptimizationon nestedqueriesaswell asmultiple in-
vocationsof parameterizeduerieqwith differentparameter
values). The AND-OR DAG framework we exploit is used
in leasttwo commercialdatabasesystems from Microsoft
and Tandem. Our algorithmscan, however, be extendedto
work with SystemR style bottom-upoptimizers.

We conducteda performancestudy of our multi-query
optimization algorithms, using queries from the TPC-D
benchmarkas well as other queriesbasedon the TPC-D
schema.Our studydemonstratesot only savings basedon
estimatedcost, but also significantimprovementsin actual

250

runtimesonacommerciadatabase.

Our performanceresultsshowv that our multi-query op-
timization algorithmsgive significant benefitsover single
gueryoptimization,atanacceptabl&xtra optimizationtime
cost. The extra optimizationtime is morethancompensated
by the executiontime savings. All threeheuristicsbeatthe
basicVolcanoalgorithm,but in generalgreedyproducedhe
bestplans,followedby Volcano-RJ andVolcano-SH.

We believe thatin additionto our technicalcontributions,
anotherof our contritutionslies in shaving how to engineer
a practical multi-query optimization system— one which
can smoothly integrate extensions, such as indexes and
nestedqueries,allowing themto work togetherseamlessly
In summer’99, our algorithmswere partially prototyped
on the Microsoft SQL Sener optimizer, and multi-query
optimizationis currently being evaluatedby Microsoft for
possibleinclusionin SQL Sener.

2 Setting Up The Search Space For
Multi-Query Optimization
As we mentionedn Section 1, thejob of amulti-queryop-
timizer is to (i) recognizepossibilitiesof sharedcomputa-
tion (thusessentiallysettingup the searchspaceby identify-
ing commonsub-epressionsand(ii) modify the optimizer
searclstrat@y to explicitly accountfor sharedccomputation
andfind a globally optimal plan. Both of the above tasks
areimportantandcrucialfor amulti-queryoptimizerbut are
orthogonal In otherwords,the detailsof the searchstrat-
egy do not dependon how aggressiely we identify com-
mon sub-pressiongof course the efficagy of the stratgy
does).We have exploredboth the above tasksin detail, but
chooseto emphasizéahe searchstratggy componenbof our
work in this paper for lack of space.However, we outline
the high level ideasandtheintuition behindour algorithms
for identifying commonsub-&presionsin this sectionand
referto thefull versionof the paperfRSSB98]for detailsat
theappropriatdocationsin this section.

Beforewedescribeouralgorithmsfor identifyingcommon-
subexpressionswe describethe AND-OR DAG represen-
tation of queries. An AND-OR DAG is a directedacyclic
graphwhosenodescanbedividedinto AND-nodesandOR-
nodesthe AND-nodeshave only OR-nodesaschildrenand
OR-nodeshave only AND-nodesaschildren.

An AND-nodein the AND-OR DAG correspondgo an
algebraicperationsuchasthejoin operation(X) or aselect
operation(o). It representshe expressiondefinedby the
operationandits inputs. Hereafter we refer to the AND-
nodesas opefation nodes An OR-nodein the AND-OR
DAG representa setof logical expressionshatgenerat¢he
sameresultset;the setof suchexpressionss definedby the
children AND nodesof the OR node,andtheir inputs. We
shallreferto the OR-nodessequivalenceodeshenceforth.

Thegivenquerytreeis initially representedirectlyin the
AND-OR DAG formulation. For example,the query tree
of Figure1(a)is initially representeéh the AND-OR DAG

(a) Initial Query

(b) DAG representation of query

(Commutativity not shown - every join node has
another join node with inputs exchanged, below
the same equivalence node)

(c) Expanded DAG after transformations

Figurel: Initial QueryandDAG Representations

formulation, as shovn in Figure 1(b). Equivalencenodes
(OR-nodes)are shavn as boxes, while operation nodes
(AND-nodes)areshownn ascircles.

The initial AND-OR DAG is thenexpandedby applying
all possibletransformationson every node of the initial
qguery DAG representinghe given setof queries. Suppose
the only transformationgossiblearejoin associatiity and
commutatity. ThentheplansA X (B X C) and(A X
C) X B, aswell asseveralplansequivalentto thesemodulo
commutatvity can be obtainedby transformationson the
initial AND-OR-DAG of Figurel(b). Thesearerepresented
in the DAG shawn in Figure 1(c). We shall refer to the
DAG after all transformationshave been applied as the
expandedAG. NotethattheexpandedAG hasexactlyone
equivalencenodefor every subsetof {4, B, C'}; the node
representall ways of computingthe joins of the relations
in that subset. For lack of spacewe omit details of the
expandedDAG generatioralgorithm; detailsmay be found
in [RSSB93§.

2.1 Extensionsto DAG Generation For Multi-Query
Optimization

To apply multi-query optimizationto a batch of queries,

the queries are representedtogetherin a single DAG,

sharingsubepressionsTo make the DAG rooted,a pseudo

operationnodeis created which doesnothing, but hasthe

rootequivalencenodesof all thequeriesasits inputs.

We now outline two extensionsto the DAG generation
algorithmto aid multi-queryoptimization.

The first extensiondealswith identificationof common
subepressionslf a querycontainstwo subepressionghat
are logically equialent, but syntactically different, (e.g.,
(AX B) X C,andA X (B X ()) theinitial queryDAG
would containtwo differentequivalencenodesrepresenting
the two subepressions. We modify the Volcano DAG
generatioralgorithm so that whenever it finds nodesto be
equivalent (after applying join associatiity) it unifiesthe
nodesreplacingthemby a singleequivalencenode.

251

The Volcanoalgorithm usesa hashingschemeto detect
repeatedierivations,and avoids creatingduplicateequiva-
lencenodesdueto cyclic derivations(e.g.,expressiorel is
transformedo €2, which is thentransformedbackto el).
Our modification additionally usesthe hashingschemeto
detectand unify duplicateequivalencenodesthat were ei-
therpre-«isting or got createdby transformationgrom dif-
ferentexpressions.Details of unification may be found in
[RSSB98].

Thesecondxtensionis to detectandhandlesubsumption
For example, supposetwo subepressionsel: oa<5(E)
and e2: oa<10(E) appearin the query The result of
el canbe obtainedfrom the resultof e2 by an additional
selection,.e.,oca<5(E) = ca<s(c4<10(F)). To represent
this possibility we addan extra operationnodec 4«5 in the
DAG, betweenel ande2. Similarly, givene3: o4=5(E)
ande4: o4-10(E), we canintroducea new equialence
nodee5: oa—sva—10(E) and add newv derivationsof e3
ande4 from e5. The new noderepresentghe sharingof
accessedetweenthe two selection. In general,given a
numberof selectionsn anexpression®, we createasingle
new node representinghe disjunction of all the selection
conditions. Similar derivationsalsohelp with aggreyations.
For example, if we have €6: 4n0Gsum(sar)(E) and e7:
ageGsum(sa) (E), we canintroducea new equivalencenode
8. dno,ageFsum(sar) (F) andaddderivationsof e6 ande?
from equivalencenodee8 by further groupbyson dno and
age.

The idea of applying an operation(such as ca<s on
one subexpressionto generateanotherhas beenproposed
earlier [Rou82 Sel88 SV9g. Integrating such options
into the AND-OR DAG, as we do, clearly separateghe
spaceof alternatve plans (representedby the DAG) from
the optimization algorithms. Thereby it simplifies our
optimization algorithms, allowing them to avoid dealing
explicitly with suchderivations.

2.2 Physical AND-OR DAG

Propertieof theresultsof anexpressionsuchassortorder,
that do not form part of the logical datamodel are called
physicalpropertiesfGM93]. Physicalpropertieof interme-
diateresultsareimportant,sincee.g. if anintermediatere-
sultis sortedon ajoin attribute,thejoin costcanpotentially
be reducedby usinga memgejoin. It is straightforvardto
refinethe abosre AND-OR DAG representatiomo represent
physicalpropertiesandobtaina physicalAND-OR DAG. !
Oursearchalgorithmscanbeeasilyunderstoodntheaborve
AND-OR DAG representatiofwithoutphysicalproperties),
althoughthey actuallywork on physicalDAGs. Therefore,
for brevity, we do not explicitly considerphysicalproper
tiesfurther; for detailssee[RSSB9§. Our implementation
indeedhandlesphysicalproperties.

3 ReuseBased Multi-Query Optimization
Algorithms

In this sectionwe studya classof multi-queryoptimization
algorithms basedon reusing results computedfor other
parts of the query We presentthese as extensions of

the Volcano optimization algorithm. Before we describe
the extensions,in Section3.1, we very briefly outline the

basic Volcano optimization algorithm, and how to extend
it to find best plans given some nodesin the DAG are
materialized. Sections3.2 and 3.3 then presenttwo of our

heuristicalgorithms,Volcano-SHandVolcano-RJ.

3.1 Volcano Optimization Algorithm and
Materialized Views

The Volcano optimization algorithm operateson the ex-
pandedDAG generate@arlier It findsthebestplanfor each
nodeby performinga depthfirst traversalof the DAG start-
ing from thatnodeasfollows. Costsare definedfor opera-
tion andequialencenodes.Thecostof anoperationnodeo
is definedasfollows:
cost(o) = costof executing(o) + X, ccnitdren(o)cost(e:)
The childrenof o (if ary) areequivalencenodes? The cost
of anequialencenodee is givenas
cost(e) = min{cost(o;)|o; € children(e)}
0 if thenodehasno children(i.e.,it is a baserelation).

Volcano also cachesthe best plan it finds for each
equivalencenode, in casethe node is re-visited during
the depth first searchof the DAG. A branchand bound
pruningis also performedby carrying arounda costlimit;
for simplicity, we disregardpruningin this paper For lack
of spacewe omit details,but referreaderdo [GM93].

Now we considerhow to extend Volcanoto find best
plans,giventhat(expressiongorrespondingo) someequi-
alencenodesn theDAG arematerializedLetreusecost(m)

1For example, an equivalence node is refined to multiple physical
equialence nodes, one per required physical property in the physical
AND-OR DAG.

2The costof executinganoperatioro alsotakesinto accounthe costof
readingtheinputs,if they arenot pipelined.

252

denotethe costof reusingthe materializedresultof m, and
let M denotethe setof materializechodes.

To find the costof a nodegiven a setof nodesM have
beenmaterializedwe simply usethe Volcanocostformulae
above,with thefollowing change Whencomputingthe cost
of a operationnodeo, if an input equivalencenodee is
materialized(i.e.,in M), usethe minimum of reusecost(e)
and cost(e) when computingcost(o). Thus, we usethe
following expressiorinstead:
cost(o) = costof executing(o) + X, cchitdren(o) C(€:)

C(e;) = cost(e;) if e; € M;
min(cost(e;), reusecost(e;)) if e; € M.

3.2 TheVolcano-SH Algorithm

In ourfirst strateyy, whichwe call Volcano-SHtheexpanded
DAG is first optimizedusingthe basicVolcanooptimization
algorithm. The bestplancomputedor thevirtual rootis the

combinationof the Volcanobestplansfor eachindividual

query

The best plans producedby the Volcano optimization
algorithm may have common subepressions;thus nodes
in the DAG may occurin the bestplansof morethanone
qguery Theresultsof suchsharechodescanbe materialized
when they are first computed, and reusedlater Since
materializationof a nodeinvolves storing the resultto the
disk,andwe assumeipelinedexecutionof operatorsit may
be possiblefor recomputatiorof a nodeto be cheapeithan
the costof materializingandreusingthe node.

The Volcano-SHalgorithm thereforedecidesin a cost
basedmannerwhich of the nodesto materializeand share,
asoutlinedbelow.

Let us considerfirst a naive (and incomplete)solution.
Consideran equivalencenodee. Let cost(e) denotethe
computationcostof nodee. Let numuses(e) denotethe
numberof times nodee is usedin courseof executionof
the plan. Let matcost(e) denotethe costof materializing
nodee. As before,reusecost(e) denotethe costof reusing
the materializedresultof e. Then,we decideto materialize
e if cost(e) + matcost(e) + reusecost(e) x (numuses(e) —
1) < numuses(e) x cost(e). The left handside of this
inequalitygivesthecostof materializingtheresultwhenfirst
computed,and using the materializedresultthereafter;the
right handsidegivesthe costof the alternatve whereinthe
resultis not materializedout recomputedn every use. The
abovetestcanbesimplifiedto

matcost(e)/(numuses(e) — 1) + reusecost(e) < cost(e) (1)

Theproblemwith the above solutionis thatnumuses(e)
and cost(e) both dependon what other nodeshave been
materialized For instance supposenodee; is usedtwice in
computingnodee,, andnodee, is usedtwice in computing
nodees. Now, if no nodeis materialized,e; is usedfour
timesin computinges. If ey is materialized,e; getsused
twice in computinges, and e; getscomputedonly once.
Thus, materializinge, canreduceboth numuses(e;) and
cost(e3).

TheVolcano-SHalgorithmresohesthis problemheuristi-
cally by traversingthe treebottom-up.As eachequivalence

nodee is encounteredhn the traversal,Volcano-SHdecides
whetheror not to materializee. Whenmakinga material-
izationdecisionfor anode,the materializatiordecisiongor

all descendantare alreadyknown. Basedon this, we can
computecost(e) for anodee, asdescribedn Section3.1.

To make a materializationdecisionfor a nodee, we also
needto know numuses(e). Sincenumuses(e) depend®dn
the materializatiorstatusof its ancestorgwhichis notfixed
yet), Volcano-SHusesan underestimateiumuses ™ (e) of
number of usesof e, obtainedby simply counting the
numberof parentsof e in the Volcanobestplan. We use
numuses™ (e) insteadof numuses(e) in equation(1) to
make a conserative decisionon materializatior?

Letusnow returnto thefirst stepof Volcano-SHNotethat
the basic Volcano optimization algorithm will not exploit
subsumptionderivations, such as deriving oa<5(E) by
usingo a<s(oa<10(E)), sincethe costof the latterwill be
morethanthe former, andthuswill notbelocally optimal.

To considersuchplans,we performa pre-passghecking
for subsumptionamongstnodesin the plan producedby
the basicVolcanooptimizationalgorithm. If asubsumption
derivation is applicable,we replacethe original derivation
by the subsumptiorderivation. At theendof Volcano-SHijf
the sharedsubexpressionis not chosento be materialized,
we replacethe derivation by the original expressions. In
the above example,in the prepasswve replaces 4«5 (E) by
0a<s(0a<10(E)). If 0a<10(E) is not materializedat the
end,wereplaces a<s(0a<10(E)) by o a<5(E).

The algorithm of [SV98] also finds bestplansand then
choosesvhich sharedsubexpressionso materialize.Unlike
Volcano-SHit doesnotfactorearliermaterializatiorchoices
into the costof computation.

3.3 TheVolcano-RU Algorithm

Consider@; and Q2 from Example1.1. With the best
plansasshown in the example,namely(R X S) X P and
(R X T) X S, no sharingis possiblewith Volcano-SH.
However, whenoptimizing @2, if we realizethatR X S is
alreadyusedin the bestplanfor @); andcanbe sharedthe
choiceof plan (R X S) X T maybefoundto bethe bestfor
Q2.

The intuition behindthe Volcano-RJ algorithmis there-
fore asfollows. Givena batchof queries,Volcano-RJ op-
timizesthemin sequencekeepingtrack of whatplanshave
alreadybeenchoserfor earlierqueriesandconsideringhe
possibility of reusingpartsof the plans. The resultantplan
depend®ntheorderingchoserfor thequerieswe returnto
thisissueafterdiscussinghe Volcano-RJ algorithm.

Let Q1,...,Q, bethe queriesto be optimizedtogether
(and thus underthe samepseudo-rootof the DAG). The
Volcano-RJ algorithm optimizes them in the sequence
Q1,---,Q,. After optimizing @);, we note equivalence
nodesin the DAG that are part of the bestplan P; for Q;

3We also developedand tried out a more sophisticatedunderestimate.
We omit it from here for brevity, becauseit only lead to a minor
improvementon performance.

253

ascandidategor potentialreuselater. We alsocheckif each
nodeis worth materializing,if it is usedonemoretime. If

so,whenoptimizingthe next query, we will assumet to be
availablematerialized.

After optimizing all the individual queries,the second
phaseof Volcano-RJ executesVolcano-SHon the overall
bestplanfound asabove to further detectand exploit com-
mon subexpressions.This stepis essentiakincethe earlier
phaseof Volcano-RJ doesnot considerthe possibility of
sharingcommonsubepressionswithin a single query In-
steadvolcano-SHmalkesthefinal decisiononwhatnodeso
materialize. Thedifferencefrom directly applyingVolcano-
SH to theresultof Volcanooptimizationis thatthe plan P
thatis givento Volcano-SHhasbeenchosertaking sharing
of partsof earlierqueriesinto account,unlike the Volcano
plan.

Note thatthe resultof Volcano-RJ dependson the order
in which queriesareconsideredIn ourimplementatiorwe
considerthe queriesin the orderin which they are given,
aswell asin the reverseof thatorder, andpick the cheaper
one of the two resultantplans. Note thatthe DAG s still
constructeconly once,so the extra costof consideringthe
two ordersis relatively quite small. Consideringfurther
(possiblyrandom)orderingss possibleput theoptimization
time would increasdurther.

4 TheGreedy Algorithm

In this section, we presentthe greedy algorithm, which
provides an alternatve approachto the algorithmsof the
previous section. Our major contribution herelies in how
to efficientlyimplementhe greedyalgorithm,andwe shall
concentrat@n this aspect.

In this section,we presentan algorithmwith a different
optimizationphilosophy The algorithmpicksa setof nodes
S to be materializedandthenfinds the optimal plan given
that nodesin S are materialized. This is thenrepeatedn
differentsetsof nodesS to find the best(or a good) setof
nodesto bematerialized.

As before ,we shallassumehereis avirtual root nodefor
the DAG; this nodehasasinput a “no-op” logical operator
whoseinputsarethe queries@); - .. Q. Let @ denotethis
virtual rootnode.

For a setof nodessS, let bestcost(Q, S) denotethe cost
of the optimal plan for @) giventhat nodesin S areto be
materialized(this costincludesthe costof computingand
materializingnodesin S). As describedn the Volcano-SH
algorithm,the basicVolcanooptimizationalgorithmwith an
appropriatedefinitionof the costfor nodesin S canbeused
to find bestcost(Q, S).

To motivate our greedy heuristic, we first describea
simple exhaustve algorithm. The exhaustve algorithm,
iteratesover eachsubsetS of the setof nodesin the DAG,
and choosesthe subsetS,,; with the minimum value for
bestcost(Q, S). Therefore pestcost(Q), Sopt) is the costof
theglobally optimalplanfor Q.

Procedure GREEDY
Input: Expanded DAG for the consolidated input query @
Output: Set of nodes to materialize and the corresp. best plan
X=¢
Y = set of equivalence nodes in the DAG
while (Y # ¢)
L1: Pick x € Y which minimizes bestcost(Q, {x} U X)
if (bestcost(Q, {x} U X) < bestcost(Q, X))
Y=Y-x; X=XU{x}
elseY =¢
return X

Figure2: The GreedyAlgorithm

It is easyto seethat the exhaustve algorithmis doubly
exponentialin the size of the initial query DAG and is
thereforeimpractical.

In Figure 2 we outline a greedyheuristicthatattemptso
approximateS,,; by constructingt onenodeatatime. The
algorithm iteratively picks nodesto materialize. At each
iteration, the nodex that givesthe maximumreductionin
the costif it is materializeds choserto beaddedo X .

The greedy algorithm as describedabove can be very
expensve dueto thelargenumberof nodesin thesetY and
thelargenumberof timesthefunctionbestcost is called. We
now presenthreeimportantandnovel optimizationsto the
greedyalgorithmwhich make it efficientandpractical.

1. The first optimizationis basedon the obsenation that
the nodesmaterializedin the globally optimal plan are
ohviously a subsetof the onesthat are sharedin some
planfor the query Thereforejt is sufficient to initialize
Y in Figure 2, with nodesthatare sharedin someplan
for the query We call such nodesshamable nodes
For instance,in the expandedDAG for @; and Q-
correspondingo Examplel.1, R X S is sharablewhile
R X T is not. We presentan efficient algorithm for
finding sharablenodesin Sectior4.1.

2. The secondoptimization is basedon the obsenation
that there are mary calls to bestcost at line L1 of
Figure2, with differentparametersA simpleoptionisto
processachcall to bestcost independentf othercalls.
However, it makessensdor a call to leveragethe work
doneby apreviouscall. We describeanovelincremental
costupdatealgorithm,in Section4.2, thatmaintainsthe
stateof the optimizationacrosscalls to bestcost, and
incrementallycomputesa new statefrom the old state.

3. Thethird optimization,which we call the monotonicity
heuristic,avoidshaving to invoke bestcost(Q, {z}UX),
foreveryz € Y, inline L1 of Figure2. We describethis
optimizationin detailin Section4.3.

4.1 Sharability
In this subsection,we outline how to detectwhetheran
equivalencenodecanbe sharedn someplan.

254

A sub—DAG of a nodez consistsof the nodesbelor z
along with the edgesbetweenthesenodesthat are in the
original DAG. For eachnode z of the DAG, and every
equivalencenodez in the sub-DAG rootedat x, we define
the degree of sharing of z in the sub-DAG rooted at z,
E|[z][2], asfollows. For all equivalencenodesz, E[z][z] iS
1. For agivennodez, all other E[z][_] valuesarecomputed
from thevaluesE([y][_] for all childreny of z asfollows.

If 2 is anoperationnode

E[z][z] = Sum{E[y][z] | y € children(x)}
andif z is anequialencenode,

E[z][z] = Maxz{E[y][z] | y € children(z)}
We definethe degreeof sharingof an equivalencenodez in
thefull DAG asE[r][z], wherer is theroot of the DAG. We
canshaw thatthis numberrepresentshe maximumnumber
of occurrencesf z in ary plan. Thus,if anodez hasdegree
of sharingin the full DAG as1, it cannotmore thanonce
in ary plan. Nodeswith degreeof sharing> 1 arecalled
shamblenodes

In a reasonablemplementationof the above algorithm,
the time compleity of computingthe row E[z] is propor
tional to the numberof non-zeroentriesin E[z] (sayn;)
timesthe numberof childrenof z. However, typically, E is
fairly sparsesincethe DAG is typically “short andfat” — as
thenumberof queriesgrows, theheightof the DAG maynot
increasehut it becomeswvider. Thus,n, is a smallfraction
of the total numberof nodesfor mostz, makingthis shara-
bility computationalgorithmfairly efficientin practice. In
fact,for thequerieswe consideredn our performancestudy
(Section6), the computatiortook at mosta few tensof mil-
liseconds.

4.2 Incremental Cost Update

The setswith which bestcost is called successiely at line

L1 of Figure2 are closelyrelated. with their (symmetric)
differencebeingvery small. For, line L1 findsthe nodex

with the maximumbenefitwhichis implementedy calling

bestcost(Q, {z} U X), for differentvaluesof z. Thusthe
secondharameteto bestcost changedy droppingonenode
x; andaddinganother; 1. Wenow presenainincremental
costupdatealgorithmthatexploits the resultsof earliercost
computationgo incrementallycomputethe new plan.

Let S be the set of nodessharedat a given point of
time, i.e., the previous call to bestcost waswith S asthe
parameterTheincrementatostupdatealgorithmmaintains
the costof computingevery equivalencenode,giventhatall
nodesin S aresharedandno othernodeis shared.Let S’
be the new setof nodesthat are shared,i.e., the next call
to bestcost hasS’ asthe parameter The incrementalcost
updatealgorithmstartsfrom the nodesthathave changedn
goingfrom S to S’ (i.e., nodesin S’ — S andS — S’) and
propagateshe changein costfor the nodesupwardsto all
their parentsthesein turn propagateary changesn costto
their parentsif their costchangedandso on, until thereis
no changein cost. Finally, to getthe total costwe addthe
costof computingandmaterializingall thenodesin S’.

If we performthis propagatiorin anarbitraryorderthen
in the worst casewe could propagatethe changein cost
througha nodex multiple times (for example,oncefrom
a nodey which is an ancestorof anothernode z andthen
from z2). A simple mechanisnfor avoiding repeated
propagatiorusegopologicalnumberdor nodesof theDAG.
During DAG generatiorthe DAG is sortedtopologically
suchthat a descendanalways comesbeforean ancestoiin
thesortorder andnodesarenumberedn thisorder Thecost
propagatioris thenperformedaccordingto the topological
numberorderingusing a heapto efficiently find the node
with theminimumtopologicalsortnumberateachstep.

In our implementation, we additionally take care of
physicalpropertysubsumption.Details of how to perform
incrementalcost updateon physical DAGs with physical
propertysubsumptioraregivenin [RSSB98].

4.3 TheMonotonicity Heuristic

In Figure 2, the function bestcost will be called oncefor
eachnodein Y, under normal circumstances. We now
outline how to determinethe nodewith the smallestvalue
of bestcost much more efficiently, using the monotonicity
heuristic.

Definebenefit(x, X) as

bestcost(Q, X) — bestcost(Q, {z} U X).
Notice that, minimizing bestcost in line L1 correspond$o
maximizing benefitas definedhere. Supposehe benefitis
monotonic Intuitively, the benefitof a nodeis monotonicif
it neverincreaseasmorenodesgetmaterializedmorefor-
mally bene fit is monotonicif VX D Y, benefit(x, X) <
benefit(x,Y).

We associatean upperboundon the benefitof a nodein
Y andmaintaina heapC of nodesorderedon theseupper
bounds? An initial upperboundon the benefitof a node
in Y is computedby multiplying the cost of evaluating
the node(without any materializations}imesthe degreeof
sharingof the nodeY in the full DAG (which we defined
earlier). The heapC is now usedto efficiently find the
nodez € Y with the maximumbene fit(x, X) asfollows:
Iteratively, the noden at the top C is chosen,its current
benefitis recomputed,and the heapC is reordered. If
n remainsat the top, it is deletedfrom the C heapand
chosento be materializedand addedto X. Assumingthe
monotonicitypropertyholds,theothervaluesin theheapare
upperboundsandthereforethe noden addedto X above,
is indeedthe nodewith the maximumrealbenefit.

If themonotonicitypropertydoesnot hold, the nodewith
maximumcurrentbenefitmay not be at the top of the heap
C , but we still usethe above procedureas a heuristicfor
finding the nodewith the greatesbenefit. Our experiments
in Section6 demonstratehat the above proceduregreatly
speedaup the greedyalgorithm. Further for all querieswe
experimentedvith, theresultswereexactly the sameevenif
the monotonicityheuristicwasnot used.

4This cost heapis not to be confusedwith the heapon topological
numberingusedearlier

255

5 Extensions

In this sectionwe briefly outlineextensiongoi) incorporate
creationand useof temporaryindices,ii) optimize nested
gueriego exploit commonsub-epressionsndiii) optimize
multiple invocationsof parameterizedueries.

Costsmay be substantiallyreducedby creating(tempo-
rary) indiceson databaseelationsor materializednterme-
diateresults. To incorporateindex selection,we modelthe
presencef anindex asaphysicalproperty similarto sortor-
der. Sinceour algorithmsareactuallyexecutedon the phys-
ical DAG, they choosenot only what resultsto materialize
but alsowhat physicalpropertiesthey shouldhave. Index
selectionthenfalls out assimply a specialcaseof choosing
physicalpropertieswith absolutelyno changedo our algo-
rithms.

Next we consider nestedqueries. One approachto
handling nestedqueriesis to use decorrelationtechniques
(see, e.g. [SPL9€). The use of such decorrelation
techniquesresults in the query being transformedto a
set of queries, with temporary relations being created.
Now, the queriesgeneratedby decorrelationhave several
subepressionsin common, and are therefore excellent
candidategor multi-queryoptimization.Oneof the queries
in our performancevaluationbringsout this point.

Correlatedevaluationis usedin other cases,either be-
causeit may be more efficient on the query, or becauset
may not be possibleto get an efficient decorrelatedquery
using standardrelationaloperationdRR98]. In correlated
evaluation,the nestedqueryis repeatedlyinvoked with dif-
ferentvaluesfor correlationvariables.Considerthe follow-

ing query

select * froma, b, c

where a.x = b.x and b.y = c.y and

a. cost
(select mn(al.cost) froma al, b bl
where al.x = bl.x and bl.y = c.y)

Oneoptionfor optimizingcorrelatedevaluationof thisquery
is to materializea X b, andshardt with theouterlevel query
andacrossestedqueryinvocations.An index ona X b, on
attributeb.y is requiredfor efficientaccesso it in thenested
guery sincethereis a selectionon b.y from the correlation
variable. If the bestplan for the outerlevel queryusesthe
join order(a X b) X ¢, materializingandsharinga X b may
provide the bestplan.

In general partsof thenestedquerythatdonotdependn
the value of correlationvariablescan potentially be shared
acrosdnvocationdRR9§. We canextendour algorithmsto
considersuchreuseacrossmultiple invocationsof a nested
query The key intuition is that when a nestedquery is
invoked mary times, benefitsdue to materializationmust
be multiplied by the numberof timesit is invoked; results
that dependon correlationvariables,however, mustnot be
consideredor materialization. The nestedquery invariant
optimizationtechnique®f [RR98] thenfall out asa special

caseof ours.

Our algorithmscanalsobe extendedo optimizemultiple
invocationsof parameterizedueries.Parameterizedjueries
are queriesthat take parametervalues, which are used
in selectionpredicates;stored proceduresare a common
example. Parts of the query may be invariant, just asin
nestedqueries,and thesecan be exploited by multi-query
optimization.

Theseextensionshave beenimplementedn our system;
detailsmaybefoundin [RSSB98. Our algorithmscanalso
be usedwith System-Rstyle bottom-upoptimizers,which
usea DAG representatioimplicitly althoughnotexplicitly.

6 Performance Study

Our algorithmswere implementedby extendingand mod-
ifying a Volcano-basedjuery optimizerwe had developed
earlier All codingwasdonein C++, with the basicopti-
mizertakingapprox.17,000lines,commonMQO codetook
1000lines, Volcano-SHand Volcano-RJ took around500
lineseach,andGreedytook about1,500lines.

The optimizer rule set consistedof select push down,
join commutatvity andassociatiity (to generatéushyjoin
trees) andselectandaggreyatesubsumption.

Implementatioralgorithmsincludedsort-basedggreya-
tion, memgejoin, nestedoopsjoin, indexedjoin, indexedse-
lect andrelationscan. Our implementatiorincorporatesall
the techniquediscussedn this paper including handling
physical properties(sort order and presenceof indices)on
baseandintermediateelations unificationandsubsumption
duringDAG generationandthesharabilityalgorithmfor the
greedyheuristic.

The block sizewastaken as4KB andour costfunctions
assumesMB is availableto eachoperatorduring execution
(wealsoconductedexperimentswith largermemorysizesup
to 128 MB, with similar results). Standardechniqueavere
usedfor estimatingcosts, using statisticsabout relations.
The cost estimatescontainan I1/0O componentand a CPU
componentwith seektime as 10 msec,transfertime of 2
msec/blockfor readand 4 msec/blockfor write, and CPU
costof 0.2 msec/blockof dataprocessed.
that intermediateresults are pipelined to the next input,
using an iterator model as in Volcano; they are saved to
disk only if the resultis to be materializedfor sharing.
The materializationcostis the costof writing out the result
sequentially

The tests were performedon a single processor233
Mhz Pentium-Il machinewith 64 MB memory running
Linux. Optimization times are measuredas CPU time
(user+system).

6.1 Basic Experiments

The goal of the basic experimentswas to quantify the
benefitsand cost of the three heuristicsfor multi-query
optimization, Volcano-SH,Volcano-RJ and Greedy with
plain Volcano-styleoptimizationasthe basecase.We used
theversionof Volcano-RJ which considerghe forwardand

We assume

256

reverseorderingsof queriesto find sharingpossibilities,and
choosegheminimumcostplanamongsthetwo.
Experiment 1 (Stand-Alone TPCD):

The workload for the first experimentconsistedof four
gueriesbasedon the TPCD benchmarkWe usedthe TPCD
databasatscaleof 1 (i.e., 1 GB total size),with a clustered
index on the primary keys for all the baserelations. The
resultsarediscussedbelon andplottedin Figure3.

TPCD query Q2 hasa large nestedquery, and repeated
invocationsof the nestedqueryin a correlatedevaluation
could benefitfrom reusingsomeof theintermediataesults.
For this query though Volcano-SHand Volcano-RJ do
not lead to arny improvementover the plan of estimated
cost 126 secs.returnedby Volcano, Greedyresultsin a
plan of with significantlyreducedcostestimateof 79 secs.
Decorrelationis an alternatve to correlatedevaluation,and
Q2-D is a (manually) decorrelatedversion of Q2 (due
to decorrelation,Q2-D is actually a batch of queries).
Multi-query optimizationalsogivessubstantiabainson the
decorrelatedjueryQ2-D, resultingin a planwith estimated
costsof 46 secs.,since decorrelationresultsin common
subepressions. Clearly the bestplan hereis multi-query
optimizationcoupledwith decorrelation.

Obsere alsothat the costof Q2 (without decorrelation)
with Greedyis muchlessthanwith Volcano,andis lessthan
even the cost of Q2-D with plain Volcano— this results
indicatesthat multi-query optimization can be very useful
in other querieswhere decorrelationis not possible. To
test this, we ran our optimizer on a variant of Q2 where
the in clauseis changedto not in clause,which prevents
decorrelationfrom being introduced without introducing
new internal operatorssuch as anti-semijoin[RR98]. We
alsoreplacedthe correlatedpredicatePS_PARTKEY =
P_PARTKEY by PS PARTKEY # P PARTKEY.
For this modifiedquery Volcanogave a planwith estimated
costof 62927secs.while Greedywasableto arriveataplan
with estimateatost7331,animprovementy almostafactor
of 9.

We next consideredhe TPCDqueriesQ11andQ15,both
of which have commonsubepressionsandhencemake a
casefor multi-query For Q11, eachof our threealgorithms
leadto a planof approximatelyhalf the costasthatreturned
by Volcano.Greedyarrivesatsimilarimprovementgor Q15
also, but Volcano-SHand Volcano-RJ do not lead to ary
appreciabldoenefitfor this query

Overall, Volcano-SHandVolcano-RJ take the sametime
and spaceas Volcano. Greedytakes more time than the
othersfor all the queries,but the maximumtime taken by
greedyoverthefour querieswvasjustunder2 secondsyersus
0.33secondsakenby Volcanofor thesamequery Theextra
overheadof greedyis negligible comparedto its benefits.
The total spacerequiredby Greedyrangedfrom 1.5to0 2.5
times that of the other algorithms,and againthe absolute
valueswerequite small (up to just over 130KB).

Results on Microsoft SQL -Server 6.5:

g 150
g 1 M = Volcano
O 1004 = Volcano-SH
3 1 3 Volcano-RU
= O Greedy
E
7 504
L
0 -

Q2 Q2D Q11 Q15

Optimization Time (secs), logscale

1.000+ M
0.500—
0.250+
0.125+

= Volcano
= Volcano-SH

0.062- 3 Volcano-RU

Figure3: Optimizationof Stand-alond PCD Queries

To study the benefitsof multi-query optimizationon a
real databaseye testedits effect on the queriesmentioned
above, executedon Microsoft SQL Sener 6.5, runningon
Windows NT, ona333Mhz Pentium-Ilimachinewith 64MB
memory We usedthe TPCDdatabasatscalel for thetests.
To do so, we encodedhe plansgeneratedy Greedyinto
SQL. We modeledsharingdecisionsby creatingtemporary
relations, populating, using and deleting them. If so
indicatedby Greedywe createdndexeson thesetemporary
relations. We could not encodethe exact evaluation plan
in SQL since SQL-Senrer doesits own optimization. We
measuredhetotal elapsedime for executingall thesesteps.

The resultsare shovn in Figure 4. For query Q2, the
time taken reducedfrom 513 secs.to 415 secs. Here,
SQL-Serer performeddecorrelatioron the original Q2 as
well as on the result of multi-query optimization. Thus,
the numbersdo not match our cost estimatesbut clearly
multi-query optimization was useful here. The reduction
for the decorrelatedversion Q2-D was from 345 secs.to
262 secs;thusthe bestplan for Q2 overall, even on SQL-
Sener, was using multi-query optimizationas per Greedy
on a decorrelatedquery The query Q11 speededup by
just under50%, from 808 secsto 424 secs.and Q15 from
63 secs.to 42 secs.using planswith sharinggeneratedy
Greedy

The resultsindicate that multi-query optimization gives
significanttime improvementson a real system. It is im-
portantto notethatthe measuredenefitsareunderestimates
of potentialbenefits,for the following reasons.(a) Due to
encodingof sharingin SQL, temporaryrelationshadto be
storedandre-readevenfor thefirst use. (b) The opera-
tor setfor SQL-Sener 6.5 doesnot supportsort-megejoin.
Our optimizer at timesindicatedthat it wasworthwhile to
materializethe relationin a sortedordersothatit could be
cheaplyusedby a memge-joinor aggreyationover it, which
we couldnotencodan SQL/SQL-Serer. If multi-queryop-
timizationwereproperlyintegratedinto thesystemtheben-
efitsarelikely to be significantlylarger, andmoreconsistent
with our estimates.

257

O Greedy
0.0314
0.0164
| WA
Q2 Q2-D Q11 Q15

800
© 600~
£
|_
C -
S 400- ;E%ng
5
3
x
W 200
B
S

o [[m|

Q2 Q2-D Q11 Q15

Figure4: Executionof Stand-alonefPCD Querieson MS
SQL Sener

Experiment 2 (Batched TPCD Queries):

In the secondexperiment,the workloadmodelsa system
whereseveral TPCD queriesare executedas a batch. The
workload consistsof subsequencesf the queriesQ3, Q5,
Q7, Q9 and Q10 from TPCD; none of thesequerieshas
arny commonsubepressionswithin itself. Eachquerywas
repeatedwice with differentselectionconstantsComposite
query BQi consistsof thefirst i of the above queries,and
we usedcompositequeriesBQ1to BQ5in our experiments.
Likein Experimentl, weusedthe TPCDdatabasatscaleof
1 andassumedhatthereareclusteredndicesontheprimary
keys of the databaseelations.

Notethatalthougha queryis repeatedvith two different
valuesfor a selectionconstantwe found that the selection
operation generally lands up at the bottom of the best
Volcanoplantree,andthetwo bestplantreesmay not have
commonsubepressions.

Theresultson the above workloadareshawn in Figure5.
Acrossthe workload, Volcano-SHandVolcano-RJ achieve
up to only about 14% improvementover Volcano with
respectto the cost of the returnedplan, while incurring
negligible overheads Greedyperformsbetter achiezing up
to 56% improvementover Volcano,andis uniformly better

N
o
T

g 600

g [T = Volcano

O 400+ @ Volcano-SH
3 O Volcano-RU
= O Greedy

€

ki

w

BQ1 BQ2 BQ3 BQ4 BQ5

Optimization Time (secs), logscale

8.000
4.000
2.000+
1.000+ M
0.500+
0.250+
0.125+
0.062+
0.031+
0.016+
0.008+

| Volcano
= Volcano-SH
o Volcano-RU
O Greedy

BQ1 BQ2 BQ3 BQ4 BQ5

Figure5: Optimizationof BatchedTPCD Queries

thanthe othertwo algorithms.

As expected,Volcano-SHand Volcano-RJ have essen-
tially the sameexecutiontime and spacerequirementsas
Volcano.Greedytakesaboutl0second®nthelargestquery
in the set, BQ5, while Volcanotakes about0.7 secondon
the same. However, the estimatedcostsavzings on BQ5 is
260secondswhichis clearly muchmorethanthe extra op-
timizationtime costof 10 secs.Similarly, thespaceequire-
mentsfor Greedywere more by abouta factor of threeto
four over Volcano,but the absolutedifferencefor BQ5 was
only 60KB. The benefitsof Greedy therefore,clearly out-
weighthecost.

6.2 Scaleup Analysis
To seehow well our algorithmsscaleup with increasing
numbersof queries,we defineda new setof 22 relations
PSP, to PSP,, with anidenticalschemg P, SP, NUM)
denoting part id, subpartid and number Over these
relations,we defineda sequencesf 18 componentjueries
S@Q1 to SQ1s: componeniguery SQ; was a pair of chain
gueriesonfive consecutrerelationsPSP; to PSP; 4, with
the join condition being PSP;.SP = PSP;;,.P, for
j = i..i + 3. Oneof the queriesin the pair SQ; hada
selectionPSP;.NUM > a; while theotherhada selection
PSP, NUM > b; wherea; andb; arearbitraryvalueswith
a; 75 bi.

To measurescaleupwe usethe compositequeriesC')y
to CQs5, whereC'Q); is consistf queriesS(Q; 10 SQ4;—s.
Thus, CQ; uses4i + 2 relationsPSP;, to PSP,;2, and

has32i — 16 join predicate®@nd8; — 4 selectionpredicates.

Query CQ5, in particular is on 22 relationsand has 144
join predicatesand 36 selectpredicates. The size of the
22 baserelationsPSPy, ..., PSP, variedfrom 20000to
40000tuples(assignedandomly)with 25 tuplesper block.
No index wasassumean thebaserelations.

The costof the plan and optimizationtime for the above
workload is shovn in Figure 6. The relative benefits
of the algorithms remains similar to that in the earlier
workloads, except that Volcano-RJ now gives somevhat
better plans than Volcano-SH. Greedy continuesto be

258

the best, althoughit is relatvely more expensie. The
optimizationtime for Volcano, Volcano-SHand Volcano-
RU increasedinearly. Theincreasdn optimizationtime for
Greedyis alsopracticallylinear, althoughit hasavery small
supetlinear component. But even for the largest query
CQ5 (with 22 relations, 144 join predicatesand 36 select
predicates}he time taken was only 30 seconds. The size
of the DAG increasedinearly for this sequencef queries.
Fromthe above, we canconcludethat Greedyis scalableto
quitelarge querybatchsizes.

We also ran Greedyon querieswith larger numbersof
relationsto testits scaleupwith querysize.Eachexperiment
wasrun on a batchconsistingof a queryrepeatedwice, to
male every subexpressionof the query shared. We found
that the optimizationtime increasedslightly supetlinearly
with the size of the DAG. For a query of 10 relationsand
9 join predicates,the optimization time rangedfrom 25
to 50 secondsdependingon the predicatepattern. (The
predicatepattern affects the size of the DAG, since the
transformationulesdonotgeneraterossproducts.)Greedy
shouldthereforebe usedwith careon querieswith a large
numberof relations.

6.3 Effect of Optimizations

In this seriesof experiments,we focus on the effect of

individual optimizationson the optimizationof the scaleup
gueries. We first considerthe effect of the monotonicity
heuristic addition to Greedy Without the monotonicity
heuristic,beforeanodeis materializedhebenefitsvould be

recomputedor all the sharablenodesnot yet materialized.
With the monotonicity heuristic addition, we found that
on an averageonly about 45 benefitswere recomputed
eachtime, acrossthe rangeof CQ1to CQ5. In contrast,
without the monotonicityheuristic,evenat CQ2 therewere
about1558benefitrecomputationgachtime, leadingto an

optimizationtime of 77 secondsfor the query as against
7 secondswith monotonicity Scaleupis also muchworse
without monotonicity Best of all, the plans produced
with andwithout themonotonicityheuristicassumptiorhad
virtually the samecoston the querieswe ran. Thus, the

10

800

CQl ©Q2 CQ3 CQ4 CQ5

ig, 600 _

g m Volcano

O @ Volcano-SH
B 400 O Volcano-RU
= O Greedy

€

E 200

Optimization Time (secs)
&
|

]
ol
|

204 1
] = Volcano
] @ Volcano-SH
1 O Volcano-RU
] O Greedy
10

o
ol

CQ1 CQ2 CQ3 CQ4 CQ5

Figure6: Optimizationof ScaleupQueries

monotonicity heuristic provides very large time benefits,
without affectingthe quality of the plansgenerated.

Tofind thebenefitof thesharabilitycomputationywe mea-
suredthe cost of Greedywith the sharability computation
turnedoff; every nodeis assumedo be potentiallysharable.
Acrossthe rangeof scaleupqueries,we found that the op-
timization time increasedsignificantly For CQ2, the opti-
mizationtime increasedrom 30 secs.to 46 secs. Thus,
sharabilitycomputations alsoa very usefuloptimization.

In summary our optimizations of the implementation
of the greedy heuristic result in an order of magnitude
improvementin its performanceandarecritical for it to be
of practicaluse.

6.4 Discussion

To checkthe effectof memorysizeonourresultswe ranall

the above experimentsincreasingthe memoryavailable to

theoperatorgrom 6MB to 32MB andfurtherto 128MB. We
foundthatthe costestimatedor the plansdecreasedlightly,

but therelative gains(i.e., costratio with respecto Volcano)
essentiallyremainedthe samethroughoutfor the different
heuristics.

We stressthat while the costof optimizationis indepen-
dentof the databaseize,the executioncostof a query and
hencethebenefitdueto optimization,dependsiponthesize
of the underlyingdata. Correspondinglythe benefitto cost
ratio for our algorithmsincreasemarkedly with the size of
the data. To illustrate this fact, we ran the batchedTPCD
queryBQ5 (consideredn Experimen) on TPCDdatabase
with scaleof 100(total size100GB).Volcanoreturnedaplan
with estimatedtostof 106897secondsvhile Greedyobtains
aplanwith costestimater3143secondsanimprovementof
33754 seconds. The extra time spentduring optimization
is 10 secondsasbefore,which is negligible relative to the
gain.

While the benefitsof using MQO show up on query
workloadswith common subexpressions,a relevant issue
is the performanceon workloadswith rare or noneistent
overlaps.To studytheoverhead®f Greedyin a casewith no
sharing,we took a batchcontainingTPCD queriesQ3, Q5,

259

Q7, Q9 and Q10, andrenamedthe relationsto remove all

overlapsbetweemueries.BasicVolcanooptimizationtook
650msecwhile the Greedyalgorithmtook 820 msec.Thus
the overheadwas around25%, but note that the absolute
numbersarevery small. The overheadsredueto full DAG

expansionandsharabilitydetection.

To summarizefor very low costquerieswhich take only
afew secondspnemaywantto useVolcano-RJ, whichdoes
a “quick-and-dirty” job; especiallyso if the queryis also
syntacticallycomplex. For moreexpensve queries,aswell
as“canned” queriesthat are optimizedrarely but executed
frequentlyoverlargedatabasest clearlymakessensdo use
Greedy

7 Related Work

The multi-query optimization problemhasbeenaddressed
in [Fin82, Sel8§ SSN94,PS88,ZDNS98 SV9§. Thework
in [Sel88 SSN94,PS88] describeexhaustve algorithms.
They also do not exploit the hierarchicalnature of query
optimizationproblems,whereexpressionshave subepres-
sions.

The work in [SV98] considerssharingonly amongsthe
bestplansof eachquery— this is similar to Volcano-SH,
and as we have seen,this often doesnot yield the best
sharing.For the specialcaseof OLAP queries(aggreyation
on a join of fact table with dimensiontables)Zhao et al.
[ZDNS9§ considemultiqueryoptimizationto sharescans
andsubexpressionsThey do not considematerializatiorof
sharedresults,which is requiredto handlethemoregeneral
classof SQL queries,which we consider Their Local
Greedyalgorithmis similar in spirit to Volcano-RJ, while
Global Greedyis an extensionthatallows plansfor queries
considerectarlierto bechanged.

The problemof materializedview/index selectionis re-
latedto multi-queryoptmization,but needsto considerup-
datesandview maintenanceosts(see.g.,[Rou82 RSS96,
Gup971, andin the context of datacubes]GHRU97]). Ser-
eralof thealgorithmsproposedor thisproblemuseagreedy
heuristic, but do not discussefficient implementation and
tight integrationwith the queryoptimizer We arecurrently

11

working on extendingour techniquego handleview/index
selectiorandmaintenance.

Ourmulti-queryoptimizationalgorithmsmplementuery
optimizationin the presenceof materialized/cachediews,
as a subroutine. By virtue of working on a generalDAG
structure pur techniquesireextensible,unlike the solutions
of [CKPS9] and[CR94]. Theproblemof detectingvhether
anexpressiorcanbe usedto computeanothehasalsobeen
studiedin [YL87]; however, they donotaddressheproblem
of query optimizationor of choosingwhat to materialize.
Queryresultcaching[CR94] can be viewed as a dynamic
form of multi-query optimization,andwe are currently ex-
tendingour algorithmsto provide betterselectionof inter-
mediateresultsto cache.

Rao and Ross[RR99 considerthe problemof exploit-
ing invariant partsof a nestedsubquery Multi-query op-
timization on nestedqueriesachierzesthe sameeffect, thus
our techniguesremoregeneral.

8 Conclusions

We have describedhreenovel heuristicsearchalgorithms,
Volcano-SHVolcano-RJ andGreedy for multi-queryopti-
mization. We presented a numberof techniquego greatly
speedup the greedyalgorithm. Our algorithmsare based
on the AND-OR DAG representatiorof queries,and are
therebycanbe easilyextendedo handlenew operatorsOur
algorithmsalsohandleindex selectiorandnestedjueriesjn
avery naturalmanner We alsodevelopedextensiongo the
DAG generatioralgorithmto detectall commonsubexpres-
sionsandincludesubsumptiorderivations.

Our implementationdemonstratedhat the algorithms
can be addedto an existing optimizer with a reasonably
small amount of effort. Our performancestudy using
gueriesbasedon the TPC-D benchmarkdemonstratethat
multi-query optimizationis practicaland gives significant
benefitsat a reasonablecost. The benefitsof multi-query
optimization were also demonstraten a real database
system.

In conclusionwe believe we havelaid thegroundwork for
practicaluse of multi-query optimization,and multi-query
optimizationwill forma critical part of all queryoptimizes
in thefuture.

Acknowledgments: This work wassupportedn partby a
grant from EngageTechnologies/RedbriciSystems. Part of the
work of PrasanRoy was supportedoy an IBM Fellowship. We
wishto thankK. Sriravi, for helpwith coding,DanJayeandAshok
Sawe, for motivating this work throughthe Engage.Fusioproject,
Krithi RamamrithanandSridharRamaswamy, for feedbaclon the
paper and Paul Larsonboth for feedbackon the paper and for
inviting PrasarRoy to participaten prototypingour algorithmson
SQL Sener at Microsoft.

References

[CKPS95] Surajit Chaudhuri, Ravi Krishnamurthy Spyros
PotamianosandKyuseokShim.Optimizingqueriesvith ma-

260

terializedviews. In Intl. Conf on Data Engineering Taipei,
Taiwan,1995.

[CR94] C. M. ChenandN. Roussopolous.The implementation
and performancesvaluationof the ADMS query optimizer:
Integratingqueryresultcachingandmatching. In Extending
DatabaseTechnolagyy (EDBT), CambridgelJK, March1994.

[Fin82] S. Finkelstein. Commonexpressionanalysisin database
applicationsln SIGMODIntl. Conf on Managemenbf Data,
page235-2450Orlando,FL,1982.

[GHRU97] H. Gupta,V. HarinarayanA. RajaramanandJ. Ull-
man. Index selectionfor olap. In Intl. Conf on Data Engi-
neering BinghamptonUK, April 1997.

[GM93] GoetzGraefeandWilliam J.McKenna.Extensibilityand
SearclEfficieng in theVolcanoOptimizerGeneratorin Intl.
Conf on Data Engineering 1993.

[Gup97] H. Gupta. Selectionof views to materializein a data
warehouseln Intl. Conf on DatabaseTheory 1997.

[PS88] JooseokPark and Arie Segev. Using common sub-
expressiongo optimize multiple queries. In Intl. Conf on
Data Engineering 1988.

[Rou82] N. RoussopolousView indexing in relationaldatabases.

ACM Trans.on DatabaseSystems7(2):258-2901982.

[RR98] Jun Rao and Ken Ross. Reusinginvariants: A new
strat@y for correlatedqueries. In SIGMOD Intl. Conf on
Managementof Data, Seattle WA, 1998.

[RSS96] KennethRoss DiveshSrivastaa, andS. SudarshanMa-
terializedview maintenanceand integrity constraintcheck-
ing: Tradingspacefor time. In SIGMODIntl. Conf on Man-
agementbf Data, May 1996.

[RSSB98] PrasanRoy, S. Seshadri,S. Sudarshanand Siddhesh
Bhobe. Efficient and extensiblealgorithmsfor multi query
optimization. Technicalreport, Indian Institute of Technol-
ogy, Bombay OctoberNov 1998.

[Sel88] Timos K. Sellis. Multiple query optimization. ACM
Transactionson Database Systems 13(1):23-52, March
1988.

[SHT*99] J. ShanmugasundaranG. He, K. Tufte, C. Zhang,
D. DeWitt, and J. Naughton. Relational databasedor
queryingXML documentsLimitationsandopportunities.In
Intl. Conf Very Large Databases1999.

[SPL96] Praveen Seshadri, Hamid Pirahesh,and T. Y. CIiff
Leung. Complex querydecorrelation.In Intl. Conf on Data
Engineering 1996.

[SSN94] KyuseokShim, Timos Sellis, and DanaNau. Improve-
mentson a heuristicalgorithmfor multiple-queryoptimiza-
tion. Dataand Knowled@ Engineering 12:197-2221994.

[SV98] Sublu N. Subramaniarand ShivakumarVenkataraman.
Cost basedoptimization of decisionsupportqueriesusing
transientviews. In SIGMOD Intl. Conf on Managementof
Data, Seattle WA, 1998.

[YL87] H.Z.YangandP. A. Larson.Querytransformatiorfor PSJ
queries.In Intl. Cont \ery Large Databasespages245—-254,
Brighton, August1987.

[ZDNS98] Y. Zhao,PrasadDeshpandejefrrey F. Naughton,and
Amit Shukla. Simultaneousptimizationand evaluation of
multiple dimensionalqueries. In SIGMOD Intl. Conf on
Managementof Data, Seattle WA, 1998.

12

