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Abstract

We study symmetry breaking in Z5 symmetric large N matrix models. In the planar
approximation for both the symmetric double-well ¢* model and the symmetric Penner
model, we find there is an infinite family of broken symmetry solutions characterized by
different sets of recursion coefficients R,, and S,, that all lead to identical free energies and
eigenvalue densities. These solutions can be parameterized by an arbitrary angle 6(x), for
each value of x = n/N < 1. In the double scaling limit, this class reduces to a smaller
family of solutions with distinct free energies already at the torus level. For the double-well
¢* theory the double scaling string equations are parameterized by a conserved angular
momentum parameter in the range 0 <[ < oo and a single arbitrary U(1) phase angle.
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1. Introduction

We would like to highlight some unusual aspects of symmetric double-well matrix
models [[[J-[I0] concerning spontaneous symmetry breaking and the multiplicity of solu-
tions at the same critical point. We consider two specific models: (i) a ¢* theory with
a symmetric double well and (ii) the symmetric Gaussian Penner model [L[I]-[L[3]. Both
models have a Z5 reflection symmetry and a standard two-band solution that respects
it. However we obtain new classes of solutions that break the Z; symmetry by relaxing
the initial boundary conditions on the first two recursion coefficients for the othogonal
polynomials.

The single-band broken symmetry solution to the double-well ¢* theory is ¢=0 pure
gravity, but at lower free energy there is an infinite class of two-band solutions where
the tree level eigenvalue density is symmetric in the two wells. These solutions have the
property that their free energy and eigenvalue density, in the planar limit, are invariant
with respect to an infinite set of continuous parameters in the recursions coefficients. An
analgous two-band class of broken symmetry solutions is found in the Penner model as
well. In the double scaling limit for the ¢* theory the degeneracy is lifted, except for
a single U(1) rotation, and a one parameter family of solutions survives satisfying the
Painleve-II equation with an extra conserved “angular momentum” parameter. At this
stage the physical consequences of this degeneracy of solutions are not clear. Since the
tree level eigenvalue density is the same for all these solutions it is possible that some of
them could tunnel into each other with an instanton action that is lower order in N. If so,
this would be of particular interest in the context of the Gaussian Penner model, where
one of the broken symmetry solutions discussed is related to the ¢ = 1 string at twice the
self-dual radius.

The organization of this paper is as follows: In section 2, we give a brief overview
of symmetry breaking and the formalism for the orthogonal polynomial method. In sec-
tion 3, we consider the consequences of relaxing the boundary condition on the recursion
coefficients for the symmetric ¢* potential and the Gaussian Penner model, and classify
all two-cut solutions in the planar (N — oo) limit. In particular we exhibit the class of
solutions that have the same tree level eigenvalue density and free energy. We discuss
some correlators that distinguish between the various solutions and a numerical approach
to investigating finite N solutions. Section 4 discusses the double-scaling limit of the free
energy for both models emphasizing that one gets an expanded class of double-scaling
solutions. The discussion and conclusions are given in section 5.



2. Overview of Problem

It has been suggested that the singular behavior of the tree level eigenvalue density
near the edge of the cuts determines the critical behavior of the matrix model in the fol-
lowing sense [[4][H][B]: One identifies the polynomials in the matrix variable ¢ or scaling
operators O,, (O,,’s are traces of the polynomials) which produce a particular kind of singu-
larity (labeled by n) near the edge of the cut or cuts. Knowing the O,,’s, one then considers
Z(t) = [dpexp[— > t,0n,(¢)] and shows that Z(t) satisfies a certain hierarchy of equa-
tions. This hierarchy depends, then, only on the kind of ensemble of matrices considered
(hermitian, antihermitian, unitary, etc.), the class of singularities of the eigenvalue density
allowed (e.g., single-cut density with multiple zeroes coalescing at the edge, two cuts col-
liding and sandwiching zeroes in between, etc.), and any symmetry of the potential that
restricts the class of eigenvalue densities considered (e.g., restriction to even perturbations
in Zy symmetric 2-cut models) [[IT].

Orthogonal Polynomials

It is generally believed for potentials V(¢) = t,0,, that are bounded from below
that the orthogonal polynomial method [[[§] uniquely fixes the solution for the free energy,
correlators, etc. Here we will show that orthogonal polynomial method actually allows one
to construct a whole class of closely related solutions. To clarify this further, we remind
the reader of the precise condition for a unique solution for the free energy in terms of or-
thogonal polynomials. Consider the partition function, Zy = [ d¢ e~ NtrV(9) where ¢ is
an N x N hermitian matrix and V' (¢) is a real potential. The integral is expressed in terms
of a set of orthogonal polynomials P, (z), [ dz P, (z) Py (z) e~ NV(®) = h 6,m, normalized
by the convention that the leading term for P,(x) is ™, P,(z) = 2" + ciz™™ D + ...
(Note that this convention sets Py(z) =1 or hg = [ dx exp[-NV (x)].) Since these orthog-
onal polynomials can be iteratively determined by Gram-Schmidt orthogonalization, the
exact free energy, Fiy = log Zny = 22]:_01 log h.,,, as well as all thermodynamic averages are
uniquely determined.

Instead of actually finding these orthogonal polynomials, one in practice uses re-
cursion relations for the coefficients R,, and S,, in the expression, zP,(x) = P,11(x) +
SpPp(x) + Ry P,—1(x). Once the R,’s are known, the free energy can be found by using
the fact that R, = hy/hp,—1. It is convenient to introduce a self-dual orthonormal basis
In), where (z|n) = P, (x)/v/hn, and |z) are eigenvectors of the operator ¢ with eigenvalues
x, satisfying the normalization (z'|z) = exp(NV (z)) é(z’ — z). Matrix elements of the
operator qu in this new orthonormal basis are directly related to the recursion coefficients
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by <m|q§|n> = VRndmnt1 + Sndmn + VRyIm n—1. In terms of ngS, the recursion relations
for R,, and S,, can be expressed in operator notation,

n/N = /Ry (n—1]V'(¢)|n)

) (2.1)
0= (n|V'(¢)[n).

Once initial conditions are specified, a unique solution for R, and hence the normalization
for each orthogonal polynomial, h,,, can be found by iteration. For example, in the case
of the ¢* model, Eq. (B) is a pair of coupled two-term recursion equations for R, and
S, which require four inital conditions: the numerical values

So = (0]¢|0) = ho ™ /da:xe_NV(m)
(2.2)
Ry = (0[¢2(0) — (0]6[0)2 = hy ™! / dea?eNV@ _ g2,

and the trivial values Ry = 0 and S_; = 0, which are independent of the potential. Given
these values, all other coefficients are given iteratively as rational function of Sy and R;. (A
more elegant formulation would introduce a single sequence of coeffients Cj, o< (0[¢*|0) +....
with a single four-term recursion relation Cy = Fy(Ci_1,Ck_2, Cx—3,Ck_4), where Cy =
Ry )5 for k even and Cy = S(;—1)/2 for k odd.)

Symmetry Breaking

This formalism should make it clear that there is no ambiguity in defining the matrix
models for all finite N, assuming of course that the potential is bounded from below and
that the integrals defining the inner product are finite. However typical of all statistical
mechanical problems this does not imply that we know the correct way to take the ther-
modynamic (or in this instance large N) limit. To understand this potential source of
ambiguity in using the recursion relations at large N, consider the double-well potential,
V(p) =0d+ s ¢*>+ 1g ¢*, with p <0, g > 0 and a small symmetry breaking term o¢.
To investigate symmetry breaking it is useful to study the effect of interchanging the limits
N — oo and o0 — 0% on the values of Sy = <0|¢3|O) By Zs symmetry, if we take o — 0+
followed by N — oo, we must get Sy = 0, whereas if we take N — oo followed by o — 0+
we have

So = £/ —u/g, (2.3)

as can be demonstrated by using steepest descent at the stationary minima of the poten-
tial V' (x). Similarly, to complete the necessary boundary conditions, one can show that
Ry = (0]¢2|0) — S2 takes on Ry = —pu/g and Ry = 0 for these two limits respectively.
Now we can in principle use the recursion relations to obtain both symmetric and bro-
ken symmetry solutions. In general terms, this is just the familiar feature of spontaneous
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symmtry breaking. For example the Ising model with no external field on a finite lattice
must have (s;) = 0 by Z3 symmetry, but in the large volume limit (at temperatures below
the Curie point) the relevant (i.e. stable) solution is a broken vacua with non-zero values
for (s;) = £m obtained by applying an infinitesimal magnetic field.

As we will see shortly, a more general possibility at infinite N is to characterize the
“vacuum” state for the double-well ¢* model by a mixing angle 6y,

|0, 00) = cos(0p/2) |0, +) + sin(6y/2) |0, —) (2.4)

where |0,+) are orthonormal and ¢[0,+) ~ +/—u/g|0,+). As a consequence for the
mixed state the boundary conditions becomes

So = +/—p/g cos(bp), (2.5)
instead of (B-J), with the constraint,

Ry = —u/g— Sg >0. (2.6)

The goal of this paper is to understand how the solutions of the double-well matrix
models depend on the initial boundary conditions, e.g., for the ¢* model, on the first two
moments, Sy and Ry. In the large N (or planar limit) we find a large class of solutions
consistent with the broken symmetry boundary condition in addition to the (meta stable)
pure gravity solution at higher free energy. Indeed we will show that the above qualitative
discussion is a rigorous consequence of the planar solutions in the two-band ansatz. More
generally however, we feel that the lack of a full understanding of the effects of this bound-
ary condition represents an important gap in our ability to fully determine and solve the
string equations resulting from matrix models.



3. Multiple Solutions In Matrix Models : Tree Level Analysis

In this section we establish the existence of multiple solutions in two models: (i) the
double well ¢* model and (ii) Gaussian Penner model.

3.1. The Double Well ¢* potential

For the double well potential ( V(¢) = 0¢ + %,u % + ig 1), Eq. (B2) reduces to
the recursion relations

% = Ro[p+ g(Rogr + R + Ry1 + 52+ S2_, + Sp_150)] -
0=0+ uSn + g[Rps1(Snt1 + 25,) + Rp(2S,, + S,_1) + S2].

We shall first illustrate our procedure by considering a symmetry-breaking solution under
a period-one ansatz for both the R’s and S’s: R,, — R(%), Sn — S(§) # 0. Ignoring
the 1/N corrections, Eq. (B.]]) leads to two relations, which allow us to solve for R(z) and
S(x):

R(z) = (1/15g)[—p — v/ 1* — 15gz]

S(z) = +v/—p/g — 6R(x).

With ¢ < 0 and g > 0, one has R(0) =0, S(0) = £4/—u/g, consistent with our discussion
on symmetry breaking in Sec. 2, and R(x) monotonlcally increasing for 0 < x < p?/15g.

(3.2)

The generating function F(z) = <Tr—> for a period-one ansatz at the tree level

can be expressed in terms of R(z) and S(z) as follows

2T q6 1 1 1
/ dx/ G T— e 9) \/z— =G ) (3.3)

where ¢(x,0) = S(x) + /R(x)(e" 4+ e7%). One can verify by explicit calculation using
(B-2) that the eigenvalues lie in an interval [z_, z;], where z; = S(1) £ 2/R(1), with a
single-band eigenvalue density, p(z), in agreement with the result of Shlmamune (Ref. mh

obtained by using the Schwinger-Dyson equation. On the line p = —/15g, R(x) develops
a square-root type singularity at = 1, leading to a Painleve-I equation in the double
scaling limit, appropriate for the ¢ = 0 2D gravity solution.
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Since all the eigenvalues are concentrated in a single well, this symmetry-breaking
solution does not correspond to a configuration with the lowest free energy, but is a sub-
dominant solution. In the double scaling limit it is unstable against the tunnelling of a
single eigenvalue into the other well, exactly like the subdominant solution for the pure
gravity in the ¢% model. We now turn to solutions which have eigenvalues in both wells,
which include a class of solutions for which p(z) is exactly Zs-symmetric (when o = 0) at
the tree level, but which in general break this symmetry at higher order in 1/N.

Let us consider a period-two ansatz for both the R’s and S’s

Rn:A(E) , Sn:C(E) for n = even,
N N (3.4)
Rn:B(N> , Sn:D(N) for n = odd.

Taking A, B, C' and D to be continuous, and ignoring the 1/ corrections in the recursion
equations (B.1]), we obtain four tree level recursion relations,

27 = pesr(A+ B) + g(A* + 4AB + B?), (3.5a)
0=(A—B)A+B+ ”egff), (3.5b)
0 =20+ u(C + D)+ g[3(A+ B)(C + D) + C* + D?], (3.5¢)
0= (0-D)(A+B+%), (3.5d)

where perr = p+ g(C? + CD + D?).

Since we have already considered the single-band (pure gravity case), we can assume
that either A # B or C' # D. To carry out an exhaustive analysis of the full set of
solutions to these equations, it is useful to note that only three out of the four equations
are independent. The three independent equations take the simple form,

A+B—0D:-§—(C+D)Q, AB:%, and V/[-(C+D)] =0.  (3.6)

Note that there is no condition on C' — D which can be independently chosen for every
value of z. The first two equations allow one to express the explicit solution for A and B
in the familiar form(g],

1 1
A= Z(_Neff S RVATIE B = %(—Meff T\ tepr — 497 ). (3.7)

In general for the double-well potential (for 1 < 0 and small enough o), there are three
z-independent real solutions to V'[—(C + D)] = 0. With C + D fixed, it follows that the
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first combination A+ B — CD in (B.G) is also fixed. Consequently, a “circular” constraint
on A — B and C' — D can be found

ap

o _lic-pr+ " +3(C + D)’ (3.8)

A-B)?+ = =
( >+g 16

This constraint can be represented by contours for each fixed value of z, 0 < x <1,
in a two-dimensional plane with A — B as the vertical axis and C' — D the horizonal axis. In
fig. [, we exhibit them for the class of solutions where o = 0 and C'+ D = 0. The external
contour, corresponding to x = 0, is precisely the constraint suggested in the qualitative
discusion of symmtry breaking of Sec. 2. To see this one must consider carefully the proper
definitions at the boundary, namely A— B = Ry— Ry = —Ryand C = —-D = 5y at x =0,
which yields the contraint Eq. (B.G) in the form,

R? = (5§ + 1/9).

For x = x., = pu?/4g, the contour shrinks to a point, A — B = C' — D = 0, about which a
double scaling limit can be taken [[Lq].

The different solutions to (B.6) can be parametrized by curves in this plane traversing
from the x = 0 to the x = 1 contours (see for example fig. 4(b)). For instance, a solution
can be specified, at each value of z, by the polar coordinate, §(x), for the intersection of the
curve with the contour (B.§). Conversely, once (z) is chosen for every z, a unique solution
to Eq. (B.9), (A(z), B(z),C(z), D(z)), is obtained [[7]. In analogy with (B.4)), each state,
In), 0 < n/N < 1, in the large N limit could be thought of as a linear conbination of
“left-” and “right” states, specified by an arbitrary density function, 6(x). The choice of
O(x) represents the ambiguity of solution at the tree level. (In fact the “orbit” need not
even be continuous. However, if the orbit is discontinuous, derivatives of A, B,C, D are
large and cannot be ignored, as is assumed in the tree level analysis.)

An interesting feature of these broken symmetry solutions is that, within the class
specified by one of the three values of C'+ D, they all have the same tree level eigenvalue
density and free energy. To see this consider the generating function F'(z) = %(T rﬁ)
for a general period-two ansatz at tree level|[[g]

_ ! (2z — (C+ D))
Flo) =172 0 dm\/[z2 —2(C+D)—(A+B—-CD)2-4AB

(3.9)

Notice that Eq. (B.9) involves precisely the three combinations, Eq. (B.6), which are fixed
by the four recursion relations. Therefore, once the value of C'+ D is chosen, one gets the
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same generating function F'(z). It follows that the tree level eigenvalue density p(z) and
free energy are the same for all solutions within a class, i.e., are independent of the choice

of O(z).

For the most part we now shall restrict further discusions to the case ¢ = 0 and
C + D = 0. All the solutions in this class give rise to the same eigenvalue density p(z).
This class of solutions is continuously deformable into the limiting case A(x) # B(z),
C(x) = D(z) = 0, which is just the standard symmetric solution for the two-band solution,
with pers = p. At the other extreme there is a maximally asymmetric two-band solution
satisfying the condition A(z) = B(x), C(x) = —D(x) # 0, with

Aw) = B@) = R@) = Valg.  C(@)=-D(@)=+|jul/a~/izlg] . (310

These values of C' and D form the turning points at which our numerical solutions change
the sign of A — B. (See fig. 1.) The symmetric solution corresponds to the choice
O(x) = +m/2 and the maximally asymmetric solution to the choice 6(x) = 0, 7. Our
expanded class of solutions includes ones where the branch of the square root singularity
(£) in Eq. (B7) is exchanged between A and B as the trajectory rotates in the A — B
versus C' — D plane, as we note in the discussion of our numerical results for finite N (see
Sec 3.4 and fig. 4 (c)). This corresponds to #(z) winding around the circle a number of
times as x goes from 0 to 1. This is a precursor of the angular momentum variable of
the double scaling solutions. The rigid implementation of Zs symmetry and the boundary
conditions on the recursion coefficients would have yielded only the 6(z) = +7/2 solution.
All other solutions correspond to a breaking of the Z5 symmetry.

3.2. Gaussian Penner Model

The second example, we would like to consider, is the Gaussian Penner model. The
potential for a general Penner model is V(¢) = Vo(¢) —t log ¢, where Vj is a polyno-
mial[[J]. If Vo(¢) = ¢ the model is the linear Penner model [[[9][R0], if Vo(¢) = u ¢*/2 the
model is the Gaussian Penner model [[2][[[3], where we interpret the log ¢ term as % log ¢2.
In fig. ] we display the Gaussian Penner potential for different values of t. Consider first
the situation where ¢ > 0. (The region ¢ < 0 is reached by analytic continuation.[I][I2])
As the potential is a double well, the period-two ansatz may be applied here also.

The recursion relations (Eq. (B.g)) for a general Penner model reduce to

~ = VERu(n =1V (d)n) — tv/Ro(n — 1167 m) (3.11a)
0= (n[V5(@)n) — t(nl¢~"|n). (3.110)
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Let us denote Wy, = VR, (n — 1|V{(¢)|n) and Y, = (n|V{(¢)|n) for later notational conve-
nience. For the Gaussian Penner model, W,, = uR,, and Y,, = uS,,.

Egs. (BIIa,f) are unusual since they involve matrix elements of <;3_1. For t > 0,
they can be solved in the spherical limit by a procedure similar to that used for deriving
the generating function F(z), Eq. (B.9), under a period-two ansatz [21]. By considering

n even and odd, Eqs. (B ) should normally lead to four conditions. Just like the ¢*
model, only three are independent, and they can be cast in the following form:

C+D=0, (3.12a)
A+B-CD= 25‘: L (3.120)
AB = w (3.12¢)

For the symmetric solution where C' = D = 0, one finds

: B(a) = *1° (3.13)

A= I

For the maximally asymmetric solution, on the other hand, one has

V@ +1), C)? = [(233 1) —2/z(x + t)} . (3.14)

==

Observe that Eqs. (B.12a — d) are precisely the necessary combinations which are
needed in Eq. (B.9) for determining the generating function of our symmetric Gaussian
Penner model in the spherical limit leading to symmetric two-band structure. Therefore,
for this class of solutions and in particular for the symmetric and maximally asymmetric
solutions, the eigenvalue density and free energy are again identical at tree level [RJ].

3.3. Correlation Functions that distinguish between symmetric and asymmetric ansatz
solutions

Given that the tree level generating function and hence eigenvalue density and free
energy are the same, one might ask if there are other correlation functions that distinguish
between the various solutions. It is normally assumed that after taking the period-two
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ansatz the large N limit is smooth for all correlators. However, consider the correlator
(Tr¢Treo).. In terms of recursion coefficients,

(Tr¢Trep). = Ry. (3.15)

In the symmetric solution, since the Ry alternate between Ay and By as N goes from
odd to even, this correlator at large N depends on whether oo is approached through odd
or even N. In one case it is A(1), in the other B(1). For the ¢ model, they differ even
at tree level by /u? — 4g/g which is singular at criticality, (see Eq. (B.4)). On the other
hand in the maximally asymmetric solution Sy is period two but Ry is of period one,
(see below Eq. (B.10)) hence this correlator has no discontinuity between odd and even.
This is an example of a correlator that distinguishes between the two solutions. A similar
difference between odd and even N is known to exist in the context of unitary matrix
models [R3].

Another example is (Tr¢Tr¢Tr¢). = Ry (Sny—1 — Sn) . In the symmetric solution
Snx = 0 and this vanishes. But in the maximally asymmetric solution since .5, is period
two, (and C' = —D), Sy_1—Sn changes sign as one goes from odd to even N. In particular,
(Tr¢TroTre). = (|ul/g% — 2(1/9)%/?)V/? for N odd and its negative for N even.

Another characterization of the difference between the solutions is the following: If
one truncates the infinite dimensional matrix (n|¢|m) to an N x N matrix corresponding
to the subspace of the first NV orthogonal polynomials, the eigenvalues of this N x N
matrix are a good approximation to the saddle point configuration of the eigenvalues at
large N. Since its matrix elements are given in terms of R’'s and S’s, we can determine
the eigenvalues numerically from a given solution of the recursion coefficients. In fig. [,
we show the locations of the eigenvalues so obtained for the tree level symmetric and
maximally asymmetric solutions for N = 24, 25. For N = 24, half the eigenvalues are in
one well and half in the other, for both solutions. However, for N = 25, (odd N), there is
a striking difference between the two solutions. For the asymmetric solution, there is one
extra eigenvalue located in one of the two wells, (the well selected depends upon the sign
of Sp), whereas for the symmetric solution, this extra eigenvalue in the the center (on top
of the barrier), thus preserving the symmetry between both the wells.

3.4. Numerical Approach to Finite N Solutions

Another approach to understanding the role of these multiple solutions is to pursue
a numerical study of finite NV solutions and attempt to take N large enough to see a cross
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over to the large N (or double scaling) regimes. Although we will postpone a detailed
analysis of our results, there are several general features which can help to understand the
present discussion. The recursion relations for the double well potential follow from the
variation of an effective action, [B4]
Vers(Buy Sp) = Y {==-10g(Rn) + pRo + 5 (B2 + 2R Rys1)
n=0

3.16
+ 0S8+ 552+ 45, (3.16)

+gR, (8% 4+ 82 | +5,_15.)},

with the defintions, S_; = 0 and Ry = 0. Morover we must take g > 0, if the effective
action (like the actual potential) is to be bounded from below. This formalism provides
a natural way to investigate our set of multiple solutions, by removing the boundary
conditions on Sy and R; and replace them with the asymptotic condition that R, and
S, are smooth functions as n — oco. This is simply the one band ansatz in the extreme
limit of n/N very large. Therefore it is again interesting to ask what is the full set of local
minima.

Earlier work on symmmetric solutions for the degenerate three-well potential have
observed the recursion coefficients with very complicated, “chaotic looking” behavior, when
calculated by a numerically method logically equivalent to minimizing an effective poten-
tial[R5]. We also have observed complicated behavior for two degenerate wells when we
allow symmetry breaking terms (S,, # 0), which we have been able to relate to the exis-
tence of our multiple solutions in the planar limit. As an illustration consider the solution
presented in fig. . However due to the degeneracy of multiple solutions at N, great care
must be taken with the minization procedures.

For example we have minimized V,;; for the double-well potential with N = 512,
i = —2,g=1and o = 0.1, starting from a random distribution of 2048 coefficients for
R,, and S,,. Using a variety of minimizaton procedures on the CM-5 at Boston University
and the NeXT station at CERN, we see that after only several 100 iterations the curves
conform roughly with the large N constraints but they can have a great variety of coutours
in the A — B vs C — D plane. However if we go further for another 100,000 iterations, a
smooth spiral curve (see fig. 4 (c)) begins forming near critical z (z.. = 1), with the large
N constraints improving to about 1% as might be expected in a transition region from
one of our N = oo solution to a particular double scaling solution with non-zero orbital
quantum number [ # 0. After 100,000 iterations the value of V.¢s/N departs from its
theoretical N = oo value by 0.0034. The final results on questions as to the stability of
non-zero orbital solutions, the possibility of residual degeneracies at finite IV and especially
the existence of choatic regimes require accurate and non-trivial compuatational power.
Further details on this as well as a study of higher 1/N corrections will be presented in a
future publication[2q].
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4. The Double Scaling Limit

4.1. Double Well ¢* Potential

The double scaling equations for the ¢* model have been discussed by a number of
authors [A,2,BHL0]. The steps involved in the double scaling analysis of symmetric breaking
solutions for a Zy symmetric potential are the same as that for solutions of a general
asymmetric potential [-IJ], since in both cases one includes both R,, and S,, in the analysis.
One sets © = 1 — €%t, (recall z = n/N) and ¢ = N~/3. For the symmetric solution,
C, =D, =0, while A,, and B,, are

Ay =ap + G(fe(t) + fo(
By = a0+ €(fe(t) — fol

~
S~—
N—
+
[
~~
=
®
—~~
~
SN—
—+
=
Q
—~~
~
S~—
N—
+

...... (4.1a)
..... (4.1b)

~
S~—
N——
—+
™M™
[\
~~
=
®
—~
~
S~—
I
<
Q
—~
~
S~—
N——
—+

On substituting this symmetric double scaling ansatz into the recursion relations (B.1)
L €2 ande3, we get eight equations, two of these are
used up by a, (¢ equations), the tree level result. (Note a, = —u/(2g); in what follows,

we adopt the convention where p = —2 and g = 1). That leaves us with six unknowns

and equating terms with powers €, e

and six equations hence all the unknowns can be determined. Most of them are zero
(e.g. fe = ro = 0....), while the others are determined in terms of f,(t) = f(t), e.g.,
re = (f? —t)/4. The function f(t) satisfies the Painleve-II equation

" 1 3 1 _

The suseptibility y ~ g%l; ~ f2)2—re = (f2+1)/4

For the maximally asymmetric solution, the double scaling ansatz for C,, and D,

are
Cp = eg(t) + €..... (4.3a)
D, = —eg(t) + €*..... (4.3b)
and A, = ag + 2re(t) + ...... , B, = a, + €2r.(t) + ---. Substituting this maximally

asymmetric double scaling ansatz into the recursion relations and equating powers of € we
get, re = —(g°% + t)/4, etc., and

1 1
" 3
- = +=-gt=0 4.4
g 49 29 ) ( )
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the same as Eq. (f.3), with g replacing f. Under this ansatz, the suseptibility x can be
expressed as (g% +t)/4.

We next consider the general symmetry breaking solutions, where A — B # 0 and
C' — D # 0 in the planar limit. Substituting the double scaling ansatz, Eqs. () and (£.3)
into the recursion relations and equating powers of € we get r. = (f? — g% —t)/4, etc., and
the following coupled equations [[}-L0]

=@+ /A + ft/2=0, (4.5a)
g —g(g®+ A4+ gt/2=0. (4.5b)

The suseptibility is now given by x = (f? + g% +t)/4.

While Eqgs. (-§) have been obtained previously in the context of asymmetric poten-
tials, we would like to emphasize that they describe the multiple (and in general symmetry
breaking) solutions that exist even for a Z-symmetric potential. To see the symmetry
breaking nature of these solutions more explicitly and to make contact with the tree level
discussion in the previous section, introduce a two-dimensional vector 7= (g, f), in terms
of which the coupled equations can be written as ¥ — (1/4)(r2 — 2t)7 = 0. We can next
make a change of coordinates

f=rsinf(t), g =1 cosf(t), (4.6)

so that x ~ (r? +t)/4 and the coupled equations become

o1, 1P
T_ZT +§Tt—ﬁ20, (47(1)
20 = 1. (4.7b)

Note that since A — B « f and C — D x g in the double scaling limit, the variable @ is
the same as that introduced in the previous section. The constant [ in Eq. (£.7) is the
“angular momentum”, and it is a constant of the motion due to the U(1) invariance of
Egs. (£.F). Note that for I = 0 equation ([L.7d) is just the Painleve-II equation in the r
coordinate. Thus in the [ = 0 sector of this model, we reproduce the same double scaling
results for both the symmetric and maximally asymmetric solutions. But for the [ # 0
sector the double scaling equation is different; hence the behavior of the system in this
sector for the multiple solutions is different. Iterating Eq. (f.7d) at large ¢, one finds

3t 1412 _
X:——(T)t2+--- (4.8)
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At the tree level we had a degeneracy of solutions parametrized by the function 6(x),
whose value could be independently chosen for ze[0, 1]. The double scaling analysis based
on the (4.1 )and (4.3 )tells us that only a two parameter family of these solutions, labelled
by [ and one global rotation angle 6, survives in the double scaling limit. (6(z) is no longer
any function of x, but constrained such that r20 =1lis a constant.) Solutions labelled by
different values of [ give rise to the same susceptibility at tree level (the first term in (E.§)
is [-independent) as expected, but differ at higher orders.

A relevent question that arises is: Just as the symmetric solution (S,, = 0) is the
“natural” solution that follows from the symmetric potential V(x), (“natural” in that it
respects the Zs symmetry of V(x), and the recursion coefficients are specified by initial
conditions given by the integrals discussed in section 2), is there a perturbed potential
of which the symmetry breaking solutions are natural solutions? This is presently being
investigated. At this point we remark that the perturbation cannot be a rigid translation
of the potential, which induces linear and cubic terms. Such a perturbation has been
discussed in Ref. [[(]. It can be easily seen that the natural solution to the shifted
potential Vi (z) = V(x — b) is given by the same R,, as for V(x), with S,, = b = const.

Should one decide to introduce a small explicit symmetry-breaking term, o =
N—2/35, as was done in Ref. [, the vector equation above remains U(1) invariant by
simply adding a “constant magnetic field” term of the form Byr x 2, where By « & and
Z denotes a unit normal to this two-dimensional plane. One can thus again reduce it to a
single radial equation with the solution depending on a “generalized angular mumentum”,
I = r20 + Byr?/2 = constant,

1, 1 | — Bor)2
7'”'——7”3—1——7”75—7( 2 )

; 5 = =0. (4.9)

4.2. The Gaussian Penner Model

The double scaling solutions for the Gaussian Penner model have been discussed in
Refs. [[J] and [[J]. We reproduce the proofs below for completeness (also simplifying them
somewhat). The critical point is t = —1. By strictly enforcing Zs symmetry, this model
can be solved exactly first at ¢ > 0, so that the criticality at ¢ = —1 can be exhibited
explicitly. Note that (n|¢~!n) = 0 by Z, symmetry, Eq. (BITf) thus reduces to S, = 0,
the symmetric ansatz. Eq. (B.I1d) can also be solved exactly for all n. Since W,, = uR,
and since (n — 1|¢~|n) = 0 for n even, (n—1|¢—1|n) = —A= for n odd, it follows that, for

VR,
n even, R, = n/uN, and for n odd, R,, = (n +tN)/uN|[[Z].
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Since we know the exact result for the R! s for the symmetric solution, the exact free
energy may be obtained

N/2—-1
= > klog[(2k+p+1)(2k+p—1)], (4.10)
k=1
where t = —1 4+ &. On expanding the free energy in powers of 1 we get
F= 22 log i+ = log u+ (4.11)
=g 1 log pt 5 log ... .

The coefficient of the second log p1, x1 = 1/12, comes from the torus contribution, indicates
that this free energy cannot be identified with the Legendre transform of the free energy
of the c=1 string at self dual or twice the self dual radius [[J].

It has been stressed in Ref. [[J that the exact solution to the Gaussian Penner

model is characterized by the fact that B(x) has a linear zero at * = 1 when t = —1
while A(z) is non-zero there, (see Eq. (B.I3)). This same feature also holds in general
for symmetry breaking solutions where C(z) = —D(z) # 0. However, the maximally

asymmetric solution provides an exception to this rule. When A(z) = B(x), one has
A(z) = B(z) ~ (x+1)'/2, (see Eq. (B-14)). That is, both A(z) and B(z) have square-root
type behavior near x = 1 in the spherical limit at ¢ = —1. Since it is the behavior of
R,, near x = 1 which determines the criticality of the model, it follows that the resulting
double scaling limit for the maximally asymmetric ansatz could be non-generic.

Let us next concentrate on the maximally asymmetric solution. We note first that,

with S,, # 0, Egs. (B-11d) and (B-I1§) can be re-written as [[[T][[Z]

2n+ 1+ Nt
N )

1
SN [Wn—l—l - Wn - N] = RnYn—l - Rn—l—lyn—l—b (412b>

Wy, + Wit + Sy Y, = (4.12a)

so that matrix elements of qu would not appear explicitly. For the maximally asymmetric
solution the double scaling solutions may be found as follows. With z = 1 — 2/N, t =
~1+pu/N,e=1/V/N, A,,C,, and D,, can be expanded as [[J]

1/V'N p(2) + ...

1+1/VN o(z) + 1/N 01(2) + ... (4.13)
- (1 +1/VN o(2) + 1/N oy(2) + ) .

Ap
Ch
Dy,
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On substituting into the recursion relations (4.12 Jand equating equal powers of N,
we can determine o(z) in terms of p(z) and o1(z) in terms of o(z). The equa-
tion for p is p(z)p(z — 1) = p — 1/2 + z and the double scaling result for R, is

Ry, ~T(3(N—=n+p+3/2) /T (3(N—n+p+1/2)). The double scaled free energy
N/2—-1

is ' = >, /7 klog[(2k+ p+1/2)(2k + p — 1/2)] plusp independent terms. On ex-
panding in powers of u one gets
1 )
I'==>yu?log u—— log p..... 4.14
3 W log n— g log p (4.14)

The coefficient x; = —5/48 confirms that this criticality corresponds to that for the free
energy of the c=1 string at twice the self dual radius as conjectured in [20]. We note that
although the tree level free energy gave identical results for the symmetric and maximally
asymmetric ansatz (see remarks below Eq. (B.14)), the double scaled free energies ({.11))
and (f.I9) are quite different.
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5. Discussion

The existence of multiple double scaling solutions at the same critical point, which
share the same tree level behavior, is an unusual and previously unnoticed feature. We
have exhibited this behaviour in two completely different models-the double-well ¢* po-
tential and the Gaussian Penner model. Both these models possess Z; symmetry, and a
charateristic feature of the class of solutions we consider is the fact that only one of the
solutions respects this symmetry to all orders, all other solutions break this symmetry.
Although the physical consequences of symmetry breaking in matrix models are not yet
fully understood, it is useful to consider the analogy of the multiplicity of solutions here
to the property of coexisting ferromagnetic phases below the Curie point. In the Ising
model there is an infinite set of mixed phases with identical free energy per unit volume
in the infinite volume limit. The domain walls that characterize the mixed phases give
rise to lower order contributions in the free energy expanded around the infinite volume
limit. The “bulk” contribution in the multiple solutions is the same (the tree level eigen-
value density is the same) but they differ by amounts suppressed by powers of 1/N, like
“surface” contributions.

A significant difference between the Gaussian Penner model and the symmetric ¢*
model is that in the Gaussian Penner model there does not seem to be an angular momen-
tum parameter [ characterizing the double scaling solutions. Further, the double scaled
free energies of the symmetric and maximally asymmetric solutions already differ, unlike
in the ¢* case where both of these were | = 0 solutions with the same double scaled free
energy. In spite of these differences, however, both models display the same general phe-
nomenon, namely, that the enlarged class of symmetry breaking solutions produces the
same free energy at tree level, and contain solutions that produce different free energies at
higher orders. We expect this to be a generic feature of multi-cut matrix models. The exis-
tence of multiple solutions is related to the fact that when the potential has more than one
minima, the number of smooth functions required to represent the recursion coefficients
exceeds the number of constraints obtained from the recursion relations. Thus multiple
solutions will exist even when the potential has no symmetry as we noted for o # 0 in the
¢* model.

It would be interesting to know whether and how these solutions can tunnel into
each other. This would be particularly interesting for the Gaussian Penner model where
the maximally asymmetric solution corresponds to the ¢ = 1 string compactified at twice
the self-dual radius. We are now studying in greater detail higher order terms beyond the
planar approximations as well as numerical solutions at finite N to the effective potential,
Eq. (B:I6), to determine more precisely the relationship between multiple solutions of the
planar versus the double scaling limit.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Figure Captions

Constraint on A — B versus C' — D for x =0, 0.5, .75, .875, .95, with . = —2 and
g=1.

The Gaussian Penner potential for t <0, ¢t =0 and ¢ > 0.

Eigenvalue distributions for even and odd N: (a) N = 24, symmetric solution;
(b) N = 24, asymmetric solution; (¢) N = 25, symmetric solution; (d) N = 25,
asymmetric solution.

Graphs of recursion coefficients for a sponteneously broken solution of the double-
well potential. (a) The R,, and (b) the S,, coefficients after 100,000 minimizaton
steps from a random start. (c) Orbit in the A — B vs C'— D plane.
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