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F r o m  e lec t romot ive  force  (emf) m e a s u r e m e n t s  using solid oxide galvanic cel ls  i nc o r po r -  
ating ZrOz-CaO and ThOz-YO~.s e lec t ro ly tes ,  the chemical  potent ia ls  of oxygen over  the 
sys tems  Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated.  The va lues  may 
be r ep re sen t ed  by the equations:  

2Fe ( s ,  I) + Oz(g) + 2Cr2Oa(s) - -  2FeCr204 (s) 

Akto2 = - 151,400 + 34.7T (• cal 
= - 6 3 3 , 4 0 0  + 145.5T(• J (750 to 1536~ 

A~tO2 = - 1 5 8 , 0 0 0  + 38.4T(• cal 
= -661 ,000  + 160.5T(*1250) J (1536 to 1700~ 

2Fe (s, I) + O2 (g) + 2V203 (s) - -  2FeV204 (s) 

A/~Oz = - 138,000 + 29.8T(+300) cal 
= - 577,500 + 124.7T (• J (750 to 1536~ 

A/IO2 = - 1 4 4 , 6 0 0  + 33 .45T(-300)  cal  
= - 6 0 5 , 1 0 0  + 140.0T(~-1250) J (1536 to 1700~ 

At the oxygen potent ia ls  cor responding  to Fe + FeCrzO a + Cr203 equi l ibr ia ,  the e lec t ron ic  
contr ibut ion to the conductivi ty of ZrO2-CaO e lec t ro ly te  was found to affect the m e a s u r e d  
emf. Application of a sma l l  60 cycle A.C. vol tage with an ampli tude of 50 mv ac ros s  the 
cell  t e r m i n a l s  reduced the t ime r equ i r ed  to a t ta in  equ i l i b r ium at t e m p e r a t u r e s  between 
750 to 9500C by approximate ly  a factor  of two. The second law entropy of i ron  chromi te  
obtained in this  study is in good agreement  with that ca lcula ted from t h e r m a l  data. The 
ent ropies  of fo rmat ion  of these  sp ine l  phases  f rom the component  oxides can be c o r r e -  
la ted to cat ion d i s t r ibu t ion  and c rys t a l  f ie ld theory.  

T H E  spinel  phases  play an impor tant  ro le  in the oxi -  
dation of al loys,  fo rmat ion  of inc lus ions  in cast  me ta l s  
and in ref in ing  operat ions  in pyrometa l lu rgy .  Accurate  
in format ion  on the the rmodynamic  proper t i es  of the 
sp ine l  phases would pe rmi t  a more  p rec i se  desc r ip t ion  
of these  me ta l lu rg ica l  phenomena.  A no rma l  spinel  
s t ruc tu re  (MX204)  can be desc r ibed  as a c lose-packed 
cubic a r r a n g e m e n t  of anions with one-eighth  of the 
t e t r ahedra l  holes f i l led with M z§ cations and one-hal f  
of the octahedral  holes f i l led with X a§ cat ions.  At high 
t empe ra tu r e s ,  cat ions can exchange posi t ions ,  the mag-  
nitude of cation mixing being de te rmined  by the d i f fe r -  
ence in " s i t e  p re fe rence  e n e r g i e s " .  Relat ionships  b e -  
tween thermodynamic  p a r a m e t e r s  and s t ruc tu r a l  in for -  
mat ion  would be useful  both for the es t ima t ion  of v a l -  
ues where m e a s u r e m e n t s  are  lacking, and for the eva l -  
uat ion of the rmochemica l  data when a la rge  body of ex-  
pe r imen ta l  informat ion  is avai lable .  

The s tandard  free energy  of fo rmat ion  of i ron ch ro -  
mite  has been  measu red  by Boericke and Bangert ,  x 
Kunnmann e t  a l . ,  z Katsu ra  and Muan, a Novokhatski and 
Lenev, 4 and Chen and Chipman, s using ga s - equ i l i b r i um 
methods,  while solid oxide galvanic ce l l s  were era-  
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ployed by Tretjakow and Schmalzried, s Rezukhina et a l .  7 

and Fruehan .  s The r e s u l t s  show a sp read  of 8.6 kcal  
gr mole -1 (36 kJ gr mole-*) of chromi te  at 1000~ F u r -  
t h e r m o r e ,  the second law en t ropies  obtained f rom the 
f ree  ene rgy  m e a s u r e m e n t s  *-4,a,7 cannot be reconc i led  
with the value obtained f rom t h e r m a l  d a t a J '  1o 

The s tandard  free energy  of fo rmat ion  of i ron vana -  
dire has been  m e a s u r e d  by  Kunnmann e t  a l .  2 below the 
mel t ing  point of iron,  and by Chipman and Dastur,  n 
Karasev  et al. ,  12 Nari ta ,  .3 and Kay and Kontopoulos 14 
above the mel t ing  point. The va lues  obtained by Chip- 
man and Dastur  n and Nar i t a  *a agree  at 1600~ while 
that of Karasev  e t  a l .  .2 is 3.7 kcal gr  mole -~ (15.5 kJ  
gr mole-*) more  posi t ive and that of Kay and Kontop- 
oulos ~4 is  1 keal gr mole -~ (4.18 kJ  gr  mole -1) more  
negative.  Ext rapola t ion  of these  data to t e m p e r a t u r e s  
below the mel t ing  point of i ron  does not match the 
m e a s u r e m e n t s  of Kunnmann e t  a l .  2 It will  be shown 
la te r  that the t e m p e r a t u r e  coefficients  of the free en-  
e rgy  of fo rmat ion  obtained f rom the data of Karasev 
e t  a l . ,  ~2 and Kay and Kontopoulos 1~ a re  not Consistent 
with the c u r r e n t  knowledge on the s t a t i s t i ca l  t he r mo-  
dynamics  of gases  and condensed phases .  

In an attempt to resolve the above discrepancies, 
the chemical potentials of oxygen over the mixtures 
Fe + FeCr204 + Cr203 and Fe + FeV204 + V203 were 
measured with solid oxide galvanic cells incorporating 
ZrOa-CaO and ZrO2-CaO ill combination with ThO2- 
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YO~.~ as e lec t rolyte ,  using Fe + 'FeO '  and Mo + MoO~ 
mix tures  as r e fe rence  e lec t rodes ,  in the t empera tu re  
range  750 to 1600~ 

EXPERIMENTAL 

Mater ials  

The fine powders of meta l l ic  i ron and f e r r i c  oxide 
used in this  study were of spec t rographic  s tandard  
and were supplied by Johnson Matthey Chemicals .  
Chromium and vanadium oxides (Cr20 ~ and V2Oa) were 
obtained f rom Aifa Inorganics  and were  99.9 pct pure.  
Iron chromite  (FeCr~O~) and vanadi te  (FeV~O~) were 
p repared  by prolonged heating at l l00~ for 3 to 4 
days of p r e s sed  pel le ts  containing Fe,  FeaO ~ and 
Cr~O~ (or V~Oa) in the molar  ra t io  ( l : h 3 ) .  The pel le ts  
were contained in a lumina  c ruc ib les  placed inside 
evacuated s i l i ca  capsules .  Fo rma t ion  of the t e r n a r y  
compounds was conf i rmed by X- r ay  dif f ract ion ana ly -  
s is .  Impervious  ca l c i a - s t ab i l i zed  z i r c o n i a  tubes sup-  
plied by Zi rconia  Corporat ion of A m e r i c a  contained 
7.5 mole pct CaO. Thor ia  pel le ts  doped with 15 mole 
pet y t t r i a  were p repared  f rom mixed n i t r a t e  solut ions 
by evaporat ion and subsequent  decomposi t ion.  The r e -  
sul t ing powder was p r e s sed  into pe l le ts  at a p r e s s u r e  
of 30 tons sq in:  * and s in te red  under  an a tmosphere  of 
90 pct N~ + 10 pct H~ at 1800~ The argon gas used 
as the a tmosphere  for the emf runs  was 99.98 pct pure  
and was dr ied and then deoxidized by pass ing  through 
a column of t i tan ium granules  main ta ined  at 900~ 

Apparatus and Procedure  

The method of p repara t ion  of the e lec t rodes  was 
s i m i l a r  to that descr ibed  e a r l i e r .  15 Fine  powders of 
component meta ls  and oxides were mixed in equ imolar  
propor t ions ,  compacted into pel le ts  and s in te red  in 
evacuated quartz  capsules  at 1100~ The appara tus  
and cell  a r r a n g e m e n t s  were ident ical  to that used in 
an e a r l i e r  study on i ron a luminate .  ~5 The voltages of 
the following cel ls  were measu red  as a function of 
t empe ra tu r e :  

Pt, Fe + 'FeO '  II CaO- ZrO~, Fe + FeCrzO 4 + Cr203, Pt 

[1] 
Pt, Fe + 'FeO '  II CaO- ZrO 21 YO,.s-ThO~ II Fe + FeCr204 

+ Cr2Os, Pt [2] 

Pt, Mo + MoOa, CaO- ZrO 2 , Fe + FeCr204 + Cr203, Pt 

[3] 
Pt, Mo + MoO2, CaO-ZrO21 YOI.s-ThO 2 IIFe + FeCr204 

+ Cr~Oa, Pt [4] 

Pt, Fe + 'FeO '  II Ca-  ZrO2 II Fe + FeV204 + V203, Pt [5] 

Pt,  Fe + ' F e O ' ,  CaO- ZrO21 YO~.s-ThO 2 II Fe + FeV204 

+V20s, Pt [6] 
Pt, Mo+MoO211CaO-ZrO 2 II Fe+FeV204+V203,  Pt [7] 

Pt, Mo + MoO2 II CaO- ZrO 21 YO~.s-ThO 2 II Fe + FeV204 

+V203, Pt [8] 

Cells 1, 2, 5 and 6 were employed in the t empera tu re  

range 750 to 1200~ and cel ls  3, 4, 7 and 8 from 950 
to 1400~ In b ie lec t ro ly te  cel ls ,  the ThO2-YO~.s e l e c -  
t ro lyte  was placed in contact  with the e lec t rode  having 
the lower oxygen par t ia l  p r e s s u r e .  The cell  t e m p e r a -  
tu re  was measured  with a P t /P t -13  pct Rh the rmocou-  
ple. The oxygen chemical  potent ial  over  Fe + FeV204 
+ V2Oa at 1600~ was measu red  by dipping a closed 
end ZrO2-CaO tube containing a Mo* MoO2 r e f e r e nce  
e lect rode into 10 g of l iquid i ron equ i l ib ra ted  with 6 g 
of FeV204 and 4 g of V203 for 3 to 5 h. The l iquid i ron 
was contained in an a lumina  cruc ib le ,  which was l ined 
inside with V2Oa. Molybdenum wires  were  used to make 
e l ec t r i ca l  contact with l iquid i ron  and the Mo + MoO 2 
r e fe rence  electrode.  S imi la r  expe r imen t s  were not 
c a r r i e d  out with the Fe + FeCr204 + CrzO 3 sys tem,  
s ince e a r l i e r  s tudies  TM m have shown that  the phases  
do not coexist  under equ i l ib r ium condi t ions  at 1600~ 

The emf was measu red  with e i ther  'So la r t ron '  or  
'Kei thley '  digital  vo l tme te r s .  The r e v e r s i b i l i t y  of the 
ce l l s  was checked by pass ing  sma l l  ex te rna l  c u r r e n t s  
in e i ther  d i rect ion.  In each case the emf was found to 
r e t u r n  to the or ig inal  value.  The t ime  r equ i r ed  to 
reach equi l ib r ium (steady emf) va r i ed  f rom 16 h at 
750~ to 2 h at 1400~ The emf was a lso  found to be 
independent of the flow ra te  of the ine r t  gas. Applica-  
t ion of an A.C. r ipple  with an ampli tude of 50 mv was 
found to shor ten the t ime  r equ i r ed  for equi l ib ra t ion  in 
the t e m p e r a t u r e  range  750 to 950~ by  approx imate ly  
a factor  of two. In each case ,  the cel l  emfs were mon-  
i tored for 2 to 6 h af ter  the r emova l  of the A.C. poten-  
t ia l .  Application of the A.C. potent ia l  at higher  t e m -  
pe ra tu re s  was found to acce le ra t e  the co r ros ion  of the 
e lec t ro ly te  by the Fe + 'FeO '  e lec t rode .  The phases  
p resen t  in the e lec t rode  pel le ts  were  es tab l i shed  be -  
fore and after  exper imen t s  by X - r a y  diffract ion.  These  
s tudies  showed that no changes occu r r ed  in the e l e c -  
t rodes  during the exper imen t s .  

Resul t s  

The va r i a t ion  of the emf of cel ls  1 and 2 with t e m -  
pe ra tu re  is shown in Fig.  1. The emf of cell  1 using 
the ZrO2-CaO e lec t ro ly te  was found to be 3 to 5 mv 
lower than that of cell  2, in which the ThOa-YO~.s pel -  
let  was used adjacent  to the Fe + FeCr204 + Cr2Oa 
elect rode.  The emf of cel l  1 was found to dec rease  
gradual ly  with t ime.  A t r ace  of the t ime  dependence 
of the emf at 1200~ af ter  pass ing  an ex te rna l  c u r r e n t  
to r emove  oxygen f rom the Fe + FeCr204 + Cr203 e lec -  
t rode is shown in Fig. 2. The value of the 'p la teau '  emf 
was independent (e3 my) of the amount  of c u r r e n t  
passed (5 to 100 gA for 15 min  to 60 rain). Following 
the method of Diaz and Richardson  t7 the emfs c o r r e -  
sponding to the plateau may  be taken to r e p r e s e n t  the 
equ i l ib r ium values ,  and a re  plotted in Fig. 1, 

The t e mpe r a t u r e  dependences  of the emf of cel ls  3, 
4, 7 and 8 are  shown in Fig.  3. Again the emf of cel l  3 
is 2 to 6 mv below that of cei l  4. The emf of cel ls  2, 4, 
5, 6, 7 and 8 were reproduc ib le  on repea ted  t e m p e r a -  
ture  cycling. The di f ference in the emf of cel ls  1 and 
2, 3 and 4, may be a t t r ibutable  to the onset  of e l ec -  
t ron ic  conductivi ty in the ZrO2-CaO e lec t ro ly te  at the 
oxygen par t ia l  p r e s s u r e s  co r respond ing  to the three  
phase equi l ib r ium Fe + FeCraO 4 + Cr20 s. The values  
of the emf of cel ls  5 and 6 shown in Fig.  4 a re  the 
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Fig. 1--The temperature  dependence of the emf of cell  1 (C) 
and cell  2 (• obtained in this study. 1 Kannmann e t  a l .  ,2 
2 Boericke and Bangert, t 3 Tretjakow and Schmalzried,  ~ 

? 4 4 Rezukhina e t  a l . ,  5 Novokhatski and Lenev. �9 Katsura 
and Muan. 3 

s a m e  wi th in  e x p e r i m e n t a l  e r r o r  (•  my) .  T h e s e  r e -  
su l t s  ind ica te  tha t  at  the  oxygen  p o t e n t i a l  c o r r e s p o n d -  
ing  to the  F e  + FeV204 + V20 s e q u i l i b r i u m ,  t h e r e  i s  no 
s i g n i f i c a n t  e l e c t r o n i c  c o n t r i b u t i o n  i t  e < 0.01) to t he  
c o n d u c t i v i t y  of Z r O z - C a O .  The  t e m p e r a t u r e  d e p e n -  
d e n c e  of  the  e m f  f o r  the  v a r i o u s  c e l l s  can  be  r e p r e -  
s e n t e d  by  the  equa t i ons ,  

E 2 = 270 - 3.75 • 10-"T m v  

E 4 = 138 + 5.72 • 10-eT m v  

E s = E s = 125.2 + 1.583 • l O - Z T  m v  

E 7 = E 8 = - 6.3 + 11.06 • 10-aT my.  

The  e m f  of c e l l  7 was  200 (~-4) m v  at  1600~ and 194 
(•  my at  1589~ The  e m f s  above  the  m e l t i n g  po in t  
of  i ron  w e r e  cons t an t  f o r  5 to  10 min  a f t e r  i m m e r s i o n  
of t he  e l e c t r o l y t e  tube .  The  d i f f e r e n c e  in oxygen  p o t e n -  
t i a l  b e t w e e n  the  two e l e c t r o d e s  i s  r e l a t e d  to the  e m f  by  
the  r e l a t i o n  

Pb2 
A~O 2 = R T  In - - 7 " -  = - 4 F E  [9] 

PO 2 

w h e r e  F = 23,063 ca l  V -~ m o l e  -~, E is  the  e m f  in v o l t s  
and the  c h e m i c a l  p o t e n t i a l  is  e x p r e s s e d  in ca l .  T h e  
o x y g e n  po ten t i a l  c o r r e s p o n d i n g  to the  r e f e r e n c e  e l e c -  
t r o d e s  a r e  g iven  by the  equa t i ons ,  ~s'~8 

Me + MOO2: A~tO z = - 138,600 + 40 .0T  ca l  
= - 5 7 9 , 9 0 0  + 167 .4T J [10] 

F e  + ' F e O ' :  A/~O2 = - 126,470 + 31 .26T  c a /  
= - 529,150 + 130.8T 3 [11] 

When E q s .  [9], [10] and [11] a r e  c o m b i n e d  with  the  m e a -  
s u r e d  e m f ,  the  f o l l o w i n g  e q u a t i o n s  a r e  ob t a ined  fo r  the  
oxygen  po t en t i a l  of the  t h r e e  p h a s e  m i x t u r e s :  

2 F e  (s,  i )  + O2(g) + 2Cr2Os (s) - - 2 F e C r 2 0 4  (s) 

AG ~ = -- 151,400 + 34.7T(-~300)  c a /  
= - 6 3 3 , 4 0 0  + 1 4 5 . 5 T ( •  J (750 to 1536~ 

[12] 

AG ~ = - 158,000 + 38 .4T (•  ca l  
= - 6 6 1 , 0 0 0  + 1 6 0 . 5 T ( •  J (1536 to  1700~ 

[13] 

2 F e  (s ,  1) + O2(g) + 2VzO3 (s) - -  2 F e V 2 0 ,  (s) 

ZXG ~ = - 138,000 + 2 9 . 8 T ( •  ca l  
= - 5 7 7 , 5 0 0  + 1 2 4 . 7 T ( •  J (750 to  1536~ 

[14] 

AG ~ = - 144,600 + 3 3 . 4 5 T ( •  c a l  
= - 6 0 5 , 1 0 0  + 1 4 0 . 0 T ( •  J (1536 to 1700~ 

[15] 

T h r o u g h o u t  th i s  p a p e r  ca l  = 4.184 J .  F o r  the  p u r p o s e  
of i n t e r n a l  c o n s i s t e n c y  and in v i e w  of the  u n c e r t a i n t y  
l i m i t s ,  f o u r  s i g n i f i c a n t  f i g u r e s  a r e  u s e d  fo r  r e p r e s e n t -  
ing the  n u m e r i c a l  t e r m s  in t he  a b o v e  e q u a t i o n s .  The  
quoted  u n c e r t a i n t y  l i m i t s  on the  s t a n d a r d  f r e e  e n e r g y  
changes  w e r e  o b t a i n e d  b y  c o m b i n i n g  the  u n c e r t a i n t i e s  
in m e a s u r e d  e m f  and the  o x y g e n  p o t e n t i a l  of  the  r e f e r -  
e n c e  e l e c t r o d e s .  The  e q u a t i o n s  f o r  the  t e m p e r a t u r e  
r a n g e  1536 to 1700~ a r e  d e r i v e d  by  u s ing  the  h e a t  of 
f u s i o n  of i r o n  ~9 i3.3 k c a l  o r  13.8 kJ ) .  The  v a l u e s  o b -  
t a i n e d  in t h i s  m a n n e r  f o r  F e  + FeV~O 4 + V20  s a r e  in 
good a g r e e m e n t  wi th  t he  d i r e c t  m e a s u r e m e n t s  at  
1600~ S t r i c t l y ,  t he  v a r i a t i o n  of t he  f r e e  e n e r g y  with  
t e m p e r a t u r e  in t he  r a n g e  750 to  1536~ should  exh ib i t  
s m a l l  c h a n g e s  in s l o p e  at  po in t s  c o r r e s p o n d i n g  to the  
s o l i d - s t a t e  phase  t r a n s i t i o n s  in i r o n .  H o w e v e r ,  the  r e -  
su l t s  u s ing  Fe  + ' F e O '  and Me + MoO2 r e f e r e n c e  e l e c -  
t r o d e s  a g r e e  wi th in  t he  e x p e r i m e n t a l  e r r o r  (• 3 my) 
and i nd i ca t e  tha t  a l i n e a r  e q u a t i o n  m a y b e  u s e d  fo r  
t h i s  t e m p e r a t u r e  r a n g e .  The  i r o n  c h r o m i t e  and v a n a -  
d i t e  p h a s e s  m i g h t  exh ib i t  n o n s t o i c h i o m e t r y ;  the  v a l u e s  
quoted in this study correspond to the Cr203 or V20 s 
saturated compositions. The following equations char- 
acterize the formation of the spinel phases from the 
component oxides: 

Feo.m60 (s) + Cr~Os (s) + 0.054 Fe is) -- FeCr204 is) 

AG ~ = - 12,450 + 1 . 7 3 T ( + 2 5 0 )  ca l  
= - 5 2 , 1 0 0  + 7 . 2 4 T ( •  J ( 7 5 0 t o  1300~ [16] 

F e o . ~ 6 0 ( s  ) + V2Os (s) + 0.054 f e  (s) ~ FeVzO 4 (s) 

AG ~ = - 5,780 - 0 . 7 3 T ( + 2 5 0 )  c a l  
= - 24,160 - 3 .06T (~-1000) J (750 to 1300~ [17] 

DISCUSSION 

The  r e s u l t s  o b t a i n e d  in th i s  s t u d y  f o r  i ron  c h r o m i t e  
a r e  c o m p a r e d  wi th  t h o s e  r e p o r t e d  in the  l i t e r a t u r e  in 
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Fig. 2--The time dependence 
of the emf of cell 1 at 1200~ 

Fig. 3--The variation of emf with temperature: �9 cell 3; 
Oce l l 4 ;  |  • cell 8. 

Fig.  1. Values r e p o r t e d  by Katsura  and Muan, s and 
Rezukhina  et  a l .  ~ a r e  in fa i r  a g r e e m e n t  with the r e -  
sul ts  of this  study. Tre t jakow and Schmalz r i ed  8 used 
a ca l c i a  s tab i l ized  z i r c o n i a  e l e c t r o l y t e  and a i r  as the 
r e f e r e n c e  e lec t rode .  The p r e s e n c e  of e l ec t ron ic  con-  
duction in the e l e c t r o l y t e  would expla in  the lower  emfs  
obtained in the i r  study. Kunnmann e t  a l .  2 m e a s u r e d  the 
CO/CO2 ra t io  r e q u i r e d  for  the syn thes i s  of the c h r o -  
mi te  f r o m  iron and c h r o m i u m  sesqu iox ide .  The p r e s e n c e  
of k ine t ic  r e s t r i c t i o n s  on the for marion reac t ion  would 
r e q u i r e  the p r e s e n c e  of a more  oxidiz ing gas mix ture  
fo r  the synthes is  than that obse rved  under equ i l ib r ium 
condit ions.  The oxygen potential  obtained f rom Kunn- 

Fig. 4--The temperature dependence of emf of ceils 5 (O) and 
6 (x). 

mann et  a l .  is cons iderab ly  m o r e  pos i t ive  and sugges t s  
that  these  m e a s u r e m e n t s  may  not r e f l e c t  equ i l i b r ium 
condit ions.  No obvious r e a s o n s  can be found for  the 
d i s c r e p a n c y  between the p re sen t  r e s u l t s  and those  of 
Boer i cke  and Banger t ,  t and Novokhatski  and Lenev.  4 

Chen and Chipman ~ and Fruehan  8 have m e a s u r e d  the 
f r e e  ene rgy  change at 1600~ for  the r eac t ion  

Fe (l) + 2Cr (l) + 4 0  ~ FeCr204 (s) 

where  O denotes oxygen d i s so lved  in l iquid i ron.  The i r  
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law heat of format ion of FeCr204 at 298K is - 11,800 
(2350) cal mole -~ or - 49,370 (+ 1,460) J mole -~. 

The oxygen potent ial  over the Fe + FeV204 + V203 
sys tem is plotted in Fig. 5. The va lues  r epo r t ed  by 
other inves t iga tors  a re  also shown for compar i son .  
The r e su l t s  of this  study a re  in good a g r e e m e n t  with 
the m e a s u r e m e n t s  of Chipman and Dastur  ~ and Nar i t a  is 
at 1600~ The t e m p e r a t u r e  dependence of the oxygen 
potential  is negative according  to Nari ta .  ~s This  is not 
in accord  with the s t a t i s t i ca l  t he rmodynamics  of gases  
and condensed phases .  For  the reac t ion ,  

Fe (l) + �89 + V203(s) ~ FeV204(s) 

the ma in  contr ibut ion to the en t ropy  change a r i s e s  f rom 
the entropy of the gaseous reac tan t ,  which combines  
with the solid phases  to form a sol id product .  The en -  
t ropy change would the re fo re  be negat ive  and g rea t e r  
than 10 ca2 deg -~ mole -~ (42 J dog -~ mole-~). The f ree  
energy  of format ion  of FeV204 obtained by  Karasev  
et al. ~2 is 3.7 kcal  (15.5 kJ) more  posi t ive  than that  
obtained in this study. The r e s u l t s  of Kay and Kontop- 
oulos 14 a re  1.3 to 2.7 kcal  (5.4 to 11.3 kJ) more  nega-  
t ive and the t e m p e r a t u r e  coefficient  of the i r  f ree  en -  
e rgy  indicates  an entropy change of - 4 . 4  cal  deg -~ 
mole -~ (18.4 J deg -~ mole-~). The f ree  energy  of fo r -  
mat ion of FeV204 obtained by Kunnmann  et al. 2 at 
lower t empe ra tu r e s  is 1.3 kcal  (5.4 kJ) more  posi t ive 
than that obtained in this  study. As d i scussed  e a r l i e r ,  
this  d i sc repancy  probably  a r i s e s  f rom kinet ic  r e s t r i c -  
t ions in the synthes is  of FeVzO4 f rom Fe, V2Os and CO 
+ CO 2 mix tures .  

5--The variation of RT In p~Z with temperature for the Fig. 
system Fe + FeV204 + V203: 

- - ,  @this study; . . . . .  Narita; 13 
. . . .  Kay and Kontopoulos; u 
- •  Karasev eta/.; 12 O Kunnmann etal.; 2 
[] Chipman and Dastur. tl 

va lues  are  combined with the f ree  energy  of solut ion of 
oxygen in iron,  2~ the f ree  energy of format ion  of 
Cr20 s 2, and the f ree  energy  of fusion of Cr 1~ to obtain 
the f ree  energy change for the reac t ion ,  

2Fe (l) + O~(g) + 2Cr203 (s) ~ 2FeCr204 (s) 

AG~sv3 = - 8 5 , 4 3 0  cal t Chen and Chipman 
= - 357,450 J 

AG~sTs = - 8 2 , 3 7 0  c a l t  Fruehan.  
344,626 J 

These  values  compare  with a value of - 8 6 , 1 0 0  (• 
cals  ( -360 ,400  J) obtained f rom the r e su l t s  of this  
study (Eq. [13]). 

The heat capaci ty m e a s u r e m e n t s  of Shomate 9 (53 to 
298K) and Naylor TM (298 to 1780K) can be used to ca l -  
culate a value of 93.56 (+0.6) cal  deg -1 mole -1 for the 
ent ropy of FeCr204 at 1300 K. The second law ent ropy 
of format ion of FeCr204 (Eq. [12] or  [16]) obtained in 
this study can be combined with the entropy of Cr2Os(s), 
Fe(s) and O2(g) or 'FeO'(s)  ~9 to give a value of 94.17 
(• cal deg -z mole -~ or 394 J deg -~ mole -z at 1300K. 
The second law entropy of FeCr204 is in good a g r e e -  
ment  with that calculated f rom t h e r m a l  data. The thi rd  

ENTROPY OF FORMATION OF 
S PINE LS 

Since the entropy a r i s i ng  f rom the mixing of cat ions 
in the t e t r ahedra l  and oc tahedra l  s i tes  of the sp ine l  
s t ruc tu re  would make a s igni f icant  cont r ibut ion  to the 
total  ent ropy of a spinel  at high t e m p e r a t u r e s ,  in for -  
mat ion on the cation d i s t r ibu t ion  is r equ i r ed  to account 
for the en t rop ies  of fo rmat ion  of spinels  f rom compo-  
nent  oxides which were obtained in this  study. Dunitz 
and Orge122 have d i scussed  the d i s t r ibu t ion  of t r a n s i -  
t i on -me ta l  ions among t e t r a he d r a l  and oc tahedra l  s i tes  
in oxides f rom the viewpoint  of c rys ta l  field theory.  
When a t r a n s i t i o n - m e t a l  ion is su r rounded  by an octa-  
hedron of negat ive ions,  the d o rb i t a l s  a re  spli t  by the 
e lec t ros ta t i c  f ield into a t r ip ly  degenera te  t2g orb i ta l  
which is s tabi l ized  and a doubly degenera te  eg orbi ta l  
which is des tab i l ized  re la t ive  to the mean  d orb i ta l .  In 
the t e t r ahedra l  field, the s i tua t ion is s i m i l a r  but the eg 
orb i ta l s  are  more  s table  than the t2g orb i ta l s .  Dunitz 
and Orge122 have calcula ted the magnitude of the s tab i l -  
ization energ ies  for the t r a n s i t i o n - m e t a l  ions in t e t r a -  
hedra l  and octahedra l  s i tes  f rom optical  and magnet ic  
m e a s u r e m e n t s .  The di f ference between the s t ab i l i za -  
t ion energ ies  in the two competing s i tes  gives the ' s i te  
p re fe rence  ene rgy ' ,  which is shown in Table I. If the 
mixing of cat ions on each type of s i te  is ideal,  the 
cation d i s t r ibu t ion  can be obtained by equating the dif-  
fe rence  in oc tahedra l  s i te  p re fe rence  energy  for the 
two cations to the product  of absolute t e mpe r a t u r e  and 
the ideal en t ropy of mixing.  

Navrotsky and Kleppa 23 have used the m a s s - a c t i o n  
law t r ea tmen t  to der ive  an e mp i r i c a l  sca le  of octa-  
hedral  si te p re fe rence  ene rg ie s  f rom avai lable  high 
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Table I. Octahedral Site Preference Energies for Various Ions 
from Crystal Field Theory ~2 

Octahedral Site Preference Energy 

Ion kcal kJ 

Fe 2§ -4.0 - 16.7 
Ni 2§ -20.6 -86.2 
Co 2§ -7.4 -31.0 
Cu ~* - I  5.2 -63.6 
Mn 2+ 0 0 
V 3+ -12.8 -53.6 
Cr 3+ -37.7 -157.7 
Fe 3+ 0 0 
AI a* (-18.6)* (-77.8)* 

*Based on the value for Ni 2* and measured cation distribution in NiAlzO 4. 

Table II. Cation Distribution in Spinals 

Cation Distribution: Fraction of M 
on Tetrahedral Site (x) 

Spinel AHex Calculated 
(MX~O,O kcal kJ 1200 K Measured 

FeAl204 14.6 6 I. I 0.936 0.923 ( 1473 K) z4 
NiAl204 -2.0 -8.4 0.21 0.20 (1300 K) zs 
CoAl204 I 1.2 46.9 0.89 0.95 (1123 K) zs':s 
CuAI204 3.4 14.2 0.54 0.4 (1100 K) 26 
MnAI204 18.6 77.8 0.972 0.958 (1272 K) z4 
FeV204 8.8 36.8 0_81 - 
FeCr204 33.7 141 0.999 - 
FeFe204 -4.0 -16.7 0.11 - 

t e m p e r a t u r e  c r y s t a l l o g r a p h i c  i n f o r m a t i o n  on c a t i o n  
d i s t r i b u t i o n  in  s p i n e l s  a n d  a v a l u e  f o r  Ala .  o b t a i n e d  
f r o m  c a l o r i m e t r i c  d a t a  on  t h e  t r a n s f o r m a t i o n  of  ~ -  
a l u m i n a  to  y - a l u m i n a .  H o w e v e r ,  l a c k  of a c c u r a t e  
c a t i o n  d i s t r i b u t i o n  d a t a  on  v a n a d i t e s ,  p r e v e n t s  t h e  e s -  
t i m a t i o n  of an  o c t a h e d r a l  s i t e  p r e f e r e n c e  e n e r g y  of 
V 3§ u s i n g  t h i s  p r o c e d u r e .  A l though  t h e  v a l u e s  on  
N a v r o t s k y  and  K l e p p a ' s  e m p i r i c a l  s c a l e s  a r e  g e n e r -  
a l l y  a b o u t  8 to  10 k c a l  (33.5 to 42 kJ )  m o r e  n e g a t i v e  
f o r  a g i v e n  c a t i o n  t h a n  t h o s e  o b t a i n e d  f r o m  c r y s t a l  
f i e l d  t h e o r y ,  t h e  d i f f e r e n c e  in t h e  e n e r g y  v a l u e s  f o r  
two c a t i o n s  (wh ich  d e t e r m i n e s  t h e  d i s t r i b u t i o n )  i s  a p -  
p r o x i m a t e l y  t he  s a m e  on b o t h  s c a l e s .  

T h e  v a l u e s  f o r  o c t a h e d r a l  s i t e  p r e f e r e n c e  e n e r g y  
f r o m  c r y s t a l  f i e l d  t h e o r y  w e r e  u s e d  to  c o m p u t e  t he  c a t i o n  
d i s t r i b u t i o n  in FeV204 and  F e C r 2 0 4 .  T h e  v a l u e  f o r  Al3. 
in  T a b l e  I i s  o b t a i n e d  r e l a t i v e  to  t h a t  f o r  Ni  2§ u s i n g  t h e  
m e a s u r e d  e q u i l i b r i u m  d i s t r i b u t i o n  of  Ni  a and  A13§ in 
NiA1204 a t  1300 K. m In a s p i n e l  c r y s t a l  of t he  c o m p o s i -  
t i o n  MxXl_x[Mt l_x )X t t . x )  ] 04 in  t h e r m a l  e q u i l i b r i u m ,  t h e  
f r e e  e n e r g y  c h a n g e  f o r  t h e  e x c h a n g e  r e a c t i o n ,  M + [X] 

[M ] + X 1 i s  z e r o .  T h e  c h a n g e  in e n t h a l p y  f o r  t h e  e x -  
c h a n g e  r e a c t i o n  c a n  t h e r e f o r e  b e  e q u a t e d  to  t h e  p r o d u c t  
of a b s o l u t e  t e m p e r a t u r e  and  c h a n g e  in  c o n f i g u r a t i o n a l  
e n t r o p y .  T h e  p a r t i a l  m o l a r  e n t r o p y  of  a c a t i o n  on  a n y  
s i t e  i s  e q u a l  to  - R  In N i,  w h e r e  N i i s  t h e  m o l e  i on i c  
f r a c t i o n  of the  c a t i o n  i on t h a t  s i t e  

~dte x = - R T  In N[M]NX 
N 

(1 - x )  2 [ 1 8 ]  
= - R T l n  x ( l +  x) 

w h e r e  [ ] i n d i c a t e s  a t o m s  in o c t a h e d r a l  p o s i t i o n  a n d  

Fig. 6--The configurational entropy of mixing of cat ions in 2-3 
spinels ;  • is  the f rac t ion of divalent  cat ion in t c t r ahed ra l  site.  

Table Ill. Comparison of Entropies and Heats of Formation with Entropies 
of Mixing of Cations of Spinals Containing Fe 2§ 

AS* AS M AH* 

cal deg q J deg-' ca. deg-' J deg -~ kcal kJ 
Spinel mole -~ mole q mole q mole -~ mole-' mole -1 

FeFe20,,(Fe304) 1.47 z7 6.1527 3.42 I4.31 -5.121 -21.32~ 
FeV~O4 0.73 3.05 2.20 9.20 -5.78 -24.2 
FeA1204 -0.78 Is -3.26 is 1.04 4.35 -6.66 is -27.9 Is 
FaCt20, -1.73 -7.24 0.03 0.13 -12.45 -52.1 

*For the reaction Feo.s,O(s) + 0.05 Fe(s) + XsOa(s)~" FeX204(s). 

X i s  t h e  f r a c t i o n  of d i v a l e n t  m e t a l  M in  t e t r a h e d r a l  p o -  
s i t i o n .  T h e  e x c h a n g e  e n e r g i e s  d e r i v e d  f r o m  t h e  v a l u e s  
in  T a b l e  I f o r  v a r i o u s  s p i n e l s  a r e  s h o w n  in T a b l e  II, 
a l o n g  w i t h  c a l c u l a t e d  c a t i o n  d i s t r i b u t i o n  a t  1200 K. C o m -  
p a r i s o n  of t h e  c a l c u l a t e d  c a t i o n  d i s t r i b u t i o n  w i t h  c r y s -  
t a l l o g r a p h i c  i n f o r m a t i o n  ( T a b l e  II) i l l u s t r a t e s  t h e  a c c u -  
r a c y  of  the  e s t i m a t i o n s .  T h e  e x t e n t  of  c a t i o n  m i x i n g  i n -  
c r e a s e s  f r o m  FeCr204  to  FeAl204  a n d  FeV204.  T h e  c o n -  
f i g u r a t i o n a l  e n t r o p y  of m i x i n g  of c a t i o n s  m a y  b e  c a l c u -  
l a t e d  u s i n g  T e m k i n ' s  i o n i c  f r a c t i o n  a p p r o a c h , 2 a  

I x l n x + ( 1 - x )  I n ( l - x )  A s M  = 
I _  

(1 + ( 1 - X ) I n  - x )  ( 1 2  x)_~ 2 + ( 1  + x )  In ~ . [19] 

T h e  v a r i a t i o n  of AS M wi th  x i s  i l l u s t r a t e d  in F ig .  6. 
T h e  m i x i n g  c o n t r i b u t i o n  to  t h e  e n t r o p y  of t h e  t h r e e  
s p i n e l  p h a s e s  c o n t a i n i n g  F e  2§ a r e  s h o w n  in T a b l e  HI, 
a l o n g  w i t h  t h e i r  e n t r o p i e s  of f o r m a t i o n  f r o m  c o m p o -  
n e n t  o x i d e s  o b t a i n e d  in t h i s  s t u d y .  I t  i s  a p p a r e n t  t h a t  
t h e  d i f f e r e n c e s  in  t h e  m e a s u r e d  e n t r o p i e s  of f o r m a t i o n  
a r e  m a i n l y  due  to  d i f f e r e n c e s  in  c a t i o n  d i s t r i b u t i o n  a n d  
t h e  c o r r e s p o n d i n g  m i x i n g  e n t r o p i e s .  

T h i s  c l o s e  c o r r e s p o n d e n c e  p r o b a b l y  a r i s e s  f r o m  t h e  
f a c t  t h a t  t h e  d i f f e r e n c e s  in  l a t t i c e  p a r a m e t e r  a n d  t h e  
d e g r e e  of c o v a l e n t  b o n d i n g  in  t h e  t h r e e  F e  2. s p i n e l s  
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a r e  p a r a l l e l e d  by  c o r r e s p o n d i n g  d i f f e r e n c e s  in the  
p r o p e r t i e s  of t h e  t r i v a l e n t  o x i d e s  which  h a v e  the  c o -  
r u n d u m  s t r u c t u r e .  It i s  a l s o  c l e a r  f r o m  Fig .  6 tha t  
d r o p  c a l o r i m e t r i c  t e c h n i q u e s  fo r  hea t  c a p a c i t y  m e a -  
s u r e m e n t s  would  not be  s u i t a b l e  in c o m p u t i n g  e n t r o p i e s  
a t  h igh  t e m p e r a t u r e s  of s p i n e l s  wi th  s i g n i f i c a n t  c a t i o n  
m i x i n g .  The  d i s o r d e r  on the  c a t i o n  s i t e s  i n c r e a s e s  wi th  
t e m p e r a t u r e ,  and  t h e  e n t r o p i e s  o b t a i n e d  in t h i s  s t u d y  
a r e  a v e r a g e  v a l u e s  f o r  t h e  t e m p e r a t u r e  r a n g e  c o v e r e d .  

The  h e a t  of f o r m a t i o n  of  t h e  s p i n e l  p h a s e s  f r o m  c o m -  
ponen t  o x i d e s  s h o w n  in T a b l e  HI d e c r e a s e s  wi th  i n c r e a s -  
ing ca t ion  m i x i n g .  T h i s  i s  in l i n e  with the  c a l c u l a t i o n s  
of V e r w e y  e t  a l . ,  za who have  shown  tha t  M a d e l u n g  c o n -  
s tun t  and e l e c t r o s t a t i c  s t a b i l i t y  d e c r e a s e  a s  t h e  f r a c t i o n  
of M 2§ ions  in o c t a h e d r a l  p o s i t i o n  i n c r e a s e s .  The  M a d e -  
lung c o n s t a n t  is  a l s o  s e n s i t i v e  to  the  oxygen  p a r a m -  
e t e r ,  z9 u,  wh ich  i s  a m e a s u r e  of t he  d e p a r t u r e  f r o m  the  
idea l  s p i n e l  s t r u c t u r e .  U n f o r t u n a t e l y ,  the  v a l u e s  f o r  
t h i s  p a r a m e t e r  a r e  not  known a c c u r a t e l y  f o r  a l l  the  
p h a s e s  l i s t e d  in T a b l e  HI. 

SUMMARY AND CONCLUSIONS 

I) Solid ox ide  ga lvan i c  c e l l s  w e r e  u s e d  to  m e a s u r e  
t he  oxygen  p o t e n t i a l  of t he  t h r e e  p h a s e  m i x t u r e s  Fe  
+ FeCr204  + C r 2 0  s and Fe  + FeV204 + V20 s in  t he  t e m -  
p e r a t u r e  r a n g e  750 to 1600~ The  s e c o n d  law e n t r o p y  
of f o r m a t i o n  of  FeCr204  o b t a i n e d  in t h i s  s t u d y  i s  in 
good a g r e e m e n t  wi th  t h a t  c a l c u l a t e d  f r o m  t h e r m a l  da ta .  

2) A p p l i c a t i o n  of a s m a l l  A.C.  p o t e n t i a l  (50 my)  
a c r o s s  the  c e l l  t e r m i n a l s  w a s  found  to d e c r e a s e  the  
t i m e  r e q u i r e d  to a t t a in  e q u i l i b r i u m  in the  t e m p e r a t u r e  
r a n g e  750 to  950~ 

3) At t he  o x y g e n  p o t e n t i a l s  c o r r e s p o n d i n g  to  t he  Fe  
+ FeCr~O 4 + Cr203 e q u i l i b r i a ,  e l e c t r o n i c  c o n t r i b u t i o n s  
to  the  c o n d u c t i v i t y  of C a O - Z r O z  e l e c t r o l y t e  w e r e  found 
to  a f f ec t  the  m e a s u r e d  e m f .  

4) The  c a t i o n  d i s t r i b u t i o n  in s p i n e l  p h a s e s  at  h igh  
t e m p e r a t u r e s  can  be  e v a l u a t e d  f r o m  ' s i t e  p r e f e r e n c e  
e n e r g i e s '  d e r i v e d  f r o m  c r y s t a l  f i e l d  t h e o r y .  The  e n -  
t r o p y  of f o r m a t i o n  of s p i n e l  p h a s e s  f r o m  the  c o m p o n e n t  
o x i d e s  wi th  r o c k  s a l t  and c o r u n d u m  s t r u c t u r e s  m a y  be  
e x p r e s s e d  a s  -1 .75 + ASMca l  de~. -1 mole '*  o r  - 7 . 2 5  
+ A S  M J deg  "1 m o l e  -1, w h e r e  AS ~v' i s  the e n t r o p y  of 
m i x i n g  of c a t i o n s .  
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