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Abstract
Many collective labeling tasks require infer-
ence on graphical models where the clique po-
tentials depend only on the number of nodes
that get a particular label. We design effi-
cient inference algorithms for various families
of such potentials.

Our algorithms are exact for arbitrary
cardinality-based clique potentials on binary
labels and for max-like and majority-like
clique potentials on multiple labels. Mov-
ing towards more complex potentials, we
show that inference becomes NP-hard even
on cliques with homogeneous Potts poten-
tials. We present a 13

15 -approximation al-
gorithm with runtime sub-quadratic in the
clique size. In contrast, the best known pre-
vious guarantee for graphs with Potts poten-
tials is only 0.5.

We perform empirical comparisons on real
and synthetic data, and show that our pro-
posed methods are an order of magnitude
faster than the well-known Tree-based re-
parameterization (TRW) and graph-cut al-
gorithms.

1. Introduction

We present fast inference algorithms for graphical
models where the clique potentials comprise of two
parts: the first part is sum of individual node poten-
tials and, the second part is a symmetric n-ary func-
tion that depends only on the number of nodes that
get a particular label. We call these cardinality-based
clique potentials.
Such cliques appear in graphical modeling of many
applications, including collective labeling for informa-
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tion extraction (Sutton & McCallum, 2004; Bunescu
& Mooney, 2004; Krishnan & Manning, 2006; Finkel
et al., 2005), hypertext classification (Lu & Getoor,
2003), relational learning (Jensen et al., 2004), and
associative networks (Taskar et al., 2004). Typically,
these applications give rise to graphs with large cliques
where exact inference with junction trees would re-
quire time exponential in the size of the largest clique.
Existing methods have relied on approximate inference
algorithms like belief propagation (Sutton & McCal-
lum, 2004; Bunescu & Mooney, 2004; Taskar et al.,
2004), sampling (Finkel et al., 2005), relaxation la-
beling (Lu & Getoor, 2003), or stacking (Krishnan &
Manning, 2006) to address the challenge of large clique
sizes.
We exploit the special form of the clique potentials to
design efficient combinatorial algorithms for comput-
ing max-messages on the nodes of such cliques. This
allows efficient belief propagation on cluster graphs
with very large embedded cliques using the techniques
of Duchi et al. (2007). One source of cardinality-based
potentials is cliques with homogeneous edge potentials
as shown in Section 2. Instead of viewing them as in-
dividual edge potentials, we treat them as cardinality-
based clique potentials that are amenable to our spe-
cial inference algorithms. These are an order of mag-
nitude faster than state-of-the-art edge-based propa-
gation algorithms like TRW (Kolmogorov, 2004) and
can scale to cliques over thousands of nodes.
We identify various families of cardinality-based clique
potentials that arise in practice. We present a
O(nm log n) inference algorithm that finds exact MAP
on max-like clique potentials over m-ary label space,
and arbitrary cardinal potentials when m = 2. Next,
we show that inference is NP-hard for cardinal cliques
arising out of a homogeneous Potts model. In this case,
we show that a 13

15 -approximation is possible with the
above algorithm and that it can be generalized to pro-
vide an approximation ratio of 4p

1+4p , that can be made
arbitrarily close to 1, in O(nmp log n) time. This al-
gorithm provides provably better guarantees than the
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popular α expansion algorithm (Boykov et al., 2001)
which has an approximation guarantee of 1

2 on general
graphs. We show that even for homogeneous Potts
models, α-expansion cannot give a bound better than
1
2 . Finally, for majority-like potentials we present an
LP-based exact algorithm and a faster O(nm log n) ap-
proximate algorithm.

2. Applications of cardinality-based
potentials

In this section we illustrate with examples from two
applications the types of cardinality-based clique po-
tentials that arise in practice.

2.1. Information Extraction
Classical information extraction (IE) models are based
on sequential graphical models with each word a
node and edges joining adjacent words indicating that
their entity labels directly influence each other. Re-
cently, several researchers (Sutton & McCallum, 2004;
Bunescu & Mooney, 2004; Finkel et al., 2005; Krishnan
& Manning, 2006) have reported increased accuracy
of collectively labeling repeated words within a docu-
ment or across multiple documents. In the correspond-
ing graphical model this leads to additional edges be-
tween non-adjacent positions that share a word. Let
the potential function for an edge between adjacent
word positions j − 1 and j in document i be φij(y, y′)
and for non-adjacent positions that share a word w be
fw(y, y′). The goal during inference is to find a label-
ing y where yij is the label of word xij in position j
of doc i, so as to maximize:∑

i,j

φij(yij , yi(j−1)) +
∑
w

∑
xij=xi′j′=w

fw(yij , yi′j′) (1)

The above inference problem gets intractable very soon
with the addition of non-adjacent edges beyond the
highly tractable collection of chain models of classi-
cal IE. Consequently, all prior work on collective ex-
traction for IE relied on generic approximation tech-
niques including belief propagation (Sutton & McCal-
lum, 2004; Bunescu & Mooney, 2004) , Gibbs sam-
pling (Finkel et al., 2005) or stacking (Krishnan &
Manning, 2006).
We present a different view of the above inference
problem using cardinality-based clique potential func-
tions Cw() defined over label subsets yw of positions
where word w occurs. We rewrite the second term in
Equation 1 as
1
2

∑
w

(
∑
y,y′

fw(y, y′)ny(yw)ny′(yw)−
∑

y

ny(yw)fw(y, y))

=
∑
w

Cw(n1(yw), . . . nm(yw))

where ny(yw) is the number of times w is labeled y
in all its occurrences. The clique potential Cw only
depends on the counts of how many nodes get assigned
a particular label. A useful special case of the function
is when fw(y, y′) is positive only for the case that y =
y′, and zero otherwise.

2.2. Hypertext classification
In hypertext classification, the goal is to classify a
document based on features derived from its con-
tent and labels of documents it points to. A com-
mon technique in statistical relational learning to cap-
ture the dependency between a node and the vari-
able number of neighbors it might be related to, is
to define fixed length feature vectors out of the neigh-
bor’s labels. In text classification, most previous ap-
proaches (Taskar et al., 2002; Lu & Getoor, 2003;
Chakrabarti et al., 1998) have created features based
on the counts of labels in its neighborhood. Accord-
ingly, we can define the following set of potentials: a
node-level potential φi(y) that depends on the con-
tent of the document i, and a neighborhood potential
f(y, n1(yOi), . . . , nm(yOi)) that captures the depen-
dency of the label of i on the counts in the label vector
yOi of its outlinks.∑

i

(φiyi
+ f(yi, n1(yOi), . . . , nm(yOi)))

=
∑

i

(φiyi +
∑

y

Cy(n1(yOi), . . . , nm(yOi))[[y = yi]])

Lu and Getoor (2003) include several examples of
such clique potentials, viz. the Majority poten-
tial Cy(n1, . . . nm) = φ(y, ymax) where ymax =
argmaxyny, and the Count potential Cy(n1, . . . nm) =∑

y′:ny′>0 φ(y′, y)ny′ . Some of these potentials, for ex-
ample, the Majority potential are not decomposable
as sum of potentials over the edges of the clique. This
implies that methods such as TRW and graph-cuts are
not applicable. Lu and Getoor (2003) rely on the Iter-
ated Conditional Modes (ICM) method that greedily
selects the best label of each document in turn based
on the label counts of its neighbors. We show empir-
ically that ICM provides lower MAP scores than our
algorithms for most of the potentials.
We now focus on algorithms for MAP computation
over a single clique, which can then be used to compute
max-marginals over its nodes. We defer the issue of
efficient incremental computation of max-marginals to
future work.

3. Inference algorithms

Our goal is to find a labeling y = y1 . . . yn of the
n nodes of the clique so as to maximize the sum of
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their node potentials np(y) =
∑

i φiyi
and clique po-

tential cp(y) = C(n1(y), . . . , nm(y)). We use F (y) =
np(y) + cp(y) to denote the total score of labeling y
and, y∗ to denote the labeling with the highest score or
the MAP labeling. We use n(y) = n1(y), . . . , nm(y),
where

∑
i ni(y) = n, to denote a vector of counts.

Also, to avoid the problem of arbitrary scaling of pa-
rameters, we assume wlog that φum = 0 for all nodes.
When the number of labels m = 2, MAP can be found
exactly in O(n log n) time for arbitrary clique poten-
tials using the following simple strategy. Sort the
nodes in decreasing order of their φu1 − φu2 values.
For each number k from 0 to n, find sk the sum of the
top-k node potentials φu1 − φu2 and clique potential
C(k, n− k). The largest sk gives the optimal labeling.
This result also implies that in the binary case when
the graph is a clique and all edges have the same po-
tential, then for arbitrary such potentials we can find
the optimal labeling in O(n log n) time. In contrast,
for general graphs in the binary case, exact algorithms
are known only for associative edge potentials (Boykov
et al., 2001; Kolmogorov & Wainwright, 2005)
When the number of labels m > 2, finding the MAP
with arbitrary clique potentials is hard. A generaliza-
tion of the above algorithm to the multi-label case is
to consider all possible partitions of the total count n
and for a fixed partition n1, . . . , nm assign ny nodes
label y. The optimal assignment can be found using
maximum matching on the node potentials. The worst
case complexity of this algorithm is O(nm), so it is not
too useful except for very small values of m. We show
that the problem is NP-hard even for some very simple
potential functions.
We consider specific families of clique potentials, many
of which are currently popular, and design various ex-
act and approximate algorithms that exploit the spe-
cific structure of the potential. In particular, we con-
sider the following three types of clique potentials:

1. max: C(n1, . . . , nm) = maxy fy(ny). These have
been used for analyzing associative networks in
(Taskar et al., 2004).

2. sum: C(n1, . . . , nm) =
∑

y fy(ny). A common ex-
ample of this function is λ

∑
y n2

y that arises out
of cliques with all edges following the same Potts
potential with parameter λ. Another important
example of this class is negative entropy where
fy(ny) = ny log ny.

3. majority: C(n1, . . . , nm) = fa(n), where a =
argmaxyny. One common example of such a po-
tential, as used in (Krishnan & Manning, 2006)
and (Lu & Getoor, 2003), is fa(n) =

∑
y wayny,

where {wyy′} is an arbitrary matrix.

3.1. max clique potentials
When the clique potentials are of the form
C(n1 . . . nm) = maxy fy(ny) for arbitrary functions fy,
we can find the MAP using the following algorithm.

The α-pass algorithm

For each label α between 1 and m, sort the nodes in
decreasing order of φuα − maxy 6=α φuy where φuy de-
notes the node potential of label y on u. In a single
sweep over the sorted nodes, find for each k, the label-
ing ŷαk obtained by assigning the first k nodes label
α and the remaining nodes their best label other than
α. Choose the best labeling ŷ = argmaxF (ŷαk)
The algorithm runs in O(nm log n) time by incremen-
tally computing max F (ŷαk) from max F (ŷα(k−1)).
Claim 3.1. Labeling ŷαk has the maximum node
score over all y where k nodes are labeled α, that is,
np(ŷαk) = maxy:nα(y)=knp(y).

Claim 3.2. For max potentials, C(ŷαk) ≥ fα(k).
Theorem 3.1. The α-pass algorithm finds the MAP
for max clique potentials.

Proof. Let y∗ be the optimal labeling and let β =
argmaxjfj(nj(y∗)), ` = nβ(y∗). Let ŷ be the labeling
found by α-pass. F (ŷ) = max1≤α≤m,1≤k≤n F (ŷαk) ≥
F (ŷβ`) = np(ŷβ`) + cp(ŷβ`) ≥ np(ŷβ`) + fβ(`) =
np(ŷβ`)+cp(y∗) ≥ np(y∗)+cp(y∗) The last inequality
follows from Claim 3.1.

3.2. sum clique potentials
sum clique potentials are of the form C(n1, . . . , nm) =∑

j fj(nj). These form of potentials includes the spe-
cial case when the well-known Potts model is applied
homogeneously on all edges of a clique. Let λ be the
Potts potential of assigning two nodes of an edge the
same label. The summation of these potentials over
a clique is equivalent (up to a constant) to the clique
potential C(n1, . . . , nm) = λ

∑
j n2

j .
The Potts model with negative λ corresponds to the
case when edges prefer the two end points to take dif-
ferent labels. With negative λ, our objective function
F (y) becomes concave and its maximum can be eas-
ily found using a relaxed quadratic program followed
by an optimal rounding step as suggested in (Raviku-
mar & Lafferty, 2006). We therefore do not discuss
this case further. The more interesting case is when
λ is positive. We show that finding the optimal now
becomes NP-hard.
Theorem 3.2. When C(n1, . . . , nm) = λ

∑
j n2

j , λ >
0, finding the MAP labeling is NP-hard.

Proof. We show this by reducing from the NP-
complete exact cover by 3-sets problem (Papadimitriou
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& Steiglitz, 1982) of deciding if exactly n
3 of m subsets

S1, . . . , Sm of 3 elements each from U = {e1, . . . en}
can cover U . We let elements correspond to nodes and
sets to labels. Assign φui = 2nλ if eu ∈ Si and 0 oth-
erwise. MAP score will be (2n2 +32 n

3 )λ iff we can find
an exact cover.

The above proof establishes that there cannot be an
algorithm that is polynomial in both n and m. But we
have not ruled out algorithms with complexity that is
polynomial in n but exponential in m, say of the form
O(2mnc) for a constant c.
We next propose approximation schemes. Unlike for
general graphs where the Potts model is approximable
only within a factor of 1

2 (Boykov et al., 2001; Klein-
berg & Tardos, 2002), we show that for cliques the
Potts model can be approximated to within a factor
of 13

15 ≈ 0.86 using the α-pass algorithm of Section 3.1.
We first present an easy proof for a weaker bound of
4
5 and provide only a sketch of the more detailed proof
for the 13

15 bound. Let the optimal labeling be y∗ and
the labeling of α-pass be ŷ.

Theorem 3.3. F (ŷ) ≥ 4
5F (y∗).

Proof. Without loss of generality assume that the
counts in y∗ are n1 ≥ n2 ≥ . . . ≥ nm. Then∑

i n2
i ≤ n1

∑
i ni = nn1.

F (ŷ) ≥ F (ŷ1n1) = np(ŷ1n1) + cp(ŷ1n1)

≥ np(y∗) + cp(ŷ1n1) (from Claim 3.1)

≥ np(y∗) + λn2
1 (since λ > 0)

≥ np(y∗) + cp(y∗)− λn1n + λn2
1

≥ F (y∗)− λn2/4

Now consider the two cases where F (y∗) ≥ 5
4λn2

and F (y∗) < 5
4λn2. For the first case we get from

above that F (ŷ) ≥ F (y∗)− λn2/4 ≥ 4
5F (y∗). For the

second case, we know that the score F (ŷmn) where we
assign all nodes the last label is at least λn2 and thus
F (ŷ) ≥ 4

5F (y∗).

Theorem 3.4. F (ŷ) ≥ 13
15F (y∗).

Proof. (sketch) Without loss of generality, let n1 ≥
n2 ≥ . . . ≥ nk be k non-zero counts of labels in y∗.
When k = 1, i.e. a single label has all counts, α-pass
will get the optimal. Consider cases where k ≥ 2. The
proof goes by contradiction. Let F (ŷ) be a α-pass
score where F (ŷ) < 13

15F (y∗). The following two hold
for any F (ŷ).

1. F (ŷ) ≥ np(y∗) + λn2
1. We showed that this holds

in the proof of 3.3.

2. F (ŷ) ≥ np(y∗)/k + λn2. This holds because at
least one of the k labels should have more than
the average of the total node potential.

If we combine the above two with the inequality
F (ŷ) < 13

15F (y∗), we get that kn2 − 13/2(k −
1)

∑k
j=2 n2

j − n2
1 < 0. However, it can be shown that

this cannot hold for any n1 ≥ n2 ≥ . . . ≥ nk where
k ≥ 2.

Theorem 3.5. The approximation ratio of 13
15 of the

α-pass algorithm is tight.

Proof. We show an instance where this is obtained.
Let m = n + 3 and λ = 1. For the first n/3 nodes let
φu1 = 4n/3, for the next n/3 nodes let φu2 = 4n/3,
and for the remaining n/3 let φu3 = 4n/3. Also for all
nodes let φu(u+3) = 4n/3. All other node potentials
are zero. The optimal solution is to assign the first
three labels n/3 nodes each, yielding a score of 4n2/3+
3(n

3 )2 = 5n2/3. The first α-pass on label 1, where
initially a node u is assigned its node optimal label u+
3, will label the first n/3 nodes 1. This keeps the sum
of total node potential unchanged at 4n2/3, the clique
potential increased to n2/9 + 2n/3 and total score =
4n2/3+n2/9+2n/3 = 13n2/9+2n/3. No subsequent
α passes with any other label can improve this score.
Thus, the score of α-pass is 13

15 of the optimal in the
limit.

3.2.1. α-expansion

In general graphs, a popular method that provides the
approximation guarantee of 1/2 for the Potts model
is the graph-cuts based α expansion algorithm. We
explore the behavior of this algorithm.
In this scheme, we start with any initial labeling —
for example, all nodes the first label as suggested in
(Boykov et al., 2001). Next, for each label α we per-
form an α expansion phase where we switch the label
of an optimal set of nodes to α from their current la-
bel. We repeat this until in a round over the m labels,
no nodes switch their labels.
For graphs whose edge potentials form a metric, an
optimal α expansion move is based on the use of the
mincut algorithm of Boykov et al. (2001) which for
the case of cliques can be O(n3).
We next show how to perform optimal α expansion
moves more efficiently for all kinds of sum potentials.

An α expansion move Let ỹ be the labeling at
the start of this move. For each label y 6= α create a
sorted list Sy of nodes with label y in ỹ in decreasing
order of φuα − φuy. If in an optimal move, we move
ky nodes from y to α, then it is clear that we need
to pick the top ky nodes from Sy. Let ru be the rank
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of a node u in Sy. Our remaining task is to decide
the optimal number ky to take from each Sy. We find
these using dynamic programming. Without log of
generality assume α = m and 1, . . . ,m − 1 are the
m− 1 labels other than α.
Let Di(k) denote the best score with k nodes from
labels 1 . . . i switched to α. We compute

Di(k) = max
j≤k,j≤ni(ỹ)

Di−1(k − j) + fi(ni(ỹ)− j)

+
∑

v:rv≤j

φvα +
∑

v:rv>j

φvi

From here we can calculate the optimal number of
nodes to switch to α as argmaxj≤n−nα(ỹ)Dm−1(j) +
fα(j + nα(ỹ)).
Theorem 3.6. The α-expansion algorithm provides
no better approximation guarantee than 1/2 even for
the special case of homogeneous Potts potential on
cliques.

Proof. Consider an instance where m = k + 1, and
λ = 1. Let φu1 = 2n/k for all u and for k disjoint
groups of n/k nodes each, let φu,i+1 = 2n for the
nodes in the ith group. All other node potentials are
zero. Consider the solution where every node is as-
signed label 1. This labeling is locally optimal wrt
any α-expansion move, and its score is n2(1 + 2/k).
However, the exact solution assigns every node group
its label, with a score n2(2 + 1/k) , thus giving a ratio
of 1/2 in the limit.

We next present a generalization of the α-pass algo-
rithm that provides provably better guarantees while
being faster than α-expansion.

3.2.2. Generalized α-pass algorithm

In α-pass for each label α, we go over each count k
and find the best node score with k nodes labeled α.
We generalize this to go over all label combinations of
size no more than p, a parameter of the algorithm that
is fixed based on the desired approximation guarantee.
For each label subset A of size no more than p, and for
each count k, maximize node potentials with k nodes
assigned a label from set A. For this, sort nodes in
decreasing order of maxα∈A φuα −maxy 6∈A φuy, assign
the top k nodes their best label in A and the remaining
their best label not in A. The best over all A, k with
|A| ≤ p is the returned labeling.
The complexity of this algorithm is O(nmp log n).
Since m is typically smaller than n, this is a useful op-
tion for large cliques. In practice, we can use heuristics
to prune the number of label combinations. Further,
we can make the following claims about the quality
of its output. We skip the proof because it is quite
involved.

Theorem 3.7. F (ŷ) ≥ 4p
4p+1F (y∗).

The above bound is not tight as for p = 1 we have
already shown that the 4

5 bound can be tightened to
13
15 . With p = 2 we get a bound of 8

9 which is better
than 13

15 .

3.3. majority potentials
majority potentials are of the form C(n1, . . . , nm) =
fa(n), a = argmaxy ny. We consider linear majority
potentials where fa(n) =

∑
y wayny. The matrix W =

{wyy′} need not be diagonally dominant or symmetric.
We show that exact MAP for linear majority potentials
can be found in polynomial time. We also present a
modification to the α-pass algorithm to serve as an
efficient approximation scheme.

3.3.1. Modified α-pass algorithm

In the case of linear majority potentials, we can in-
corporate the clique term in the node potential, and
this leads to the following modifications to the α-
pass algorithm: (a) Sort the list for α according to
φuα+wαα−maxy 6=α(φuy +wαy), and (b) While sweep-
ing the list for α, discard all candidate solutions whose
majority label is not α.
However even after these modifications, α-pass does
not provide the same approximate guarantee as for ho-
mogeneous Potts potentials. Infact, counter examples
prove the following: (a) When W is unconstrained,
the bound cannot be more than 1/2, and (b) Even if
∀y, y′ wyy ≥ wyy′ , the bound cannot be better than
2/3.
However, in practice where the W matrix is typically
sparse our experiments in Section 4 show that α-pass
performs well and is significantly more efficient than
the exact algorithm described next.

3.3.2. Exact Algorithm

One possible way to exactly solve for majority poten-
tials is to guess the majority label α, the count k = nα,
and solve the following IP:

max
y

∑
u,y

(φuy + wαy)xuy

∀y :
∑

u

xuy ≤ k,

∀u :
∑

y

xuy = 1, xuy ∈ {0, 1} (2)

This IP solves the degree constrained bipartite match-
ing problem, which can be solved exactly in polyno-
mial time. Indeed, it can be easily shown that the LP
relaxation of this IP has an integral solution. Thus we
can solve O(mn) such problems by varying α and k,
and report the best solution. We believe that since the
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subproblems are related, it should be possible to solve
them incrementally using combinatorial approaches.

4. Experiments

In this section, we compare our algorithms against se-
quential tree re-weighted message passing (TRW-S)
and graph-cut based inference for clique potentials
that are decomposable over clique edges; and with
ICM when the clique potentials are not edge decom-
posable. We compare them on running time and qual-
ity of the MAP. Our experiments were performed on
both synthetic and real data.
Synthetic Dataset: We generated cliques with 100
nodes and 24 labels by choosing node potentials at ran-
dom from [0, 2] for all labels. A Potts version (potts)
was created by gradually varying λ , and generating
25 cliques for every value of λ. We also created anal-
ogous entropy, makespan and makespan2 versions
of the dataset by choosing entropy, linear makespan
(λ maxy ny) and square makespan (λ maxy n2

y) clique
potentials respectively.
For majority potentials we generated two kinds of
datasets (parameterized by λ): (a) maj-dense ob-
tained by generating a random symmetric W for each
clique, where Wii = λ was the same for all i and
Wij ∈ [0, 2λ] (j 6= i), and (b) maj-sparse from sym-
metric W with Wij ∈ [0, 2λ] for all i, j, roughly 70%
of whose entries were zeroed.
Of these, only potts is decomposable over clique
edges.
CoNLL Dataset: The CoNLL 2003 dataset1 is a
popular choice for demonstrating the benefit of col-
lective labeling in named entity recognition tasks. We
used the BIOU encoding of the entities, that resulted
in 20 labels. We took a subset of 1460 records from
the test set of CoNLL, and selected all 233 cliques
of size 10 and above. The median and largest clique
sizes were 16 and 259 respectively. The node poten-
tials of the cliques were set by a sequential Conditional
Random Field trained on a disjoint training set. We
created a Potts version by setting λ = 0.9/n, where n
is the clique size. Such a λ allowed us to balance the
node and clique potentials for each clique. A majority
version was also created by learning W in the training
phase.
All our algorithms were written in Java. We compared
these with C++ implementations of the TRW-S2, and
graph-cut based expansion algorithms3 (Boykov et al.,

1http://cnts.uia.ac.be/conll2003/ner/
2http://www.adastral.ucl.ac.uk/~vladkolm/

papers/TRW-S.html
3http://vision.middlebury.edu/MRF/

2001; Szeliski et al., 2006; Kolmogorov & Zabih, 2004;
Boykov & Kolmogorov, September 2004). All experi-
ments were performed on a Pentium-IV 3.0 GHz ma-
chine with four processors and 2 GB of RAM.

4.1. Edge decomposable potentials
Figures 1(a) and 1(b) compare the performance of
TRW-S vs α-pass on the two datasets. In Figure 1(a),
we varied λ uniformly in [0.8, 1.2] with increments of
0.05. This range of λ is of special interest, because
it allows maximal contention between the clique and
node potentials. For λ outside this range, the MAP is
almost always a trivial labeling, viz. one which indi-
vidually assigns each node to its best label, or assigns
all nodes to a single label.
We compare two metrics — (a) the quality of the MAP
score, captured by the ratio of the TRW-S MAP score
with the α-pass MAP score, and (b) the runtime re-
quired to report that MAP, again as a ratio. Fig-
ure 1(a) shows that while both the approaches report
almost similar MAP scores, the TRW-S algorithm is
more than 10 times slower in more than 80% of the
cases, and is never faster. This is expected because
each iteration of TRW-S costs O(n2), and multiple it-
erations must be undertaken. In terms of absolute run
times, a single iteration of TRW-S took an average
of 193ms across all cliques in potts, whereas our al-
gorithm returned the MAP in 27.6 ± 8.7ms. Similar
behavior can be observed on CoNLL dataset in Figure
1(b). Though the degradation is not as much as be-
fore, mainly because of the smaller average clique size,
TRW-S is more than 5 times slower on more than half
the cliques.
Figure 1(c) shows the comparison with Graph-cut
based expansion. The MAP ratio is even more in fa-
vor of α-pass, while the blowup in running time is of
the same order of magnitude as TRW-S. This is sur-
prising because based on the experiments in (Szeliski
et al., 2006) we expected this method to be faster.
One reason could be that their experiments were on
grid graphs whereas ours are on cliques.

4.2. Non-decomposable potentials
In this case, we cannot use the TRW or graph-cut
based algorithms. Hence we compare with the ICM al-
gorithm that has been popular in such scenarios (Lu &
Getoor, 2003). We varied λ with increments of 0.02 in
[0.7, 1.1) and generated 500 cliques each from potts,
maj-dense, maj-sparse, entropy, makespan and
makespan2. We measure the ratio of MAP score of
α-pass with ICM and for each ratio r we plot the frac-
tion of cliques where α-pass returns a MAP that results
in a ratio better than r. Figure 1(d) shows the results
on all the potentials except majority. The curves for



Efficient Inference with Cardinality-based Clique Potentials

1

10

100

1000

0 50 100 150 200
0.98

0.99

1

1.01

1.02

R
un

tim
e 

ra
tio

 (l
og

 s
ca

le
)

M
A

P
 ra

tio
 (T

R
W

/A
lp

ha
)

Clique Id

Runtime Ratio
MAP Ratio

(a) Comparison with
TRW-S: Synthetic

1

10

100

0 50 100 150 200
0.98

0.99

1

1.01

1.02

R
un

tim
e 

ra
tio

 (l
og

 s
ca

le
)

M
A

P
 ra

tio
 (T

R
W

/A
lp

ha
)

CoNLL Clique Id

Runtime Ratio
MAP Ratio

(b) Comparison with
TRW-S: CoNLL

1

10

100

1000

0 50 100 150 200
0.97

0.98

0.99

1

1.01

1.02

R
un

tim
e 

ra
tio

 (l
og

 s
ca

le
)

M
A

P
 ra

tio
 (G

ra
ph

-c
ut

/A
lp

ha
)

Clique Id

Runtime Ratio
MAP Ratio

(c) Comparison with
GraphCut: Synthetic

0

0.2

0.4

0.6

0.8

1

1 1.05 1.1 1.15 1.2

Fr
ac

 w
he

re
 A

lp
ha

 h
as

 b
et

te
r r

at
io

MAP ratio (Alpha/ICM)

Makespan
Makespan2

Entropy
Potts

(d) Comparison with
ICM: Synthetic

Figure 1. Comparison with TRW-S, Graph-cut and ICM
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Figure 2. Comparing AlphaPass, ICM and Exact on majority potentials

linear and square makespan lie totally to the right of
ratio = 1, which is expected because α-pass will al-
ways return the optimal answers for those potentials.
For Potts too, α-pass is better than ICM for almost all
the cases. For entropy, α-pass was found to be signifi-
cantly better than ICM in all the cases. The runtimes
of ICM and α-pass were similar.

Majority Potentials

In Figures 2(a) and 2(b), we compare ICM and modi-
fied α-pass with the LP-based exact method, and there
is no clear winner. The dotted curves plot, for each
MAP ratio r, the fraction of cliques on which ICM
(or α-pass) returns a MAP score better than r times
the true MAP. The solid curve plots the fraction of
cliques where α-pass returns a MAP score better than
r times the ICM MAP. On maj-dense, both the al-
gorithms return a MAP score better than 0.93 of the
true MAP, with ICM being slightly better. However in
maj-sparse, both the algorithms dominate on roughly
half the cliques each. The MAP ratios returned are
also over a wider range than maj-dense.
Figure 2(c) displays similar results on the CoNLL
dataset, whose W matrix is 85% sparse. ICM per-
forms poorly, returning the true MAP in only 10% of

the cases across all clique sizes, and achieving an aver-
age MAP ratio of 0.68 against the exact method. On
the other hand, α-pass returns the true MAP in more
than 40% of the cases, with an excellent average MAP
ratio of 0.98, and almost always provides a solution
better than ICM.
In terms of runtime, ICM and α-pass are roughly 100-
100000 times faster than the exact algorithm. Fig-
ure 2(d) displays these runtime ratios on all CoNLL
cliques. Barring a few highly expensive outliers, and
ignoring the dependence on m, it appears that the ex-
act method is roughly O(n) times slower than α-pass
(and ICM). Thus, for practical majority potentials, α-
pass seems to quickly provide highly accurate solu-
tions.
An interesting problem however still remains: that of
designing exact/approximate algorithms that can op-
erate equally well on sparse and dense majority poten-
tials, with runtimes similar to ICM and α-pass.

5. Concluding remarks and future work

In this paper we identified real-life inference tasks on
cluster graphs with large cliques whose potentials are
based only on the cardinality of labels and single node
potentials. We exploit this special form of the clique
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potentials to design inference algorithms that provide
provably good approximation guarantees, and are 1–2
orders of magnitude faster than state-of-the-art meth-
ods. We analyzed the case of the Potts model in
depth and showed that the inference problem even
in this simple case is NP-hard. We designed an ap-
proximation algorithm that provides a tight approxi-
mation ratio of 13

15 in O(mn log n) time. This can be
generalized to yield an approximation ratio of 4p

4p+1 in
O(mpn log n) time in the worst case time.
As part of the future work, we would like to expand
our set of algorithms to larger families of clique poten-
tial functions, design incremental algorithms for ma-
jority potentials and computing max-marginals within
a clique, and perform inference on cluster graphs gen-
erated from real-life applications.
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