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ABSTRACT
Recently, search engines have invested significant effort to
answering entity–attribute queries from structured data, but
have focused mostly on queries for frequent attributes. In
parallel, several research efforts have demonstrated that there
is a long tail of attributes, often thousands per class of enti-
ties, that are of interest to users. Researchers are beginning
to leverage these new collections of attributes to expand the
ontologies that power search engines and to recognize entity–
attribute queries. Because of the sheer number of potential
attributes, such tasks require us to impose some structure
on this long and heavy tail of attributes.

This paper introduces the problem of organizing the at-
tributes by expressing the compositional structure of their
names as a rule-based grammar. These rules offer a compact
and rich semantic interpretation of multi-word attributes,
while generalizing from the observed attributes to new un-
seen ones. The paper describes an unsupervised learning
method to generate such a grammar automatically from a
large set of attribute names. Experiments show that our
method can discover a precise grammar over 100,000 at-
tributes of Countries while providing a 40-fold compaction
over the attribute names. Furthermore, our grammar en-
ables us to increase the precision of attributes from 47% to
more than 90% with only a minimal curation effort. Thus,
our approach provides an efficient and scalable way to ex-
pand ontologies with attributes of user interest.

1. INTRODUCTION
Attributes represent binary relationships between pairs of

entities, or between an entity and a value. Attributes have
long been a fundamental building block in any data modeling
and query formalism. In recent years, search engines have
realized that many of the queries that users pose ask for
an attribute of an entity (e.g., liberia cocoa production), and
have answered that need by building rich knowledge bases
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(KB) e.g., the Google Knowledge Graph [29], Bing Satori,1

Yahoo’s Knowledge Graph [3]. These KBs, albeit broad,
cover only a small fraction of attributes and their values,
corresponding to queries that appear frequently in the query
stream (e.g., Obama wife). For the less frequent queries (e.g.,
Palo Alto fire chief), search engines try to extract answers
from content in Web text and to highlight the answer in
Web results. However, without knowing that, for example,
fire chief is a possible attribute of Cities, we may not even
be able to recognize this query as a fact-seeking query.

Recent work [26, 13, 15] has shown that there is a long and
heavy tail of attributes that are of interest to users. For ex-
ample, Gupta et al.[13] report collecting 100,000 attributes
for the class Countries, and tens of thousands of attributes
for many other classes (e.g., fire chief for Cities). However,
in order to be useful, it is important that we discover the
underlying structure in such extracted collection of long and
heavy tail of attributes.

Towards this end, we propose to represent the structure
in extracted attribute names as a rule-based grammar. For
example, for the class Countries we may find many at-
tributes with the head word population, such as asian popu-
lation and female latino population. The grammar we induce
will represent these and similar attributes by rules of the
form $Ethnicity population and $Gender $Ethnicity population.
The rules are succinct, human-interpretable, and group to-
gether semantically related attributes, yielding several ben-
efits. First, for curators attempting to add new attributes to
an existing schema, the rules reduce the complexity of find-
ing high-quality attributes and organizing them in a prin-
cipled fashion. Second, for the search engine, the rules en-
able recognition of a much broader set of (entity, attribute)
queries because it is not limited to verbatim matching seen
attributes. For example, a rule such as $Gender $Ethnic-
ity population enables the search engine to recognize new
attributes, such as male swahili population, or rare variants
like latino female population.

Finding such rules is much more subtle than simply group-
ing attributes that share a head word. For example, for the
class US presidents there are many attributes with head
word name, but they fall into very different subsets, such
as name of family members (daughter name, mother name),
names of pets (dog name, cat name), and names of position
holders (vice president name, attorney general name). Hence,
to enable effective generalization, it is also important to dis-
cover the more refined structure of the space of attribute
names. We draw upon an automatically extracted IsA hi-

1http://searchengineland.com/library/bing/bing-satori



erarchy of concepts [14, 36] to define a space of possible
generalizations for our grammar. This space is huge and
we have to select the right level of generalization without
much supervision. Another challenge is noise in automati-
cally generated attributes (e.g. brand name and house name
for US presidents), and concept hierarchies (e.g. Dog IsA
$Relative). In this paper we show how to generate a precise
and compact grammar in spite of the huge search space and
noise in automatically generated attribute sets and concept
hierarchies.

This paper makes the following contributions.

• We introduce the problem of finding structure in the uni-
verse of attribute names as a rule-based grammar. Solu-
tions to this problem are important for interpreting queries
by search engines, and for building large-scale ontologies.

• We propose a grammar that interprets the structure of
multi-word attributes as a head word with one or more
modifiers that have the same parent in an IsA hierarchy.
We present a linear-program–based formulation for learn-
ing the grammar by carefully capturing the noise in the
extracted attributes and concept hierarchy as soft signals.
Our algorithm is completely unsupervised and infers neg-
ative training examples from occurrence frequency on the
Web and word embedding similarity with other attributes.

• Our experiments demonstrate that our learned rules have
60% and 80% precision, which is significantly higher than
competing approaches. Furthermore, we show that for
large attributes collections (e.g. attributes of Countries),
just the top-100 rules are able to explain 4,200 attributes,
providing a factor of 42 reduction in the cognitive load of
exploring large attribute sets.

• We also show that the rules are skewed in the sense that
they either represent mostly good attributes or mostly
bad attributes. Put together with the high rule qual-
ity, this observation has enabled us to set up an efficient
pipeline for adding attributes to the schema of the Google
Knowledge Graph. The pipeline enables curators to find
high-quality attributes and quickly discard bad ones.

2. PROBLEM DEFINITION
This paper focuses on the problem of generating a gram-

mar to organize a large set of attributes (A). The attributes
are extracted noisily from query logs and Web text and
are associated with a class of entities such as Countries,
US presidents, and Cars. Our grammar is a set of rules
that semantically encode groups of attributes using a con-
cept hierarchy. A rule represents a multi-word attribute as
a head word with zero or more modifiers that are hyponyms
of a concept in the concept hierarchy. For example, we rep-
resent the attribute wife’s name for class US presidents as
head word name and modifier wife from the concept $Rel-
ative in some concept hierarchy. The same holds for at-
tributes son’s name, mother’s name, and father’s name of
US presidents.

The rest of this section is organized as follows. We first
characterize the attributes A on which we build the gram-
mar. Then, we describe the IsA hierarchyH used to form the
rules of the grammar. We then formally define our grammar
and the challenges involved in learning it automatically.

The collection of attributes (A): Several works [26,
15, 2, 13] have mined collections of attributes from query

streams and from Web text. We use a collection from Biper-
pedia [13] in this work. The Biperpedia collection con-
tains more than 380,000 unique attributes and over 24M
(class, attribute) combinations (an attribute can apply to
multiple distinct classes such as Countries, Cars, and
US presidents). Biperpedia attaches a score, ia, to each
attribute a within each class G. The score induces a ranking
that roughly correlates with the confidence of the attribute
being a part of the class. Thus, as we go further down in the
ranking, the quality of the attributes degrades. However, we
emphasize that even far down in the long tail we find high
quality attributes. For example, for Countries, we find
good attributes (e.g., aerospace experts, antitrust chief) close
to the bottom of the ranked list. According to a manual
evaluation, our attribute collection has 0.5 precision for the
top 5,000 attributes of representative classes among which
only 1% exist in Freebase [4] and 1% in DBpedia [1]. As we
discuss later, the noise in the attribute collection introduces
challenges to the problem we address in this paper. In this
work, we consider only the attributes that have more than
one word in their name (which is 90% of all attributes).

IsA Hierarchy (H): In principle, we could have used any
concept hierarchy H, such as Freebase or WordNet that pro-
vides a set of concepts (e.g., $Component, $Relative), and
a subsumption relationship between them (e.g., Tyre is a
$Component). However, the concept hierarchy in Freebase
is too coarse for our needs because most of the concepts are
too general. Instead, in this work we use a concept hierar-
chy extracted from Web text using techniques such as Hearst
Patterns (in the spirit of [36]). For example, the text “Asian
countries such as China” indicates that China is an instance
of Asian countries. The resulting IsA relations can be either
subconcept–superconcept or instance–concept. We refer to
both instances and subclasses in the IsA hierarchy as hy-
ponyms. This collection contains 17M concepts along with
493M hypernym–hyponym pairs. Naturally, the hierarchy is
inherently noisy, which in turn, poses challenges to the task
of selecting rules. The IsA hierarchy captures this uncer-
tainty by associating a notability score, nk,c for any concept
c ∈ H and each hyponym k of c. Notability is the product
of the probability of concept given the hyponym and the
probability of the hyponym given the concept [36].

The attribute grammar: Formally, let Head 1, Head 2,. . . ,
Head B denote a set of head words to be used as basic at-
tribute names. We use $Attribute i to denote attributes de-
rived from the base attribute Head i. The grammar com-
prises rules that can be of one of the following four types:

$Attribute i ::= Head i
$Attribute i ::= $Modifier ij optional-words $Attribute i
$Attribute i ::= $Attribute i optional-words $Modifier ij
$Modifier ij ::= IsA Hypernyms of $Modifier ij

An example grammar snippet for the class Sports cars is:

$Attribute price ::= price
$Attribute price ::= $Market $Attribute price
$Attribute price ::= $Attribute price in $Market
$Attribute price ::= $Component $Attribute price
$Market ::= Singapore | USA | Dubai | London | . . .
$Component ::= battery | bumper | tyre | door | . . .

In the above example, the head word is price and the modi-
fiers are captured by non-terminals $Market and $Component
that represent all hyponyms of the corresponding concept
nodes in our input IsA hierarchy.
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Figure 1: A derivation from the grammar for an
attribute tyre price in Singapore for class Sports cars.

We can often interpret an attribute in multiple ways. For
example, for Sports cars attributes here is another similar
grammar.

$Attribute price ::= price
$Attribute price ::= $Nation $Attribute price
$Attribute price ::= $Attribute price in $Nation
$Attribute price ::= $Product $Attribute price
$Nation ::= Singapore | USA | UAE | UK | . . .
$Product ::= battery | insurance | kit | door | . . .

We associate a score with each rule to handle such inherent
ambiguity. The score can be used to generate a ranked list
of possible interpretations for any given attribute.

Use and advantages of our proposed organization.
There are several advantages to organizing attributes based

on shared head words and concept nodes from an IsA hier-
archy. First, such rules carry semantic meaning and are
human interpretable, making them invaluable for curating
attributes into a knowledge base. For example, a rule such
as $Market price is more concise than a long list of attributes
like Singapore price, Dubai price, USA price, etc. Second, a
correctly discovered set of rules has the power to generalize
to new unseen or rare attributes, such as Wellington price
and Rome price. Such attributes are invaluable to a search
engine trying to identify when a query is of the form (entity,
attribute). Consider another example: while we may have
seen coffee production, wheat production, rice production, etc
many times, we would like to recognize the attribute quinoa
production that is much more rare. Our method could induce
a rule like $Crop production from the seen attributes, mak-
ing it possible to recognize quinoa as a hyponym of $Crop.
Finally, the grammar provides the structure that exposes
the patterns in the attributes. This is particularly useful for
compound attributes with more than one modifier. For ex-
ample, we defined our above grammar recursively in terms
of non-terminal $Attribute price. This recursion allows us
to correctly recognize a compound attribute like tyre price
in Singapore as we show Figure 1. Also, we can recognize
variants like Singapore tyre price2.

Note, such advantages do not accrue if we group attributes
based only on a shared head word. A single rule like $Any
price covers valid attributes like Rome price and Tyre price
but also innumerable bogus strings like laugh price. Finding
generalizable rules is non-trivial and we show in this paper
how we combine several tricks from machine learning to dis-
cover them.

2An uncontrolled recursive application can also generate
non-sensical attributes like tyre price in Singapore in Dubai.
Any practical deployment will have to include constraints to
disallow repeated application of the same rule, and limit the
depth of the recursion.

Challenges of rule selection The set of rules induced
from a large set of attributes and a semi-automatically cre-
ated IsA hierarchy can be bewildering both in terms of its
size and the amount of noise that it contains. In our exper-
iments, 100K attributes of the Countries class had 250K
possible rules along our IsA hierarchy. Of these, fewer than
1% are likely good, but selecting the good rules is very chal-
lenging because of several reasons. Consider attribute names
ending with ‘city’ such as capital city, port city, and university
city. There are 195 such attributes, and the IsA hierarchy
H contains 267 distinct concepts such as $Location, $Activ-
ity and $Device that generalize at least two city attributes.
Because H contains only names of concepts, the match is
syntactic and the attribute names will match a concept in
H regardless of their semantics. Figure 2 presents a sub-
set of the modifiers of these 195 attributes (top layer) and
267 concepts (bottom layer) with edges denoting the IsA re-
lation. For example, the concept $Academic institution con-
tains modifiers college and university of attributes college city
and university city, respectively. From these 267 concepts, we
need to select a small set that generalizes most of the 195
attributes without introducing too many meaningless new
attributes. A rule in the initial candidate set can be bad
because of a variety of reasons, we list some below:
1. Wrong sense: Rules such as $Device city that generalize

port city and gateway city are wrong because the sense of
“port” in attribute port city and “gateway” in attribute
gateway city is not the “device” sense of the term.

2. Too general: Rules such as $Activity city to cover party
city, crime city, and business city are too general.

3. Too specific: Rules such as $Asian country ambassador
are too specific because a more general rule like $Coun-
try ambassador better captures attributes of Countries.

4. Wrong hyponyms: When IsA hierarchies are automati-
cally created, they often also include wrong hyponyms
in a concept. For example, “Florida” is a hyponym of
$Country, and a “dog” is a hyponym of $Relative.

The rule selection problem is made further challenging
because we do not have a negative set of attributes that the
grammar should reject. We cannot assume that we should
reject anything not in A because A is only a partial list of
the attributes that belong to the class. Even for the valid
attributes, we have no human supervision on the choice of
the head words and the choice of the concept node to serve
as modifiers. For instance, we have no supervision of the
form that a good rule for battery size is $Part size. In the
next section, we address these challenges.

3. GRAMMAR GENERATION
We now present our method for learning the grammar

rules over a set of attributes A given a concept hierarchy
H (Section 2). Our first step is to use A and H to gener-
ate a set of candidate rules (Section 3.1). Next, we tackle
the challenge of limited supervision by creating a set of new
attributes to serve as negative examples that the grammar
should reject. We depend on occurrence frequencies on the
Web and similarity in an embedding space to infer these
negatives. We describe this process in Section 3.2. Finally,
we use a combined optimization algorithm to select a subset
of rules to serve as a grammar for the attribute set A (Sec-
tion 3.3). Figure 3 presents an overview of our algorithm.

3.1 Candidate rule generation



Figure 2: Modifiers of attributes with head word city (top-row), and the concept nodes in C(bottom-row). A
consists of each top-row node suffixed by head word city, e.g. gateway city, port city, etc. Candidate rules consist
of concept nodes suffixed with city, e.g. $Device city, $Location city, etc. Most are bad.

Input: H,A, Web corpus T , Pretrained embeddings E
Candidate generation (Section 3.1)
Parse each a ∈ A to identify head words and modifiers
R = Generalize modifiers to concepts in H and form rules

Generating negatives N (Section 3.2)
N ′ = ∪r∈Rsample(r) = Top attributes in gen(r)−A
Get frequency #(a),#(ma) in T & find F (a) ∀a ∈ A ∪N ′
Get embeddings ~ma from E & find E(a) ∀a ∈ A ∪N ′
Train models Pr(−|F (a)),Pr(−|E(a))
N = {a ∈ N ′ : (1− Pr(−|F (a)))(1− Pr(−|E(a))) < 0.5}

Rule scoring (Section 3.3)
Obtain soft signals ia, na,r, pr from H, A, N .
Solve linear program 4 using an LP-solver.
Return rules scores wr for r ∈ R.

Figure 3: Our grammar generation algorithm ARI.

Figure 4: Dependency parses of two attributes.

Generating candidate rules proceeds in two steps: finding
the head words and modifiers of attributes, and generalizing
modifiers to concepts nodes from H.

We rely on in-house Natural Language Parsing technology
to identify the head words and modifiers in an attribute. For
each attribute a ∈ A, we generate its dependency parse [7],
which is a directed graph whose vertices are labeled words
and their part-of-speech, and the edges are syntactic rela-
tions between the words (Figure 4). The root word of the
dependency parse is a head word for a rule. For example,
size is the root word of the parse of the attribute average
tank size. Each child of the root, concatenated with its de-
scendants, forms a modifier provided it is a noun. Note that
it can be tricky for the dependency parser to find the appro-
priate children of the root. In Figure 4, the parser correctly
identified that average and tank are both modifiers of size
in average tank size, while water tank is a single modifier of
size in water tank size. For the attribute estimated average
tank size, the dependency parse would have placed estimated
as a child of average and therefore the modifiers would be
estimated average and tank.

Next we create rules by generalizing the modifiers of at-
tributes using concepts in the concept hierarchy H. For
example, the modifier tank can be generalized to (or, is hy-
ponym of) concepts $Container, $Equipment and $Car com-
ponent. Due to its ambiguity, tank can also be generalized
to $Vehicle, $Weapon, and even $American singer. Each
such concept forms a possible candidate rule. For exam-
ple, tank size has the rules $Container size, $Equipment size,
$Car component size, $Vehicle size, $Weapon size and $Amer-
ican singer size. For each attribute, we select the top-20
rules that generalize its modifiers with the highest notability

scores (defined in Section 2). In the next steps, we consider
all the rules that cover at least two attributes in A.

3.2 Generation of Negatives
The candidate generation step of Section 3.1 can generate

a very large set of overlapping and noisy rule candidates.
Our goal is to select just the right subset of these rules to
cover most of the given set of attributes A (i.e., positive
examples), while not covering attributes that are not valid
for the class. For this task, we need to identify strings that
are not valid attributes (i.e., negative examples) that should
not be covered by any selected rule. Because we do not have
that supervision, we developed a novel procedure for tapping
additional resources to infer such negatives.

For any rule r ∈ R, let gen(r) denote the set of attributes
that can be generated by r. For example in Figure 2 a rule
r of the form $Activity city of the Countries class can gen-
erate 0.9 million attributes corresponding to each hyponym
of concept $Activity in H. The attributes in gen(r) could be
one of three types: (1) valid attributes of Countries that
appear in A, such as crime city, party city, business city; (2)
valid attributes that do not appear in A, such as art city;
or (3) invalid attributes such as swimming city, yoga city,
research city. We have supervision only for the first type
but not for the second or third type. Because gen(r) is po-
tentially large and the candidate rules r ∈ R is also large,
we cannot afford to inspect every attribute in gen(r) to in-
fer whether it is valid (in second group) or invalid (in third
group). We therefore select a small subset (50 in our experi-
ments) of gen(r) whose modifiers have the highest notability
scores in r and do not appear in A. We denote this set by
sample(r). We will create a negative training set N from
the union N ′ of sample(r) of all candidate rules r.

One option for N is to assume that all the attributes inN ′
are negative. Many text processing tasks that train statisti-
cal models only with positive examples use this strategy [30,
19]. However, we found good rules like $Crop production
for Countries were unduly penalized by this blind strat-
egy. In this example, A had a handful of such attributes
like mango production, coffee production, and wheat produc-
tion, and sample(r) had bean, vegetable, alfalfa, etc produc-
tion which should not be treated as negative attributes. We
therefore developed methods that can remove such likely
positives from N ′.

Our method for inferring negatives exploits two new sig-
nals — the occurrence frequency of attributes on the Web
and the embedding similarity of attributes — and combines
them via a novel training using only positive and unlabeled
examples. We describe each of these features next and then
present our training method.

3.2.1 Relative frequency feature
A strong signal for deciding if an attribute in sample(r) is

valid comes from the frequency of occurrence of the attribute



on the Web. Consider the candidate rule r =$Device city
that wrongly generalizes attributes gateway city and port city.
In this case sample(r) will contain attributes like sensor city,
ipad city, etc that are meaningless strings and are perhaps
not frequent on the Web. However, absolute frequency of
multi-word strings has been found to be less useful than
relative measures of association like PMI and its variants [5,
35]. But even PMI and variants are found unreliable when
used as a single measure in significance tests [6]. In our case,
we have an additional signal in terms ofA to serve as positive
attributes. We exploit this to define a relative PMI feature.
Let ma, ha denote the modifier and head word of attribute a.
Let #(a),#(ma),#(ha) denote their respective frequencies
on the Web. Using these frequencies, we calculate a relative
PMI feature F (a) as

log
#(a)

#(ma)#(ha)
− log avg

b∈A:hb=ha,b6=a
#(b)

#(mb)#(hb)
(1)

The first term in the equation is standard PMI. But the
second term is a reference value calculated from the PMI of
attributes in A. This reference is the the average frequency
ratio over the attributes in A that share a’s head word3.
One immediate advantage of this reference is that the rela-
tive PMI is independent of the frequency of the head word.
This makes the relative PMI value more comparable across
attributes with different head words — allowing us to use
this as a feature of a single classifier across all head words.

3.2.2 Word embedding feature
The frequency feature is not useful for suppressing rules

that cover frequent but irrelevant attributes. For example,
the rule $Project cost for the Cars class was obtained by gen-
eralizing attributes production cost, maintenance cost, and
repair cost in A. The top few hyponyms of sample(r) are
dam cost and highway cost. These attributes are frequent
but not valid attributes of Cars.

We introduce a second feature to quantify the seman-
tic similarity of other hyponyms of a concept with the hy-
ponyms that occur as attribute modifiers in A. For example,
the concept $Project has hyponyms production, maintenance,
and repair which appear as modifiers of valid attributes in A.
Other hyponyms of $Project like dam and highway are further
away from these three valid hyponyms than the three are to
each other. We measure semantic similarity using word vec-
tors trained using a Neural network [19, 20]. These vectors
embed words in a N-dimensional real space and have been
found very useful in several language tasks, including trans-
lation [18] and parsing [31]. We used pre-trained 500 dimen-
sional word vectors4 that puts semantically related words
appear close together in space.

We create an embedding feature for each attribute using
these word vectors as follows. Let ~ma denote the embedding
of the modifier ma of an attribute a. Let r be a rule that
covers a. We define the embedding feature E(a) for a with
respect to a rule r that covers it as the cosine similarity
between ~ma and the average embedding vector of all positive

3An important subtlety about this measure is that during
training when we measure the relative PMI for positive at-
tribute a, we remove a from the reference set. This safe-
guards us from positive bias during training particularly
when the reference set is small for rare head words.
4https://code.google.com/p/word2vec/

attributes5 covered by r.

E(a) = cosine( ~ma, avg
b∈A,r∈rules(b),a 6=b( ~mb)) (2)

Example: Let a = dam cost and let r = $Project cost be a
covering rule of a. The valid attributes r covers are produc-
tion cost, maintenance cost, and repair cost. We first compute
the average embedding vector ~v of production, maintenance,
and repair. Then the embedding feature of a (=dam cost)
is the cosine similarity with the embedding ~ma of modifier
ma(= dam) with ~v. This is found to be 0.2. In contrast,
when a =repair cost, a positive attribute, we find the aver-
age vector of production and maintenance and measure the
cosine similarity with the vector of repair to be 0.5.

Note, it pays to combine signals both from frequency
and embedding, because frequency identifies wrong rules
like $Device city and embedding identifies general rules like
$Project cost. Embedding alone cannot eliminate a rule like
$Device city since hyponyms of $Device: “router”, “ipad”,
“sensor”, are semantically close to “port” and “gateway”.

3.2.3 Training with positive instances
Now we train a classifier for classifying attributes in N ′ =
∪
r∈Rsample(r) as positive or negative using the frequency

feature F (.) (Eq 1) and embedding feature E(.) (Eq 2). At-
tributes in A serve as positive labeled instances, we have
no labeled negatives, only a large set N ′ to serve as unla-
beled instances. This setting has been studied before [16,
8], but our problem has another special property that we
exploit to design a simpler trainer: each of the frequency
and embedding features is monotonic with the probability
of an instance being negative. We train a single feature lo-
gistic classifier separately on the frequency and embedding
feature. For each feature, we find the p-percentile feature
value among the positives6. We then train each classifier
with all attributes in A as positive and the attributes in N ′
with feature value below this percentile as negative.

This gives us two probability distributions Pr(−|E(a))
and Pr(−|F (a)). An instance a ∈ N ′ is negative if its nega-
tivity score ia =

Pr(−|F (a)) + Pr(−|E(a))− Pr(−|F (a)) Pr(−|E(a)) (3)

is more than half. The above formula is obtained by just
assuming that the probability that an instance is positive is
equal to the product of probability, Pr(+|F (a)) Pr(+|E(a)).
This has the effect of labeling an attribute as negative ei-
ther if its frequency (PMI) is low relative to other positive
attributes or its word embedding is far away from positive
attributes. A summary of the process of generating negative
attributes appears in Figure 3.

3.3 Rule selection
We are now ready to describe our rule selection algorithm,

we call ARI. We cast this as a problem of assigning a score
wr to each candidate rule r ∈ R such that valid attributes
(A) are covered by correct rules and the number of invalid
attributes N that are covered by these rules is minimized.

One important property of our algorithm is that it is cog-
nizant of the noise in its input, viz., the attribute set A, the

5Like for the frequency feature, when we measure the em-
bedding feature of a positive attribute a during training we
exclude a’s embedding vector from the average.
6For our experiments, we used p=50 based on our prior that
50% of attributes are correct.



negative attributes N , and IsA hierarchy H. The algorithm
captures these as three soft signals as follows: Each attribute
a ∈ A is associated with an importance score ia to capture
our uncertainty about a being a part of A (introduced in
Section 2). Likewise for each negative attribute a ∈ N we
have an importance score ia as calculated in Equation 3. For
each modifier m covered by a concept class of a rule r we
take as input a notability score nm,r to capture noise in the
concept hierarchy H.

ARI puts together these various signals in a carefully de-
signed linear program to calculate rule scores wr via the
following constrained optimization objective.

min
wr≥0,ξa

∑
a∈A

iaξa +
∑
a∈N

iaξa + γ
∑
r∈R

wrpr

s.t.

ξa ≥ max(0, 1−
∑

r∈rules(a)

na,rwr), ∀a ∈ A

ξa ≥ max(0,
∑

r∈rules(a)

na,rwr), ∀a ∈ N

(4)

The above objective has three parts: the first part
∑
a∈A iaξa

measures the error due to lack of coverage of the valid at-
tributes A, the second part

∑
a∈N iaξa measures the error

due to wrongly including invalid attributes N , and the third
part

∑
r∈R wrpr is for penalizing overly general rules. The

hyperparameter γ tunes the relative tradeoff between rules
complexity and attribute coverage. We explain and justify
each part. Our objective is influenced by the linear SVM
objective for classifier learning but with several important
differences in the details.

Error due to lack of coverage: The first part of the
objective along with the first constraint requires that each
attribute in A has a total weighted score that is positive and
greater than one. Any deviation from that is captured by
the error term ξa which we seek to minimize. This term uses
two soft signals ia and na,r and we justify the specific form
in which we used them.
1. We measure the total score of an attribute a as the

sum of the scores wr of rules that subsume a (denoted
by rules(a)) weighted by the confidence na,r of a being
a hyponym of the concept class in r. This usage has
the effect of discouraging rules that cover an attribute
with low confidence because then the rule’s score wr will
have to be large to make the overall score greater than
1 and the third term of the objective discourages large
values of wr. This encourages attributes to be covered
by concepts for which it is a core hyponym.

2. The importance score of an attribute ia is used to weigh
the error of different attributes differently. This method
of using ia is akin to slack scaling in structured learn-
ing [34]. We also considered an alternative formulation
based on margin scaling but for reasons similar to those
discussed in [28], we found that alternative inferior.

Error for including invalid attributes: The second term
requires that the scores of all invalid attributes be non-
positive. Unlike in SVMs, we require the rule scores wr to be
positive because for our application negative scores provide
poor interpretability; it is not too meaningful to use the fea-
ture weights to choose the single rule that provides the best
interpretation. Because rule weights are non-negative, the

score of all attributes will be non-negative. The third term
thus penalizes any invalid attribute by the amount that its
score goes above the ideal value of zero. Each such error
term is scaled by ia, the importance of the attribute in its
role as a negative attribute as calculated in Equation 3.

Rule Penalty: In the third part of the objective
∑
r∈R wrpr

we regularize each rule’s score with a positive penalty term
pr to discourage overly general or too many rules. This is
similar to a regularizer term in SVMs where a common prac-
tice is to penalize all wr-s equally. Equal pr values cannot
distinguish among rules on their generality. A next natural
step is to make the penalty proportional to the size of the
concept class in r. However, a large concept class is not
necessarily bad as long as all its hyponyms generate valid
attributes. For example, a rule like $Crop production for
Countries. We define penalty of a rule r as the average
rank of the valid attributes in the concept class of r. We
assume that each concept in H has its hyponyms sorted by
decreasing membership score nr,a when calculating its rank.
For example, the modifiers of Cars attributes like tyre size,
brake size, and wheel size appear at an average rank of 23007
in concept $Product of rule $Product size but at average
rank of 4 for the concept in rule $Vehicle part size. This
makes the penalty on rule $Product size 23007/4 more than
the penalty on $Vehicle part size. The intuition behind this
penalty is that a rule where valid attributes appear much
later in the sorting, are likely to include several undesirable
attributes before it.

Our ARI objective is a Linear program and can be solved
using any off-the-shelf library such as Clp7. In Section 4
we compare our algorithm with other alternatives and show
that our final method does substantially better. We also
analyze the importance of each of the soft signals in our
objective.

4. EVALUATING RULE QUALITY
In this section we evaluate the quality of the rules we

generate. We evaluated on the attributes in the Biperpe-
dia collection for four classes: Countries, US presidents,
Universities, and Sports cars and an in-house created
concept hierarchy as described in Section 2. Since we are
not able to share this data, we also created a fifth dataset
from publicly available sources. We considered the set of
attributes in DBpedia [1] with noun head words and modi-
fiers8, and we used WordNet as our concept hierarchy. Ta-
ble 1 lists these classes and their number of attributes.

We start by showing some interesting rules that our algo-
rithm generated in Table 1: For the class US presidents,
the rule $Service policy covers attributes immigration policy,
welfare policy; the rule $Relative name covers wife name, dad
name, son name. Rules for Countries cover such attributes
as adult illiteracy rate, and youth unemployment rate. The
latter rules have two modifiers and are covered by the suc-
cessive application of two rules: $Age group rate and $So-

7https://projects.coin-or.org/Clp
8We could not find any single class in DBpedia with more
than a few hundred multi-word attributes with noun modi-
fiers. Therefore, we were forced to take a union of attributes
over all classes so that our precision-recall curves are statisti-
cally significant. Manual inspection of the rules showed that
our final selected rules rarely grouped unrelated attributes.
This dataset was the largest publicly available attribute col-
lection that we found.



Class |A| |R| Rules Example

Countries 108K 236K
$Tax rate : {income tax rate, present vat rate, levy rate}
$Age group rate, $Social problem rate : {adult illiteracy rate, youth unemployment rate}

Universities 18K 39K
$Cost fee: {registration fee, tuition fee, housing fee}
$Service number, $Mobile device number:{emergency cell number, library phone number}

US presidents 12K 17K
$Service policy: {immigration policy, welfare policy}
$Relative name: {wife name, dad name, son name}

Sports cars 1.8K 2K
$Component size: {fuel tank size, trunk size, battery size}
$Car parts price: {bumper price, tyre price},
$Country price: {uk price, dubai price}

DBpedia 1.1K 0.5K
number of $Administrative district: {number of city, number of canton}
$Publicize date: {air date, release date}

Table 1: The five classes in our evaluation set. For each class, the second column (|A|) is the number of
attributes in the collection, the third column (|R|) denotes the number of candidate rules, the third column
contain example rules that we discover.

cial problem rate. Similarly for Universities, we encounter
such attributes as emergency cell number and library phone
number that are covered by two rules $Service number and
$Mobile device number.

We now present a quantitative evaluation.

Ground Truth. To generate the ground truth for the rules,
we needed to label rules manually. As Table 1 indicates,
there are more than 300K candidate rules over the five at-
tribute sets. Because it is infeasible to evaluate manually
such a large rule set, we selected a subset of rules that ei-
ther appear in the top-500 by total attribute scores, or that
cover the top-20 head words by attribute importance. This
process produced roughly 4,500 rules to label for Countries
and 1,400 for US presidents. For DBpedia, we evaluated
all 500 rules. Three experts labeled each rule as good or bad
and we selected the majority label as the label of the rule.

We note some statistics that highlight the difficulty of the
rule selection problem: (1) good rules constitute only 8% of
the total rules, so we face the typical challenges of finding a
“needle in a haystack”; (2) there is significant disagreement
among experts on whether a rule is good: experts disagreed
on 22% of the rules.

Methods compared. We are not aware of any prior work
on discovery of rules over attributes. To evaluate our pro-
posed method ARI, we compare with prior methods used
in other related problems. We describe two broad categories
of prior methods:

Integer programming approach: Our core rule selec-
tion method of Section 3.3 can be cast as a classical rule
induction problem which seeks to cover as many positive in-
stances while minimizing number of negative instances cov-
ered. Several9 algorithms exist for this problem, including
the one used in the Patty system [24, 23] that we discuss
in Section 6. As a representative we choose a formulation
based on integer programming (IP) as follows:

min
wr∈{0,1}

∑
r∈R

|N r|
|N r|+ |Ar|

wr + γwr

s.t.
∑

r∈rules(a)

wr > 0 ∀a ∈ A
(5)

In the above we use |N r|, |Ar| to denote the number of at-
tributes of N , A respectively subsumed by rule r. Thus, the
first part of the objective measures the fraction of negative

9https://en.wikipedia.org/wiki/Rule induction

attributes covered by rule r. The second term is a constant
per-rule penalty to not select too many rules. Like in our
earlier approach, the γ is a tunable parameter to control the
tradeoff between grammar size and penalty for covering in-
valid attributes. Thus, the IP above seeks to cover positive
attributes with the minimum number of low error rules.

Most classical rule induction algorithms select rules in a
greedy iterative manner. However, modern day computing
power allows use of this more expensive, optimal IP. We used
an off-the-shelf library like SCIP10.

Classifier-based approach: The second approach is based
on the view that the grammar is a binary classifier between
valid and invalid attributes. This approach is popular in
modern grammar learning tasks such as in [32, 30] that we
discuss later in Section 6. The classifier-based method cre-
ates a labeled dataset by assigning a label ya = +1 for each
attribute a ∈ A, and a label ya = -1 for each a ∈ N . The
“features” for each instance are the set of rules that cover
that instance. The goal then is to assign weights to the
features so as to separate the positive from the negative in-
stances. We used a linear SVM objective:

min
wr

∑
a∈A∪N

ia max(0, 1−ya
∑

r∈rules(a)

wrna,r)+γ
∑
r∈R
|wr|

where the first term measures the mismatch between the
true label y and the classifier assigned score s. The second
term is a regularizer like in the previous two methods. This
approach is different from ours in Equation 4 in two ways:
first, we require wr ≥ 0 to get more interpretable scores,
second, we assign different regularizer penalty to rules.

In addition to the above three methods, we used a baseline
that chooses the rule whose concept has the highest notabil-
ity score for the attribute’s modifier. All hyper-parameters
were selected via cross-validation.

Evaluation metric. Given the diversity of applications to
which our grammar can be subjected, we present a multi-
faceted evaluation of rules. For applications that use rules to
explore large sets of attributes and possibly curate them in
the schema of a structured knowledge base, it is important to
generate “good” rules that compactly cover a large number
of A attributes. For applications that use the grammar to
parse (entity, attribute) queries, it is important to evaluate
correctness at an attribute-level. Accordingly, we compare
the methods along four metrics:
1. Rule Precision: the percent of generated rules that

are judged good by our manual labelers.

10http://scip.zib.de/



2. Rule Coverage: the total number of attributes that
are covered by rules judged good.

3. Attribute Precision@1: the percent of attributes
whose highest scoring covering rule is judged good.

4. Attribute Recall: the percent of attributes covered
by generated rules.11

Comparing methods. Figure 5 compares methods on rule-
precision and rule-coverage metrics. For plotting this graph,
for each method we select the rules for which the method
assigns a positive score and order the rules by the total im-
portance of A attributes they cover. Then, for increasing
values of k, we plot on the y-axis the fraction of good rules
out of k (rule precision) and on the x-axis the total num-
ber of attributes in A covered by the good rules (coverage).
Each marker on the line is at a multiple of 50 rules except
for the first marker at 10 rules (for DBpedia, a multiple
of 2 rules starting from 8 rules). A method has high pre-
cision if its plot is high up along the y-axis and produces
compact rules if it extends to the right with fewer mark-
ers. We show the results separately for Countries (left),
US presidents (middle), and DBpedia (right). For exam-
ple, the left plot says that for Countries the top-100 rules
(the third circle from left) of ARI cover 4,200 attributes in
A, and 68% of the rules are judged good, as we go down to
top-500 rules we cover 9300 attributes at a precision of 60%.
For US presidents, the top-10 rules of ARI cover 100 at-
tributes at a precision of 80% and the top-100 rules cover
300 attributes and 67% of them are good. For DBpedia,
the top-18 rules of ARI cover 48 attributes at a precision
of 67%. We highlight our observations about the different
methods of rule selection:
1. Overall, the ARI method provides the best tradeoff be-

tween precision of selected rules and the compactness
they provide. At the last marker in each plot (after 500
rules for Countries, 250 rules for US presidents, and
18 rules for DBpedia), the precision of ARI is high-
est, and although Integer Programming sometimes
yields more coverage, its precision is unacceptably low.

2. The ARI and Classifier approach eventually get the
same precision for US presidents, but for the top few
hundred rules the ARI method has significantly higher
precision. The main reason for the low precision of the
Classifier approach for top-rules is that it does not
penalize general rules that appear at the top when we
sort rules by total importance of A attributes.

3. The compactness of rule sets for Countries is much
higher than for US presidents: for roughly the same
precision of 62%, the top-250 rules of ARI cover 7000
and 500 attributes, respectively. This observation indi-
cates that countries have many more related attributes
(e.g., economic indicators), whereas attributes of presi-
dents tend to refer to less structured data (e.g., legacy,
achievements).

We next show how accurately each method can interpret at-
tributes by comparing them on the attribute precision and
recall metrics. Figure 6 shows the precision and recall val-
ues of the four methods for the top-k most important labeled
attributes (covered by rules) for increasing k separately for
Countries and US presidents. The DBpedia setting is

11Some attributes might have no good rule covering it. We
remove such attributes when calculating this metric.

Attribute-level Rule-level (top-100)
Method Pr@1 Re F1 Pr Coverage

All features 45 56 50 68 4491
No importance score 38 58 46 56 4188
No membership score 40 60 48 55 6133
No per-rule penalty 34 55 42 42 5682
All Negatives 43 55 48 68 4644

Table 2: Impact of different features in ARI. Here
Pr denotes precision and Re denotes recall.

slightly different where all attributes are used without rank-
ing, and the baseline method is not compared because Word-
Net does not have notability scores. For Countries, ARI
dominates all other methods on precision and recall. For
US presidents and DBpedia, ARI provides much higher
precision than other methods that have high recall. The
poor performance of the Integer Programming approach
highlights the importance of considering the noise in our
inputs A and R. The simple baseline that independently
selects for each attribute the rule with the highest notabil-
ity score provides poor precision. Hence, it is important to
make global decisions for a rule based on other positive and
negative attributes it covers.

These evaluations show that our proposed method pro-
vides the best precision-compactness tradeoffs whether viewed
broadly at top-covering rules or microscopically at individ-
ual attributes and their best interpretation by our grammar.

Analysis of ARI. Our method of rule selection has a num-
ber of novel features in terms of how it handles attribute
importance scores, handles noise in inputs, penalizes general
rules, and generates negative attributes. In this section, we
analyze the impact of each feature by reporting accuracy
with that feature removed. In Table 2 the first row is the
performance of the full-featured method and each of the sub-
sequent rows has one feature removed as follows:
1. The second row is with the importance scores ia re-

moved — that is, by setting ia = 1 in Equation 4. We
observe that both attribute-level and rule-level accura-
cies drop. Attribute-level F1 drops from 50 to 46 mostly
because of reduced precision. Rule-level precision drops
by a larger margin from 68 to 56.

2. The third row shows accuracy with the concept mem-
bership scores na,r hardened to 1. Attribute-level F1
drops from 50 to 48 and rule-level precision drops from
68 to 55. Coverage increases because by dropping mem-
bership scores more general concepts that cover many
attributes are preferred but many of these are bad as
reflected in the dropped precision.

3. The fourth row shows accuracy with the same penalty
for all rules instead of being proportional to their rank.
We observe that attribute-level F1 drops from 50 to 42
and rule-level precision drops from 68 to 42; indicat-
ing that rank-based rule penalty is perhaps the most
important feature of ARI.

4. The fifth row shows accuracy where we label all at-
tributes in sample(r) as negative instead of using our
method based on low embedding similarity and low fre-
quency (discussed in Section 3.2). We observe that the
quality of interpretation drops from 50 to 48.

These experiments demonstrate that ARI is an effective
method for rule section and the careful inclusion of varied
soft signals to handle input uncertainty and incomplete su-
pervision has paid off.
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Figure 5: Rule Precision versus Coverage of top-500 rules of Countries (left), top-250 rules of US presidents
(middle), and top-18 rules for DBpedia (right).
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Figure 6: Attribute Precision versus Recall of 4135 attributes of Countries (left), 238 attributes of
US presidents (middle), and 91 attributes of DBpedia (right).

Figure 7: Overall skew and rule-wise skew for each
collection. Skew=fraction of attributes in the ma-
jority class and is always between 0.5 and 1.

5. APPLYING RULES TO FOCUS MANUAL
CURATION OF ATTRIBUTES

In this section we demonstrate one application of our se-
lected rules — their use in curating attributes for expand-
ing knowledge bases. While the automatically extracted at-
tributes are invaluable in capturing the interests of users,
they do not meet the precision standards of a knowledge
base. Indeed, it is often required that every attribute is hu-
man curated. Since our rules discover semantically related
attributes they hold great promise in reducing the cognitive
burden of this curation. In this section we present the results
of our experiments with one such mechanism.

Our curation mechanism exploits the following hypoth-
esis: The quality of attributes within most rules is highly
skewed: Either the vast majority of the attributes covered by
a rule will be judged by human evaluators as good attributes
or the vast majority will be judged as bad. For example, in
Sports cars, the rule $Fastener pattern covers mostly good
attributes including bolt pattern, lug nut pattern, and stud
pattern while the rule $Automaker engine covers mostly bad
attributes including bmw engine and ford engine.

We evaluated the skewed-rules hypothesis using the fol-
lowing process: On each of four Biperpedia classes in Ta-

ble 1, we select the top-20 rules for which our algorithm
assigns a positive score ordered by the total importance of
A attributes they cover. We then get expert labels on up to
15 randomly selected attributes in each rule. Each expert
labels an attribute as either good or bad for the class. Using
the labels we plot two kinds of skew in Figure 7:
1. overall skew: fraction of attributes covered by the ma-

jority label. For instance, for Sports cars, 71% of the
labeled attributes were good, so the skew is max{0.71, 1−
0.29} = 0.71. For US presidents, 47% were good, so
the skew is max{0.47, 1− 0.47} = 0.53.

2. rule-wise skew: measure skew within each rule and aver-
age. For instance, for Sports cars rule-wise skew is 1
since each rule had either all bad or all good attributes.

Figure 7 shows that for all collections rule-wise skew is much
higher than overall skew. For Countries, for example, the
skew of 0.53 went to 0.92 for the selected rules. In other
words, for any given rule that our algorithm selected, on av-
erage, 92% of attributes covered by the rule had the same
judgement (“good” or “bad”). Thus, these results confirm
our hypothesis that the rules that we generate help us dis-
tinguish between clusters of “good” and “bad” attributes.

These results enable us to reduce dramatically the amount
of curation we need to do if we want to increase the preci-
sion of attributes from its initial 0.53 to above 0.9: We need
to get expert (or, crowd) labels on only a small number
of attributes within a rule, to detect rules that are heavily
skewed towards positive attributes. Once such a rule is de-
tected with a desired level of confidence, we can select all its
attributes as positive. Since we have a large number of such
skewed rules, this process can yield many good attributes
at any desired precision-level. We illustrate this in Figure 8
which shows the number of good attributes that we gath-
ered for increasing manually labeled attributes. For large
collections like Countries we gathered 200 attributes after
labeling just 5 and 500 after labeling just 90.

Note we would not get such behavior by rules that group



Figure 8: Number of positive attributes selected
against number of attributes labeled. Precision of
the selected set is more than 90% in all cases.

on head words alone. Often, different rules with the same
head have opposing skews. For example, US presidents
has many attributes with head word name, such as mother
name, dog name, hat name, brand name, and car name. Our
rules segregate them into mostly good attributes via rules
such as $Relative name, and $Pet name and mostly bad at-
tributes via rules such as $Place name. Also, not all candi-
date rules exhibit such skew. Our candidates set might in-
clude very general rules like $Person name that cover seman-
tically unrelated attributes (vice president name and mother
name). Our rule selection algorithm is able to eliminate
them by penalizing overly general rules.

6. RELATED WORK
Open-domain IE systems [9, 10, 17, 21] have automat-

ically extracted large collections of textual relations (e.g.,
“starred in” and “was elected to”) between entities. These
textual relations can be viewed as attributes, but are typi-
cally in verb form rather than noun form. Recently, many
efforts have attempted to extract attributes of classes from
query streams and text [26, 15, 2, 13, 37, 27, 11, 25] (dis-
cussed earlier in Section 2). The focus of all these work is
on extracting high quality relation or attributes, and not on
finding structure in the space of extracted relation/attribute
names, which is the focus of our work. One exception is the
Patty system [24, 23], which generalizes a textual relation
such as “Taylor effortlessly sang Blank Space” to a pattern
such as“#Singer * sang #Song”and arranges the patterns in
a taxonomy. The focus of Patty is on generalizing w.r.t. the
subject and object of the relation, not on finding structure
of the relation names themselves. Their method crucially
relies on support/confidence/overlap statistics of entities in
the text to choose between the exponentially many patterns.

A tangentially related stream of work is on unsupervised
grammar induction in the natural language processing (NLP)
literature [32, 30] where the goal is to learn semantic parses
of a set of sentences. The important differences with our
work is that in NLP sentences are much longer than at-
tributes, and require a more complex interpretation. In ad-
dition, all sentences are assumed to be correct, which is not
true in our case. Second, negative examples are generated
by perturbing the given sentences [30]. This method does
not work for us since negatives generated by random word
replacements are unlikely to help us discriminate between
overlapping concept hierarchies. We are not aware of any
prior work that generates negatives like we do by combining
Web frequency and embedding similarity.

The work on noun compound understanding (e.g., [33])
attempts to parse descriptions of sets of objects (e.g., na-
tive american authors). In contrast, our work focuses

on understanding the structure of attribute names of enti-
ties. However, an important line of research is to investigate
whether noun-phrase understanding can benefit from under-
standing attributes and vice versa.

Another related problem is linking extracted binary rela-
tions to a verb taxonomy like WordNet. For example this
work tries to link the relation “played hockey for” to the
“play1” verb synset and to link “played villain in” to the
“act” verb synset[12]. The problem we address here is very
different. Instead of linking individual attributes to a tax-
onomy, we introduce new rules to group related attributes
using the taxonomy to provide hypernyms.

Mungall et al [22] used the regularities in the syntactic
structure of class names in the Gene Ontology (GO) to gen-
erate formal definitions for classes. Like our work, they also
relied on parsing complex names and then grouping them to
create the rules. Because their approach needed to work for
relatively small number of entities, they relied on heuristics
rather than machine learning to generate the rules and the
approach was heavily tailored to class names in GO.

7. CONCLUSION
This paper introduced the problem of finding structure

in the universe of attribute names via rules comprising a
head word and a concept node from a IsA hierarchy. Such
rules offer a concise semantic representation of attributes
and the ability to recognize new attributes names and vari-
ations of existing attributes. The rules can also be used to
build high-quality ontologies at scale with minimal curation
effort. The methods described in this paper are already in
use for schema exploration and curation at Google.

Our rule learning algorithm takes as input two noisy inputs—
class attributes extracted from query stream and text, and
an IsA hierarchy also extracted from text— carefully mod-
els their noise in a constrained linear program to produce a
set of high quality rules. Our algorithm is totally unsuper-
vised and leverages web frequency and embedding vectors
to automatically discover negative attributes.

We perform extensive experiments over four large attribute
collections. Our experiments show that our rules have pre-
cision between 60% and 80% and compress attribute names
by up to a factor of 42. We show that our selected rules are
highly skewed in the quality of attributes they cover. This
skew aids in significantly reducing the curation effort needed
in adding attributes to a knowledge base.

Our work is the first step in discovering the structure of
attribute names. This paper presented one method of orga-
nization based on rules. Another alternative we considered
was to use plain clustering to group related attributes like
economy and currency that rules cannot. However, clustering
was not effective in surfacing structurally related attributes.
Rules and clusters play complementary roles and in future,
we would like to combine the two methods. Also, we would
like to understand more deeply the semantics of the rules.
For example, we discovered rules of the form $Metal produc-
tion, where the rule modifier can be understood as a selec-
tion condition on a (logical) table that contains production
of various medals. In contrast, other modifiers may simply
be mathematical functions applied to an attribute (e.g., av-
erage unemployment rate). Attaining a deep understanding
of variations in attribute naming is a major step towards
building ontologies that capture the way users think about
the world and providing better services for them.
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