
i3: Intelligent, Interactive Investigaton of OLAP data cubes∗

Sunita Sarawagi
School of Information Technology

Indian Institute of Technology, Bombay
Mumbai 400076, INDIA

Phone: +91-22-576-7904, Fax: +91-22-576-7902
sunita@cs.berkeley.edu

D30

GOAL

The goal of the i3(eye cube) project is to enhance multidimensional database products with a suite of
advanced operators to automate data analysis tasks that are currently handled through manual exploration.
Most OLAP products are rather simplistic and rely heavily on the user’s intuition to manually drive the
discovery process. Such ad hoc user-driven exploration gets tedious and error-prone as data dimensionality
and size increases. We propose to automate them using advanced operators that can be invoked interactively
like existing simple operators yet significantly reduce the reliance on manual discovery.

Introduction

Online Analytical Processing (OLAP) products were developed to help analysts do decision support on
historic transactional data. Logically, they expose a multidimensional view of the data with categorical
attributes like Products and Geographies forming the dimensions and numeric attributes like Sales and
Revenue forming the measures or cells of the multidimensional cube. Dimensions usually have associated
with them hierarchies that specify aggregation levels. The measure attributes are aggregated to various
levels of detail of the combination of dimension attributes using functions like sum, average, max, min, count
and variance.

For exploring the multidimensional data cube there are navigational operators like select, drill-down,
roll-up and pivot conforming to the multidimensional view of data. These have fast response times so that
the user can interactively invoke sequences of such operations. A typical OLAP analysis sequence proceeds as
follows: the user starts from an aggregated level, inspects the entries visually maybe aided by some graphical
tools, selects subsets to inspect further based on some intuitive hypothesis or needs, drills down to more
detail, inspects the entries again and either rolls up to some less detailed view or drills down further and so
on.

The above form of manual exploration can get tedious and error-prone for large datasets that commonly
appear in real-life. For instance, a typical OLAP dataset may have five to seven dimensions, between two
and seven levels hierarchy on each dimension and aggregates more than a million rows. The analyst could
potentially overlook significant discoveries due to the heavy reliance on intuition and visual inspection.

The goal of the i3 (“eye-cube”) is to take these OLAP tools to the next stage of interactive analysis
where we automate much of the manual effort spent in analysis. Mining technology can play a fitting role
in improving the state of these products. The huge size of the data and the rich star-like structure based on
dimensions and hierarchies make it possible to integrate mining tools in useful and innovative ways. Existing
tools like classification, clustering, association rules and time series analysis are starting to be deployed,

∗Submitted for publication. Copyright and intellectual property rights currently with IIT Bombay

1

Product Platform Geography Year
Product name (67) Platform name (43) Geography (4) Year (5)
 Prod_Category (14) Plat_Type (6)
 Prod_Group (3) Plat_User (2)

Figure 1: Dimensions and hierarchies of the software revenue data. The number in brackets indicate the size of that
level of the dimension.

Platform (All)
Product (All)

Sum of Revenue Year
Geography 1990 1991 1992 1993 1994
Asia/Pacific 1440.24 1946.82 3453.56 5576.35 6309.88

Rest of World 2170.02 2154.14 4577.42 5203.84 5510.09

United States 6545.49 7524.29 10946.87 13545.42 15817.18
Western Europe 4551.90 6061.23 10053.19 12577.50 13501.03

Figure 2: Total revenue by geography and year. The two boxes with dark boundaries (’Rest of World’, year 1990
and 1991) indicate the two values being compared.

albeit sparingly. But the approach so far has been to take existing mining algorithms and integrate them
within OLAP products. Our approach is different in that we first investigate how and why analysts currently
explore the data cube and next automate them using new or previously known operators. Unlike the batch
processing of existing mining algorithms we wish to enable interactive invocation so that an analyst can
use them seamlessly with the existing simple operations. Interactive exploration has the advantage that the
analyst’s external-world insight can be combined with the discoveries obtained purely from data.

Project description

Our proposed suite of extensions appear in the form of a toolkit attached with a OLAP product. At this
demo we will present three such operators: diff, and surprise. For ease of understanding, we will illustrate
the working of the our prototype using a real-life dataset obtained from International Data Corporation
(IDC) about the total yearly revenue in millions of dollars for different software products from 1990 to 1994.
The schema as shown in Figure 1 consists of four dimensions Product, Platform, Geography and Time and
a three level hierarchy on the Product and Platform dimension.

The diff operator

One reason why analysts manually drill down to explore detailed data is to find causes for drops or increases
observed at an aggregated level. For automating this task we propose the diff operator that can report
a summarized difference between two values observed at aggregate levels. For example, a busy executive
looking at the annual revenues across different geographies (Figure 2) might quickly wish to find the main
reasons why sales dropped from 1990 to 1991 for the region ’Rest of the World’. By drilling onto details of
individual sales figures perhaps he can pin point those values which contributed to the drop. But this could
be daunting when the number of values contributing to the top-level aggregate is large. Our proposed diff

operator can be used in such cases. In a single step it will do all the digging for him and return the main
reasons in a compact form that he can easily assimilate.

We use a information theoretic formulation for summarizing the detailed differences to trade off the size of
the answer with the loss in accuracy due to summarization of multiple similar changes. In Figure 3 we show
a sample answer returned by our operator in response to the drop observed in Figure 2. In the figure the first
row shows that after discounting the rows explicitly mentioned below it as indicated by the “-” symbol after
(All), the overall revenue actually increased by 10%. The next four rows (rows second through fifth) identify
entries that were largely responsible for the big drop. For instance, for “Operating systems” on “Multiuser

2

PRODUCT PLAT_USERPLAT_TYPEPLATFORM YEAR_1990 YEAR_1991RATIO ERROR
(All)- (All)- (All) (All) 1620.02 1820.05 1.12 34.07
Operating Systems Multi (All)- (All) 253.52 197.86 0.78 23.35
Operating Systems Multi Other M. Multiuser Mainframe IBM 97.76 1.54 0.02 0.00
Operating Systems Single Wn16 (All) 94.26 10.73 0.11 0.00
*Middleware & Oth.UtilitiesMulti Other M. Multiuser Mainframe IBM 101.45 9.55 0.09 0.00
EDA Multi Unix M. (All) 0.36 76.44 211.74 0.00
EDA Single Unix S. (All) 0.06 13.49 210.78 0.00
EDA Single Wn16 (All) 1.80 10.89 6.04 0.00

Figure 3: Reasons for the drop in revenue marked in Figure 2.

Plat_Type Other S.
Platform Single-User Other
Geography United States
Prod_Category Cross Ind. Apps
Product HRM/Payroll

Sum of Revenue Year
1990 1991 1992 1993 1994

Total 0.03 0.07 0.46 5.03 3.87

Figure 4: A problematic drop in revenue from 1993 to 1994 observed for Product = “HRM/Payroll”, Geography =
“United States” and Platform = “Single-User Other”.

Mainframe IBM” the revenue decreased from 97 to 1.5, a factor of 60 reduction and for “Operating systems”
and all platforms of type “Wn16” the total revenue dropped from 94.3 to 10.7. The last three rows show
cases where the revenue increased by significantly more than the 10% overall increase indicated by the first
row.

More details of this work appeared in the 25th International Conference for Very Large Databases, 1999.

The relax operator

Suppose a local branch manager exploring his subportion of the data cube notices a significant drop in sales
somewhere in detailed data. Often, the next step taken by him is to investigate whether this was the only
case where such a drop was observed or is this change part of a bigger problem affecting other cases too. For
this he rolls up to the next level and views the problem case in context of combinations of other dimensions
using a succession of selection, drill-down and pivot steps. The relax operator can be used to automate
this search. The output of the operator is a set of maximal regions around the problem case where a similar
change was observed.

For instance in Figure 4 an analyst is viewing the total revenues along time for a fixed Geography,
Platform and Product when he observes a problematic drop from 1993 to 1994. He might next view this
case in context of other Geographies, Platforms or Products to check if one or more of them had similar drop
and explore further out around some of these identified problem cases trying to find a pattern. We automate
this search through the relax operator. Figure 5 shows the output of the operator around the problem
case of Figure 4. The first relaxation shown by the grayed row numbered “1” informs that we can generalize
simultaneously along the Geography and Product dimension for the same platform and Prod Category.
That is, each Product in Category “Cross-Ind. Apps” in each Geography had a drop from 1993 to 1994.
The two exceptions to this generalization are listed immediately below. The second relaxation shown by
the grayed row numbered “2”, further away from the problem case than the first one, states that within the
same Platform type (“Other S.”), another platform “Single-User OS/2” had a similar drop for each Product
(except Product “Distribution”) for the same Category and Geography. Armed with this exact extent and
scope of the problem, the analyst can then apply his insight to infer on possible external reasons.

3

No.PROD_CATEGORY PRODUCT GEOGRAPHY PLAT_TYPE PLATFORM
Cross Ind. Apps HRM/Payroll United States Other S. Single-User Other

1 (Each) (Each)
Other Office Apps Rest of World
HRM/Payroll Asia/Pacific

2 (Each) Single-User OS/2
Distribution

Figure 5: Relaxations from the problem case in Figure 4.

PROD_CATEGORY PRODUCT GEOGRAPHY PLATFORM YEAR ACTUALEXPECTED
Cross Ind. Apps Distribution Asia/Pacific (Each) (Each) 1.0 7.7
Cross Ind. Apps HRM/Payroll Asia/Pacific (Each) (Each) 0.6 7.7
Vertical Apps (Each) (Each) (Each) (Each) 12.7 7.7
Middleware (Each) (Each) (Each) (Each) 0.5 7.7
Other (Each) (Each) (Each) (Each) 0.8 7.7
System SW (Each) (Each) (Each) (Each) 30.6 7.7
Info. tools (Each) (Each) (Each) (Each) 3.7 7.7
Develop. tools DBMS Engines (Non-Object)(Each) (Each) (Each) 15.7 7.7
Develop. tools Object-Oriented Programming(Each) (Each) (Each) 2.2 7.7
Develop. tools Object CASE (Each) (Each) (Each) 0.9 7.7

Figure 6: Informative regions returned to user who has not viewed any part of the data.

The surprise operator

This operator is geared towards helping a user quickly familiarize himself with the significant features of a
OLAP data cube in a manner that adapts to the prior context of the user. We developed a user personal-
ization tool consisting of the following three pieces. First, we capture the analysts context by continuously
keeping track of the parts of the cube that he is familiar with using either transparent logs of various facets
of the cube he visited or explicit entries by the user. Next, we use an asynchronous process to connect
together the various visited pieces of the cube to model the user’s mental expectation of the rest of the
cube. Finally, at any time, the user can invoke the surprise operator that will output the most interesting
unvisited parts of the cube given his established context. This process of updating the user’s context based
on visited parts and querying for regions to explore further continues in a loop until the user’s mental model
perfectly matches the actual cube.

We show two sample outputs of the surprise operator — one for the case of a user who is totally
unfamiliar with the dataset, second for a user who is totally familiar with old data from year 1990 to 1992,
but for the last two years (1993 and 1994) has only seen the total revenue not the detail break up. The
first user assumes that the revenue for each case is the same not knowing anything else about the data. The
output to him (as shown in Figure 6) is a list of Product, Geography combination where that assumption is
most violated. In the figure, the last two columns denote the actual and the user expected values respectively.
The seond user based on the totals along year expects to see an increase in revenue from 1992 to 1993 to
1994 for each Product,Platform,Geography combination. The output to him as shown in Figure 7 is a set
of individual cases that dropped or increased significantly in 1993 or 1994. Thus, the second user will only
have to concentrate on those cases which cannot be extrapolated based on his experience of past data and
the yearly totals.

The key pieces of technology implemented for this paradigm are (1) a method for finding expected values
of unvisited parts from visited parts of the cube and (2) a method for defining what is interesting to explore
further. We formulate the first problem using the maximum entropy principle. Accordingly, we report as
interesting those regions which if visited by the user will lead to the smallest gap between the new expected
values and the actual values. We have developed procedures for incrementally and efficiently updating the
interesting frontiers to explore further as new areas of the cube are visited.

4

PRODUCT GEOGRAPHY PLATFORM YEAR ACTUALEXPECTED
Other Office Apps Western Europe Multiuser Mainframe IBM 1993 3.05 78.25
EDA Western Europe Multiuser UNIX 1994 19.97 142.41
Operating Systems United States Multiuser Other Server 1994 0.22 47.82
Operating Systems Western Europe Multiuser Minicomputer OpenVMS1993 3.27 69.74
Middleware Asia/Pacific Multiuser Mainframe IBM 1993 185.72 96.10
CASE (Non-Object) United States 16-bit Windows/DOS 1994 1.77 57.58
DBMS Engines (Non-Object) United States Multiuser Mainframe IBM 1994 90.31 315.03
DBMS Engines (Non-Object) Rest of World Multiuser Mainframe IBM 1994 11.00 98.92
4GL & Report Writers Rest of World Multiuser Mainframe IBM 1993 0.31 42.48
3GLs & Develop. Environments Rest of World Multiuser Mainframe IBM 1993 0.62 38.67

Figure 7: Informative regions returned to user who is familiar with the entire cube for years 1990-1992 but unfamiliar
with years 1993 and 1994.

OLAP
server

Excel
frontend

.Stored procedure for
computing reasons

Server-side

Client-side
ODBC: Call
StoredProc.

SQL/MDX query

Cursor to query
result

N-row answer

Figure 8: Our prototype.

Integrating with OLAP products

Our operators are designed to fit as add ons to existing OLAP systems. Our current prototype is based
on IBM’s DB2/UDB database that we view as a ROLAP engine with Microsoft Excel’s Pivot Table as
the OLAP frontend. The algorithms for each of these operators are packaged as java stored procedures
that reside on the server side. The client uses ODBC embedded in Visual Basic for invoking the stored
procedure. The answers are stored in the database and accessed by the client using ODBC. In Figure 8
we show the architecture for our prototype. Each of the three operators use dynamically generated queries
to push all heavy weight processing to the DBMS and thus ride on the OLAP servers indexing and query
processing capabilities. Also, our implementation does not not rely on any off line index construction or
preprocessing steps. We can directly work with any available OLAP data source. The data is assumed to
be laid out in a star schema for the processing. The operators are implemented for interactive invocation
and we have validated this using experiments on the industry OLAP benchmark (with 1.36 million tuples).
For instance, the diff operator can process more than a quarter million records in less than 10 seconds and
scales gracefully with increasing dimensions and number of attributes. We also plan to test our operators as
attachments to Oracle Express and Microsoft SQL Server’s OLAP extensions.

Conclusion

Multidimensional OLAP products provide an excellent opportunity for integrating mining functionality be-
cause of their widespread acceptance as a decision support tool and their existing heavy reliance on manual,
user-driven analysis. In this project we demonstrated with the help of three operators how this can be done.
In each case, we automate some existing tedious, manual discovery process by introducing a new operator.

We have fast algorithms and efficient implementations of the operators for interactive use during cube
exploration. We have also integrated them with existing OLAP products and can work as add ons thus
allowing easy deployment.

Future scope of the project includes identifying newer operators, exploring use of these operators in
normal relational databases and investigating ways of inter-operating between them. Also we view this
project as a precursor to interactive, adhoc mining fully implemented inside a database system.

5

