
Answering Table Queries on the Web using Column
Keywords

Rakesh Pimplikar
∗

IBM Research
New Delhi, India

rakesh.pimplikar@in.ibm.com

Sunita Sarawagi
IIT Bombay

Mumbai, India
sunita@iitb.ac.in

ABSTRACT
We present the design of a structured search engine which re-
turns a multi-column table in response to a query consisting
of keywords describing each of its columns. We answer such
queries by exploiting the millions of tables on the Web be-
cause these are much richer sources of structured knowledge
than free-format text. However, a corpus of tables harvested
from arbitrary HTML web pages presents huge challenges of
diversity and redundancy not seen in centrally edited knowl-
edge bases. We concentrate on one concrete task in this pa-
per. Given a set of Web tables T1, . . . , Tn, and a query Q
with q sets of keywords Q1, . . . , Qq, decide for each Ti if it
is relevant to Q and if so, identify the mapping between the
columns of Ti and query columns. We represent this task as
a graphical model that jointly maps all tables by incorpo-
rating diverse sources of clues spanning matches in different
parts of the table, corpus-wide co-occurrence statistics, and
content overlap across table columns. We define a novel
query segmentation model for matching keywords to table
columns, and a robust mechanism of exploiting content over-
lap across table columns. We design efficient inference algo-
rithms based on bipartite matching and constrained graph
cuts to solve the joint labeling task. Experiments on a work-
load of 59 queries over a 25 million web table corpus shows
significant boost in accuracy over baseline IR methods.

1. INTRODUCTION
We consider the following structured Web search prob-

lem. A user wants to assemble a multi column table rep-
resenting either entities with an optional set of attributes,
or multi-ary relationships among entities. He expresses his
query as sets of keywords, one set for each column he wishes
to see in the answer table. Examples include, single col-
umn keyword queries like “Mountains in North America”
to retrieve names of entities; two column keyword queries

∗Most of the work was done when the author was a student
at IIT Bombay.

like “Pain killer | Side effects” to retrieve instances of rela-
tionship between two entities; three column keyword queries
like “Cheese name | Country of origin | Milk source” to find
entities along with values of two attributes. We tap the
large number of organically created tables on the Web to
answer such queries. In a recent 500 million pages Web
crawl, we conservatively estimated that over 25 million ta-
bles express structured information. Similar statistics have
been reported elsewhere on other web crawls [4, 3, 7]. Each
table contributes valuable facts about entities, their types,
and relationships between them, and does so in a manner
that is considerably less diverse and less noisy, compared to
how facts are expressed in free-format text on the general
Web. This makes web tables an extremely valuable resource
for answering structured queries on the Web.
The power of Web tables to answer ad hoc structured

queries has largely been untapped. One exception is the
Octopus system [2] that supports keyword queries such as
“Mountains in North America” and returns a ranked list of
tables that match those keywords and thereafter depends on
multi-round user interactions to assemble an answer table.
The system is targeted for topic queries, and is not suitable
for ad hoc retrieval of relationships or specific attribute sets
of an entity type. Multi-column keyword queries provide a
unified mechanism to query for entities, attributes of enti-
ties, and relationships, while being only a small extension of
the familiar search box keyword queries.
We present the design of an end to end system called

WWT that takes as input a large corpus D of Web tables
and in response to a query Q with q column keyword sets
Q1, . . . , Qq returns as answer a single q column table. Unlike
standard IR systems, our goal is not just to present a ranked
list of matching Web tables from D, but to extract relevant
columns from several matching web tables and consolidate
them into a single structured table. An illustrative scenario
is shown in Figure 1. The user is interested in compiling
a table about explorers listing their names, nationality and
areas explored. He submits three sets of column keywords
Q1, Q2, Q3 as a query as shown in the top left part of the
figure. We show snippets of three of the several tables that
match the query keywords. With each table snippet we also
show some text, that we call context that was extracted from
around the table in the web document that contained the
table. WWT processes these tables to get a final consoli-
dated table as shown as a snippet in the top right corner of
the figure.
A crucial challenge in converting the web tables into a

consolidated answer table is deciding if a web table is rel-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 38th International Conference on Very Large Data Bases,
August 27th - 31st 2012, Istanbul, Turkey.
Proceedings of the VLDB Endowment, Vol. 5, No. 10
Copyright 2012 VLDB Endowment 2150-8097/12/06... $ 10.00.

908

ar
X

iv
:1

20
7.

01
32

v1
 [

cs
.D

B
]

 3
0

Ju
n

20
12

Name Nationality Main areas

explored

Abel Tasman Dutch Oceania

Vasco da Gama Portuguese Sea route to India

Alexander Mackenzie British Canada

.

Exploration Who (explorer)

(Chronological order)

Sea route to India Vasco da Gama

Caribbean Christopher Columbus

Oceania Abel Tasman

.

This article lists the explorations in history. For

the documentary 'Explorations, powered by

Duracell', see Explorations (TV)
List of explorers - Wikipedia, the free

encyclopedia

Forest reserves

ID Name Area

7 Shakespeare Hills 2236

9 Plains Creek 880

13 Welcome Swamp 168

.

Other Formal Reserves 1.3 Forest Reserves

under the Forestry Act 1920

All areas will be available for mineral

exploration and mining

Name of Explorers Nationality Areas Explored

Column Descriptors

Web Table 3

Name of Explorers Nationality Areas Explored

Vasco da Gama Portuguese Sea route to India

Abel Tasman Dutch Oceania

Christopher Columbus Caribbean

.

Web Table 2Web Table 1

Answer Table

Q2 Q3Q1

Figure 1: An example column description query.

evant, and if so, matching the columns of the table to the
query columns. We call this the Column mapping task. In
Figure 1, the task should label Table 1 as relevant and map
its columns consecutively to Q1, Q2, Q3, label Table 2 as rel-
evant and map column 1 to Q3 and column 2 to Q1, and la-
bel Table 3 as irrelevant. The Column mapping task is more
challenging than relevance ranking entire tables because the
amount of column specific information from both the query
and tables is limited. From the query side, the only infor-
mation is a set of keywords, and from the web table side the
only obvious column-specific information is in the header of
the table. Headers of tables on the Web are inadequate in
several ways: most Web tables do not use the designated
HTML tag for indicating headers (80% in our corpus) and
are identified via imperfect automated methods, many ta-
bles have no headers (18% in our corpus), header text is
often uninformative (e.g. “Name”), many tables have mul-
tiple headers but without any clearcut semantics (do they
represent split phrases as in Table 1 of Figure 1, or addi-
tional information as in Table 2, or a title as in Table 3?).
The context text of a table is useful but it does not give
column-specific information. How can matches in the con-
text, common to all columns of a table, help us discriminate
one column from another? We make a number of contribu-
tions to address these challenges.

Contributions. We propose a novel method to combine the
clues in one column’s header with the signals from the rest of
the table (such as its context, and body) through a two-part
query segmentation model. We show that the segmentation
model is more precise than the IR practice of weighted sum
of whole string matches along each field. Second, we show
how to exploit the content overlap of a column with columns
of other tables to help tables with poorly matched headers.
We use an elegant formulation based on graphical models
to jointly map all columns of all tables to the query table.
We discuss a number of non-trivial choices in the design of
the graphical model, including the choice of the variables,
the node potentials that incorporate diverse clues from the
table and the corpus, and, edge potentials that exploit con-
tent overlap while being robust to the presence of several
irrelevant web tables. Finally, we design efficient algorithms

to solve the joint column mapping task. Experiments on a
workload of 59 queries show a boost of F1 accuracy from
65% using baseline IR method to 70% using our approach.

Outline. We present an end to end description of WWT in
Section 2. In Section 3 we describe the column mapper. In
Section 4 we present algorithms to find the highest scoring
mapping in the graphical model. Experiments, related work,
and conclusions appear in Sections 5, 6 and 7 respectively.

2. ARCHITECTURE
Figure 2 shows the architecture of WWT.We first describe

the main functions performed offline and then the process
of answering a query online.

2.1 Offline Processing
We start with a Web Crawl from which we extract all data

within the HTML table tags. However, not all of these are
data tables because the table tag is often used for layout
and for storing artifacts like forms, calendars, and lists. We
depend on heuristics to retain tables that present relational
information in a vertical format. On a 500 million pages
Web crawl, we get an yield of 25 million data tables, which is
roughly 10% of the table tags in the crawl. Similar statistics
have been reported in [4, 3, 7]. A machine learning based
approach [7] could have been more accurate but we did not
have enough labeled data at the time. Instead, we decided
to rely on query time relevance judgments to filter away
non-data tables. Each extracted table is then processed and
associated with the following two types of information:

2.1.1 Headers
Even though the HTML language has a designated tag

(“th”) for headers, only 20% of the 25 million Web tables
used it. Most others depended on visual, font, and con-
tent markers to indicate headers. After exploring several
Web tables in an active learning framework, we designed
an algorithm that marks headers as follows. The rows of
a table are assumed to consist of zero or more title rows
(for example Table 3 of Figure 1 has one title row), followed
by zero or more header rows, followed by body rows. We
scan rows sequentially from the top as long as we find rows

909

Top 2 Relevant

Tables from T1

Tables

T2

Tables

T1

Index Query Builder

Web

Column Descriptors

Table Index

Offline

Table Extractor

Table Selector

Table Store

L
u

c
e

n
e

 Q
u

e
ry

 1

T1 U T2

(Descriptors Mapped)

Consolidated Table

Ranker

Table Relevance &

Column Confidence

Scores

Final Consolidated Table

User

Header

Extractor

Context

Extractor

L
u

c
e

n
e

 Q
u

e
ry

 2

Column Mapper

Graphical Model

Collective Mapping

Consolidator

Resolver

Figure 2: System architecture.

different from most of the rows below it in terms of format-
ting (use of bold face, italics, underline, capitalization, code,
and header tags), layout (background color, CSS classes), or
content (textual header with numeric body, number of char-
acters). A ‘different’ row is labeled a title if all but the first
column is non-empty. Else, we label that row as a header.
All subsequent rows are labeled header as long as they are
similar to the first header row and different from the rows
below them. We stop as soon as a row fails this test. Over
two thousand Web tables, we found that this heuristic failed
only in five cases. In our corpus as per this method, 60%
tables had one header row, 18% had no header, 17% had
two header rows and the remaining 5% had more than two
header rows. We could have used a less heuristic approach,
say based on CRFs [14] but we found this approach to be
very fast, and sufficiently accurate.

2.1.2 Context
The context is meant to include all the text in the parent

document that tells us what the table is about. But this
notion is much less objective than a header. So, we followed
a policy of being generous in including text snippets in the
context and, attaching a score to each text snippet for use
during query processing. We depend on the DOM tree d of
the parent document for extracting candidate snippets. Let
T be the node in d containing the table. Any text node x
that is a sibling of a node on the path from T to the root
of d is added to the context. The score attached with x is
calculated from two types of factors (1) the edge distance
in tree d between x and T and whether x is a right or left
sibling of the path nodes, and (2) the relative frequency in
d of the format tags (bold, header, italics, underlined, etc)
attached with x. We skip details of how exactly we do the
combination due to lack of space.
Finally, the extracted tables are indexed using Lucene and

stored on disk. Each table is treated as a Lucene document
with three text fields: header, context, and content. While
indexing, we associate boost values of 2, 1.5, and 1 respec-
tively with each of the three fields to control the relative
importance of matches in the different fields for the column
description queries.

2.2 Query Time Processing
Every user query Q consisting of say, q sets of keywords

Q1, . . . , Qq is processed through the following stages.

2.2.1 Find Candidate Web Tables
We probe the index using the union of words inQ1, . . . , Qq.

This gives us a set of tables T 1 = T1, . . . Tn1 that match the
query keywords in the header, context, or body. However,
since many Web tables do not contain headers or useful con-
text words, we use a second index probe to retrieve tables T 2

based on content overlap with tables in T 1. But, typically
many tables in T 1 are irrelevant, and arbitrarily retrieving
all tables with overlapping content in T 1 can introduce too
much noise. We deploy the following conservative strategy.
Invoke the column mapper (described in the next section) to
find the top-two tables with very high relevance score from
T 1. We may find no such tables for a query. We then add
a random set S of ten rows from the confident tables and
make a second index probe with the union of Q and S. In
our experiments we found that the second stage index probe
was used in 65% of the queries in our workload described in
Section 5. For these, on an average 50% of all relevant source
tables were obtained from the second stage. The fraction of
relevant tables in the first stage was just 52% as compared
to 70% in the second stage. This shows the usefulness of the
second stage index probe.

2.2.2 Column Mapping
This step works on the candidate web tables from the in-

dex probe T1, . . . Tn and decides for each table Ti if it is rel-
evant and if so marks for each query column Q` the column
(if any) of Ti that maps to Q`. Also, with each relevance
and column labeling decision it associates well calibrated
probability scores since these are needed to fetch additional
tables for the second index probe, and for ranking rows in
the final table. The column mapper exploits a number of
clues including matches in the header and context of a web
table, the overlap in the content of two web tables, and the
association of query keywords to a column’s corpus in the
entire corpus. In Section 3 we present how we combine these
clues to solve the column mapping task.

2.2.3 Consolidator and Ranker
Given a set of tables output by the column mapper along

with table-level relevance scores and column-level confidence
scores, the consolidator merges relevant columns and rows
into a single table. The main challenge in this task is decid-
ing if two rows from different tables are duplicates, and we
refer the reader to [9] for the approach we used to solve this.
The ranker reorders the rows of the consolidated table so as
to bring more relevant and highly supported rows on top.
We skip details of our ranker since the focus of this paper is
the column mapping task.

3. DESIGNING THE COLUMN MAPPER
We are given a query header Q with q sets of keywords

Q1, . . . , Qq and a set of noisy web tables T1, . . . Tn. Each
candidate web table has a variable number of columns and
rows, may have zero or more headers, and contextual text
extracted from around the table. Our goal in this step is
to establish if a web table t is relevant to Q, and if so,
label each column c of t with the query column to which it
maps, or a special label na indicating no match to any query
column. We call this the Column mapping task, with the
understanding that it also subsumes the task of establishing
if a table is relevant.

910

A simple method of solving this problem is as follows:
First, establish the overall relevance of a table t to Q by
suitably thresholding the sum of TF-IDF similarity of the
keywords in Q to the context and header text of t. If t is
found relevant, find the best matching of the query columns
to the columns of t based on a thresholded similarity of each
Q` to the header text of each column of t.
This basic method has several shortcomings. First, be-

cause the context text associated with a table is a very noisy
descriptor of a table, the table-level relevance decision could
get misled by unrelated verbosity in the context. Ideally, the
table level relevance decisions should be made in conjunction
with finding useful column mappings in the table. Second,
since the headers in web tables are noisy and/or ambiguous,
similarity scores with the header text alone is likely to be
unreliable. We will show how to exploit other kinds of clues
such as the context and body of the table, and other corpus
wide co-occurrence statistics to augment the header-level in-
formation. Finally, this method cannot handle tables with
no headers, or tables with very little context or header text.
In such a case we would like to exploit the content overlap of
a column with columns of other tables. We will show in the
experimental section that ad hoc ways of including header
text from other overlapping table columns fails to yield good
results.
Instead of separately deciding for each web table whether

it is relevant or not, and to which query label it maps us-
ing independent similarity measures, we propose a more
global approach to combine the diverse clues both within
and across tables. We propose a unified approach based
on graphical models that provides an elegant formulation
to the task of jointly labeling all columns. We first give
a brief overview of graphical models and then present our
formulation.

Graphical Models. A graphical model [10] expresses the
joint distribution over a set of n random variables x =
x1, . . . , xn, where each xi belongs to a space of labels Yi.
The model captures the dependencies between elements of
x as a graph G, each a node in the graph, with a sparse set
of edges as follows:
We first identify small subsets of variables, called cliques,

that are highly dependent on each other and form complete
subgraphs of G. For each clique C, we then define poten-
tial functions θ(C,xC) 7→ that provides an un-normalized
measure of compatibility among the labels xC assigned to
variable subset C. Two special kinds of potentials are node
potentials θ(i, xi) defined on the label xi of a single node i
and edge potentials θ(i, xi, j, xj) defined over edge (i, j) in
G and labels (xi, xj) assigned to the two nodes it connects.
The probability distribution is defined as

Pr(x1, . . . , xn) =
1

Z
exp(

X
C⊆cliques(G)

θ(C,xC))

where Z serves to normalize the product of clique potentials
to a proper probability. A common method to define po-
tentials is as a dot product between a model parameter and
a feature vector. In case of node potential, we might write
θ(i, xi) = w>

1 f(i, xi), where f : [1,M] →k is the feature vec-
tor and w1 ∈k is the model vector where k is the number
of features. Similarly, an edge potential would be defined
as θ(i, xi, j, xj) = w>

2 f(i, xi, j, xj). The feature vector are
designed by the user whereas the model vectors w1,w2 are

trained from labeled data. This feature-based framework
provides a very convenient way to use a variety of intuitive
clues without worrying about how to combine them numer-
ically into a single objective. Once Pr(x) is defined and the
model vectors are trained, the inference problem is to find
argmaxx

P
C(θ(C,xC)), the most likely joint assignment of

labels to variables. When the graph has many large cliques,
this problem is intractable and it is necessarily to design
good approximation algorithms.
We now show how we model the column mapping task

as a graphical model by defining the random variables in
Section 3.1, the node potentials in Section 3.2, the edge
potentials in Section 3.3, other higher order potentials in
Section 3.4, and the inference algorithm in Section 4.

3.1 Variables
Our task is to label each table as relevant or not, and label

the columns of relevant tables with one of q query columns
or na. Accordingly, a natural choice would be to create a
graphical model where we have a variable t for each web ta-
ble t ∈ {T1, . . . , Tn} and a variable (tc) for each column c of
table t. Each table variable is binary indicating if the table is
marked relevant or not, and each column variable (tc) takes
a label from the set {1, . . . , q}∪{na}. However, this natural
variable representation gives rise to an unnaturally compli-
cated edge set to capture the interaction between a table
variable, and all its columns — only when a table variable
is labeled relevant, does it make sense to label the column
variables. Also, to represent positive affinity among similar
columns of only relevant tables we would need cumbersome
four-variable potentials. Instead, we chose a representation
with only column variables (that we index as tc) but aug-
mented the label space of column variables with a label nr
to indicate that the column is part of an irrelevant table.
Thus, a column variable can take one of q + 2 labels from
the set Y = {1, . . . , q} ∪ {na, nr}.

3.2 Node Potentials
Node potentials θ(tc, `) have to be defined for each column

variable tc and each label ` ∈ Y. Their representation as a
weighted sum of features provides a flexible mechanism to
incorporate a wide variety of clues. We define five features
that captures a diverse set of clues including the similarity
between the query keywords and header, context, and body
of web tables, and affinity between query keywords and con-
tents of tables. These are defined in Sections 3.2.1 to 3.2.4.

3.2.1 Matching Query Keywords to Table Columns
The most important signal in mapping a web table col-

umn (tc) to a query column ` is the similarity between the
query keywords Q` and the text in table t’s context (if any)
and text in c’s header which could be absent or span over
one or more rows. A standard method in IR to assign
scores to multi-field documents is to compute the similar-
ity of each field separately to the query keywords and take
their weighted sum. Adapting to our case, we could sepa-
rately measure the similarity of Q` to (1) the header tokens
in (tc) and (2) the context of t. We next illustrate the vari-
ous limitations of this method.
First, the header text might contain only a part of the

query keywords and the other part might appear in the con-
text. For example, one query in our workload was “Nobel
prize winner”. This retrieved several tables where the word

911

“Nobel prize” appears in the context and only “winner” ap-
pears in the header. If we separately measure the similarity
of Q` to (tc)’s header and t’s context, we will get low simi-
larity from the header, and even if the similarity with con-
text is high it does not help us decide which of the columns
specifically matches Q`.
Second, matches with tables having multiple header rows

is not well defined. Should the header tokens be concate-
nated and then matched to Q`, or should we compute simi-
larity only with a single best matching row? Concatenation
makes sense when a true header is split across multiple rows
as in column 3 of Table 1 in Figure 1. However, concate-
nation is bad when some header rows are wrong, or when a
second header row presents irrelevant details. For example,
in table 2 of Figure 1, the words “chronological order” in
the second header row should not be used to diminish the
similarity of the first column of Table 2 to Q3. In this case,
going with the single-best option is better.
Third, in some cases the evidence might come from a ta-

ble’s content. For example, a query string Q` in our dataset
about “Black metal bands” matched a three column web ta-
ble with respective headers “Band name | Country | Genre”
and no context. The table contains names of many band
types, of which “Black metal” is one. The only way to find
this table as relevant is to exploit the frequent occurrence
of the words “Black metal” in the third column in mapping
the first column to Q`.
Finally, in some cases the header text of some other col-

umn c′ of t might be needed to match column c to Q`.
For example, another query in our dataset was about “dog
breeds” which matched a web table with several columns
two of which had headers “dog” and “breed”. The “dog”
column contained dog names, no where else was the token
“dog” present in the table.
We present a new similarity measure that removes all the

above limitations in one unified function. Instead of sepa-
rately matching whole of Q` to each field, we compute simi-
larity via a two-part segmentation of Q`: one part is used to
pin Q` to a specific header of t and the other part is used to
gather relevance support from other parts of the table. Let
q1, . . . , qm be the sequence of tokens in Q`. Let h denote the
number of header rows in t and let Hrc denote the tokens in
header row r of column c. We measure the similarity of Q`

to a column c of web table t by segmentingQ` into two parts:
a prefix P = q1, . . . , qk and a suffix S = qk+1, . . . , qm. One
of the parts, prefix or suffix, is matched to a header row r
of c, and the other part to portions of t outside the header,
including the title of t, the context of t, frequent content
in some column of t, other headers in column c (Hr′c for
r′ 6= r), and other column headers of t in row r (i.e. Hrc′ for
c′ 6= c). Let inSim(P,Hrc) denote the first similarity, that
is, the score of matching the prefix P (or suffix S) to the
header Hrc and outSim(S, t, r, c) denote the second score,
that is, the score of matching the remaining part (suffix S
or prefix P) with the rest of the table. The segmented simi-
larity SegSim(Q`, tc) is computed as the maximum weighted
sum of scores over all possible values of r and all possible
query segmentations. That is,

SegSim(Q`, tc) = max
r=1...h

max
P,S s.t.

P∩Hrc 6=φ
PS=Q`∨SP=Q`

‖P‖2
‖Q`‖2

inSim(P,Hrc)

+
‖S‖2
‖Q`‖2

outSim(S, t, r, c) (1)

where ‖P‖ denotes the L2-norm of the TF-IDF vector over
the tokens in P . The inSim(P,Hrc) similarity is the TF-IDF
weighted cosine similarity between the token sequence P and
Hrc. The outSim similarity is more challenging because we
need to account for five sources of matches in the table:
t’s title and context, other header rows in column c, other
header columns in r, and frequent body content tokens. For
ease of notation we call these parts as T,C,Hc, Hr,and B
respectively. Matches in these different parts have different
degrees of reliability. We characterize this reliability with
a probability parameter pi for i ∈ {T,C,Hc, Hr, B}. We
calculated these empirically on our workload in Section 5 as
follows: for each part i ∈ {T,C,Hc, Hr, B} of all Q` and
relevant t, reliability pi of part i is the fraction of correctly
matched columns from all columns c with positive inSim
and positive match with i. These values turned out to be
(1.0, 0.9, 0.5, 1.0, 0.8) respectively for {T,C,Hc, Hr, B}. The
score of a token is the soft-max of the reliability over the
parts with which it matches. Finally, the outSim(S, t, r, c)
value is computed as the sum of the soft-maxed match reli-
ability of each term w weighted by the TF-IDF score TI(w)
of the term as follows:

outSim(S, t, r, c) =
X
w∈S

TI(w)2

‖S‖2 (1−
Y

i∈{T,C,Hr,Hc,B}
w∈part(i)

(1−pi))

The SegSim similarity has several nice properties. First,
for multi-row headers it overcomes the shortcomings of the
two extremes of full concatenation and single best. When
the header has no spurious tokens outside the rth row, it
reduces to the desired option of cosine similarity on fully
concatenated headers. For the other extreme when all but
one header is relevant, it reduces to the single best option.
Second, when a token matches a table in multiple parts, the
outSim score of the table increases but the influence of each
additional match decays exponentially. Third, by requiring
that the column header have a non-zero match with either
the prefix or suffix of Q`, we ensure that table-level matches
count only for specific columns rather than all columns of a
table.

3.2.2 Query Fraction Matched
Another useful feature for defining node potentials is the

fraction of query tokens that match the column header and
other parts of the table. For the same value of SegSim sim-
ilarity, we should assign higher score to the case where we
have covered all the query terms, over the case where we
have covered only a subset. We add a second feature called
Cover(Q`, tc) that differs from SegSim in Equation 1 in only
the definition of inSim(P,Hrc) — instead of cosine similarity
we measure the weighted fraction of P ’s tokens that appear
in Hrc (= 1

‖P‖2
P

w∈P∩Hrc
TI(w)2).

3.2.3 Affinity of Query Keywords to Column Content
Instead of depending solely on the Web tables retrieved

for a query, we could define features over the entire corpus
D. One potential signal is the co-occurrence of keywords in
Q` with the contents of a table column. Such signals have
been used in [2] for ranking tables for topic queries, and in
[12] for collecting class instance lists on web queries, and
in other NLP tasks [20]. Adapting it to our case of query
keywords Q` and contents of column (tc) we define a PMI2

912

score as in [2] as

PMI2(Q`, tc) =
1

#Rows(t)

X
r∈Rows(t)

|H(Q`) ∩ B(Cell(t, r, c))|2
|H(Q`)| |B(Cell(t, r, c))|

where H(Q`) denotes the tables in D that contain keywords
Q` in their header or context, and B(Cell(t, r, c)) denotes
the tables that match the words in cell (r, c) of table t in
their content.

3.2.4 Table Relevance
Our final feature for node potentials captures the overall

relevance of a table to the union of query keywords. We
define this as follows:

R(Q, t) =
1

q
clip(

X
`∈1...q

max
c

Cover(Q`, tc),min(q, 1.5)) (2)

where the function clip(a, b) is 0 when a < b and a otherwise.
Intuitively, this measures the total fraction of query words
that match a table’s header and context provided the match
fraction is greater than 1 for single column queries, and 1.5
for all other queries.

Node Potential. Our final node potential θ(tc, `) =8>>><>>>:
w1SegSim(Q`, tc) + w2Cover(Q`, tc)

+w3PMI2(Q`, tc) + w5

if 1 ≤ ` ≤ q

w4
min(q,nt)

nt
(1− R(Q, t)) if ` = nr

0 if ` = na.

(3)

where nt is the number of columns in table t. The values
w1, . . . , w4 capture the relative importance of different fea-
tures and w5 is a bias term which is negative and serves the
purpose of disallowing maps to a query column based on
very small similarity values.

3.3 Edge Potentials
Our edge potentials θ(tc, `, t′c′, `′) are defined over pairs

of columns tc and t′c′ and are used to capture the similarity
in the content of columns across tables. A popular choice for
edge potentials is the positive potts potential that assigns
a positive score when the two variables take the same label,
and is zero otherwise. The strength of the edge is tied to
the similarity between the columns and is defined as:
θ(tc, `, t′c′, `′) = wesim(tc, t′c′)[[` = `′]] ∀ tc, t′c′ s.t. t 6= t′

where [[C]] is 1 when C is true and 0 otherwise, and we is
the weight of this edge feature. This potential fared poorly
because a large fraction of web tables are irrelevant, yet
some of their columns are similar to columns of relevant
tables. These relevant columns get pulled toward the irrel-
evant label because of the reward accrued from the many
edges with irrelevant columns. We fix this problem by set-
ting θ(tc, `, t′c′, `′) to zero when ` = `′ = nr. However, this
fix causes the reverse problem: irrelevant tables start get-
ting marked as relevant. When irrelevant tables are large
in number and highly similar to each other, the edge po-
tential terms overshadow the node potentials. We therefore
designed a custom edge potential that differs from the above
potential in three ways:

Normalize Similarity. We first normalize the similarity
measure so that the sum of the similarity of a column to
other neighbors is bounded at one. For each column (tc), we

normalize its similarity as nsim(tc, t′c′) = sim(tc,t′c′)
λ+

P
t̄,c̄ sim(tc,t̄,c̄)

.

The smoothing constant λ makes sure that the normaliza-
tion does not inadequately boost similarity of a column that

is weakly similar to only a few other columns. We choose
λ = 0.3 and ignore neighbors with unnormalized similarity
below 0.1. The nsim values are asymmetric and we will see
shortly how these are used to create symmetric edge poten-
tials.

Include Column Confidence. Second, we only add an edge
potential across tables where at least one of the two columns
is confident about its labeling independent of other tables.
We measure confidence of a column’s labeling using its node
potentials to get a probability distribution Pr(`|tc) as de-
scribed in Section 4.2. A column is confident only if Pr(`|tc)
is large for some ` ∈ [1 . . . q]. We used a threshold of 0.6.

Max-matching Edges. Third, for a table pair t, t′, we con-
nect each column c in the pair to at most one column in the
other table instead of all the columns with which c might be
similar. This provides more robust transfer of labels when
columns within a table are similar to each other. We
achieve this by first finding the best one-one matching be-
tween the columns of two tables based on a weighted sum
of their content and header similarity. We only add an edge
between columns in the matching, and not between all pos-
sible pairs of similar columns of two tables.
The final edge potential θ(tc, `, t′c′, `′) =

we[[` = `′ ∧ ` 6= nr]](nsim(tc, t′c′)[[max
y 6=nr

Pr(y|t′c′) > 0.6]]

+ nsim(t′c′, tc)[[max
y 6=nr

Pr(y|tc) > 0.6]]) (4)

3.4 Table-level Potentials
We define a set of hard constraints to control the consis-

tency of the labels assigned to a web table. Each of these
are defined over the labels of all the columns within a table
and disallow inconsistent labelings by taking large negative
values for inconsistent labels. Unlike for the node and edge
potentials, there are no parameters to train for these poten-
tials. We include the following four hard constraints.

The mutex Constraint. This constraint requires that only
one column in a table t be mapped to a query column. That
is,

φa(`1, . . . , `nt) = [[
X
j

[[`j = `]] ≤ 1, ∀` = 1 . . . q]]0−∞ (5)

where [[C]]0−∞ takes a value zero when condition C is true
and −∞ otherwise.

The all-Irr Constraint. This constraint ensures that if
one column in a table t is assigned a label nr then all columns
of that table must be assigned nr. This constraint helps to
make consistent table-level relevance decisions from column-
level decisions. That is,

φb(`1, . . . , `nt) = [[
X
j

[[`j = nr]] ∈ {0, nt}]]0−∞ (6)

Themust-matchConstraint. This constraint requires that
every relevant table must contain the first query column.

φc(`1, . . . , `nt) = [[
X
j

[[`j ∈ {1, nr}]] > 0]]0−∞ (7)

Themin-matchConstraint. Every relevant table must con-
tain at least m of the q query columns. We chose m as two

913

for all queries with q ≥ 2.

φd(`1, . . . , `nt) = [[
X
j

[[`j ∈ [1 . . . q, nr]]] ≥ m]]0−∞ (8)

Overall Objective. Thus we have reformulated the Col-
umn mapping task as the task of finding labels ytc ∈ Y to
each table, column pair (tc) so as to maximize the sum of
node potentials (Equation 3), edge potentials (Equation 4)
and table consistency potentials (Equations 5 to 8). We
denote the set of all labels as y, and the overall objective is:

max
y

X
tc

θ(tc, ytc)| {z }
node

+
X
tc

X
t′ 6=t,c′

θ(tc, ytc, t
′c′, yt′c′)| {z }

edge

+
X

C∈{a,b,c,d}

X
t

φC(ytc1 , . . . , ytcnt
)

| {z }
constraints

(9)

The above objective has six parameters w1, . . . , w5, we. We
use a training phase with a separate labeled dataset to find
the values of these parameters so that the error of the high-
est scoring mapping is minimized. Since we had only six
parameters, we were able to find the best values through
exhaustive enumeration. More sophisticated training meth-
ods, say based on max-margin structured learning [10] per-
form well only under exact inference which is not possible
for our objective because it is NP-hard. This can be proved
using a reduction of the well-known NP hard problem of
metric labeling [6] to our problem.

4. INFERENCE ALGORITHMS
Since the problem of finding the optimal column labels

as per objective 9 is NP-hard, we present approximation
algorithms in this section. We develop our approximation
algorithm in stages. First in Section 4.1, we show that if
the edge potential terms are absent, we can find the optimal
column labels in polynomial time via a novel reduction to a
bipartite matching problem. Next, we show two approaches
to approximating the overall objective: table centric (Sec-
tion 4.2) and edge-centric (Section 4.3) based on whether
they give more importance to the table-specific potentials
or across table edge potentials.

4.1 Table Independent Inference
We show how to optimally solve objective 9 without the

edge potentials. The optimal labeling of the different tables
now get decoupled. For each table t we solve a generalized
maximum matching problem in a bipartite graph Gt cre-
ated as follows. The nt columns of t forming the left nodes
of Gt and labels 1, . . . , q, na forming the right nodes. The
weight of an edge between a left node c and a right node
` is θ(tc, `) + M` where M` is a large positive constant for
` = 1, and zero otherwise. In addition, each node v is as-
signed a capacity cv that is one for all nodes except the right
node na for which is cv = max(0, nt − m) where m is the
minimum number of columns required to be matched in the
min-match constraint. Find a matching, that is a subset
S of the edges in Gt, such that each node v has no more
than cv adjacent edges in S and the sum of edge weights in
S is maximized. Such a matching can be found in O(n2

t q)
time using the well-known reduction to the min-cost max-
flow problem (summarized in Section 4.2.1). The edges in
the optimal S give the highest scoring column mapping yt

of t under the constraint that t is relevant. We contrast the
score of yt with the score of labeling all columns of t as nr
and pick the higher of the two as the final labeling.
We skip a formal proof of correctness and instead state

some intuitive claims as justification. The capacity one con-
straint on all right side nodes in 1, . . . , q ensures that the
mutex condition is met. The large additive constant M1

ensures that the highest scoring labeling must assign at least
one column to label 1 thereby meeting the must-match con-
straint. The constraint that no more than nt −m columns
of t can be assigned label na ensures that at least m of them
must be mapped to a query column, thus satisfying the min-
match constraint.

4.2 Collective Inference: Table-centric
This collective inference algorithm is centered on opti-

mal inference at the table-level, and uses edges to influ-
ence table-level decisions very cautiously. The algorithm
works in three stages. First, independently for each table
t find the highest possible score µtc(`) of objective 9 (ig-
noring edge potentials) when each column c is constrained
to take each label `. Normalize these to define a distri-
bution as ptc(`) = exp(µtc(`))P

`′ exp(µtc(`′))
. Second, for each table

column tc collect messages from each of its neighbors as
msg(tc, `) =

P
t′c′∈nbr(tc) wensim(tc, t′c′)pt′c′(`). Finally,

independently for each t invoke the algorithm in Section 4.1
with node potential modified as max(msg(tc, `), θ(tc, `)).
The only difficult part of the above algorithm is the effi-

cient computation of the µtc(`) values. The direct method of
computing µtc(`) by repeated calls to the maximum match-
ing algorithm of Section 4.1 for each (c, `) pair is expensive.
We propose a method of making this efficient by simulta-
neously computing all the values. Before we present our
algorithm we need to briefly recap the popular flow-based
algorithm for maximum matching in bipartite graphs. Read-
ers familiar with this topic can skip Sections 4.2.1 and 4.2.2
and jump to Section 4.2.3.

4.2.1 Recap: Maximum Weight Bipartite Matching
Given a weighted bipartite graph B where each node u

has a positive capacity cu and each edge (u, v) has weight
w(u, v), find subset S of edges ofB such that

P
(u,v)∈S w(u, v)

is maximized and
P

v:(u,v)∈S∨(v,u)∈S 1 ≤ cu. A well-known

algorithm [13] to solve this problem is by finding the max-
imum flow on a weighted directed graph G created from B
as follows. First, we need to ensure that the total capacity
of nodes on the left side of B is equal to the total capacity
on the right. If this condition is violated we add a dummy
node d on the deficient side with the deficient capacity. Call
the new set of left nodes L and right nodes R. G is seeded
with these nodes and two extra nodes: a source node s, and
a sink node t. Second, add edges from s to each u ∈ L with
cost(s, u) = 0 and cap(s, u) = cu, from each u ∈ R to t with
cost(u, t) = 0 and cap(u, t) = cu, and from each u ∈ L to
each v ∈ R with cap(u, v) = min(cu, cv) and cost(u, v) = 0 if
either u or v is the dummy node d, else cost(u, v) = −w(u, v)
Invoke the algorithm described in the next section to find
the minimum cost maximum flow on G. The final matching
consists of all edges from L to R with positive flow.

4.2.2 Recap: The Max-flow Algorithm
The input to the algorithm is a directed graph G with

edge costs cost(u, v) and cap(u, v) and two special vertices

914

Input: Gt = Weighted bipartite graph (Section 4.2.3)
G∗

f ,m
∗,Opt = Residual graph and optimal matching ob-

tained by algorithm in Section 4.2.1
for ` ∈ [1 . . . q] ∪ {na} do

Find shortest distances d(`, .) in G∗
f from ` to all nodes.

µtc(`) = Opt− d(`, c)− cost(c, `), ∀c = 1, . . . , nt

end for
µtc(nr) =

P
c θ(tc, nr)

Figure 3: Finding all max-marginals in Gt.

s, t. The goal is to push the maximum flow from s to t such
that the flow f(u, v) along each edge is ≤ cap(u, v) and the
total cost

P
(u,v) cost(u, v)f(u, v) is minimized. The Max-

flow algorithm [13] starts with associating each edge (u, v)
with f(u, v) = 0. Define with each edge (u, v) a residual
capacity res(u, v) = cap(u, v) − f(u, v) that measures how
much extra flow can be pushed along that edge without vio-
lating the capacity constraint. For every (u, v) in the graph,
there is an implicit reverse edge (v, u) with cap(v, u) = 0,
f(v, u) = −f(u, v), and cost(v, u) = −cost(u, v). This im-
plies that a flow along (u, v) can be reversed by pushing a
flow in the reverse direction from v to u. Every set of flow
values f defines a new residual graph Gf out of G com-
prising only of edges with positive residual capacity. The
algorithm proceeds by repeatedly finding the shortest cost
path P from s to t in Gf , pushing the maximum possible
flow f(P) along P in G, thereby modifying f and getting a
different residual graph from G. The algorithm terminates
when no path can be found from s to t in Gf .

4.2.3 Finding Max-marginals
We now show how to efficiently compute µtc(`) the max-

imum possible score of Equation 9 (without the edge po-
tentials) under the constraint that column c takes label `.
These are called max-marginals. When computing the max-
marginals, it is important to exclude the must-match and
min-match constraints because otherwise the relative mag-
nitude of µ for different ` can be distorted when some high
scoring labeling violates the must-match or min-match
constraint. Thus, for each t µtc(`) =

max
y:ytc=`

X
c′

θ(tc′, ytc′)+φa(ytc1 , . . . , ytcnt
)+φb(ytc1 , . . . , ytcnt

)

(10)
We create a bipartite graph Gt as in Section 4.1 with the
only difference that the addition M1 to edge weights is left
out since the must-match constraint is dropped and the
capacity of the right node na is nt since the min-match
constraint is dropped. We then find the maximum weight
bipartite matching (recalled in Section 4.2.1) on Gt. Let
m∗

c denote the node to which c is matched in the optimal
matching m∗, Opt denote the sum of edge weights in the
optimum matching, and let G∗

f be the final residual graph
from the Max-flow algorithm (recalled in Section 4.2.2). For
each c, and for each ` 6= m∗

c , we need to force a matching
(c, `) and compute the rest of the matching. Since the ca-
pacities of the two sides were balanced in m∗, we need to
remove unit flow from m∗

` to ` and from c to m∗
c and add

flow from c to `. The smallest cost method to make this
change is by reverting the flow along the shortest path P
from ` to c in G∗

f . Let d(`, c) be the cost of this path. The
maximum weight matching under the (c, `) constraint can
be shown to be equal to Opt− d(`, c)− cost(c, `). Thus, in
order to find the maximum matching under all possible pair

constraints, we need to find single source shortest paths from
each right node ` in the residual graph. Since edge costs can
be negative, we need to use the Bellman Ford shortest path
algorithm to find these shortest paths. Each invocation of
Bellman Ford’s algorithm on a graph with N nodes and E
edges takes O(NE) time, and we do this q + 1 times. A
pseudo code of the algorithm appears in Figure 3.

4.3 Collective Inference: Edge-centric
The table-centric algorithm gives more importance to table-

level constraints than to edge potentials. We wanted to
compare this approach with an opposite approach of giving
edge potentials central importance. In these approaches,
called edge-centric approaches, the table-level constraints
are either expressed as edge potentials, or are handled in
a post-processing phase. Another reason for exploring these
approaches is that there are many existing inference algo-
rithms that work on graphical models with only node and
edge potentials [10, 1, 11, 18]. These include message pass-
ing algorithms like belief propagation [10], TRWS [11], and
MPLP [18], and graph cut-based algorithms like α-expan-
sion algorithm [1]. Of these, the α-expansion algorithm is
known to be very efficient [19] and was the best performing
of the edge-centric algorithms in our experiments. In this
section we go over how we adapted the algorithm to handle
the table constraints.
The α-expansion algorithm only works for edge potentials

whose negated forms behave like a metric. That is, for each
pairwise edge potential function φ it requires that φ(`i, `j) =
φ(`j , `i), and φ(`i, `j) − φ(`j , `k) ≤ φ(`i, `k). It is easy to
verify that our edge potentials in Equation 4 satisfy this
property.
Also, of the four constraints, the all-Irr constraint in

Equation 6 can be written as the sum of metric edge poten-
tials defined over each pair of columns, that is, φb(`1, . . . , `nt)

can be expressed as
Pnt

j=1

Pj−1
i=1 φB(`i, `j) where

φB(`i, `j) = [[[[`i = nr]] + [[`j = nr]] 6= 1]]0−∞ (11)
We first present an overview of the α-expansion algorithm

and then show how we modify it to incorporate the remain-
ing three of the table constraints.

The α-expansion Algorithm [1]. The algorithm main-
tains a labeling y of the variables at all times, and in each
step improves it through local moves. Initially y can be ar-
bitrary — say, all vertices assigned label na. Next, for each
label α (α ∈ Y) an α-expansion move switches the labeling
of an optimal set of vertices from their current label in y
to α. This is repeated in a round over the q + 2 labels un-
til y remains unchanged in a complete round. For graphs
whose edge potentials satisfy the metric condition, an opti-
mal α-expansion move is obtained from the minimum cut in
a weighted directed graph Gα,y created as follows: To the
original graphical modelH add two special vertices s, t. Add
an edge from s to each v ∈ V (H) and from every v ∈ V (H)
to t. Edge weights are derived from the potentials of H, the
current α and current labeling y such that the minimum
s-t cut gives the optimal subset of variables S on the t side
whose labels in y should be switched to α. We refer the
reader to [1] for details on how to set these edge weights.
We next present our modification to the above algorithm

to handle the remaining constraints. We will shortly present
a novel modification for handling the mutex constraint. The
must-match and min-match constraints cannot be easily

915

Input: G, s, t and disjoint vertex groups V1, . . . VT .
Gf , S = Residual graph and t side vertices after applying
Max-flow to find the minimum s-t cut on G
while ∃ k s.t. |S ∩ Vk| > 1 do

for all i s.t. |S ∩ Vi| > 1 do
for v ∈ (Ui = S ∩ Vi) do

f(v, Vi) = maximum additional flow in G if for each
u ∈ Ui − {v}, cap(s, u) is increased to ∞.

end for
end for
Pick i∗, v∗ = argmini,vf(v, Vi), set cap(s, u) = ∞ for
each u ∈ Ui∗ − {v∗} and modify flow in Gf

S = vertices on the t side of the cut
end while
Output: S

Figure 4: Constrained minimum s-t cut algorithm.

integrated with the above algorithm. So, we handle these
as a post-processing step as follows: In the output label-
ing if any table t violates the must-match or min-match
constraint we greedily fix its labels by invoking the table
independent algorithm (Section 4.1) on t.
To handle the mutex constraint, we modify the α-ex-

pansion move for α ∈ [1 . . . q] so that at most one column
variable in each table switches to α. We achieve this by
solving the following constrained s-t cut problem on Gα,y

for α ∈ [1 . . . q].

The Constrained Minimum s-t cut Problem. Given a
positive weighted directed graphG = (V,E,w) whose vertex
set can be partitioned into disjoint subsets V1, . . . VT and two
special vertices s, t, find the minimum s-t cut such that at
most one vertex in each Vi is on the t side of the cut. In our
case the groups Vi correspond to columns of the same table.
This problem is NP-hard unlike the unconstrained minimum
s-t cut problem which can be solved in O(V E log V) time.
We are able to provide a factor of two approximation. In this
paper we skip proofs. Instead we present an approximation
that performed well on our problem.
A popular method for solving the minimum s-t cut prob-

lem is based on a reduction to the Max-flow problem that
we reviewed in Section 4.2.2. We first show this reduction
and then present our modification.

Minimum s-t cut via Max-flow[13]. The Max-flow algo-
rithm is invoked on G with a uniform cost of one on all
edges and cap(u, v) = wuv where wuv denotes the weight of
an edge in G. Let Gf be the residual graph when the Max-
flow algorithm terminates. The minimum cut C comprises
of edges for which f(u, v) = cap(u, v).

Our Modifications for Constrained Cuts. Let S be the
set of vertices that remain connected to t after the edges
C in the unconstrained cut are removed. C is optimal for
the constrained case if for each vertex group Vi at most one
member appears in S. Else we repeat the following steps
until all constraints are satisfied. Find a violated group Vi

for which |S∩Vi| > 1. Let Ui = S∩Vi. We force all but one
vertex v∗ in Ui to the s side of the cut. Such a v∗ is picked as
that vertex for which we can push the minimum additional
flow in the residual graph Gf with all Ui − {v∗} connected
to s via infinite capacity edges. The final algorithm appears
in Figure 4.

5. EXPERIMENTS
Creating a useful query set for this project is challenging

in an academic setting without access to a user base. The
best we found was the list of topic queries in [2] collected
via a Amazon Mechanical Turk service. They represent an
unbiased workload because these are suggested by a diverse
set of web users, and not hand picked by researchers. The
query set comprised of 51 queries spanning topics such as,
“north american mountains”, “professional wrestlers”, and
“world’s tallest buildings”. We call this the AMT query set.
However, since our task required multi-column queries, we
converted each topic query in AMT to a multi column query
as follows: For each topic query in AMT, we inspected the
top-10 pages from a Google search and found between one
and three prominent attributes to be attached with each
query. The final list of multi-column queries is present in
Table 1 1. The original topic queries can be found in Table
1 of [2]. We augmented the AMT queries with twelve more
queries that we collected internally from Wikipedia tables.
This gave us a total of 59 queries of which 5 were single-
column queries, 37 were two column queries, and 17 were
three column queries. We list the 59 queries in Table 1.
We run these queries on a web crawl of 500 million pages

from which we found 25 million data tables. For evaluat-
ing the accuracy of the Column mapping task we posed
each query in our query-set on WWT and for each table
returned by the index probe we collected the correct label-
ing by manually labeling each of the 1906 web tables over
the 59 queries. This gave us the set of ground truth labels.
Each labeling was reviewed by two human labelers to avoid
any human errors. In Table 1 we list the total number of
source web tables that were returned by the two-phase in-
dex probe in WWT and the number of relevant web tables.
Overall for a query, we found between 0 and 68 web tables
with an average of 32.29. The fraction of relevant matches
varied between 0 and 100% and on average only 60% of web
tables were relevant.
We evaluate different methods via the well-known F1 error

measure. This is calculated as follows: Let y∗ denote the
vector of all column labelings in the ground truth. The F1
error of any other labeling y produced by a method is

error(y,y∗) = 1−
P

tc 2[[ytc = y∗
tc ∧ ytc ∈ [1 . . . q]]]× 100P

tc[[ytc ∈ [1 . . . q]]] +
P

tc[[y
∗
tc ∈ [1 . . . q]]]

We compare the accuracy of the Column mapping task on
the following methods

1. Basic: A baseline method that is described in the be-
ginning of Section 3.

2. NbrText: Basic augmented to include text of similar
columns to measure similarity sim(Q`, tc) as

max(TI(Q`, tc),max
t′c′

sim(tc, t′c′)TI(Q`, t
′c′))

3. PMI2: The basic method augmented with only PMI2

scores defined in Section 3.2.3

4. WWT: Our graphical model-based approach described
in Section 3 with the table-centric algorithm.

For reporting results, we partitioned the queries into two
sets: an “easy” set for which all methods were within 0.5%
of each other. These include queries for which either the
column labeling task is trivial, or impossible to solve with

1We skipped 4 queries from AMT, because we could not
interpret the appropriate column queries for them.

916

Source Tables
Single Column Queries Total Relevant

dog breed 68 66
kings of africa 26 0
phases of moon 56 17
prime ministers of england 35 3
professional wrestlers 52 52

Two Column Queries Total Relevant
2008 beijing Olympic events | winners 29 0
2008 olympic gold medal winners | sports/event 26 0
australian cities | area 30 4
banks | interest rates 51 34
black metal bands | country 39 19
books in United States | author 6 2
car accidents location | year 46 8
clothing sizes | symbols 20 0
composition of the sun | percentage 50 12
country | currency 56 53
country | daily fuel consumption 38 14
country | gdp 58 56
country | population 58 55
country | us dollar exchange rate 52 43
fifa worlds cup winners | year 49 9
Golden Globe award winners | year 23 19
Ibanez guitar series | models 21 3
Internet domains | entity 10 4
James Bond films | year 16 11
Microsoft Windows products | release date 25 12
MLB world series winners | year 13 3
movies | gross collection 57 57
name of parrot | binomial name 11 8
north american mountains | height 47 28

pain killers | company 1 1
pga players | total score 40 29
pre-production electric vehicle | release date 3 0
running shoes model | company 11 5
science discoveries | discoverers 41 37
university | motto 7 5
us cities | population 34 32
us pizza store | annual sales 35 1
usa states | population 41 37
used cellphones | price 29 0
video games | company 30 28
wimbledon champions | year 38 24
world tallest buildings | height 51 12

Three Column Queries Total Relevant
academy award category | winner | year 56 22
bittorrent clients | license | cost 0 0
chemical element | atomic number | atomic weight 33 30
company | stock ticker | price 53 53
educational exchange discipline in US | number of
students | year

13 2

fast cars | company | top speed 34 29
food | fat | protein 47 43
ipod models | release date | price 44 16
name of explorers | nationality | areas explored 19 13
NBA Match | date | winner 44 34
new Jedi Order novels | authors | year 25 24
Nobel prize winners | field | year 12 10
Olympus digital SLR Models | resolution | price 11 3
president | library name | location 8 1
religion | number of followers | country of origin 37 32
Star Trek novels | authors | release date 8 8
us states | capitals | largest cities 32 30

Table 1: Query set.

5%

15%

25%

E
rr

o
r

re
d

u
ct

io
n

 o
v
e

r
 B

a
si

c

-25%

-15%

-5% 1 2 3 4 5 6 7

E
rr

o
r

re
d

u
ct

io
n

 o
v
e

r
 B

a
si

c

Query Group

PMI NbrText WWT

Grp Basic

1 98.8%

2 72.7%

3 54.1%

4 45.1%

5 31.8%

6 19.7%

7 4.2%

.

Figure 5: Error reduction relative to Basic in the
column map performance of WWT, NbrText and
PMI2. The table alongside shows the error of Basic.

our set of clues. One-third of our queries were “easy” and
all methods had an error close to 22% on these queries.
We compare different methods on the remaining two-third
“hard” queries. For ease of plotting, we divided the hard
queries into seven groups by binning on the error of the Ba-
sic method.
We first compare the above four methods. We then an-

alyze the impact of the segmented similarity measure and
finally compare different collective inference algorithms.

5.1 Overall Comparison
In Figure 5 we show the reduction in error relative to

Basic of the three methods: PMI2, NbrText, and WWT
on the seven query groups. Overall, WWT incurred an er-
ror of 30.3% in contrast to 34.7% for Basic and PMI2, and
34.2% for NbrText. For the first query group (comprising of
seven queries), all three methods failed to label all but one
as relevant whereas WWT got 22% of them. Even for the
last group where Basic already achieved a low error of 4.2,
WWT reduced that by 10% to 3.6%. The NbrText method
reduces error for some queries but incurs an increase in er-

ror in several others. The method is specifically bad when
the columns within a table overlap. An example is the last
query in Table 1. The NbrText method suffers because the
columns containing capitals and largest cities are overlap-
ping, causing the wrong header text to be imported in a
column.
Surprisingly, we did not get any accuracy boost overall

with the PMI2 score unlike what is reported in [2]. Even if
we restrict to single column queries in our set, WWT’s error
is 28.9% compared to 33.3% of PMI2 used in [2]. One reason
is that the PMI scores are noisy — while they reduce error in
seven of the queries, they also caused an increase in an equal
number mostly due to adding irrelevant columns. Other
studies [20] have attributed such behaviour to the undue
importance the PMI score gives to low frequency words due
to their presence in the denominator. Also, the PMI2 score
is expensive to compute. The average time for a query was
6.3 seconds for Basic, 40 seconds for PMI2 and 6.7 seconds
for WWT, which does not use the PMI2 scores by default.
We show the impact of improved column mapping on over-

all search performance in Figure 6 where the y-axis is the
error comparing the rows of the consolidated answer table
of true column mapping and the consolidated answer table
of any other mapping. We observe that WWT yields signifi-
cant improvements in the accuracy of the final answer in all
cases.
In Figure 7 we show the total running time of WWT bro-

ken into the time taken to probe the index (stored on disk)
in each of the two stages, the time to read and parse the raw
tables from disk, the time for column mapping, and the time
to consolidate (and dedup) the rows of relevant tables. The
running time varies from 1.5 to 14 seconds with an average
of 6.7 seconds. The key factors affecting running time are
whether a second index probe was used for the query, the
size of the raw tables and the number of relevant rows that
are consolidated into the final answer. The time for column
mapping is a negligible fraction of the total time.

917

40%

60%

80%

100%
E

rr
o

r
in

 a
n

sw
e

r
ro

w
s WWT

Basic

0%

20%

40%

1 2 3 4 5 6 7

E
rr

o
r

in
 a

n
sw

e
r

ro
w

s

Query group

Figure 6: Answer qual-
ity.

6

8

10

12

14

T
im

e
 (

S
e

co
n

d
s)

Consolidate
Column Map
2nd Table Read
2nd Index
1st Table Read
1st Index

0

2

4

6

1 11 21 31 41 51

T
im

e
 (

S
e

co
n

d
s)

Queries: increasing time

Figure 7: Running
time.

60%

80%

100%

E
rr

o
r:

 S
e

g
m

e
n

te
d

 s
im

il
a

ri
ty

0%

20%

40%

0% 20% 40% 60% 80% 100%

E
rr

o
r:

 S
e

g
m

e
n

te
d

 s
im

il
a

ri
ty

Error: Unsegmented similarity

Figure 8: Comparing segmented similarity with
standard unsegmented IR similarity.

5.2 Evaluating Segmented Similarity
In this section we evaluate our segmented similarity mea-

sure of Section 3.2.1 by comparing it against a model which
is identical in all respects except using plain cosine simi-
larity with the header text instead of SegSim and Cover.
We call this the unsegmented similarity measure. For each
measure we retrained the model parameters so that they are
best tuned for the selected similarity measure. Overall the
segmented measure reduced error from 33.3% to 30.3%. In
Figure 8 we show a scatter plot where each point represents
the error of a query using segmented measure against error
of the unsegmented measure. We see that for all but three
of the 32 queries, the segmented approach lies below the 45
degree line, and in eight cases it reduces by more than 10%.

5.3 Comparing Collective Inference Methods
In Table 2 we compare a baseline (in column 2) that

independently labels each table with the following collec-
tive inference algorithms: the constrained α-expansion al-
gorithm, two edge-centric message-passing algorithms viz.,
Belief propagation (BP) and TRWS, and the Table-centric

Group None α-exp BP TRWS Table-centric
1 76.0 76.0 74.5 76.0 75.1
2 72.4 72.4 71.6 72.4 63.3
3 53.3 43.4 61.1 51.4 52.3
4 43.2 45.4 40.4 41.5 37.5
5 31.2 26.6 26.9 31.3 27.1
6 22.4 20.1 20.1 18.8 18.0
7 4.0 4.0 4.2 4.0 3.8
Overall 33.1 31.3 31.5 32.3 30.3

Table 2: Comparing different collective inference al-
gorithms on F1 error over seven query groups sepa-
rately and over all queries combined.

algorithm. The BP and TRWS incorporated the table con-
straints in the same way as α-expansion for all but the mu-
tex constraint. The mutex constraints were reduced to
edge potentials like the all-Irr constraint — we skip de-
tails due to lack of space.
Overall, the Table-centric algorithm achieves the lowest

error of 30.3% which is roughly 3% lower than the baseline
of no collective inference. This is followed by our constrained
α-expansion algorithm. BP is slightly worse and TRWS is
the worst. One reason is that BP and TRWS are known not
to provide good approximations when many edge potentials
are dissociative (i.e., they prefer connected nodes to take
different labels). In our graphical model, in expressing the
mutex constraints as edge potentials we created many disso-
ciative edges. In contrast, for the α-expansion algorithm we
handled the mutex constraints separately via a constrained
graph-cut algorithm. In order to understand the reasons for
the poorer performance of α-expansion vis-a-vis the table-
centric algorithm, we considered two explanations. First,
that the edge potential scores in our objective were not well
calibrated causing higher scoring labelings to not necessar-
ily have lower error, and the Table-centric was winning by
giving lower importance to such potentials. Second, that
the α-expansion algorithm was solving the objective (with
all the constraints) poorly. We found the latter to be the
reason. In most cases where α-expansion lost it returned
labelings with lower overall scores than the table-centric al-
gorithm. In terms of running time, the table-centric algo-
rithm is the fastest followed by α-expansion which is a factor
of five slower, followed by BP a factor of six slower and fi-
nally TRWS which is a factor of 30 slower. Thus, the most
practical option for collective inference is the table-centric
algorithm both in terms of accuracy and running time.

6. RELATED WORK
We discuss four areas of related work: structured Web

search, Web tables in structured search, keyword queries on
databases, and schema matching.
Structured Web search has been a topic of research ever

since the advent of the Web (see [5] for a survey). The most
common type of structured search is point answers to a query
such as: “CEO of IBM”; and most research has focused on
harnessing document sources to answer them [5]. Our focus
is on queries whose answer is a single consolidated table. In
earlier work [9] we developed a query-by-example paradigm
of extracting such tables from lists on the Web (web ta-
bles were excluded). Another example is Google squared2,
a commercial product, that interpreted query keywords as
description of entity types and the answer was a table with
entity instances and a suggested list of attributes. Technical
details of the system are not in the public domain.
The potential of web tables as a source of structured in-

formation was first highlighted in [4, 3]. In this work, the
stress was on collecting offline information of various kinds,
including attribute synonyms, attribute associations, etc. In
contrast, our goal is to answer ad hoc queries, for which the
closest related work is [2]. Their system is based on multiple
user interactions: first in response to a single set of keywords
a ranked list of tables is retrieved, the user integrates the
sources into a single table, the user can then choose addi-
tional attribute columns, and the system fills in the values

2http://en.wikipedia.org/wiki/Google Squared

918

from additional sources. Only the method used for estab-
lishing table relevance in the first step above is related to our
goal in this paper. The method they propose for relevance
ranking is to use the PMI score that we have already shown
in Section 5.1 to not be as effective for our task of column
labeling.
Keyword search on tables is now an established area of re-

search [21]. Most early work was on clean databases where
each entity type has a distinct table with well defined col-
umn names, types, and primary keys. Recently [17] presents
a probabilistic algorithm for annotating parts of keyword
queries with table names, attribute names, and selection
predicates on a set of product catalogs. A related problem
is tackled in [15] where a keyword query over an Ontology
is broken into a structured query over the entity, types, and
relationships in the Ontology. A database of web tables is
entirely different from such databases: there is huge redun-
dancy, no well-defined schema, no standard syntax for spec-
ifying column names, and the scale is orders of magnitude
higher.
Our task could be viewed as a schema matching problem

between the query columns Q and a Web table T . Schema
matching [16, 8] has traditionally been applied for integrat-
ing two databases, each of which contains a consistent and
clean set of tables and the main challenge is in managing
the complex alignment between the large number of schema
elements on each side. In contrast, in our case we are match-
ing a few query columns to a large number of unlinked and
noisy web tables. This gives rise to a very different problem
structure —- since a small fixed number of query columns
are matched we can cast this matching task as a column la-
beling task. The building blocks used for matching a query
table to any single web tables is similar to those used in
schema matching but collectively performing such binary
matchings over several web tables is new to our setting.

7. CONCLUSION
We presented the design of a system for getting as answer

a multi-column table in response to a query specifying a
set of column keywords. We described the many non-trivial
steps required in the processing of such queries such as ex-
tracting headers and context of tables, retrieving tables via a
two staged index probe, and mapping columns before consol-
idating them into the answer table. The focus of this paper
was the column mapping task. Our representation of this
task as a graphical model allowed us to jointly decide on the
relevance and mappings of all candidate table columns while
exploiting a diverse set of clues spanning matches in different
parts of the table, corpus-wide co-occurrence statistics, and
content overlap across table columns. We presented a novel
method of matching query keywords to table columns via a
two part query segmentation method, and a robust mech-
anism of exploiting content overlap across table columns.
Experiments on a realistic query workload and a database
of 25 million web tables showed a 12% reduction in error rel-
ative to a baseline method. Future work in the area include

exploiting newer corpus wide co-occurrence statistics, alter-
native structured sources such as ontologies, and enhancing
the search experience via faceted search and user feedback.

8. REFERENCES
[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy

minimization via graph cuts. IEEE Trans. Pattern Anal.
Mach. Intell., 23(11):1222–1239, 2001.

[2] M. J. Cafarella, A. Y. Halevy, and N. Khoussainova. Data
integration for the relational web. PVLDB, 2(1):1090–1101,
2009.

[3] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and
Y. Zhang. Webtables: exploring the power of tables on the web.
PVLDB, 1(1):538–549, 2008.

[4] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and
E. Wu. Uncovering the relational web. In WebDB, 2008.

[5] S. Chakrabarti, S. Sarawagi, and S. Sudarshan. Enhancing
search with structure. IEEE Data Eng. Bull., 33(1):3–24, 2010.

[6] C. Chekuri, S. Khanna, J. S. Naor, and L. Zosin.
Approximation algorithms for the metric labeling problem via a
new linear programming formulation. In SODA, pages 109–118,
2001.

[7] E. Crestan and P. Pantel. Web-scale table census and
classification. In WSDM, pages 545–554, 2011.

[8] A. Doan and A. Y. Halevy. Semantic integration research in the
database community: A brief survey. The AI Magazine,
26(1):83–94, 2005.

[9] R. Gupta and S. Sarawagi. Answering table augmentation
queries from unstructured lists on the web. PVLDB,
2(1):289–300, 2009.

[10] D. Koller and N. Friedman. Probabilistic graphical models:
principles and techniques. MIT Press, 2009.

[11] V. Kolmogorov. Convergent tree-reweighted message passing
for energy minimization. IEEE Trans. Pattern Anal. Mach.
Intell., 28(10):1568–1583, 2006.

[12] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and
V. Vyas. Web-scale distributional similarity and entity set
expansion. In EMNLP, volume 2, pages 938–947, 2009.

[13] C. Papadimitriou and K. Steiglitz. Combinatorial
optimization: algorithms and complexity, chapter 11, pages
247–254. Prentice Hall, 1982.

[14] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table
extraction using conditional random fields. In SIGIR, pages
235–242, 2003.

[15] J. Pound, I. F. Ilyas, and G. E. Weddell. Expressive and
flexible access to web-extracted data: A keyword-based
structured query language. In SIGMOD, pages 423–434, 2010.

[16] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[17] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured
annotations of web queries. In SIGMOD, pages 771–782, 2010.

[18] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening LP relaxations for MAP using message
passing. In UAI, pages 503–510, 2008.

[19] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler,
V. Kolmogorov, A. Agarwala, M. Tappen, and C. Rother. A
comparative study of energy minimization methods for markov
random fields. In ECCV, volume 2, pages 16–29, 2006.

[20] J. Washtell and K. Markert. A comparison of windowless and
window-based computational association measures as predictors
of syntagmatic human associations. In EMNLP, volume 2,
pages 628–637, 2009.

[21] J. X. Yu, L. Qin, and L. Chang. Keyword search in relational
databases: A survey. IEEE Data Eng. Bull, 33(1):67–78, 2010.

919

