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ABSTRACT
In this paper we present learning models for the class ra-
tio estimation problem, which takes as input an unlabeled
set of instances and predicts the proportions of instances
in the set belonging to the different classes. This prob-
lem has applications in social and commercial data analysis.
Existing models for class-ratio estimation however require
instance-level supervision. Whereas in domains like politics,
and demography, set-level supervision is more common. We
present a new method for directly estimating class-ratios us-
ing set-level supervision. Another serious limitation in ap-
plying these techniques to sensitive domains like health is
data privacy. We propose a novel label privacy-preserving
mechanism that is well-suited for supervised class ratio esti-
mation and has guarantees for achieving efficient differential
privacy, provided the per-class counts are large enough. We
derive learning bounds for the estimation with and with-
out privacy constraints, which lead to important insights
for the data-publisher. Extensive empirical evaluation shows
that our model is more accurate than existing methods and
that the proposed privacy mechanism and learning model
are well-suited for each other.

1. INTRODUCTION
In this work we study statistical learning models for es-

timating the proportion of instances belonging to different
classes in a given set of instances. Many real-world appli-
cations motivate this problem: a health analyst wants to
estimate the proportion of individuals susceptible to a dis-
ease in a locality, a political analyst wants to estimate the
proportion of votes to different parties, and so on. Recent
work [13, 29] shows how to train such models when pre-
sented with a set of instances each attached with its correct
label. Unfortunately, such instance-labeled data is not easily
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accessible in domains like health and social analysis. Often
labels are available only for groups of instances and not in-
dividual instances in the group. For instance in voting, we
only have access to aggregate number of votes to each party,
and not the vote of any one individual. [23] lists other sce-
narios where instance-level supervision in not plausible. In
other cases (example, in health [11]), the labels are private
and not easily accessible to an analyst. Much work [15, 24,
4, 14, 16, 1, 30, 7, 27] exists on creating machine learning
models over private data. But most of these assume that
learning happens within the trust boundary of private data.
We are targeting cases where the training data might have
to be aggregated from many private organizations for un-
derstanding broader trends. Thus, our goal in this work
is to learn a model for estimating class proportions under
these two constraints: (i) supervision is in the form of label
counts on sets of instances, and (ii) the labels of data is pri-
vate and model training happens outside the trust boundary
of owners of private data.

In the first part of the paper we present a new learning
model for estimating class ratios with set-labeled data for
supervision. Our model directly estimates class ratios in a
given set of instances using the principle of Maximum Mean
Discrepancy in a Reproducible Kernel Hilbert Space [10].
We show this paradigm to be significantly more accurate
than first building classifiers with set-labeled data using the
techniques of [22, 28, 23, 25, 21] and then estimating propor-
tions in predicted instance labels. We theoretically analyze
our model and show that our model is statistically consis-
tent. More interestingly, the analysis shows that our model
performs best when trained on few sets, each with a large
number of examples. In contrast, existing models for train-
ing with set-labeled data (e.g., [28]) prefer many, small sets.
Since large sets imply easier hiding of private labels, our
model is particularly compatible with the goals of learning
under privacy constraints. More importantly, the existing
models assume that the training and test distributions are
the same, which defeats the very purpose of class-ratio esti-
mation. Our empirical results confirm that existing models
perform poorly when the class-ratios in the training and test
are different; while the proposed models handle such distri-
bution shift well.

Next we extend our model to handle data privacy. In
this work we focus only on protecting the privacy of the
class labels. This setting has been proposed earlier in [3, 21]
and is of interest in domains like health and finance where
some fields are more private than others. In this work, we
consider the popular (ε, δ)-differential privacy [8, 2] as the



definition of privacy. A widely used mechanism for enforcing
differential privacy is based on adding a Laplace noise [8, 20,
18]. We show that this mechanism distorts proportions too
much. We propose a new label privacy preserving mecha-
nism that is well-suited for the supervised class-ratio esti-
mation problem. We theoretically analyze our mechanism
and show that our method guarantees ε→ 0, δ → 0 as long
as each class has large enough counts, independent of the
number of classes. In contrast, existing mechanisms based
on Lapace noise have a (non-zero) lower bound on ε, which
worsens with the number of classes. Empirically also, we
show that our mechanism provides much lower distortion
particularly for large number of classes.

Our privacy mechanism and learning algorithm are de-
signed to be maximally compatible with each other and
aligned to the goals of creating an accurate model while
guaranteeing differential privacy. Our privacy mechanism
preserves class ratios and incurs low distortion when set sizes
are large. Our learning algorithm yields high accuracy when
each set is large and the number of sets is small. These to-
gether lead to much lower estimation error than can be ob-
tained using existing learning models and existing privacy
mechanisms.

In summary, the main contributions of this work are:

1. We designed a model for estimating class ratios that
can be trained with set-labeled data. We show that the
proposed model outperforms existing ones, especially
when the distribution-shift between the training and
test sets is high.

2. We theoretically bound the estimation error of our
model. The bound shows that our model is statisti-
cally consistent, and has low error when the number
of sets is minimized (equal to number of classes), each
set is large, and label proportions in each training set
are skewed. In contrast, existing methods of creat-
ing classification models from set-labeled data prefer
many, small sets.

3. We propose a new mechanism for achieving (ε, δ) dif-
ferential privacy of a multiset of labels. Unlike exist-
ing mechanisms that add independent Laplace noise to
each label count, our design preserves class proportions
more effectively for increasing number of classes. We
analyze our mechanism to show conditions for achiev-
ing differential privacy (with ε ≈ 0, δ ≈ 0).

4. We extend the learning model as well as its analy-
sis for privacy-protected data. We show that the pro-
posed learning and privacy mechanisms are well-suited
for each other. In particular we show some conditions
that are common for achieving efficiency in both these
phases. We also identify that the skew in class-ratios
across the sets in training data controls the trade-off
between learning and privacy protection.

5. Empirical evaluation of our method on several large
real-datasets shows that: (i) our learning model incurs
much lower error than baselines designed over existing
models trained from set-labeled data [28] and can re-
duce error by as much as 70% for skewed test sets. (ii)
Our privacy mechanism achieves much lower distor-
tion than existing methods, particularly for large class
sizes. For example, on a 5-class dataset, our method

distorts proportions by only 0.06 whereas the best ex-
isting method distorts by 0.15. (iii) We show that
the combination of our learning algorithm and privacy
mechanism is able to provide significantly more accu-
rate estimates than existing methods. On an Mnist
dataset, our model with our mechanism incurs 60%
lower error than with Laplace.

The rest of the paper is organized as follows. We first
present and analyze our learning model for class ratio esti-
mation with set-labeled data in Section 2. Next in Section 3,
we present our mechanism of enforcing differential privacy
on label proportions and analyze our learning model with
privacy protected data. In Section 4 we empirically compare
our learning model and privacy mechanism. We present re-
lated work and conclusions in Sections 5 and 6 respectively.

2. SUPERVISED CLASS RATIO
ESTIMATION

In this section we define the supervised class ratio estima-
tion problem and discuss models for it.

2.1 Problem statement
We start with a formal definition of the supervised class

ratio estimation problem. Let X be the set of all instances
and Y = {1, . . . , c} be the set of all labels. Our goal is to
design an estimator M that for any given set U(⊂ X ) es-
timates the true probabilities of the various classes: ρu =
[ρu1, . . . , ρuc]

> in the distribution from which U was sam-
pled. In this paper we use class-ratios or class-proportions
to refer to such ρ. Since U is a finite sample, in practice
we will only be able to estimate the sample proportions
ρ̂u = [ρ̂u1, . . . , ρ̂uc]

> that denotes the fraction of instances
in U belonging to the various classes.

To facilitate the estimation, supervised training data D
consisting of M sets of instances, Si ⊂ X , i = 1, . . . ,M ,
and the corresponding fractions of instances belong to the
various classes, ρ̂i are provided, i.e., D = {(Si, ρ̂i) : i =
1 . . .M}. We will use ni to denote the number of instances
in set Si. We call such D set-labeled data. Such set-labeled
supervision is much weaker than in standard classification
where labels are associated with each instance in the training
data1.

Needless to say, we need to assume that the affine-hull
of the label proportions, ρ̂i ∀i = 1, . . . ,M , contains the c-
dimensional simplex2:

∆c ⊂ Aff ({ρ̂i ∀i}) (A0)

If this is not the case, then it is easy to see that some classes
may go totally un-represented.

A standard assumption in supervised learning is that the
joint-distribution over X × Y is unchanged between train-
ing and test data. In contrast, in this setting we allow the
distribution of the class labels to differ among the sets in
training and test. For instance, the class proportions ρu in
the unlabeled set U can be arbitrary and be very different

1However this setting still falls under standard supervised
learning as the prediction/estimation is also over sets and
not over instances
2The affine hull of a set of vectors V, denoted by Aff(V ), is
the set of all linear combinations of vectors in V such that
the combining coefficients sum to unity.



from those in the training set. Our only distributional as-
sumption about the training and test sets is that the class
conditional distribution P (x|y) is unchanged. That is, for
any two sets S ′,S in the training and/or test set

P (x|y, S) = P (x|y, S′) ∀y ∈ Y, (A1)

Note this is a much weaker assumption than in classification
and in existing models for class ratio estimation (e.g., [23,
28]) which assume that both P (x|y) and P (y) are preserved
in the training and test sets. Requiring the P (y) distribution
to be unchanged defeats the very goal of estimating class
proportions.

2.2 Existing models
One method to solve the above problem using existing lit-

erature, is to tap into the recent work on learning classifiers
from set-labeled training data [22, 28, 23, 25]. The goals
of all these work is to create a classifier to predict labels
of individual instances given weak supervision in the form
of set-labeled data during training. Using such a classifier,
we can estimate label proportions in any set U as follows:
for each xj ∈ U , invoke classifier to get predicted label ŷj
and then estimate/approximate the class proportions as the
fractions of instances belonging to the various classes.

Firstly, such methods assume that the training and test
distributions are the same and hence will perform poorly.
Also, recent work [29, 13] shows that learning methods that
directly estimate the class-ratios out-perform such per-instance
predictive models. The models of [29, 13] require instance-
labeled data and cannot be trained with set-labeled training
data, limiting their pragmatic applicability [23]. We are
aware of no other work that proposes a method of direct
class ratio estimation with set-labeled data. In the next
section we present the first such model.

2.3 Our Model
In this section we detail the proposed class ratio estima-

tion algorithm.
We begin by recalling the basic assumption A0, which

motivates us to parameterize the class ratios in the unlabeled
set using:

ρu =

M∑
i=1

αiρi (1)

Then the problem of class ratio estimation boils down to
that of estimating the parameters αi.

We now make the following identifiability assumption with-
out which the class ratio estimation problem is undefined
and no algorithm can identify the true class ratios:

θ1 6= θ2 ⇒
∑
y∈Y

P (x|y)θ1y 6=
∑
y∈Y

P (x|y)θ2y, (A2)

in other words, we are assuming that the class conditionals
are linearly independent. Let us denote the class conditional
distribution that is common for all sets by P (x|y).

With the above in place, we note that:

ρu =
M∑
i=1

αiρi ⇐⇒
c∑

y=1

P (x|y)ρuy =

c∑
y=1

P (x|y)

M∑
i=1

αiρiy

⇐⇒ P (x, U) =

M∑
i=1

αiP (x,Si),

where P (x,Si) denotes the marginal distribution over X
that generated Si.

Thus, to solve for α we need a method to represent and
compare the distributions of each set. Recently, a powerful
tool for such algebraic operations on distributions has been
provided by the concept of Maximum Mean Discrepency
(MMD) on a Reproducible Kernel Hilbert Space (RKHS) [10].
Examples of some algorithms based on MMD are: handling
covariance shift [10], the two-sample problem [9], class ratio
estimation [29, 13] and training deep generative neural net-
works [19]. MMD uses the notion of embedding distributions
in the RKHS of a kernel. Using this we find α’s by minimiz-
ing the distance between P (x, U) and

∑M
i=1 αiP (x,Si).

Accordingly, we define K to be a characteristic kernel and
let H denote the RKHS induced by K. Let Φ : X 7→ H
denote the canonical feature map induced by the kernel onto
the RKHS. Let

Φ̄i(x) = EP (x,Si)Φ(x), ∀i ∈ [1, . . . ,M ], (2)

and

Φ̄U (x) = EP (x,U)Φ(x), (3)

where EP (x,S)h(x) denotes the expectation of h(x) taken
under the distribution P (x,S).

Our objective of finding α’s such that
∑M
i=1 αiP (x, Si) =

P (x, U) can now be posed as the following optimization
problem:

min
α∈RM

∥∥∥∥∥
M∑
i=1

αiΦ̄i(x)− Φ̄U (x)

∥∥∥∥∥
H

(4)

The class-ratios can then be computed using ρu = Pα∗,
where P is the matrix with ith column as ρi and α∗ is the
optimal solution of (4). Now since Φ̄i, Φ̄U as well as P are
not available, we instead approximate them using the fol-
lowing empirical estimates:

Φ̄i ≈ Φ̂i ≡
1

ni

∑
x∈Si

Φ(x)

and

Φ̄U ≈ Φ̂U ≡
1

nu

∑
x∈U

Φ(x)

where ni = |Si| and nu = |U |. And,

P ≈ P̂ ≡ [ρ̂1 . . . ρ̂M ]

This leads to the following estimate for α’s:

min
α∈RM

∥∥∥∥∥
M∑
i=1

αiΦ̂i − Φ̂U

∥∥∥∥∥
H

(5)

and the following for the class-ratios: P̂α̂, where α̂ is the
optimal solution of (5).

Now, because of the approximations it may as well happen
that P̂α̂ /∈ ∆c. Hence we finally propose to employ the

following estimate: ρ̂u ≡ Proj∆c

(
P̂α̂
)

, where ProjV (v)

denotes the projection of vector v onto the set V .
The analysis presented in 2.4 shows that the above two-

step approximation indeed leads to a statistically consistent
alogrithm. More importantly, it shows that: i) M = c num-
ber of sets, each with large number of examples leads to
efficient estimation. Note that this is completely in contrast



with the ∝-SVM [28]. This feature of our algorithm, as we
shall see later, naturally leads to high-levels of label privacy;
thus achieving good trade-off between estimation accuracy
and label privacy, and, ii) the more the label purity3 in the
sets, the better the estimation.

2.4 Main results from the theoretical analysis
In this section we present the learning bounds associated

with the proposed algorithm. We begin by rewriting (4) and
(5) respectively as:

min
α

∥∥Āα− ā∥∥ (6)

where Ā = [Φ̄1(x), . . . , Φ̄M (x)] and ā = [Φ̄U (x)] and

min
α

∥∥∥Âα− â∥∥∥ (7)

where Â ≡ [Φ̂1, . . . , Φ̂M ] and â = [Φ̂U ].
For the analysis we make another very mild assumption:

Â has full column rank. (A4)

Note that this is satisfied whenever the instances in Dx are
unique, since the kernel is universal. To simplify the no-
tation in the learning bound we assume that the kernel is
normalized and hence maxx∈X ‖Φ(x)‖ = 1.

Theorem 1. Given the notation, and assumptions stated
above, the error of our estimated proportions ρ̂u from the
true proportions ρu is upper bounded with at least probabil-
ity 1− δ as follows:

‖ρ̂u − ρu‖ ≤

√∑M
i=1 Cδ (ni)

2

minsing
(
Ā
) (1 +Q (D)) +Q (D) Cδ (nu)

where Cδ (n) is a confidence term defined by Cδ (n) ≡ 2√
n

+√
ln(2(2M+1)/δ)

2n
, minsing

(
Ā
)

is the minimum singular value

of Ā (maxsing is analogously defined), and Q (D) is, what
we call the condition number of the training set, defined by

Q (D) ≡ maxsing(P̂)
minsing(Â)

.

We detail in Section 2.4.1 the valuable insights provided
by the bound and then in Section 2.4.2 present a sketch of
the proof.

2.4.1 Properties of our estimator
First, the confidence term decays at O( 1√

n
) with growing

sizes of the sets, and shows that the estimation error reduces
with increasing number of points in both the training and
test sets. The model prefers smaller number of sets with
large number of points in each set4. Note that this is in
contrast with ∝-SVM and is an attractive feature of our
algorithm wrt. privacy.

Second, we notice that the upper bound vanishes to zero
as the training set sizes ni and test set size nu approach
infinity. This indicates that our estimator is consistent.

3Purity of set increases as the proportion of instances with
the majority label approaches unity.
4However, since we want to span the entire convex hull
spanned by the class conditional distributions, the minimum
number of sets we must have is c.

The condition number Q (D) brings out more desirable
properties of our estimator. This term simply measures how
“close-by” the sets are with respect to the y distribution

(via the term maxsing
(
P̂
)

in the numerator) and the x dis-

tribution (via the term minsing
(
Â
)

in the denominator).

The more diverse the class-ratios are across the sets, less
is the condition number and vice-versa. It is easy to see
that the condition number is the highest, reaching ∞, when
the class-ratios are almost the same across the sets (because
the minsing will then be near zero). And is the least, ap-
proaching unity, when the class-ratios are orthogonal to each
other. This indicates that the estimator performs best when
the class proportions in the training set are skewed towards
any one class.

2.4.2 Proof of Theorem 1
To prove the theorem, we begin with the observation that5:

‖ρ̂u − ρ‖ = ‖Proj∆c
(
P̂α̂
)
− Pα∗‖

≤ ‖P̂α̂− Pα∗‖
≤ ‖α∗‖‖P̂ − P‖+ ‖P̂‖‖α̂−α∗‖
≤ ‖α∗‖‖P̂ − P‖F + ‖P̂‖‖α̂−α∗‖ (8)

We now proceed to bound the two difference terms above.
The first difference term accounts for the error that may
arise from the errors in the estimates of the class proportions
of each set calculated from finite sets. Lemma 1 gives the
error bound for this difference term. The proof for the bound
for the second difference term proceeds in two steps. In
the first step via Lemma 2, we bound the difference term
with the difference in the objective function of the respective
optimization problems in Equations 6 and 7. In the second
step in Lemma 3, we bound the difference in the objective
functions in terms of known quantities.

Lemma 1. With probability 1− δ M
2M+1

‖P̂ − P‖F ≤

√√√√ M∑
i=1

(
2√
|Si|

+

√
ln(2(2M + 1)/δ)

2|Si|

)2

Proof. Notice that, ‖P̂−P‖F =
√∑M

i=1 ‖ρ̂i − ρi‖2 where

ρi is the true class proportion in the set Si. We can now pro-
ceed to bound each term of this summation using Theorem
27 from [17].

Lemma 2. ‖α̂−α∗‖ ≤
√
‖Âα∗−â‖2−‖Âα̂−â‖2

minsing(Â)

Proof. The proof for the above lemma is identical to
proof of Lemma 1 in [13].

Lemma 3. With probability 1− δ M+1
2M+1

,√
‖Âα∗ − â‖2 − ‖Âα̂− â‖2

≤ ‖α∗‖

√√√√ M∑
i=1

(
2√
ni

+

√
ln(2(2M + 1)/δ)

2ni

)2

+
2√
nu

+

√
ln(2(2M + 1)/δ)

2nu
5Here, the matrix norm is the maximum singular value and
the Frobenius norm is highlighted with an ‘F’ subscript.



Proof. Note that, ‖Âα∗ − â‖2 − ‖Âα̂ − â‖2 ≤ ‖Âα∗ −
â‖2. From our discussion in Section 2.3, we know that∑M
i=1 α

∗
i Φ̄i(x) = Φ̄U . With this knowledge, we get,

‖Âα∗ − â‖ ≤ ‖α∗‖

√√√√ M∑
i=1

‖Φ̂i(x)− Φ̄i(x)‖2

+
∥∥∥Φ̄U (x)− Φ̂U (x)

∥∥∥
Applying Theorem 27 from [17] to each individual difference
term gives us the result.

Combining results from Lemma 1, 2, and 3 and the fact that
‖α∗‖ ≤ 1

minsing(Ā)
proves the theorem.

3. PRESERVING LABEL PRIVACY
Let S = {(x1, y1), . . . , (xm, ym)} represent a typical set in

the un-published training data. Now, let us denote the set
consisting of only the input instances from S i.e., {x1, . . . ,xm}
by Sx. Similary, define Sy = {y1, . . . , ym}. Let η and ρ de-
note the vectors with entries as the number and proportions
respectively of the instances belonging to the various classes
in S. Note that

∑c
i=1 ηi = m and thus each ρi = ηi

m
.

In this section we present a label privacy preserving mech-
anism g, which takes as input Sy and outputs a vector θ̂ that
is a proxy for ρ, the proportions of instances belonging to
the various classes in S. Our goal is for g to satisfy the stan-
dard differential privacy requirements [8] which states that
the output of g should be randomized such that neighbor-
ing data sets assign similar probabilities to any output θ.
More formally, let Sy(i,j) denote the dataset obtained from

Sy by changing the label of an instance from class i to class
j. Then g is said to satisfy (ε, δ)-differential privacy (DP)
iff:

P [g(Sy) ∈ B] ≤ δ+eεP
[
g(Sy(i,j)) ∈ B

]
, ∀ B ⊂ ∆c, ∀ i 6= j.

We seek a mechanism that achieves this privacy while min-
imally distorting the true ρ-s so that they continue to be
useful for the learning algorithm. A popular recipe for (ε, δ)-
differential privacy is to add to each ηi an independent ran-
dom noise zi generated from a Laplace or Gaussian distri-
bution[8]. The resultant η̃i = ηi + zi may not be positive
or sum to m. Recently, [18] proposed a constrained least
square step that can be used to convert such η̃i to a valid
output in a post-processing step. Another option is to use
the technique of [20] that uses η̃i to define the parameters
of a Dirichlet distribution and sample a valid proportion θ
from this distribution. While all these mechanisms achieve
(ε, δ) privacy, they do so at the cost of a large distortion
to the true proportions as we show in Section 4. In this
paper we propose a new mechanism that achieves (ε, δ) pri-
vacy with significantly smaller distortion, provided no class
is under-represented. Our mechanism achieves differential
privacy with ε → 0, δ → 0 asymptotically6. In contrast, in
the mechanism of [20] ε is bounded from below by a value
that grows with k.

The key point of our mechanism is to sample θ from a
Dirichlet distribution given by:

g(Sy) ∼ Dir(ση1, ση2, . . . , σηk),

6As ηi →∞ ∀ i = 1, . . . , k.

Here σ is an input-dependent parameter that is tuned to
achieve the desired trade-off between the level of privacy
and accuracy of the output. We next show how to choose σ
for a given (ε, δ) and Sy.

Let f0 ≡ Dir (ση1, ση2, . . . , σηi, . . . , σηj , . . . , σηk) and fij ≡
Dir (ση1, ση2, . . . , σ(ηi − 1), . . . , σ(ηj + 1), . . . , σηk) denote the
probability density functions of g(Sy) and g(Sy(i,j)) respec-

tively. The key steps in the analysis are:

1. Finding Θij such that f0(θ) ≤ eεfij(θ) ∀ θ ∈ Θij .
Hence for B ⊂ Θij , we have that differential privacy is
satisfied with δ = 0.

2. For B 6⊂ Θij , it is easy to see that (ε, δ)-differential
privacy holds if δ ≥ P [g(S) /∈ Θij ] ∀ i, j. Hence we
need to compute maxi,j P [g(S) /∈ Θij ].

Accordingly, let us first find Θi,j : Now, f0(θ) ≤ eεfij(θ)

⇐⇒ θσi
θσj

Γ(σηi−σ)
Γ(σηi)

Γ(σηj+σ)
Γ(σηj)

≤ eε,

⇐⇒ θi
θj
≤ Λ

1
σ
ij e

ε
σ

where Λij ≡ Γ(σηi)
Γ(σηi−σ)

Γ(σηj)
Γ(σηj+σ)

. Thus,

Θij =

{
θ ∈ ∆k |

θi
θj
≤ Λ

1
σ
ij e

ε
σ

}
.

Now, for bounding δ, we calculate

δ = P [g(S) /∈ Θij ] = P

[
θi − Λ

1
σ
ij e

ε
σ θj > 0

]
(9)

=

∫
Θij

Dir (σηi, σηj , σ(m− ηi − ηj))

The above integral is not easy to solve in closed form but
we can use the Chebyshev’s inequality to bound it as follows.

Let Zij denote the random variable θi − Λ
1
σ
ij e

ε
σ θj . The

expectation of Zij is E [Zij ] = ρ̂i−Λ
1
σ
ij e

ε
σ ρ̂j and its variance

is given by

var (θi) + Λ
2
σ
ij e

2 ε
σ var (θj)− 2Λ

1
σ
ij e

ε
σ cov (θi, θj) ,

=
ρ̂i (1− ρ̂i) + Λ

2
σ
ij e

2 ε
σ ρ̂j (1− ρ̂j) + 2Λ

1
σ
ij e

ε
σ ρ̂iρ̂j

(σm+ 1)

Using the Chebyshev’s inequality, we obtain δ as:

max
i 6=j

ρ̂i (1− ρ̂i) + Λ
2
σ
ij e

2 ε
σ ρ̂j (1− ρ̂j) + 2Λ

1
σ
ij e

ε
σ ρ̂iρ̂j

(σm+ 1)

(
ρ̂i − Λ

1
σ
ij e

ε
σ ρ̂j

)2 (10)

For a given ε, we perform line search over σ to find the
largest σ for which we achieve a target δ. We may find no σ
for a given δ when any of the ηi-s is too small, in which case
one can fallback to any standard mechanism like [20]. In our
experiments we performed the search exactly via Equation 9
but for faster search the approximation in Equation 10 might
be more useful.

level (ε, δ) for given counts η. When any ηi is too small,
not all choices of ε, δ, may yield a valid σ. The algorithm
detects such cases and returns an error. When all ηi-s are
large, our mechanism guarantees that differential privacy
with arbitrarily small ε, and δ is possible as we show in the
asympototic analysis below.



In the asymptotic case i.e., as each ηi → ∞, Λ
1
σ
ij behaves

like ρ̂i
ρ̂j

. Using this substitution we obtain that

δ =

(
maxij

1−ρ̂i
ρ̂i

+ e2 ε
σ

1−ρ̂j
ρ̂j

)
+ 2e

ε
σ

(σm+ 1)
(
1− e εσ

)2 . (11)

From the above it is clear that in the asymptotic case, dif-
ferential privacy with ε→ 0, δ → 0 is possible as long as the
parameter σ → 0 such that σηi → ∞ ∀ i and ε

σ
→ κ, for

some constant κ > 0. Also, the above analysis shows that
sets with near uniform distribution of labels lead to lower δ,
and hence better privacy. However, more interestingly, if σ
is chosen properly, low values of δ are achievable even with
sets with skewed class-ratios (which lead to better class-ratio
estimation).

In Section 4 we show that even in the finite set case our
mechanism provides much smaller error for a given (ε, δ)
requirement than existing methods.

3.1 Estimation under Privacy Constraints
In this section we extend the proposed class-ratio esti-

mation algorithm as well as its analysis for the case where
the training set is perturbed using the privacy preserving
mechanism proposed in the previous section. Let σi (ε, δ)
be the Dirichlet mechanism parameter set to achieve (ε, δ)-
differential privacy over the set Si.

The estimation algorithm is now given by: ρ̃u ≡ Proj∆c
(
P̃α̂
)

,

where P̃ is the matrix with ith column as g(Syi ). In other
words, the algorithm simply uses the output of the Dirichlet
mechanism as a proxy for the fraction of labels in the set.
It is easy to see that the only modification in the analysis is
that the ‖P̂ −P‖F term in (8) is now replaced by ‖P̃ −P‖F .

Again, ‖P̃ − P‖F ≤ ‖P̂ − P‖F + ‖P̃ − P̂‖F . Hence, in the

following we analyze only the new term ‖P̃ −P̂‖F and leave
details of the other analogous terms to the reader. More
importantly, analysis of this term illustrates the suitability
of the proposed Dirichlet mechanism for estimating class-
ratios using the proposed MMD based algorithm. Towards
this goal we present the following lemma:

Lemma 4. With probability 1− ζ we have:

‖P̃ − P̂‖F ≤
Mc√
ζ

max
i∈{1,...,M};y∈Y

√
ρ̂iy (1− ρ̂iy)

σi (ε, δ)mi + 1
,

where all notations are as defined in Section 2.

Before we present the proof, it is insightful to note the fol-
lowing:

• The best case for privacy is when ε→ 0, δ → 0. From
the discussions in section 3, it is known that this is
plausible if σi (ε, δ)mi →∞.

• Interestingly, the bound in the above lemma also con-
verges to zero as σi (ε, δ)mi →∞. Hence the proposed
Dirichlet mechanism is well-suited for class-ratio esti-
mation using the MMD based algorithm.

Proof. We begin by noting that:

P
[
‖P̃ − P̂‖ > τ

]
≤

M∑
i=1

c∑
y=1

P

[
‖ρ̃iy − ρ̂iy‖2 >

τ2

Mc

]

Also,

P

[
‖ρ̃iy − ρ̂iy‖2 >

τ2

Mc

]
≤ Mc var(ρ̃iy)

τ2

=
Mc ρ̂iy (1− ρ̂iy)

τ2 (σi (ε, δ)mi + 1)

The result follows by choosing the RHS of the last inequality
to be ζ

Mc
.

We conclude this section by noting that the insights pro-
vided from the learning bounds are indeed very useful for the
data-publisher, who may have access to instance-level su-
pervised data. The bounds suggest that the data-publisher
must create c sets, with almost equal number of instances in
each set, and such that each set has moderate level of skew
in the class-proportions (while ensuring A0 is satisfied). As
the skew increases, the learning becomes more efficient but
privacy might suffer. Thus, the data publisher could pre-
fer the largest skew that satisfies his privacy requirements
possibly as per guidelines laid in [12].

4. EXPERIMENTS
In this section we first show that our mechanism for en-

forcing (ε, δ) privacy on a set of labels induces less distortion
than existing methods (Section 4.1). We next show that our
learning model for estimating class proportions is more ac-
curate than existing models for both undistorted training
data (Section 4.2) and privacy protected data (Section 4.3)

4.1 Privacy preserving mechanisms
In this section we compare different privacy preserving

mechanisms for publishing a set of labels as discussed in
Section 3. For these experiments, the input is a set of c
counts η = (η1, . . . , ηc) and we generate perturbed η̂ via dif-
ferent mechanisms of (ε, δ) differential privacy. We measure
distortion as the L1 distance between the true and perturbed
counts scaled by the size of the set.

We compare the following three methods

1. Laplace: In this method we first add Laplace noise [8]
to each ηi value using a sensitivity parameter 2. We
then post process using constrained least square to
make perturbed counts be non-negative and sum to
m as described in [18].

2. Gaussian: Same as above but with the noise gener-
ated via a Gaussian distribution instead of Laplace as
described in [8, 2].

3. Laplace Prior: This is the mechanism proposed in
[20] where the counts distorted with Laplace noise are
used to define parameters of a Dirichlet distribution.
The output proportions are sampled from this Dirich-
let.

4. Scaled Dirichlet: This is our mechanism described
in Section 3.

For these experiments we set the default value of c to 5,
set size (m) to 1000, class proportion for first c − 1 classes
to a ρ1 = 0.05 and the last class to 1 − (c − 1)ρ1, and
(ε, δ) to (0.05, 0.05). All reported numbers are averaged over
twenty random samples of perturbed outputs for the same
input. We study distortion between the true and perturbed
proportions under varying values of the default parameters
in Figure 1.
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Figure 1: Comparing distortion of privacy mechanisms under varying settings of parameters. The first plot
is for increasing number of classes, second plot for changing class proportions on five classes, third plot for
increasing ε on five classes.

Varying number of classes.
The first plot in Figure 1 shows distortion in the output

of different privacy mechanisms with increasing number of
classes (c). We observe that as the number of classes in-
creases, our method increasingly scores over all existing ap-
proaches. The key reason is that all other methods distort
by adding independent noise to each class count. In con-
trast, our method preserves class ratios by using the same
multiplicative parameter to increase variance when required.

Varying class proportions.
Next in the middle plot of Figure 1 we fix the number of

classes to 5 and vary the class proportions (ρ1, ρ1, ρ1, ρ1, 1−
4ρ1) by varying ρ1 from 0.025 (skewed proportions) to 0.2
(uniform proportions). We observe that the distortion achieved
by our mechanism is the lowest under all settings.

Varying ε.
In the last plot in Figure 1 we vary ε from 0.01 to 0.2.

As expected, the output is distorted more when the pri-
vacy requirements is more stringent (ε small). The Laplace
mechanism is quite competitive with ours (Scaled Dirichlet)
when ε is large but for small ε, our method provides much
smaller distortion. Also, from the error bars we note that
the variance of our method is the lowest.

We thus conclude that our privacy model has smaller dis-
tortion and smaller variance compared to other models, and
is particularly useful when the number of classes is large.

4.2 Class ratio estimation models
In this section we compare various class ratio estimation

models on set-labeled data without any perturbation of the
class proportions.

We evaluate our method, which we call MMD, presented
in Section 2.3 using a RBF kernel chosen through cross-
validation. We vary the bandwidth of the kernels in the
range 2−5 to 25. The only existing method that we are
aware of that can be trained with set-labeled supervision
and work with universal kernels is [28]. As discussed in
Section 2, we can estimate class ratios using this method by
aggregating per-instance predictions from the SVM classi-
fier. We call this the pSVM method. The classifier we used

Dataset Number Number |Y| ni nu
Features Instances (c)

Census 14 48,842 2 600 600
Youtube 1000 6,431,471 2 600 600
Higgs 28 11,000,000 2 600 600
Mnist 780 60,000 10 3000 3000
Acoustic 50 78,823 3 900 900
Twitter 3600 6,940 3 900 900

Table 1: Summary of Datasets

was ∝SVM7 [28] which trains a SVM like model from sets
of instances and their class proportions. The parameters for
this classifier are chosen via cross-validation. We vary the
bandwidth of the kernels in the range 2−5 to 25. The other
parameters of varied in the range as per [28].

Datasets.
The method pSVM only works for binary classes. So, for

the comparisons in this section we restrict to datasets with
two classes. Table 1 summarizes the datasets we used.
Census: Census dataset consists of records from 1994 cen-
sus database with features that include age, workclass, oc-
cupation, relationship, race, sex etc. The target label is
income which is 1 if the person earns more than 50000 in
a year and 0 otherwise. This dataset is available from the
UCI repository8.
Higgs: In a particle accelerator, not all collisions are likely
to produce interesting particles. This dataset captures fea-
tures of several collisions or processes. The label indicates
whether a given collision or process is going to produce an
interesting particle or not. 21 out of the 28 features are prop-
erties measured by the particle detectors in the accelerator
and the remaining 7 are abstract features hand-designed by
physicists. This dataset is available from the UCI repository.
Youtube: A dataset based on YouTube comments that we
created based on this9 collection. The goal in the YouTube
dataset is to estimate the fraction of comments that are

7Code taken from https://github.com/felixyu/pSVM
8https://archive.ics.uci.edu/ml/datasets/Census+Income
9http://mlg.ucd.ie/yt
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Figure 2: Comparison of models for class ratio estimation. Y -axis is the L1 difference between the true and
estimated class ratios, and X-axis is the fraction of instances in class 1 in the test set. Each plot shows results
for a different dataset. In all three plots, the method legends is the same.

spams on a YouTube video. The dataset was crawled by
tracking 6407 popular YouTube videos over 77 days and
comprises of 6,431,471 comments labeled spam or not. The
feature set is a normalized TF-IDF vector over 1000 words
+ a comment length feature.

If the number of classes is c, we create c training sets
in the following way: we initially choose a value ρ which is
usually 0.05 or 0.1. Then, we create c sets with the following
class proportions [ρ, ρ, . . . , 1 − (c − 1)ρ], [ρ, ρ, . . . , 1 − (c −
1)ρ, ρ], [ρ, . . . , 1−(c−1)ρ, ρ, ρ], . . . , [1−(c−1)ρ, ρ, . . . , ρ]. The
training sets are all class conditionally sampled. In addition,
we add c more sets with the same class proportions as above
to support cross validation for kernel selection.

Since, we are dealing with only binary datasets in this
experiment, we create 4 sets in training, 2 of them have pro-
portions (0.1, 0.9) and the other 2 had proportions 0.9, 0.1.
This is similar to the process described above with ρ = 0.1.
For testing, we created various test sets whose positive class
proportions varied from 0.1 to 0.9.

For each method we measure estimation error as the L1
distance between the correct class proportions in the test set
and the proportions estimated by the method. In Figure 2
we show the errors of the baseline pSVM and our MMD
method on test sizes with increasing fraction of instances
in the first class. We observe that MMD estimates have
much lower error than pSVM especially for extreme class
skews. The pSVM method assumes that the training and
test distributions of P (y) remain unchanged, and therefore
this method returns accurate class ratios only in the range
of ratios where this assumption holds. Our method allows
the P (y) distribution to shift and therefore provides lower
error on a wider range.

We conclude from this section with set-labeled training
data, our proposed MMD method provides the lowest error
among existing options for a large range of test set ratios.

4.3 Private Class Ratio Estimation
In this section, we evaluate if our estimates continue to

remain accurate when the label proportions are distorted to
protect privacy. Our experiments in Section 4.1 showed that
the distortion is within tolerable limits for binary datasets
but is large for non-binary datasets. Therefore, in this sec-
tion we report experiments on real-world non-binary datasets.

The three we considered are described below and summa-
rized in Table 1.
Mnist: This is a handwritten digit recognition dataset. The
target labels are the digits 0 to 9 and inputs are fixed size
input containing the handwritten image of a digit.
Acoustic: Acoustic is a three class dataset about classi-
fying military vehicles from microphone recordings. This
dataset as well as Mnist are available from LibSVM multi-
class dataset repository10.
Twitter: This twitter dataset was created for the task of
classifying each tweet into one of three sentiment classes:
positive, negative and neutral. We use the dataset and fea-
ture extraction mechanism described in [26]. The authors of
[26] have made code and data available online11.

In Figure 3 we show the MMD estimation error when
trained with data distorted by three privacy mechanisms:
ours (scaled dirichlet), Laplace, and Laplace Prior as de-
fined in Section 4.1. We drop the Gaussian method since
it provides no advantage over the Laplace method as per
our experiments in Section 4.1. Instead we add as a refer-
ence the errors when MMD is trained with undistorted sets.
Note this method does not guarantee any privacy and is just
included to get a lower bound. The test set for these exper-
iments where created with varying class proportions using
the parameter ρ1 as described in Section 4.1. The X-axis in
Figure 3 indicates these class proportions.

We can make the following observations from these figures.

1. As expected, our estimation model is sensitive to the
distortion of training data as revealed by the compari-
son with the ”No distortion” setting. Thus it is impor-
tant to devise mechanisms that reduce distortion. We
showed in Section 4.1 that our method achieves the
lowest distortion. These experiments show that the
reduced distortion translates to reduced error of our
learning algorithm.

2. When the number of classes is large (as in Mnist),
existing methods (Laplace) introduce such large dis-
tortion that the errors of the learning model become
unacceptably large.

10https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
multiclass.html

11https://github.com/duytinvo/ijcai2015
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Figure 3: Our MMD estimation model trained with privacy protected data under three different mechanisms.
For reference we also include error with correct set proportions (no privacy). The first plot is for Mnist,
second for Acoustic and third for twitter. X-axis is increasing test set proportions.

3. The effect of bad training data is more pronounced
when the test set has skewed proportions. This trend
is very clear for the Mnist dataset where we see a sharp
increase in error of Laplace distortion on highly skewed
testset.

5. RELATED WORK
In this paper we presented a learning model for estimating

proportions of labels in a set of instances using set-labeled
training data with privacy constraints on the true label.

Our use of set-labeled data for training is related to the
models proposed in [22, 28, 23, 25, 21] for training classifi-
cation models with the same kind of supervision. However,
the way we wrap an MMD objective around set-labeled data
allows effective learning from a few, large sets. In contrast,
the classification models of [28], while being kernel-based like
us, prefer many small sets. Since small sets is anti-thetical
to privacy, our method is particularly suitable for learning
under privacy constraints.

The use of MMD for estimating class proportions has
been explored before in [13, 29]. But these models require
instance-labeled data during training which does not work
under privacy constraints. One option would have been to
train the model with private data while enforcing privacy
during the model creation phase as used in [24, 4, 14, 16, 1]
and several others [15]. We did not consider this option be-
cause we are targeting scenarios where the training data is
aggregated from several private organizations and the model
creation happens outside the trust boundary.

Another class of methods attempt to first create DP joint
distribution of the data [6, 20] and then sample instances
from the distribution for down-stream tasks like model-creation.
These summaries are for general-purpose analysis, and not
a specific classification task, and are expected to be less ac-
curate. Ours and others like [21, 30] of creating summaries
is geared for the prediction task at hand while allowing data
from multiple agencies to be aggregated. We have shown
that our mechanism for publishing label proportions pro-
vides much higher accuracy for the same (ε, δ) guarantees
than existing approaches based adding Gaussian noise to
each component as suggested in [8] and sanitizing the output
using either the recently proposed constrained least square
approach [18] or the Dirichlet samples [20].

A different category of approach attempt to publish com-
binatorial summaries of data, for instance [5] proposes to
create trees to publish set-valued data for differential pri-
vacy. Even though the method is designed for publishing
sets of items, their raw data is a large set of records each of
which is small set of items. Consequently their definition of
differential privacy (DP) is to be insensitive to the removal
of a record. In contrast, our raw data is a single set of labels
and our notion of DP is to be insensitive to the change of
any single element of the set.

6. CONCLUSION
In this paper we designed a model for estimating class

ratios and devised mechanisms for training it in scenarios
where labels are provided on sets of instances and where
labels are private. We theoretically analyzed our model and
showed it to be consistent and accurate when the number of
training sets is large. This is in contrast to existing methods
that prefer many, small sets. Empirical evaluation on three
real-world datasets show that our estimator provides lower
error than existing methods, particularly when test class
distributions are skewed.

We proposed a new mechanism for achieving differential
privacy of labels that is more effective in preserving class ra-
tios than existing mechanisms, particularly when the num-
ber of classes is large. We extend the learning model as well
as its analysis for privacy-protected data. We show that the
proposed learning and privacy mechanisms are well-suited
for each other. In particular we show common conditions
for achieving efficiency in both these phases. Empirical eval-
uation on several large real-datasets shows that the combi-
nation of our learning algorithm and privacy mechanism is
able to provide significantly more accurate estimates than
existing methods.

Our future work includes extending our model for the case
of continuous y values (regression setting). Also, we would
like to extend our mechanism to protect the privacy of the x
part of an instance. Since our estimator is based on kernels,
one idea is to use the technique of [24] for preserving privacy
of the x and our current technique to protect the privacy of
the ys.
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