
User-adaptive exploration of multidimensional data
Sunita Sarawagi

Indian Institute of Technology, Bombay
sunita@it.iitb.ernet.in

Abstract
In this paper we present a tool for enhanced explo-
ration of OLAP data that is adaptive to a user’s prior
knowledge of the data. The tool continuously keeps
track of the parts of the cube that a user has visited.
The information in these scattered visited parts of
the cube is pieced together to form a model of the
user’s expected values in the unvisited parts. The
mathematical foundation for this modeling is provided
by the classical Maximum Entropy principle. At
any time, the user can query for the most surprising
unvisited parts of the cube. The most surprising values
are defined as those which if known to the user would
bring the new expected values closest to the actual
values. This process of updating the user’s context
based on visited parts and querying for regions to
explore further continues in a loop until the user’s
mental model perfectly matches the actual cube. We
believe and prove through experiments that such a
user-in-the-loop exploration will enable much faster
assimilation of all significant information in the data
compared to existing manual explorations.

1 Introduction

We propose a new method for interactively exploring
multidimensional OLAP data cubes [GCB+97] that
continuously adapts to what the user knows about
the data and uses that to guide him to the parts
of the cube that he will find most informative. We
provide a method of personalizing OLAP exploration
tools so that the user for which it is trained is only
shown regions that he will find surprising. Often
in large corporations a single OLAP data source is
deployed by users at various levels of experience with
the cube. There are local store managers who are
very familiar with the details of just one store; top
executives who know top-level trends but none of the
details and recent hire analysts who know nothing
about the data but need to subsequently understand a
lot of it. Currently, all these three categories of users
get the same view of the OLAP data cube which they
explore manually using the basic drill-down, rollup,
pivot and select operator. Apart from these basic

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

tools there is little support provided for meaningfully
exploring large databases. We propose that users be
allowed to navigate a data cube based on information
content of the region rather than the current approach
of basing it on navigational reachability or random
user guesses.

1.1 Overview of the system

The system maintains a profile for each user that
has an account with the OLAP system. The profile
stores the parts of the cube with which he is already
familiar. This profile is built either by the frontend
exploration tool monitoring the amount of time the
user spends with each view of the cube or by the user
explicitly marking a given view of the cube as visited.
The system then uses this profile to model the user’s
expectation about the unvisited parts of the cube. The
classical maximum entropy principle is used to provide
a unified way of piecing together the information in
the scattered visited parts of the cube with which the
user is familiar. According to this principle, the best
guess expected values are those that maximize the
uniformity of the data values while agreeing with all
partial sums that the user has seen.

Next we define the information content of an
unvisited value as the gap between the actual values
and the new expected values if the user had known this
value. The user can query this information in a variety
of interesting ways to improve his data exploration
experience. For instance, during normal exploration,
starting from an initial view of the cube the user can
query for the most informative path for drilling down
further. Or, after having explored the cube for some
time, he can ask for the ten most informative cells from
anywhere in unvisited data.

As the user explores more regions of the cube, the
user’s profile gets enhanced and the expected value of
unvisited parts is continuously updated. This process
of updating the user’s context based on visited parts
and querying for regions to explore further continues
in a loop. In each iteration the user’s mental image
of the cube gets closer to the actual cube until they
both become one and the same. When the user stops
the exploration, the context is recorded and digested
by the system so that next time when the analyst logs
into the cube database, the memory of what parts he
has already visited is revoked from the system’s log to
guide further exploration.

Product Platform Geography Year
Product name (67) Platform name (43) Geography (4) Year (5)
 Prod_Category (14) Plat_Type (6)
 Prod_Group (3) Plat_User (2)

Figure 1: Dimensions and hierarchies of the software
revenue data. The number in brackets indicate the size
of that level of the dimension.

1.2 Illustration

We next illustrate the working of the system using
a real-life dataset obtained from International Data
Corporation (IDC). The data gives the total yearly
revenue in millions of dollars for different software
products from 1990 to 1994. The schema as shown
in Figure 1 consists of four dimensions Product,
Platform, Geography and Time and a three level
hierarchy on the Product and Platform dimension.

Consider two kinds of users exploring this dataset.
The first user has no prior knowledge of any part
of the data and the second user has full familiarity
with all the data except for the most recent two
years. However, the second user has observed the total
revenues for these two years.

Using the existing OLAP exploration operations
(like “drill-down” and “roll-up”) the first user could
launch the process of understanding the data by
navigating through subsets of the cube viewed at
various levels of aggregation. However, the process of
understand data could be long and tedious involving
perhaps repeated visits to the same parts of the data.
We contrast this with the experience the user would
have with the new focussed exploration that this tool
provides. Not knowing anything else about the user,
the tool starts out modeling the expected value of
each non-empty cell to be the same. The user can
then query for the most informative views of the
cube. The first output (shown in Figure 2) is
the Platform dimension showing only ten (out of a
total of 43 members) that it found most informative.
The remaining are summarized by their average value
in the topmost row. A second query for the next
informative path returns the product dimension with
eight (out of 67) distinctive members as shown in
Figure 3. The year dimension shown in Figure 4 has
the smallest divergence between member values and is
shown last. At all time, a status bar displays how far
the user’s expectations are from the real values. After
showing the aggregates along the four dimensions the
status bar would show that 30% of the information in
the data is captured. For the remaining 70% the user
needs to dig deeper. Depending on the user’s interest,
he could either quickly ask for the top few informative
cells from anywhere in the cube or follow informative
paths for drilling down further. Another interesting
possibility is to put the system on auto-pilot where he
will be driven through the most informative views in
the cube in a sequence.

The second more informed user would perhaps use
the tool differently. He is already familiar with most
of the detailed data except the last two years of 1993
to 1994. The tool has kept track of this fact about
the user. Based on previous trends he expects an
increase in revenue from 1992 to 1993 to 1994 for each
Product,Platform,Geography combination. Therefore,
we can directly query the tool for the most informative
regions from anywhere in the cube. The results are
shown in Figure 6. In the figure, the last column
marked “Expected” shows the values that he would
see if his extrapolations were correct and the column
before it shows the actual values. These are all cases
that correspond to a significant drop or increase in
1993 or 1994. For instance, based on prior knowledge
the user expected the sales in 1993 for (Other Office
Apps, Wester Europe and Multiuser Mainfram IBM)
to be 78 whereas the actual was just 3.05. Thus, the
second user will only have to concentrate on these few
violators which cannot be extrapolated based on his
experience of past data and the yearly totals.

1.3 Contents.

The rest of the paper is organized as follows. We
present our formulation in terms of the maximum
entropy principle in Section 2. In Section 3 we
show how we enable practical implementations in
large OLAP datasets and validate with experimental
results. In Section 4 we present related work and
finally conclusions appear in Section 5.

2 Formulation

Our underlying data is a n dimensional cube where
each cell is associated with a real value say, total sales
or total number of units sold. The user sees different
partial views of the data in terms of the sum of values
of some subset of the cube. From this partial view
he implicitly forms an expectation of the values in the
cube. Our goal is to recapture these expected values.

Consider first the case where n = 1 and assume that
there are 10 total cells along that single dimension.
Suppose the user views only the sum of the 10 values
in the cell. Let that sum be “1”. Knowing nothing else
about the data or the user’s mindset, what values can
we assume for each of these cells? There are an infinite
number of possible 10 values that sum up to 1. One
possibility is to let the values of the first cell p1 = 1
and the rest of the values p2 to p10 be zero. Another
is to let p1 = p2 = 1/2 and p3 to p10 be zero. Both
these alternative make rather bold statements based
on the limited knowledge of the data. A safer bet is
to let pi = 1/10 = 0.1 for all values.

Suppose if we get another view in the form of the
sum of values from p1 to p5 to 0.75. What is the best
revised guess we can make now? Following the same
logic our best guess is for the first half of the values
to be 0.15 and the last half 0.05. Again suppose the

PLAT_TYPEPLATFORM Act Exp
(Each)- (Each)- 1.81 7.7
Unix S. Each) 2.23 7.7
Wn32 16-bit Windows/DOS 24.7 7.7
Other M. (Each)- 13.9 7.7
Other M. Multiuser Mainframe IBM 39.2 7.7
Other M. Multiuser Windows NT Server1.23 7.7
Other M. Multiuser OS/2 1.76 7.7
Other M. Multiuser Other Server 1.75 7.7
Unix M. Multiuser UNIX 20.2 7.7
Unix M. Multiuser UNIX SCO UnixWare0.09 7.7
Unix M. Multiuser UNIX SGI Irix 0.12 7.7
Unix M. Multiuser UNIX Other Intel UNI0.06 7.7

Figure 2: Most informative drill-down
dimension and its top few informative
members.

PROD_CATEGORYPRODUCT ACT EXP
(Each)- (Each)- 7.16 7.7
Vertical Apps (Each) 12.7 7.7
Middleware (Each) 0.5 7.7
Other (Each) 0.8 7.7
System SW (Each) 30.6 7.7
Info. tools (Each) 3.7 7.7
Develop. tools DBMS Engines (Non-Object)15.7 7.7
Develop. tools Object-Oriented Programming2.2 7.7
Develop. tools Object CASE 0.9 7.7

Figure 3: Second most informative
dimension.

Year ACT EXP
1990 6.54 7.7
1991 6.75 7.7
1992 8.39 7.7
1993 9.58 7.7
1994 7.23 7.7

Figure 4: Least in-
formative of the four
dimensions.

Figure 5: Information content of various dimensions. The last column denotes expected value. The “ACT” column
represents actual values.

PRODUCT GEOGRAPHY PLATFORM YEAR ACTUALEXPECTED
Other Office Apps Western Europe Multiuser Mainframe IBM 1993 3.05 78.25
EDA Western Europe Multiuser UNIX 1994 19.97 142.41
Operating Systems United States Multiuser Other Server 1994 0.22 47.82
Operating Systems Western Europe Multiuser Minicomputer OpenVMS1993 3.27 69.74
Middleware Asia/Pacific Multiuser Mainframe IBM 1993 185.72 96.10
CASE (Non-Object) United States 16-bit Windows/DOS 1994 1.77 57.58
DBMS Engines (Non-Object) United States Multiuser Mainframe IBM 1994 90.31 315.03
DBMS Engines (Non-Object) Rest of World Multiuser Mainframe IBM 1994 11.00 98.92
4GL & Report Writers Rest of World Multiuser Mainframe IBM 1993 0.31 42.48
3GLs & Develop. Environments Rest of World Multiuser Mainframe IBM 1993 0.62 38.67

Figure 6: Informative regions returned to user who is familiar with the entire cube for years 1990-1992 but unfamiliar
with years 1993 and 1994.

user sees a third view of the data consisting of sums
of values from p3 and p7 and let that sum be 0.5. In
this case, it is not all that obvious how we distribute
the three partial sums to derive individual values.
Fortunately, this is a classical problem with links to
biblical times that has found widely accepted answers
in the Maximum Entropy principle [BPP96, GS85].

The maximum entropy principle states that given a
collection of facts choose a model that is consistent
with all the facts but otherwise is as uniform as
possible. A mathematical measure of the uniformity of
a distribution is provided by entropy defined asH(p) =
−
∑m
i=1 pi log pi, where pi denotes the estimated value

or probability of the ith cell. The entropy is bounded
from below by zero, the entropy of a model with no
uncertainty at all i.e., pi is either 0 or 1 for all i.
It is bounded from above by logm, the entropy of
the uniform distribution where all pi have the same
value of 1

m . Our goal is to choose the distribution p
that maximizes H(p) while satisfying the constraints
imposed by the partial visited views of the data. A
constraint Ci is a restriction on some subset of these
m values to sum up to some observed value p̃(Ci). In
the example above we had three such constraints with
p̃(C1) = 1, p̃(C2) = 0.75 and p̃(C3) = 0.5. The final

optimization problem is:

max
p

H(p) = maxp(−
∑m
i=1 pi log pi) such that

∀Ci,
∑
j pjIij = p̃(Ci),

where Iij =
{

1, if cell j is included in Ci,
0, otherwise.

This optimization problem is the mathematical
essence of the Maximum Entropy philosophy that ac-
cording to E.T. Jaynes [Jay90] “agrees with everything
that is known, but carefully avoids assuming anything
that is not known”.

2.1 Finding the best values of p

The objective function H(p) always has a unique solu-
tion as long as the constraints are consistent [PPL97].
In most cases finding that unique solution through any
closed form formula is not possible. However, there are
well defined iterative algorithms that are based on the
observation that the optimal p values can be expressed
in the following product form.

pµj = µ0

∏
Ci

µ
Iij
i (1)

We use pµ to denote the class of p values that can
be expressed in the above product form and pµj is the
expected value of the j cell. For each constraint Ci

there is a term µi. The term µ0 is a normalization
constant to ensure that the probabilities sum up to 1.

2.1.1 The Iterative scaling algorithm for find-
ing best p

Start with µi = 1 for all constraints.
Update µ0 so probabilities sum to 1
While the µis have not converged

For each constraint Ci
Update µi by scaling with p̃(Ci)/p(Ci)
Recalculate expected values p using Equation 1

Update µ0 so probabilities sum to 1

The above algorithm is guaranteed to converge to
the optimal solution as long as all constraints are
consistent [PPL97].

2.2 Finding informative constraints

The second part of our problem is to find the
most informative constraints from unvisited data.
We define such a constraint to be the one that
reduces the distance between the actual values p̃
and expected values pµ by the maximum amount.
We measure distance using the traditional Kullback-
Leibler divergence criteria defined as:

D(p̃||pµ) =
∑
j

p̃j log
p̃j
pµj

Let pC denote the expected values after the addition
of the first C constraints and let pC+f denote the
expected values after adding a new constraint f . Our
goal is to pick the f that reduces the distance by the
maximum amount, i.e.,

f = argmaxf (D(p̃||pC)−D(p̃||pC+f)) (2)

= argmaxf
∑
j p̃j(log pc+1

j − log pcj). (3)

From equation 1 we can write pC as a product of
|C| terms one corresponding to each constraint cj ∈ C.
The values of coefficients µj could change due to the
new constraint f but for reasons of efficiency we ignore
this change and only take into account the change with
the addition of the new coefficient µc+1. Based on this
assumption we can write Equation 2 using results from
Equation 1 as:

f = argmaxf
∑
j p̃j logµI(c+1)j

c+1 (4)

= argmaxf
∑
j p̃jI(c+1)j log p̃(f)

pc(f) (5)

3 Adapting the maximum entropy
principle to OLAP data

The main challenge in adapting the maximum en-
tropy principle to OLAP data is handling the scale.
Traditional applications have concentrated on small

datasets and therefore there is little previous literature
on scaling the iterative algorithm and the search
for new constraints, both these are computationally
expensive procedures. Also our goal is to be able to in-
teractively furnish the next few informative constraints
even while the user’s context is continually being
changed as he navigates around the data. We next
discuss a collection of optimizations that we applied
on these methods to make them efficient on large
OLAP datasets. We also present empirical evidence
of their usefulness through experiments on several
OLAP datasets. In Section 3.1 we present details of
the experimental setup. In section 3.2 we present a
number of optimizations for improving the first part of
our tool, that is, updating the expected values with the
addition of new constraints. In section 3.3 we present
optimizations for getting answers to finding the most
informative regions. Finally, in Section 3.4 we discuss
issues in integrating this tool with a OLAP system.

3.1 Experimental setup

We used the following datasets for our experiments.
Software revenue data: This is a small dataset

but is interesting because it is real-life data about the
revenues of different software products from 1990 to
1994. We discussed this dataset earlier in Section 1.2.

OLAP Council benchmark [Cou]: This dataset
was designed by the OLAP Council to serve as a
benchmark for comparing performance of different
OLAP products. It has 1.36 million total non-zero
entries and four dimensions: Product with a seven
hierarchy, Customer with a three level hierarchy,
Channel with no hierarchy and Time with a four level
hierarchy as shown in the figure below. The numbers
within bracket denote the cardinality of that level.

Product Customer Channel Time
Code (9000) Store (900) Channel (9) Month (17)
 Class (900) Retailer (90) Quarter (7)
 Group (90) Year (2)
 Family (20)
 Line (7)
 Divison (2)

Student data: This data is about the enrollment
statistics of a university with dimensions as shown in
the table below. The total number of cells at detailed
level is 4560 which is very small by OLAP standards.
We therefore do not use this dataset for performance
studies. However, it is useful for doing a qualitative
assessment of our method because the dataset is real.

Student Sex Program Department Year
Category (9) Sex (2) Name (10) Name (28) Year (10)
 Category (3)

Grocery sales data: This is a demo dataset
obtained from the Microsoft DSS product [Mic98]. It
has 250 thousand total non-zero entries and consists
of five dimensions with hierarchies as shown below.

Store Customer Product Promotion Time
Name (24) City (109) Name (1560) Media type (14) Month (24)
 State (10) State (13) Subcategory (102) Quarter (8)
 Country (3) Country (2) Category (45) Year (2)

 Department (22)
 Family (3)

These experiments were done on a PC with a 333
MHz Intel processor, 128 MB of memory and running
Windows NT 4.0. A DB2 ROLAP database was used
to process the queries.

Workload We simulate a user’s exploration of the
data cube using the following model. The user
starts at the topmost level where all dimensions are
aggregated to a single value. At any time, the user
views data in the context of at most two dimensions at
a time. Remaining dimensions are either aggregated or
selected on a single value at any level of its hierarchy.
From one view of the cube the user moves to a
neighboring view as follows: Select one dimension di
from the two dimensions that are currently either row
or column and select another dimension dj from the
remaining set to replace di. Fix the value of di to either
one of its members or aggregate it to level “All”. This
yields a new view of the cube from which the user can
move to a neighboring view using the same procedure.

Notation We introduce some notations. Consider a
cube with four dimensions A,B,C and D. We use the
term view to denote the different parts of this cube that
the user has visited. A view represents a collection of
constraints. For instance, if the user has viewed the
totals along dimension A, then the view is said to be A
and this view consists of as many constraints as there
are members along A. The lower case letter ai denotes
the ith member of dimension A. If the next view the
user visits is aiB i.e., for fixed value ai of dimension A
he is viewing totals along each member of dimensionB,
then the constraints that they represent have the form
aibj where bj spans over all the members of dimension
B. We will sometimes call a view a constraint where
the distinction is not important.

3.2 Optimizing the expected value update
process

We first present ways of optimizing updates to
the expected values of the detailed cube with the
addition of a new constraint. Our requirements of
long-term memory of the users’ context requires an
incremental formulation where a persistent storage is
used to keep track of the constraints and the partially
computed expected values. We maintain two pieces of
information for each <cube,user> pair. First is a list
of the set of constraint imposed by the user and second
is expected values based on the context established so
far.

3.2.1 Optimized representation

The first optimization relates to how we store the
currently computed expected values. Instead of

keeping a separate entry for each detailed cell as
implied by the iterative algorithm we group together
and keep a single entry for each contiguous region that
will have the same expected value with the current set
of constraints. For instance, if the only constraint that
we have is A then all detailed cells with same value
of dimension A will have the same expected value,
hence we store only as many entries as the domain
of A instead of storing the expected value for each
detailed cell in ABCD. When the user submits a
second constraint D all cells with the same value of
dimensionsA andD will have the same expected value,
hence we store the expected values at the AD level.

This optimized representation makes the addition of
a new constraint more complicated. Every time a new
constraint f is added, we might need to De-aggregate
the level to which a region is stored. For instance, in
our previous example adding a third constraint aiCdj
would require us to expand the entry aidj with the
new dimension C. From these new regions we remove
any region already materialized. More details of this
step appear in the expanded version [Sar00a].

The optimized representation not only reduces
storage requirements but also improves the iterative
algorithm because the iterations are performed over
aggregated values.

Improvements achieved on experimental
datasets We demonstrate the impact of this
optimization by measuring the speed up obtained
by the iterative procedure for the datasets and
query workload discussed earlier. In the graphs
in Figure 10, the X axis represents the constraint
in the order in which they are submitted to the
system and the Y axis denotes the total time for
the constraint propagation. We plot two graphs,
one for the optimized representation (marked “opt”)
and second for the detailed representation where the
expected values are at the detailed level (marked
“noopt”). From the graphs, we observe a factor of
five improvement in total time for the software data
and even greater (between factors of 10 and 100)
reduction with the larger datasets. This difference
is significant because it helps cross the boundary
between interactive and batch processing. For the
larger datasets, operations that previously required
10 minutes can be completed in half a minute making
interactive sessions more feasible.

3.2.2 Optimizing iterative process

We next present optimizations for reducing the num-
ber of iterations needed for convergence and also
pruning the number of constraints involved in each
iteration.

We first introduce some definitions for formalizing
the relationships between constraints. A constraint Ci
is said to subsume another constraint Cj if the sum at
Ci includes all elements that are included in Cj . Thus,

0

10

20

30

40

50

60

70

80

90

0 10 20 30

Constraint number

Ti
m

e
in

se
co

nd
s

NoOpt Opt

Figure 7: Software revenue
data.

0

100

200

300

400

500

600

700

800

0 10 20 30

Constraint number

Ti
m

e
in

 s
ec

on
ds

NoOpt Opt

Figure 8: Grocery sales data.

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

Constraint number

Ti
m

e
in

 s
ec

on
ds

NoOpt Opt

Figure 9: Olap benchmark.

Figure 10: Improvement due to optimized representation of expected values. ’Opt’ and ’NoOpt’ denote total time with
and without the optimizations. Y axis is total time in seconds and X axis the number of constraints submitted.

constraint ai subsumes constraint aick. A view Vi is
said to be more detailed than another constraint Cj
if Vi aggregates the same set of values as Cj but Vi
includes more than one constraint. Thus, view aiB
is more detailed than constraint ai because together
they cover all cells where dimension A has value ai
but view aiB has separate constraints corresponding
to different values of B.

We exploit these relationships to speed up the
iterative procedure when a new constraint is added.

Minimize overlap between constraints First,
when we get a new view say aiBck, we find all existing
constraints that subsume it (example ai) and exclude
from each of them the subsumed part. For example, an
existing constraint, ai would be replaced by a modified
constraint aick that excludes any cell where dimension
C has value ck. Sometimes this might cause an existing
constraint like aick to be eliminated totally. Similarly,
from the new view we exclude the constraints that are
subsumed by it. For example if there is a constraint
aiBckdl then we modify the new constraint aiBck to
be aiBckdl.

Rewriting thus significantly reduces the number of
iterations because of the reduction in the overlap
between constraints. In the modified form aiBck and
aick have no cells in common. Therefore, only one
iteration is needed for convergence with these two
constraints.

Prune constraints The algorithm of Figure 2.1.1
cycles through every constraint in an iteration. We
suggest pruning from the current iteration those
constraints whose estimated impact on the expected
values is small. When a new constraint is added,
we apply it first. Subsequently we apply only those
constraints whose estimated change is greater than
a small threshold. Clearly, if a constraint has no
overlap with any of the constraints before it, it can be
safely pruned from the current iteration. For others,
we estimate expected change as follows: For each
constraint applied before it in the current iteration we

know the maximum change of any expected values due
to this constraint. Let δj denote this maximum change
on a cell due to a constraint Cj . For a constraint Ck
at the kth position of the current order of constraints,
we calculate the estimated maximum change per cell
δ̂k as

δ̂k =
k−1∑
i=1

influence(Ci, Ck)δi.

and skip those constraints for which this estimated
maximum change is smaller than a threshold. We
quantify the influence(Ci, Ck) of a constraint Ci on
another constraint Ck by the fraction of the aggregated
values of Ck that overlap with Ci. For instance, if Ci
is ai and Cj is dk and there are 100 cells with Dth
dimension member dk and 10 of them have dimension
A = ai then the influence of Ci on Ck is 10/100 =
0.1. If there is a third constraint Cl = bj that sums
up 1000 entries and 20 of them overlap with Ci, then
influence of Ci on Cl will be 20/1000 = 0.02.

Improvements achieved on experimental
datasets We demonstrate the impact of these
optimizations on the iterative algorithm. The setup
and the axes are the same as in Section 3.2.1. Data is
assumed to be stored in the optimized representation
of Section 3.2.1. In Figure 14 we show two plots for
each datasets. One plot is for the optimized iterative
algorithm (marked “order”) and the second without
these optimizations (marked “opt”). We notice from
the graphs that these optimizations give us another
around a factor of two reduction in total time. In the
initial stages when the number of constraints is small,
the improvement is lower as expected and it increases
as more constraints get added.

3.2.3 Asynchronous batched computation

A third optimization we propose is batching updates
due to multiple constraints. When the user submits a
view, the request is queued and the user call returned.

0

2

4

6

8

10

12

14

16

0 10 20 30

Constraint number

Tim
e i

n s
ec

on
ds

Opt Order

Figure 11: Software revenue data.

0

5

10

15

20

25

30

35

40

45

0 10 20 30

Constraint number

Tim
e i

n s
ec

on
ds

Opt Order

Figure 12: Grocery sales data.

0

20

40

60

80

100

120

140

160

180

200

0 5 10

Constraint number

Tim
e i

n s
ec

on
ds

Opt Order

Figure 13: Olap benchmark.

Figure 14: Improvement due to removing subsumed constraints and ordering and pruning constraints. ’Order’ and ’Opt’
denote total time with and without these optimizations respectively. Y axis is total time in seconds and X axis the
number of constraints submitted.

The user does not wait for the effect of the new
constraints to be propagated. Thus registering a view
as visited is instantaneous. A separate thread is used
to asynchronously refine the expected values via the
iterative process. An offshoot of this architecture
is that updates due to multiple constraints can be
batched and also redundant constraints removed. For
instance, if the user submits a view A followed soon
after by another view AB the first view would be
removed as redundant. We batch iterations due to
multiple constraints as follows. We do not invoke
a new round of iterative improvements every single
time a constraint is added. Instead, as long as there
are new constraints in the queue we apply just that
constraint to update the expected value. When no
more constraints new constraints are waiting we invoke
the iterative algorithm to refine the expected values.

3.3 Optimizing the constraint selection pro-
cess

Our goal is to use the expected values found in the
previous step and the original data cube to report
the most informative regions in the data cube. The
query for information regions can be posed in a number
of different ways as discussed in Section 1.1. These
queries can be classified into two broad categories. One
class requires the most informative contiguous region
starting from some initial view of the cube. The second
class requires for the top few informative constraints
from anywhere in the cube. We expect the first class
of queries to be more frequent at the top levels of the
cube when the user is relatively unfamiliar with the
rest of the cube. The second class of queries are more
likely when a user is familiar with most of the cube
and just needs to search for interesting information in
detailed data that he might have missed. In terms of
computation load, the first class of queries are easier
to compute because the user has significantly reduced
the portion of the cube to be searched through his

starting context. The second class of queries are more
challenging since they require searching the entire cube
and also because the constraints could interact with
each other in arbitrary ways. Including a constraint
of the form aibj changes the information content of
constraint aibjck and viceversa. Such interactions are
not present in the first class of queries because the
constraints are all from the same view of the cube
and thus cover non-overlapping data. We concentrate
on the second class of queries since the first type are
straightforward.

The user supplies a parameter N that denotes the
maximum number of constraints he is interested in
inspecting. We need to return the set of N constraints
that are most informative. Using Equation 2 we
define the information content of our final set of N
chosen constraint as the increase in likelihood due to
the new expected values after all the N constraints
have been applied to the data. This global objective
function is hard to evaluate. When N = 1, that is,
when we want the single most informative constraint
we can simplify Equation 2 to Equation 4 which
quantifies the informative content of a constraint as∑
j p̃jI(c+1)j log p̃(f)

pc(f) i.e., the sum over the actual
values of all cells included in the constraint multiplied
by a scaling factor that is the same for all the cells.
One option is therefore to find the most informative
constraint first, incorporate its effect on the data,
find the next most informative constraint and so
on upto N constraints. Not only is this solution
computationally expensive, it also does not guarantee
optimality. We need a method that finds the N
constraints simultaneously and ideally in one pass of
the data. The main difficulty is that unlike for the
case of N = 1 the new expected values pc+1 are hard
to evaluate in closed form when there are multiple
constraints in the final answer affecting it. To enable
practical solution, we restrict the class ofN constraints
to be those that either totally subsume each other

or do not overlap at all. We then use the Remove-
Subsumed optimization of the previous section to
remove from each constraint the part subsumed by
some other more detailed subset. Consequently all
cells in the cube are now covered by at most one of
the N constraint. Even with this restriction finding
the optimal solution is non-trivial because of the
interactions between subsumed constraints. Including
a constraint of the form aibj changes the worth of
including a second constraint of the from aibjck and
viceversa.

In [Sar99] we faced a similar challenge when
attempting to find the best N row summary of the
difference between two subcubes. We solved the
problem by developing an efficient one-pass dynamic
programming algorithm that is close to the optimal
answer in certain special cases. We directly apply that
algorithm. The algorithm starts with a bottom-up
scan of the most detailed data and then aggregates
tuples to higher levels while at the same time
constructing the best solution. More details of the
algorithm appear in [Sar99].

3.3.1 Experimental results

We present experimental evaluation of the overall
system after including all the optimizations suggested.
We evaluate our system along two important metrics:
performance and quality of data exploration.

Timing measurements First we show overall re-
sponse time to the top-N informative feature to
demonstrate feasibility in a practical setting. The
user interacts with the system in two ways: first by
registering part of the constraints as seen and second
by querying for informative regions. The response
time for the first part is instantaneous because of
asynchronous processing. The main concern is about
response time of the second part. However, before
responding to these queries, we need to ensure that
processing on all constraints submitted prior to it has
been completed.

For response time measurements we augment the
workload in Section 3.1 with timing information. The
time spent on one view of the cube is set to be a
function of the number of cells in the current view.
We assume that per cell the user spends an average of
one second distributed randomly from 0 to 2 seconds.
Thus, a view with 20 cells would be stared at for
twenty seconds before the user navigates to the next
neighboring view. Periodically the user queries for
the ten most surprising constraints given his current
view of the cube. We assume the periodicity to be
distributed randomly between one and ten navigation
of the cube.

Figure 18 shows the response time for the top-N
informative constraints as a function of the number of
constraints after which the query is posed. We find
that even for the largest data which is the OLAP

benchmark with 1.3 million tuples we are able to
return the best answer within 2 minutes that makes
it possible to deploy our tool in an interactive setting.
Our experiments were run on very modest hardware.
More powerful servers keeping pace with Moore’s
bounty can reduce the response time even further. We
report performance results on other OLAP databases
in the expanded version of this paper [Sar00a].

Exploration quality We measure the rate of in-
formation transfer to the user with our new focussed
search. For this we measure the gap between the actual
and expected values under two scenarios. In the first
case, the user marks as visited the constraint that the
system returns as the most informative. In the second
case, we simulate a random exploration similar to the
workload described in Section 3.1. In Figure 22 we
plot the relative square error between the actual and
expected values against the number of constraints. As
expected, in both cases as more and more constraints
get added the error reduces. For the student data we
notice a remarkable reduction in error where it reduces
from 0.9 to 0.18 within just 50 constraints (1% of total
data size). In other words 1% of the data captures
more than 80% of the information content. Similarly,
we notice that for the Software revenue dataset error
reduces to 0.73 within 50 constraints (0.2% of total
data size). That is, just 0.2% of the total data size can
explain 25% of the information content. The Grocery
sales data is a synthetic datasets – therefore we notice
that they start out with very low information content.
Just by including the total sum at the topmost level,
we explain 70% of the information in the data. After
that we get little improvement with new constraints
because of the high randomness in the data.

3.4 Integration with existing OLAP systems

Our goal is to allow persistent storage of the user’s
context and also to allow immediate refresh of expect-
ed values as new constraints get added. Both these
requirements, make the underlying OLAP data source
a natural choice for storing our intermediate results.
For each <cube,user> pair we maintain an Expected-
cube that stores the expected values at various
aggregate levels using the optimized representation of
section 3.2.1. Our tool resides as an attachment to the
OLAP system that collects the user interactions and
handles all optimization logic. All data intensive tasks
are pushed to the OLAP server through dynamically
generated queries. For instance, when a new constraint
is submitted we need to adjust the expected values
using the formulas in 2. This requires first aggregating
the Expected-cube up to the level of the constraint to
get the scale factor as the ratio of the observed and
expected value for each member of constraint. Next
we update the Expected-cube by multiplying with
the scale factor using a join. Our prototype works
on IBM’s DB2/UDB’s ROLAP features (version 6.1)

0

10

20

30

40

50

60

70

0 20 40 60

Constraint number

Re
sp

on
se

 tim
e (

se
co

nd
s)

Figure 15: Software revenue data.

0

10

20

30

40

50

60

70

80

90

0 20 40 60

Constraint number

Re
sp

on
se

 tim
e (

se
co

nd
s)

Figure 16: Grocery sales data.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60

Constraint number

Re
sp

on
se

 tim
e (

se
co

nd
s)

Figure 17: OLAP benchmark.

Figure 18: Response time for the N most informative constraints queries. X axis is the number of constraints after
which query was posed and Y axis is response time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Constraint number

Re
lat

ive
 sq

ua
re

err
or

Random MaxEntropy

Figure 19: Student data.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Constraint number

Re
lat

ive
 sq

ua
re

err
or

Random MaxEntropy

Figure 20: Software revenue data.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15

Constraint number

Re
lat

ive
 sq

ua
re

err
or

Random MaxEntropy

Figure 21: Grocery sales data.

Figure 22: Change in error as constraints get added. The curve ’Random’ shows error for a random set of constraints
and the curve ’MaxEntropy’ shows error with the most informative constraints

system and Oracle’s 8i system – both of which provide
advanced indexing and materialized aggregate views
for efficient processing of OLAP queries.

4 Related work

The work reported here is part of our continuing
i3project [Sar00b] on taking OLAP to the next
stage of interactive analysis where we automate much
of the manual effort spent in analysis. Recently,
some attempts have been made to enhance OLAP
products with mining primitives like decision tree
classifiers [Dis, Cor97], clustering [Sof] and association
rules [HF95]. In all these cases, the approach is to
take existing mining algorithms and integrate them
within OLAP products. The approach in the i3project
is to first investigate how and why analysts currently
explore the data cube and next automate them using
new or previously known operators.

In [SAM98] we presented one such operation that
was motivated with the observation that a significant
reason why analysts explore to detailed levels is to
search for abnormalities in detailed data. We reported
as exceptional any value that was significantly different
from any value calculated assuming all of its subsets

are known. This method has several differences with
our current method of defining information content
of a cell. First, the previous method computed
exceptions in a batch mode whereas the current setting
is online. Consequently, the interest value of a cell was
derived assuming all its parents are known whereas
in this project we assume only the visited parents
are known. Second, the previous method used an
intrinsic notion of the information content of a cell
by making it a function of its own difference from the
expected value. In contrast, in this case we have a
more global notion where information content of a cell
is measured in terms of how much knowing it bridges
the gap between the expected and actual values of the
entire cube. Often both definition of interestingness
might return the same value but there are important
cases where they differ. For instance if an aggregate
value v differs significantly from its expected value but
otherwise the detailed values underneath it are highly
divergent, then by the intrinsic criteria v might qualify
as interesting but it will not be so by the extrinsic
criteria.

In [Sar99] we automate another area where analysts
spend significant manual effort exploring the data:
namely, finding reasons to explain why a certain

aggregated quantity is lower or higher in one cell va
compared to another cell vb. We formulated this
as reporting summarized differences between the two
isomorphic cubes CA and CB that are aggregated
to form the observed sums at va and vb. This
summarization has close ties with the second part
of our tool where we report the top N informative
cells from unvisited cube. The expected values cube
be thought of as cube CA and the actual values of
cube CB and we need to report the N constraints that
will best summarize the difference. In Section 3.3 we
discussed how we used these results.

Another body of related work arises from our use
of the Maximum Entropy principle for calculating
expected values. This is a classical topic with broad
based applications in several areas including physics
and chemistry in the pre-computer era and more recent
applications in several problems on statistical estima-
tion and pattern recognition. A recent nice tutorial
and a computer science application is presented in
[BPP96] where maximum entropy is used in natural
language processing to model word usage based on
prior words used in a passage. In data mining [MPS99]
presents a more focussed application of Maximum
Entropy to the problem of frequent itemset mining.

5 Conclusion

In this paper we proposed a new method of inter-
actively exploring multidimensional data cubes that
guides a user on what is informative after continuously
factoring for what the user has already explored.
There were two key components of this tool. First,
modeling a user’s expectation of values in unvisited
parts based on what he already knows about the
data. Second, attaching a measure of information
content to each unvisited part of the cube. We found
a unified answer to both these issues in the time-
tested philosophy of Maximum Entropy. However,
multidimensional data of the scale commonly present
in typical OLAP systems are not directly amenable
to the expensive iterative procedures required for
solving the constrained optimization problem that
arises out of the maximum entropy principle. We
developed a number of optimizations to make these
procedures efficient. Our optimizations lead to one to
two orders of magnitude improvement in total time
on large OLAP datasets. Another set of experiments
on real-life data showed that a guided search can
significantly accelerate the understanding of the data
— for one dataset just a small 3% of the data captured
80% of the information content in the entire cube.
We have implemented a prototype that integrates
with existing OLAP systems and capitalizes on their
processing power by pushing expensive computations
to the OLAP server.

The most compelling future work is providing good
visualization of the entire system to visually represent

the information content of the various parts of the
cube and show it in the context of the user’s prior
knowledge. Other topics include deleting or fading
away constraints and allowing user defined constraints
like expected seasonality in sales values.

References
[BPP96] A. Berger, S. Della Pietra, and V. Della Pietra.

A maximum entropy approach to natural language
processing. Computational Linguistics, 22(1):39–
71, 1996. http://www.cs.cmu.edu/afs/cs/user/
aberger/www/html/tutorial/tutorial.ht\%ml.

[Cor97] Cognos Software Corporation. Power play 5, spe-
cial edition. http://www.cognos.com/powercubes/
index.html, 1997.

[Cou] The OLAP Council. The OLAP benchmark. http:
//www.olapcouncil.org.

[Dis] Information Discovery. http://www.datamine.
inter.net/.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth,
Andrew Layman, Frank Pellow, and Hamid Pi-
rahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab and sub-
totals. Data Mining and Knowledge Discovery,
1(1):29–53, 1997.

[GS85] S. Guiasu and A. Shenitzer. The principle of
maximum entropy. The Mathematical Intelligencer,
7(1), 1985.

[HF95] J. Han and Y. Fu. Discovery of multiple-level
association rules from large databases. In Proc. of
the 21st Int’l Conference on Very Large Databases,
Zurich, Switzerland, September 1995.

[Jay90] E.T. Jaynes. Notes on present status and future
prospects. In W.T. Grandy and L.H. Schick, editors,
Maximum Entropy and Bayesian Methods. Kluwer,
1990.

[Mic98] Microsoft corporation. Microsoft decision support
services version 1.0, 1998.

[MPS99] Heikki Mannila, Dmitry Pavlov, and Padhraic
Smyth. Prediction with local patterns using cross-
entropy. In Proceedings Knowledge discovery in
databases, pages 357–361, 1999.

[PPL97] S. Pietra, V. Pietra, and J. Lafferty. Inducing
features of random fields. In IEEE Transaction-
s on Pattern Analysis and Machine Intelligene,
19(4):380–393, 1997.

[SAM98] Sunita Sarawagi, Rakesh Agrawal, and Nimrod
Megiddo. Discovery-driven exploration of OLAP
data cubes. In Proc. of the 6th Int’l Conference on
Extending Database Technology (EDBT), Valencia,
Spain, 1998. expanded version available from http:
//www.almaden.ibm.com/cs/quest.

[Sar99] S. Sarawagi. Explaining differences in multidi-
mensional aggregates. In Proc. of the 25th Int’l
Conference on Very Large Databases (VLDB), 1999.

[Sar00a] S. Sarawagi. User adaptive exploration of olap data
cubes. Submission to the VLDB journal: http://
www.it.iitb.ernet.in/~sunita, 2000.

[Sar00b] Sunita Sarawagi. i3: Intelligent, Interactive In-
vestigaton of OLAP data cubes. In Proc. ACM
SIGMOD International Conf. on Management of
Data (Demonstration section), Dallas USA, May
2000.

[Sof] Pilot Software. Decision support suite. http://www.
pilotsw.com.

http://www.cs.cmu.edu/afs/cs/user/aberger/www/html/tutorial/tutorial.ht% ml
http://www.cs.cmu.edu/afs/cs/user/aberger/www/html/tutorial/tutorial.ht% ml
http://www.cognos.com/powercubes/index.html
http://www.cognos.com/powercubes/index.html
http://www.olapcouncil.org
http://www.olapcouncil.org
http://www.datamine.inter.net/
http://www.datamine.inter.net/
http://www.almaden.ibm.com/cs/quest
http://www.almaden.ibm.com/cs/quest
http://www.it.iitb.ernet.in/~sunita
http://www.it.iitb.ernet.in/~sunita
http://www.pilotsw.com
http://www.pilotsw.com

	Introduction
	Overview of the system
	Illustration
	Contents.

	Formulation
	Finding the best values of p
	The Iterative scaling algorithm for finding best p

	Finding informative constraints

	Adapting the maximum entropy principle to OLAP data
	Experimental setup
	Optimizing the expected value update process
	Optimized representation
	Optimizing iterative process
	Asynchronous batched computation

	Optimizing the constraint selection process
	Experimental results

	Integration with existing OLAP systems

	Related work
	Conclusion

