
ALMOST CONTACT 5–MANIFOLDS ARE CONTACT
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Abstract. The existence of a contact structure is proved in any homotopy class of almost
contact structures on a closed 5–dimensional manifold.

1. Introduction

Let (M2n+1, ξ) be a cooriented contact manifold with associated contact form α, i.e.
ξ = kerα. This structure determines a symplectic distribution (ξ, dα|ξ) ⊂ TM . Any change
of the associated contact form α does not change the conformal symplectic class of dα re-
stricted to ξ. This allows us to choose a compatible almost complex structure J ∈ End(ξ).
Thus given a cooriented contact structure we obtain in a natural way a reduction of the
structure group Gl(2n+ 1,R) of the tangent bundle TM to the group U(n)× {1}, which is
unique up to homotopy, see [Ge, Prop. 2.4.8]. A manifold M is said to be an almost contact
manifold if the structure group of its tangent bundle can be reduced to U(n) × {1}. In
particular, cooriented contact manifolds are almost contact manifolds and such a reduction
of the structure group of the tangent bundle of a manifold M is a necessary condition for the
existence of a cooriented contact structure on M . It is unknown whether this condition is in
general sufficient. See however the recent development [BEM].

Nevertheless there are cases in which the existence of an almost contact structure is suf-
ficient for the manifold to admit a contact structure. For example, if the manifold M is
open then one can apply Gromov’s h–principle techniques to conclude that the condition is
sufficient. See the result 10.3.2 in [EM]. The scenario is quite different for closed almost
contact manifolds. Using results of Lutz [Lu1] and Martinet [Ma] one can show that every
cooriented tangent 2–plane field on a closed oriented 3–manifold is homotopic to a contact
structure. A good account of this result from a modern perspective is given in [Ge]. For
manifolds of higher dimensions there are various results establishing the sufficiency of the
condition. Important instances of these are the construction of contact structures on certain
principal S1–bundles over closed symplectic manifolds due to Boothby and Wang [BW], the
existence of a contact structure on the product of a contact manifold with a surface of genus
greater than zero following Bourgeois [Bo] and the existence of contact structures on simply
connected 5–dimensional closed orientable manifolds obtained by Geiges [Ge1] and its higher
dimensional analogue [Ge2].

Let us turn our attention to 5–manifolds since the main goal of this article is to show that
any orientable almost contact 5–manifold is contact. In this case H. Geiges has been studying
existence results in other situations apart from the simply connected one. In [GT1] a positive
result is also given for spin closed manifolds with π1 = Z2, and spin closed manifolds with
finite fundamental group of odd order are studied in [GT2]. On the other hand there is also a
construction of contact structures on an orientable 5–manifold occurring as a product of two
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lower dimensional manifolds by Geiges and Stipsicz [GS]. While Geiges used the topological
classification of simply connected manifolds for his results in [Ge1], one of the ingredients in
[GS] is a decomposition result of a 4–manifold into two Stein manifolds with common contact
boundary [AM], [Bk].

Being an almost contact manifold is a purely topological condition. In fact, the reduction of
the structure group can be studied via obstruction theory. For example, in the 5–dimensional
situation a manifold M is almost contact if and only if the third integral Steifel–Whitney class
W3(M) vanishes. Actually, using this hypothesis and the classification of simply connected
manifolds due to D. Barden [Ba], H. Geiges deduces that any manifold with W3(M) = 0 can
be obtained by Legendrian surgery from certain model contact manifolds. Though this ap-
proach is elegant, it seems quite difficult to extend these ideas to produce contact structures
on any almost contact 5–manifold. We therefore propose a different approach: the existence
of an almost contact pencil structure on the given almost contact manifold is the required
topological property to produce a contact structure. The tools appearing in our proof use
techniques from three different sources:

- The approximately holomorphic techniques developed by Donaldson in the symplec-
tic setting [Do1, Do2] and adapted in [IMP, Pr3] to the contact setting to produce
the so–called quasi contact pencil.

- Eliashberg’s classification of overtwisted 3–dimensional manifolds [El] to produce
overtwisted contact structures on the fibres of the pencil.

- The canonical structure of the space of contact elements in a 3–manifold. See [Lu2].

Let us state the main result.

Theorem 1.1. Let M be a closed oriented 5–dimensional manifold. There exists a contact
structure in every homotopy class of almost contact structures.

In particular closed oriented almost contact 5–manifolds are contact. It is important to
emphasize that using the techniques developed in this article, it is not possible to conclude
anything about the number of distinct contact distributions that may occur in a given ho-
motopy class of almost contact distributions. The result states that there is at least one, the
article [Pr2] provides examples with more. It follows from the construction that the contact
structure is PS–overtwisted [Ni, NP] and therefore it is non–fillable.

Remark 1.2. The data given by an almost contact structure is tantamount to that of a
hyperplane subbundle of the tangent bundle endowed with a complex structure [Ge]. An
almost contact structure will refer to either the reduction of the structure group or to such
distribution. In the course of the article the distributions are supposed to be coorientable and
Section 10 contains the corresponding results for non–coorientable distributions.

The proof of Theorem 1.1 consists of a constructive argument in which we obtain the contact
condition step by step. These steps correspond to the sections of the paper as follows:

- To begin with, we explain how to produce over any almost contact 5–manifold (M, ξ)
an almost contact fibration over S2 with singularities of some standard type. It is
defined on the complement of a link. The definition and properties of this almost
contact fibration – in fact, an almost contact pencil – is the content of Sections 2 and
3. The details of the actual construction are not provided and the reader is referred
to [IM2, MT, Pr3] for the proofs. The existence of such a pencil is the input data of
this article.
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- In Section 4, we produce a first deformation of the almost contact structure ξ to
obtain a contact structure in a neighborhood of the singularities of the fibration and
in a neighborhood of the link.

- The neighborhood of the link has the structure of a base locus of a pencil occurring
in algebraic or symplectic geometry. In order to provide a Lefschetz type fibration
we blow–up the base locus. This requires the notion of a contact blow–up. For the
purposes of the article, it will be enough to define an appropriate contact surgery of
the 5–manifold along a transverse S1. This is the content of Section 5.

- Away from the critical points the distribution splits as ξ = ξv ⊕ H, where ξv is the
restriction of the distribution to the fibres and H is the symplectic orthogonal. Sec-
tion 6 deals with a deformation of ξv to produce a contact structure in the fibres. It
strongly uses the classification of overtwisted contact manifolds due to Eliashberg [El].

- In Section 7 we begin to deform the horizontal direction H. This is done in two
steps. Given a suitable cell decomposition of the base S2, we first deform H in the
pre–image of a neighborhood of the 1–skeleton. Section 7 contains this first step.

- The contact condition still has to be achieved in the pre–image of the 2–cells. This
is the second step. The contact structure used in order to fill the pre–image of the
2–cells is constructed in Section 8. This construction uses the contact structure of
the space of contact elements of the 3–dimensional fibre.

- In Section 9 we obtain a contact structure on the surgered 5–manifold using the re-
sults obtained in Section 8. Then we reverse the blow–up surgery and construct the
contact structure on the initial 5–manifold. Theorem 1.1 is concluded.

- In Section 10 we deal with the case of non–coorientable distributions. We introduce
the suitable definitions and explain the non–coorientable version of Theorem 1.1.

The more technical results on this article are contained on Sections 5, 6 and 8. Section 7
(resp. Section 9) is also essential but the exposition can be made less technical and the
reader should be able to readily comprehend it once Sections 5 and 6 (resp. Section 8) are
understood. Section 6 and 7 can be understood without Section 5 and Section 8 can be read
almost independently.

The work in this article was presented in the Spring 2012 AIM Workshop on higher di-
mensional contact geometry. In its course, J. Etnyre commented on a possible alternative
approach in the framework of Giroux’s program using an open book decomposition. The
argument has been subsequently written and it is the content of the article [Et].

Acknowledgements. The authors are grateful to Y. Eliashberg, J. Etnyre, E. Giroux and
H. Geiges for valuable conversations. We are also indebted to the referee for meaningful
suggestions. The second author is also grateful to M.S. Narasimhan and T.N. Ramadas for
their constant support and encouragement. The proof of Theorem 9.3 was outlined to us by
Y. Eliashberg. The original work lacked the construction of the homotopy in the case that
2–torsion existed in H2(M,Z). This case was proven after a useful discussion with J. Etnyre
at the AIM Workshop. The present work is part of the authors activities within CAST, a
Research Network Program of the European Science Foundation.
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2. Preliminaries.

2.1. Quasi–contact structures. Let M be an almost contact manifold. There exists a
choice of a symplectic distribution (ξ, ω) ⊂ TM for such a manifold. Namely, we can find a
2–form η on ξ with the property that η is non–degenerate and compatible with the almost
complex structure J defined on ξ. By extending η to a form on M we can find a 2–form ω
on M such that (ξ, ω|ξ) becomes a symplectic vector bundle. This form ω is not necessarily
closed. The triple (M, ξ, ω) is also said to be an almost contact manifold. In other words, an
almost contact structure is meant to be a triple (ξ, J, ω) for some ω as discussed. The choice
of almost complex structure J is homotopically unique and it might be omitted. An almost
contact manifold is subsequently described by a triple (M, ξ, ω).

In order to construct a contact structure out of an almost contact one, the first step is to
provide a better 2–form on M. That is, we replace ω by a closed 2–form.

Definition 2.1. A manifold M2n+1 admits a quasi–contact structure if there exists a pair
(ξ, ω) such that ξ is a codimension 1–distribution and ω is a closed 2–form on M which is
non–degenerate when restricted to ξ.

Notice that a quasi–contact pair (ξ, ω) admits a compatible almost contact structure, i.e.
there exists a J which makes (ξ, J, ω) into an almost contact structure. These manifolds
have also been called 2–calibrated [IM] in the literature. The following lemma justifies the
appearance of the previous definition:

Lemma 2.2. Every almost contact manifold (M, ξ0, ω0) admits a quasi–contact structure
(ξ1, ω1) homotopic to (ξ0, ω0) through symplectic distributions and the class [ω1] can be fixed
to be any prescribed cohomology class a ∈ H2(M,R).

Proof. Let j : M −→M ×R be the inclusion as the zero section. Consider a not–necessarily
closed 2–form ω̃0, such that ω0 = j∗ω̃0. Fix a Riemannian metric g over M such that ξ0 and
kerω0 are g–orthogonal.

Apply Gromov’s classification result of open symplectic manifolds to produce a 1–parametric
family {ω̃t}1t=0 of symplectic forms such that for t = 1 the form is closed. See [EM], Corollary
10.2.2. Let π : M × R −→M be the projection and choose the cohomology class defined by
ω̃1 to be π∗a. Consider the family of 2–forms ωt = j∗ω̃t on M. Since ω̃t is non–degenerate on
M ×R for each t, the form ωt has 1–dimensional kernel kerωt. Define ξt = (kerωt)

⊥g. Then
(ξt, ωt) provides the required family. �

This is the farthest one can reach by the standard h–principle argument in order to find
contact structures on a closed manifold. One can start with the almost contact bundle
ξ = kerα and use Lemma 2.2 to find a 2–form dβ such that (ξ, dβ) is a symplectic bundle,
but there is in general no way to relate α and β. This is the aim of the article.

2.2. Obstruction theory. The content of Theorem 1.1 has two parts. The statement im-
plies the existence of a contact structure in an almost contact manifold. This is a result
in itself, regardless of the homotopy type of the resulting almost contact distribution. The
construction we provide in this article also concludes that the obtained contact distribution
lies in the same homotopy class of almost contact distributions as the original almost con-
tact structure. This is achieved via the study of an obstruction class. Let us review some
well–known facts.

Let M be a smooth oriented 5–manifold and π : TM −→M its tangent bundle. The projec-
tion π is considered to be an SO(5)–principal frame bundle. An almost contact structure is
a reduction of the structure group G = SO(5) to a subgroup H ∼= U(2) × {1} ∼= U(2). The
isomorphism classes of almost contact structures are parametrized by the homotopy classes
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of such reductions. A reduction of the structure group G to a subgroup H is tantamount to
a section of a G/H–bundle over M . Hence the classification of almost contact structures on
M is reduced to the study of homotopy classes of sections of a SO(5)/U(2)–bundle over M .

Lemma 2.3. There exists a diffeomorphism SO(5)/U(2) ∼= CP3.

See [Ge, Prop. 8.1.3] for the proof of this Lemma.

The homotopy groups πi(CP3) = 0 for 1 ≤ i ≤ 6, i 6= 2, hence the existence of sections of
a fibre bundle with typical fibre CP3 over the 5–manifold M is controlled by the primary
obstruction class d = W3(M) ∈ H3(M,π2(CP3)) ∼= H3(M,Z). The hypothesis of Theorem
1.1 is d = 0.

Let sξ and sξ′ be two sections of this CP3–bundle. The obstruction class dictating the
existence (or the lack thereof) of a homotopy between them is the primary obstruction
d(ξ, ξ′) ∈ H2(M,Z). The obstruction theory argument can be made relative to a submanifold
A ⊂ M . Given a self–indexing Morse function for the pair (M,A), we consider the relative
j–skeleton Mj defined as the union of A and the cores of the handles of the critical points of
index less or equal than j. We have the following

Lemma 2.4. Consider a relative 2–skeleton M2 for the pair (M,A) and let sξ, sξ′ be two

sections of a CP3–bundle over M that are homotopic over M2. Then sξ and sξ′ are also
homotopic over (M,A).

Let (M, ξ) be an almost contact structure, the construction of the contact structure ξ′ ob-
tained in Theorem 1.1 does not modify the homotopy class of the given section, i.e. sξ ∼ sξ′ .
In Section 8 we provide a detailed account on the modification of the obstruction class d(ξ, ξ′)
in the 2–skeleton of certain pieces of M where ξ′ has been constructed. This is enough to
conclude that d(ξ, ξ′) = 0 once ξ′ is extended to M in Section 9.

2.3. Homotopy of vector bundles. The argument constructing the homotopy between
the initial almost contact structure and the resulting contact distribution in Theorem 1.1
uses the following lemma. It is used in several parts of Sections 4 to 9.

Let (V, ω) be an oriented vector space of dimension dimR V = 4. Consider an splitting
V = V0⊕V1 with V0, V1 two oriented 2–dimensional vector subspaces. Since Sp(2,R)/SO(2)
is contractible, the space of symplectic structures on V such that V0 and V1 are symplectic
orthogonal subspaces is contractible. This essentially implies the following

Lemma 2.5. Let M be an almost contact 5–manifold, A an open submanifold of M , and
(ξ0, ω0), (ξ1, ω1) two almost contact structures on M such that there exists a homotopy {ξt}
of oriented distributions on (M,A) connecting ξ0 and ξ1. Suppose that there exist L0 and
L1 two rank–2 symplectic subbundles of ξ0 and ξ1 and a homotopy {Lt} ⊂ {ξt} of oriented
distributions connecting L0 and L1 on (M,A). Then there is a path {ωt} of symplectic
structures on {ξt} such that {(ξt, ωt)} is a path of almost contact structures connecting (ξ0, ω0)
and (ξ1, ω1) on (M,A).

Proof. Consider J0 and J1 two compatible complex structures on the symplectic distributions
ξ0 and ξ1 respectively. These define two fibrewise scalar–product structures

g0 = ω0(·, J0·) and g1 = ω1(·, J1·)
on ξ0 and ξ1. The space of fibrewise scalar–product structures has contractible fibre, namely
Gl+(4,R)/SO(4), and thus it is contractible. Hence, there exists a homotopy {gt} of fibre-
wise scalar–products connecting g0 and g1. The scalar–product gt provides an orthogonal

decomposition ξt = Lt ⊕ L
⊥gt
t . The homotopy of oriented bundles {Lt} induces a homotopy

of oriented bundles {L⊥gtt } respecting the symplectic splitting given by ω0 and ω1 on ξ0 and
ξ1. �
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2.4. Notation. Let R2n be Euclidean space, B2n(r) = {p ∈ R2n : ‖p‖ ≤ r} denotes the
closed ball of radius r centered at the origin. The 2–dimensional balls are also referred to as
disks and denoted by D2(r). In case the radius is omitted B2n and D2 denote the ball and
disk of radius 1 respectively.

3. Quasi–contact pencils.

Approximately holomorphic techniques have been extremely useful in symplectic geometry.
Their main application in contact geometry – due to E. Giroux – is to establish the existence
of a compatible open book for a contact manifold in higher dimensions. See [Co, Gi, Pr3].
An open book decomposition is a way of trivializing a contact manifold by fibering it over
S1. Such objects have also been studied in the almost contact case, see [MMP].

There exists a construction [Pr1] in the contact case analogous to the Lefschetz pencil de-
composition introduced by Donaldson over a symplectic manifold [Do2]. It is called a contact
pencil and it allows us to express a contact manifold as a singular fibration over S2. It has
been extended in [IM2, MT, Pr3] to the quasi–contact setting. Theorem 3.5 and Corollary
3.7 in this Section provide the existence of a quasi–contact pencil with suitable properties.
Let us begin with the appropriate definitions.

Definition 3.1. An almost contact submanifold of an almost contact manifold (M, ξ, ω) is
an embedded submanifold j : S −→ M such that the induced pair (j∗ξ, j∗ω) is an almost
contact structure on S.

A quasi–contact submanifold of a quasi–contact manifold is defined analogously. In particu-
lar this implies in both cases that the submanifold S is transverse to the distribution ξ.

A chart φ : (U, p) −→ V ⊂ (Cn×R, 0) of an atlas of M is compatible with the almost contact
structure (ξ, ω) at a point p ∈ U ⊂ M if the push–forward at p of ξp by φ is Cn × {0} and
the 2–form φ∗ω(p) is a positive (1, 1)–form with respect to the canonical almost complex
structure.

Definition 3.2. An almost contact pencil on a closed almost contact manifold (M2n+1, ξ, ω)
is a triple (f,B,C) consisting of a codimension–4 almost contact submanifold B, called the
base locus, a finite set C of smooth transverse curves and a map f : M\B −→ CP1 conforming
the following conditions:

(1) The map f is a submersion on the complement of C and the fibres f−1(p), for any
p ∈ CP1, are almost contact submanifolds at the regular points.

(2) The set f(C) is a finite union of locally smooth curves with transverse self–intersections.
(3) At a critical point p ∈ C ⊂M there exists a compatible chart φp such that

(f ◦ φ−1
p )(z1, . . . , zn, s) = f(p) + z2

1 + . . .+ z2
n + g(s)

where g : (R, 0) −→ (C, 0) is an immersion at the origin.
(4) Each b ∈ B has a compatible chart to (Cn×R, 0) under which B is locally cut out by
{z1 = z2 = 0} and f corresponds to the projectivization of the first two coordinates,

i.e. locally f(z1, . . . , zn, t) =
z2

z1
.

Remark 3.3. Quasi–contact pencils for quasi–contact manifolds and contact pencils for
contact manifolds are defined by replacing the expression almost contact by the suitable one
in each case.

The generic fibres of f are open almost contact submanifolds and the closures of the fibres
at the base locus are smooth. This is because the local model (4) in the Definition 3.2 is a
parametrized elliptic singularity and the fibres come in complex lines {z2 = const ·z1} joining
at the origin. We refer to the compactified fibres so constructed as the fibres of the pencil.
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See Figure 1.

In dimension 5, each compactified smooth fibre is a smooth 3–manifold containing B as a
link and any two different compactified fibres intersect transversely along B. Note that if
we remove a tubular neighborhood of C in M the compactified fibre over a neighborhood
of a point in f(C) becomes a smooth manifold whose boundary is a (union of) 2–tori. This
boundary components can be filled by solid tori at any regular fibre.

z1

z2

t

Figure 1. Fibres close to the base locus B = {z1 = z2 = 0}.

Notice that the set of critical values ∆ = f(C) are no longer points, as in the symplectic
case, but immersed curves. This is because of Condition (3) in the Definition 3.2. In par-
ticular, the usual isotopy argument between two fibres does not apply unless their images
are in the same connected component of CP1\∆. This has been studied in the contact and
quasi–contact cases. The set C is a positive link and therefore ∆ is also oriented. There is
a partial order in the complement of ∆: a connected component P0 is less or equal than a
connected component P1 if P0 and P1 can be connected by an oriented path γ ⊂ CP1 inter-
secting ∆ only with positive crossings. The proposition that follows has only been proved
for the contact and quasi–contact cases. An analogous statement probably remains true in
the almost contact setting. It is provided to offer some geometric insight about contact and
quasi–contact pencils, it is not used in the rest of the article.

Proposition 3.4 (Proposition 6.1 of [Pr1]). Let M be a quasi–contact manifold equipped with
a quasi–contact pencil (f,B,C). Then if two regular values of f , P0 and P1, are separated

by a unique curve of ∆ then the two corresponding fibres F0 = f−1(P0) and F1 = f−1(P1)
are related by an index n− 1 surgery.

Suppose that the manifold and the pencil are contact, then the surgery is Legendrian and it
attaches a Legendrian sphere to F0 if P0 is smaller than P1. See Figure 2.

In the contact case it implies that the crossing of a singular curve in the fibration amounts
to a directed Weinstein cobordism. In the quasi–contact case no such orientation appears.
For instance, the case in which the quasi–contact distribution is a foliation – in dimension 3
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Δ

P0

P1

Figure 2. According to the orientations, the fibre F1 = f−1(P1) is obtained

via a Legendrian surgery on the fibre F0 = f−1(P0).

this is a taut foliation – becomes absolutely symmetric and there is no difference in crossing
one way or the other.

Examples. The following two constructions yield simple instances of contact pencils.

1. Consider a closed symplectic manifold (M,ω) with [ω] of integral class and a symplec-
tic Lefschetz pencil (f,B,C) on (M,ω) as constructed in [Do2]. Consider the circle
bundle S(L) associated to ω with its Boothby–Wang contact structure (S(L), ξω),
defined in [BW], and the projection π : S(L) −→M . Then the triple

(π∗f, π−1(B), π−1(C))

is, after a small perturbation of π∗f , a contact pencil for (S(L), ξω).

2. Given two generic complex polynomials in Cn of high enough degree, we can con-
struct the associated complex pencil (f,B,C). Suppose that the base points set B
contains the origin and denote the standard embedding of the radius r sphere by er :
S2n−1 −→ Cn. Then for a generic radius ρ > 0, the triple (e∗ρf, e

−1
ρ (B),Crit(e∗ρ(f)))

is a contact pencil for (S2n−1, ξst).

Consider a quasi–contact structure (M, ξ, ω). The main existence result [IM2, MT, Pr3] can
be stated as

Theorem 3.5. Let (M, ξ, ω) be a quasi–contact manifold with [ω] rational. Given an integral
cohomology class a ∈ H2(M,Z), there exists a quasi–contact pencil (f,B,C) such that the
fibres are Poincaré dual to the class a+ k[ω], for any k ∈ N large enough.

The basic construction goes as follows. Consider a line bundle V whose first Chern class equals
a and denote by L a Hermitian line bundle over M whose curvature is −iω. The pencil is con-
structed using a suitable approximately holomorphic section σk1 ⊕σk2 : M −→ C2⊗ (Lk⊗V ),
this requires k ∈ N to be large enough. The pencil map is fk = [σk1 : σk2 ] : M \ Bk −→ CP1
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and the base locus is Bk = {p ∈ M : σk1 (p) = σk2 (p) = 0}. A point p ∈ M maps to
[σk1 (p) : σk2 (p)] ∈ CP1. This is well–defined if p is not contained in the base locus Bk. The
construction is detailed in [Pr3].

The proof of this result does not work in the almost contact setting. In order to construct
the pencil, the approximately holomorphic techniques are essential and for them to work we
need the closedness of the 2–form ω (so as to be able to construct the line bundle L). In
general, a quasi–contact pencil may have empty base locus. Nevertheless a pencil obtained
through approximately holomorphic sections on a higher dimensional manifold does not.

The following lemma will be useful.

Lemma 3.6. Let (M, ξ, ω) be an almost contact 5–manifold, (f,B,C) an almost contact
pencil adapted to it and obtained from a section s1⊕ s2 of the bundle C2⊗det(ξ), and so the
base locus is defined as B = Z(s1 ⊕ s2) and the pencil map is f := [s1 : s2] : M \ B → CP1.
Then the Chern class of ξF vanishes for any regular fibre (F, ξF ).

Proof. Let F be a regular fibre of f , this fibre is defined as the zero set of the section
sλ = λ1s1 + λ2s2, for a fixed [λ1 : λ2] ∈ CP1. This is a section of the bundle det(ξ). Along
this fibre F , the distribution ξ satisfies

c1(ξ)|F = c1(ξF ) + c1(νF ).

The statement follows from c1(νF ) = c1(det ξ)|F = c1(ξ)|F inserted in the previous equation.
�

In case the form ω of the quasi–contact structure is exact – then called an exact quasi-contact
structure – we obtain the following

Corollary 3.7. Let (M, ξ, ω) be an exact quasi–contact closed manifold. Then it admits a
quasi–contact pencil such that any smooth fibre F satisfies c1(ξF ) = 0. Further, the base
locus B is non–empty if dimM is greater than 3.

Proof. We use Theorem 3.5 to construct a pencil such that the cohomology class a ∈
H2(M,Z) is fixed to be a = c1(ξ) = c1(det ξ). Since ω is exact, thus L ∼= C, we obtain that
the section defining the pencil s1⊕s2 is a section of the bundle C2⊗(det ξ⊗Lk) = C2⊗det(ξ).
Lemma 3.6 implies that the almost contact structure induced in the regular fibres of the pen-
cil has vanishing first Chern class.

Let us prove the non–emptiness of the set B. It is explained in [IM2, IMP] that the submani-
fold B = Z(σk1 ⊕σk2 ) satisfies a Lefschetz hyperplane theorem (this follows from the fact that
it is asymptotically holomorphic). It implies that whenever the dimension of M is greater
than 3, the morphism

H0(B) −→ H0(M)

is surjective. Hence we conclude that B is not the empty set. �

The triviality of the Chern class of the quasi–contact structures on the fibres and the non–
emptiness of B are used in the construction of the contact structure.

4. Base locus and Critical loops.

Let (M, ξ, ω) be an exact quasi–contact 5–manifold and (f,B,C) a quasi–contact pencil on
it. Assume that B 6= ∅ and c1(ξF ) = 0 for a regular fibre F of f . Such a pencil is provided
in Corollary 3.7. A fair amount of control on the almost–contact structure can be achieved
in the neighborhood of the base locus and the critical loops.
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Definition 4.1. A submanifold i : S −→M of an almost contact manifold (M, ξ, ω) is said
to be contact if it is an almost contact submanifold and there is a choice of adapted form α
for ξ in a neighborhood U of S, i.e. ξ|U = kerα, such that (dα)|U = ω|U .

An additional property in our almost contact pencil can then be required.

Definition 4.2. An almost contact pencil (f,B,C) on (M, ξ, ω) is called good if B 6= ∅, any
smooth fibre F satisfies c1(ξF ) = 0 and B and C are contact submanifolds of (M, ξ, ω).

The following lemma provides a perturbation achieving a suitable almost contact pencil.

Lemma 4.3. Let (M, ξ, ω) be a quasi–contact closed 5–dimensional manifold and let (f,B,C)
be a quasi–contact pencil. There exists a C0–small perturbation {(ξt, ω)} of almost contact
structures such that:

(i) (ξt, ω) is an almost contact structure ∀t ∈ [0, 1], and (ξ0, ω) = (ξ, ω).
(ii) B and C are contact submanifolds of (ξ1, ω).

(iii) (f,B,C) is an almost contact pencil for (M, ξ1, ω).
(iv) c1((ξ1)|F ) = 0 for any regular fibre F of f .

Fix an associated contact form α, i.e. ξ = kerα. The proof of the lemma is an exercise.
Indeed, in a neighborhood of the link B ∪ C the difference between ω and dα is exact and
its primitive (which can be chosen to vanish along the link) allows us to perturb the defining
form until we achieve the contact condition ω = dα1, ξ1 = kerα1.

Both Corollary 3.7 and Lemma 4.3 imply the following

Proposition 4.4. Let (M, ξ, ω) be an exact quasi–contact closed 5–dimensional manifold.
Then there exists an almost contact perturbation (ξ′, ω) of (ξ, ω) such that (M, ξ′, ω) admits
a good almost contact pencil (f,B,C).

5. Surgery and good ace fibrations

Let (f,B,C) be a good almost contact pencil on (M, ξ, ω). The map f does not define a
smooth fibration on M for two reasons: it is not defined on B and there exist critical fibres.
The former failure can be avoided if we change the domain manifold M , i.e. f can be defined

on a suitable closed manifold M̃ obtained from M by a specific surgery procedure. Let us
introduce three pieces of terminology.

Definition 5.1. An almost contact Lefschetz fibration is an almost contact pencil (f,B,C)
with B = ∅. A contact Lefschetz fibration is a contact pencil (f,B,C) with B = ∅.

Definition 5.2. An almost contact exceptional fibration on (M, ξ, ω) is a triple (f, C,E)
where (f, C) is an almost contact Lefschetz fibration and E a non–empty collection of em-
bedded 3–spheres with trivial normal bundle such that f restricts to the Hopf fibration on any
of them.

An almost contact exceptional fibration will be shortened to an ace fibration.

Definition 5.3. An ace fibration is said to be good if the curves C and the spheres in E are
contact submanifolds of (M, ξ, ω), the contact structure in any 3–sphere of E is the standard
tight contact structure and any smooth fibre F of f satisfies c1(ξF ) = 0.

An almost contact Lefschetz fibration can be obtained out of an almost contact Lefschetz
pencil by performing a surgery along the base locus. In particular, each connected component
of the link B is replaced by a standard 3–sphere (S3, ξstd). The aim of this Section is to
produce a good ace fibration from a good almost contact pencil on a 5–dimensional manifold.

Theorem 5.4. Let (M, ξ, ω) be an almost contact 5–manifold and (f,B,C) a good almost
contact pencil. There exist a homotopic deformation (ξ1, ω1) of (ξ, ω), an almost contact
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manifold (M̃, ξ̃, ω̃) with a good ace fibration (f̃ , E, C̃), a closed neighborhood N (B) of B and

a diffeomorphism Π : M̃ \ E −→M \ N (B) such that

- The almost contact structure (ξ1, ω1) is contact on a neighborhood of N (B).

- (Π∗ξ̃,Π∗ω̃) = (ξ1, ω1) on M \ N (B).

Note that in the context of this article, we are implicitly assuming that the map f has been
constructed using asymptotically holomorphic techniques and thus the map f is defined using
a section of the bundle C2 ⊗ det(ξ) (we refer the reader to the paragraph following Theo-

rem 3.5). The description of the almost contact manifold (M̃, ξ̃, ω̃) is explicit from the data

(M, ξ, ω). The good ace fibration (f̃ , E, C̃) is also constructed directly from (f,B,C). This
procedure we use is a particular case of a blow–up operation. The analogy with the blow–up
of a base point for a symplectic Lefschetz pencil on a 4–manifold can be useful for the reader.
See [CPP].

The description of (M̃, ξ̃, ω̃) is given in Section 5.1. The compatibility of (M̃, ξ̃, ω̃) with the

fibration (f̃ , C) is detailed in Subsection 5.2. In Subsection 5.3, we describe a method that

ensures that the regular fibres of the new fibration f̃ have vanishing Chern class.

5.1. Surgery. The almost contact manifold (M̃, ξ̃, ω̃) is obtained from (M, ξ, ω) via a surgery
procedure. The only topological requirement to perform surgery along a sphere is the trivial-
ity of its normal bundle. In contact topology, a standard contact neighborhood also appears
in the description. In particular there exists a restriction on the radius in the local model.
See [NP]. This is not an issue in the almost contact case: the size of a neighborhood of a
contact submanifold of an almost contact manifold can be enlarged by a homotopy of the
distribution. In precise terms:

Lemma 5.5. Let (M, ξ, ω) be an almost contact manifold and (S, ξ = kerα) be a contact
submanifold with trivial normal bundle νS ∼= S ×R2q. Fix a radius R ∈ R. Then there exists
an almost contact homotopy (M, ξt, ωt) such that (M, ξ0, ω0) = (M, ξ, ω) and it conforms the
following conditions:

- The homotopy is supported in an annulus around S, i.e. given a smooth fiberwise
metric on νS there exist ρ1, ρ2 ∈ R+ with ρ1 < ρ2 such that

ξt|D(νS ,ρ1) = ξ|D(νS ,ρ1), ξt|M\D(νS ,ρ2) = ξ|M\D(νS ,ρ2),

where D(νS , r) is the disk bundle of radius r. The almost contact homotopy can be
chosen such that ρ1, ρ2 are arbitrarily small.

- There exist a neighborhood U of S and a diffeomorphism ϕ such that

ϕ : S ×B2q(R) −→ U, ϕ∗ξ1 = ker(α− r2αstd), ϕ∗ω1 = dα− 2rdr ∧ dαstd,

where the 1–form αstd is the standard contact form on ∂B2q(R).

Proof. This is a statement about a neighborhood S × B2q(ε). Suppose that R > ε. In
S × B2n(ε) the almost contact distribution (ξ, ω) is a contact structure described as the
kernel of the 1–form η0 = α− r2αstd. Consider a function H ∈ C∞([0, ε],R+) such that:

a. H(r) = r2 for r ∈ [0, ε/4] ∪ [3ε/4, ε],
b. H ′(r) > 0 for r ∈ (0, ε/2),
c. H(ε/2) = R2.

Consider the two values ρ1 = ε/4 and ρ2 = ε. There exists a homotopy {Ht} of functions
in C∞([0, ε],R+) with H0(r) = r2, H1(r) = H(r) and any Ht satisfying properties a and b
above. The homotopy of 1–forms ηt = α −Ht(r)αstd defines a homotopy of almost contact
distributions. The distributions are ξt = ker ηt. The symplectic structures are of the form
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ωt = dα−Htdαstd−Ht(r)dr∧αstd where Ht(r) is a positive smooth function coinciding with
∂rHt in r ∈ [0, ε/2) ∪ (3ε/4, ε]. The diffeomorphism

Ψ : S ×B2q(R) −→ S ×B2q(ε/2)

(s, r, θ) 7−→ (s,
√
H(r), θ)

satisfies Ψ∗η0 = η1 and the statement of the Lemma follows. �

The Lemma does not hold for a contact structure since the contact condition is violated at
the region (ε/2, 3ε/4) in the course of the homotopy.

Theorem 5.4 concerns both the construction of an almost contact manifold and a good ace
fibration. The description of the former naturally leads to that of the latter. Let us then
begin with the almost contact manifold. Both the statement and the proof of the following
result are relevant. Subsections 5.2 and 5.3 refer to the proof and notation therein.

Theorem 5.6. Let (M2n+1, ξ, ω) be an almost contact manifold and S ⊂M a smooth trans-
verse loop. Suppose that (ξ, ω) is a contact structure on a neighborhood of S. There exist

a homotopic deformation (ξ1, ω1) of (ξ, ω), a manifold M̃ , a codimension–2 submanifold

E ⊂ M̃ , a neighborhood N (S) of S and a diffeomorphism Π : M̃ \E −→M \N (S) conform-
ing the following conditions:

- There exists an almost contact structure (ξ̃, ω̃) on M̃ .

- The codimension–2 submanifold E is a contact submanifold of (M̃, ξ̃, ω̃) contactomor-
phic to the standard contact sphere (S2n−1, ξst).

- (Π∗ξ̃,Π∗ω̃) = (ξ1, ω1) on M \ N (S).

The submanifold E is called the exceptional divisor.

Proof. This proof depends on a fixed integer k ∈ Z. This parameter becomes relevant in

the description of the good ace fibration (f̃ , E, C̃). It can be chosen quite arbitrarily in this
argument, but there shall be a specific choice in the proof of Theorem 5.4.

Consider the standard contact form αstd on S2n−1, induced by the restriction of the standard
Liouville form on R2n, and the contact structure ξstd = ker{dθ−ρ2αstd} on S1×B2n endowed
with polar coordinates (θ; ρ, σ). The contact neighborhood theorem for the transverse loop
S provides an open neighborhood U of S, a constant ρ0 ∈ R+ and a diffeomorphism

φ : S ×B2n(ρ0) −→ U

(θ, ρ, σ) 7−→ φ(θ, ρ, σ)

such that φ∗(ξ|U ) = ξstd. If k is a positive integer, suppose that the radius ρ0 is small enough

so that kρ2
0 < 1. This condition is necessarily satisfied for k < 0. Consider the positive

number ρk ∈ R+ satisfying ρ0 = ρk√
1+kρ2k

and the diffeomorphism

ψk : S1 ×B2n(ρk) −→ S1 ×B2n (ρ0)

(θ, ρ, w1, . . . , wn) 7−→

(
θ,

ρ√
1 + kρ2

, eikθw1, . . . , e
ikθwn

)
.

The map ψk preserves the distribution ξstd. In case it is needed, apply the Lemma 5.5 to
enlarge the neighborhood S1×B2n(ρk) of S to radius R = 2. This yields a deformation ξ1 of
the contact structure ξstd supported in an annulus of radii 0 < ρa < ρb < ρk and a compatible
embedding ϕ : S1 × B2n(2) −→ S1 × B2n(ρb). The deformation is relative to the boundary
and thus the distribution (φ ◦ ψk ◦ ϕ)∗(ξ1) defined over U admits an extension ξ1 over M
using the original distribution ξ. There is also a corresponding extension for the symplectic
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structure ω1. To ease notation, we still refer to (ξ1, ω1) as (ξ, ω). In these terms, Lemma 5.5
provides a neighborhood U ′ of S in M and a diffeomorphism

Φ : S1 ×B2n(2) −→ U ′, (θ, r, σ) 7−→ Φ(θ, r, σ) = φ ◦ ψk ◦ ϕ, Φ∗(ξ|S) = ker(dθ − r2αstd).

Consider the diffeomorphism

φ1 : S1 × (3/2, 2)× S2n−1 −→ S1 × (3/2, 2)× S2n−1

(θ, r, w1, . . . , wn) −→ (θ, r, eiθw1, . . . , e
iθwn).

If V = Φ(S1 ×B2n(3/2)), then g = Φ ◦ φ1 : S1 × (3/2, 2)× S2n−1 −→ U \ V ⊂M satisfies

g∗ξ = ker

{
−
(
αstd +

r2 − 1

r2
dθ

)}
.

Note that the function

h : (3/2, 2) −→ R

r 7−→ h(r) =
r2 − 1

r2

satisfies h(r) > 5/9. Therefore it is possible to extend it to a smooth function h̃ : [0, 2) −→ R
satisfying the following conditions (See Figure 3):

- h̃(r) = r2, for r ∈ [0, 1/2],

- h̃(r) = h(r), for r > 3/2,

- h̃(r)′ > 0 for r ∈ [1/2, 3/2].

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

-0.25

0.25

0.5

0.75

1 r2

(r2-1)/r2

h(r)
~

Figure 3. The function h̃.

Therefore η̃ = −αstd− h̃(r)dθ defines a distribution ξ̃ over S1× [0, 2)×S2n−1 ∼= B2(2)×S2n−1.
Note that η̃ is a contact form near the core {0}×S2n−1. We can glue the manifold (M \V, ξ)
and (B2(2)×S2n−1, ker η̃) with the gluing map g to define an almost contact manifold (M̃, ξ̃).
This manifold satisfies the statement of the theorem with N (S) = Φ(S1 ×B2n(1)). �

5.2. Compatibility with an almost contact pencil. Let (f,B,C) be a good almost
contact pencil on a 5–dimensional almost contact manifold (M, ξ, ω). The almost contact
structure (ξ1, ω1) obtained in Lemma 5.5 can be chosen to remain adapted to the almost
contact pencil (f,B,C) (this can be done by proving a standard neighborhood theorem
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using the local models provided by the definition of a good almost contact pencil). Let us
understand the choices involved in the Theorem 5.6. The map f pulls–back to

f ◦Π : M̃ \ E −→ CP1.

Due to the surgery procedure it can be extended to a map f̃ : M̃ −→ CP1. Let us explain this.

The first choice in the previous construction is the chart map φ : S1 × B2n(ρ0) −→ U for a
neighborhood U of a connected component γ ∼= S1 in the base locus B. This amounts to a
choice of framing of the trivial normal bundle along this S1. Since S1 ⊂ B we can use the
adapted charts in Definition 3.2 and require that φ satisfies that the map

f ◦ φ : S1 × (B4(ρ0)\{0}) −→ CP1

is precisely (f ◦ φ)(θ, w1, w2) = [w1 : w2]. Therefore, the compactified fibres are of the form
S1×L, for any complex line L ⊂ C2. It is also satisfied that (f ◦φ◦ψk)(θ, w1, w2) = [w1 : w2]
and again the same compactification for the fibres still holds. Moreover the fibres are almost
contact. It is left to study the effect of ϕ and φ1.

The deformation performed in the enlargement of the neighborhood from (ξ0, ω0) to (ξ1, ω1)
preserves the fibres as almost contact submanifolds. The reason being that in Lemma 5.5
the fibres in the coordinates (θ, ρ, σ) = (θ, ρ, w1, w2) are given by the equation

Fz = {(θ, ρ, w1, w2) : [w1 : w2] = z} for z ∈ CP1,

and the restriction of (ξ1, ω1) is given by

(ker{dθ +H(ρ)(αstd)|S3∩Lz
},H(ρ)dρ ∧ (αstd)|S3∩Lz

),

where Lz is the line represented by z ∈ CP1 and H is a smooth function which equals ∂ρH
in the region of radius ρ ∈ [0, ρa) ∪ (ρb, ρk] and it is strictly positive for ρ ∈ [ρa, ρb]. In
particular, H is positive and the restriction of ω1 is indeed a symplectic structure.

Let us focus on the compactification of fibres in M̃ , i.e. the extension of f̃ from Π−1(M \
N (B)) to M̃ . We first restrict ourselves to the transition region S1× (3/2, 2)×S3 ⊂ S1×C2.
The gluing map is φ ◦ ψk ◦ ϕ ◦ φ1. In order to understand the fibres we just need to describe

the map f̃ = f ◦ g = f ◦ φ ◦ ψk ◦ ϕ ◦ φ1. We can easily verify that

f̃(θ, r, w1, w2) = (f ◦ g)(θ, rw1, rw2) = [w1 : w2]

since φ ◦ ψk ◦ ϕ and φ1 act as complex scalar multiplication in the transition area.

Notice that the domain of definition of f̃ is S1× (3/2, 2)×S3, and it is invariant with respect

to the coordinates (θ, r) ∈ S1 × (3/2, 2). Hence, the map f̃ extends trivially to the model

(B2(2) × S3, ker η̃). In particular, the extension of f̃ restricted to the exceptional divisor
{0} × S3 is the Hopf fibration.

The fibres of the fibration f̃ are thus almost contact submanifolds. The critical locus C̃ is in
bijection with C and it is a contact submanifold since the almost contact structure remains
unchanged near them. The exceptional divisors E are also contact submanifolds and the

fibres of f̃ restricted to (B2(2) × S3, ker η̃) are diffeomorphic to B2(2) × S1, the S1–factor
being a transverse Hopf fibre. These fibres are also contact submanifolds.

5.3. The good ace fibration. The fibres F̃ of the Lefschetz fibration (f̃ , C̃) differ from the

fibres F of (f,B,C). Let us provide a precise description of F̃ and show that the procedure

described in the previous two subsections can be performed to obtain c1(ξ̃
F̃

) = 0. This con-
cludes Theorem 5.4.
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The trivialization of a neighborhood of a connected component γ ∼= S1 ⊂ B of the base locus
provided in Definition 3.2 induces a natural framing νS ∼= S1×C2, i.e. 〈(1, 0), (i, 0), (0, 1), (0, i)〉.
It restricts to a framing inside the two fibres corresponding to the two complex axes of C2.
Hence it induces framings in any complex line S1 × C ⊂ S1 × C2: for the complex line
{(z, w) ∈ C2 : z − αw = 0}, we use 〈(α, 1), i(α, 1)〉. Denote by Fp(0) such framing of

B ⊂ f−1(p). Let Fp(n) be the n–twist of Fp(0) and kγ be the parameter used in the con-
struction of Theorem 5.6 when performing the surgery along γ.

Lemma 5.7. Let (M, ξ, ω) be an almost contact 5–manifold, (f,B,C) a good almost contact

pencil adapted to it and (M̃, ξ̃, ω̃) a manifold as described in Theorem 5.6. Then (M̃, ξ̃, ω̃) has

an almost contact fibration (f̃ , C̃) that coincides with (f,B,C) away from B = γ1 ∪ . . . ∪ γs.
Near γ ∈ B the fibre over p ∈ CP1 is contactomorphic to a transverse contact (0, 1)–surgery

performed on f−1(p) along γi with framing Fp(−ki − 1), for some ki ∈ Z. The restriction of
the map f to each of the exceptional divisors is given by the Hopf fibration.

Proof. The map ψk in Theorem 5.6 modifies the initial framing from Fp to Fp(−ki), ki = kγi
being the corresponding parameter k in the surgery along γi. Using the map φ1 substracts
another twist and sends the meridian to the longitude of the added solid torus. It is thus a
(p, q) = (0, 1)–Dehn surgery with respect to Fp(−ki − 1). �

Note that the coefficients ki can be arbitrarily chosen. The constructive argument will use

the fact that c1(ξ̃
F̃

) = 0 for any fibre F̃ of f̃ . This has been achieved for the initial fibres

of the pencil. The procedure changes the almost contact manifold (F, ξ) to (F̃ , ξ̃) and we

cannot directly assume that c1(ξ̃
F̃

) = 0. This will be fixed in the following discussion.

Proposition 5.8. Let (M, ξ, ω) be an almost contact 5–manifold, (f,B,C) a good almost

contact pencil adapted to it and (M̃, ξ̃, ω̃) a manifold obtained as in Theorem 5.6. Suppose
that (f,B,C) is obtained via asymptotically holomorphic sections as in Corollary 3.7. There
is a choice of (k1, . . . , ks) ∈ Zs such that the first Chern class of the almost contact structure

(M̃, ξ̃, ω̃) on any regular fibre F̃ is zero.

In the proof there is no need for the sections to be asymptotically holomorphic. The only
requirement is that the pencil is obtained as the linear system associated to two sections.

Proof. Consider a connected component γ ⊂ B. The good almost contact pencil is obtained
from a section

s = (s0, s1) : M −→ C2 ⊗ det(ξ).

and it is the input of Corollary 3.7.

Suppose that the section (s0, s1) can be lifted to a non–vanishing section (s̃0, s̃1) from the

manifold M̃ to the bundle C2⊗det ξ̃. That is, the map f̃ comes as a quotient of two sections

(s̃0, s̃1) of the bundle det ξ̃. Then Lemma 3.6 implies that its regular fibres satisfy the re-
quired property. Hence, we just need to find a non–vanishing lift of the two sections (s0, s1).
Let us show that this lift exists for a particular choice of integers (k1, . . . , ks).

The study of sections of a complex bundle det ξ with ξ ⊂ TM does not depend on the homo-
topy class of ξ as a complex subbundle of TM . In particular, we can deform ξ to a complex
subbundle ξh and study the extension properties of two sections of det(ξh) corresponding to
a deformation of (s0, s1). The bundle ξh yields simpler computations. A word of caution,
the notation ξh will now be used to refer to a distribution in a local chart and not in the
manifold M itself.

Consider polar coordinates (θ; r, σ) ∈ S1 ×B4(2). The pull–back of the distribution ξ by the
map Φ = φ ◦ ψk ◦ ϕ is

Φ∗(ξ) = ker η, η = dθ + r2αstd.
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Let χ : [0, 2] −→ [0, 1] be a smooth increasing function such that

χ|[0,1.7] = 0 and χ|[1.9,2] = 1.

Define the form ηh = dθ + χ(r)r2αstd and the distribution ξh = ker ηh. The distribution
Φ∗ξh can be extended to the manifold M using ξ. A linear interpolation between η and ηh
induces a homotopy between the two complex bundles Φ∗ξ and ξh. The map φ1 is a diffeo-
morphism in S1× (1.5, 2)× S3. The pull–backs of the kernels of these two forms via the map
φ1|S1×(1.5,1.7)×S3 are two distributions φ∗1(ker η) and φ∗1(ker ηh).

Consider the function h̃ defined in the proof of Theorem 5.6 and a smooth increasing function
σ : [0,∞) −→ [0, π/2] constant equal to 0 in [0, 1/2] and constant equal to π/2 in [1.5,∞).
Define also the form

η̃h = sin(σ(r))dθ + cos(σ(r))αstd.

First, the kernel of the contact form η̃ = αstd + h̃dθ extends the distribution φ∗1(ker η) to

B2(1.7) × S3, with polar coordinates (r, θ) ∈ B2(1.7). Let ξ̃ be the push–foward to the
manifold of ker η̃ extended by φ∗1(ker η). Second, the distribution φ∗1(ker ηh) coincides with

ker dθ in S1 × (1.5, 1.7) × S3 and ker η̃h extends φ∗1(ker ηh) to B2(1.7) × S3. Let ξ̃h be the
push–foward to the manifold of ker η̃h extended by φ∗1(ker ηh). The distributions ker η̃ and
ker η̃h are homotopic via linear interpolation. The homotopy coincides with the homotopy
between Φ∗ξ and ξh in the region S1 × (1.5, 1.7) × S3. Hence, the homotopy extends to a

homotopy between ξ̃ and ξ̃h inside the manifold M .

Let Xr = ∂r, Xi = iXr, Xj = jXr, Xk = kXr be a basis generating TC2 = C2 ∼= H1. Consider
the chart defined by φ with polar coordinates

(θ; r, w0, w1) ∈ S1 × C2 ∼= S1 × R≥0 × S3.

The distribution ξh = ker dθ will be identified with C2. The original sections (s0, s1) will
be identified as sections of Φ∗ det ξh. Suppose the sections (s0, s1) restrict to an m–twisted
frame, i.e. in the chart above the pair of sections is written up to homotopy as

φ∗(s0, s1) ' em·iθ(w0, w1)(1, 0) ∧ (0, 1).

The change of coordinates is defined, up to homotopy, by

(ψk ◦ ϕ ◦ φ1)(θ, r, w0, w1) = (θ, r, ei(1+k)θw0, e
i(1+k)θw1).

It pulls–back the basis framing to

(ψk ◦ ϕ ◦ φ1)∗(1, 0) ∧ (0, 1) = e−2i(1+k)θ(1, 0) ∧ (0, 1).

Therefore the pull–back of the 2 sections is

(Φ ◦ φ1)∗(s0, s1) = (φ ◦ ψk ◦ ϕ ◦ φ1)∗ ' e(m−k−1)·iθ(w0, w1)(1, 0) ∧ (0, 1) =

= e(m−k−1)·iθ(w0, w1)Xr ∧Xj = −ie(m−k−1)·iθ(w0, w1)Xi ∧Xj .

Observe that k controls the twisting of the section around the component γ. The distribution

ξh is extended to B2(1.7)×S3 with the distribution Φ∗ξ̃h. The four vector fields Xr, Xi, Xj , Xk

define a framing of ξh in S1×(1.5, 1.7)×S3. This framing needs to be extended to the interior
B2(1.7)× S3 to a framing of the distribution

ker η̃h = ker{sin(σ(r))dθ + cos(σ(r))αstd}.
A possible extension is given by 〈Xr, sin(σ(r))Xi − cos(σ(r))∂θ, Xj , Xk〉.

Consider p = m− k− 1 and let us identify Φ∗ξh and ξ̃h in their common region. The section

(Φ ◦ φ1)∗(s0, s1) seen as a section of C2 ⊗ det ξ̃h can be extended to

(s̃0, s̃1) ' −iep·iθ(w0, w1)(sin(σ(r))Xi − cos(σ(r)) · ∂θ) ∧Xj .
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Thus it is an extension of the section to M̃ . For radius r = 0, in the new compactification
B2(r, θ)× S3(w0, w1), the section reads

(s̃0, s̃1) = iep·iθ(w0, w1)∂θ ∧Xj ,

which extends without zeroes if and only if p = −1. The choice k = m allows us to extend
the section (s̃0, s̃1) to the interior of the exceptional sphere without zeroes.

In short, the required section s̃ = (s̃0, s̃1) extends to the previous section s = (s0, s1) away

from the surgery area. Since the sections can be extended to the manifold M̃ in a non–

vanishing manner we conclude c1(ξ̃|
F̃

) = 0 and the base locus is empty, that is B̃ = ∅. �

This concludes the proof of Theorem 5.4. The argument developed in this article to prove
Theorem 1.1 requires a smooth fibration, hence the reason for Theorem 5.4. There is an

alternative approach not involving the manifold M̃ that leads to a quite complicated version
of the local models used in Sections 6, 7 and 8. These models are essential to describe the
deformation of the almost contact structure. The simpler, the better. In particular, the
description in Section 8 would be rather technical if the modified model was used.

6. Vertical Deformation.

In Section 3 we endowed our initial 5–dimensional almost contact manifold (M, ξ, ω) with
an almost contact pencil (f,B,C) such that B 6= 0 and c1(ξF ) = 0 for the fibres F of f .
In Proposition 5.8 we have obtained a contact structure in a neighborhood of the base lo-
cus B and the critical curves C. According to Theorem 5.4 there exists a good ace fibration

(f̃ , E, C̃) in an almost contact manifold (M̃, ξ̃, ω̃) isomorphic to (M \N (B), ξ, ω) away from a
codimension–2 contact submanifold E. In order to obtain a contact structure in the manifold
(M, ξ, ω) we use the splitting induced by the existence of the Lefschetz fibration (f̃ , C̃) on

(M̃, ξ̃, ω̃). Henceforth we shall consider an almost contact manifold with a good ace fibration.
These will be respectively denoted (M, ξ, ω) and (f, C,E) even though in our situation they

refer to the manifold (M̃, ξ̃, ω̃) and the good ace fibration (f̃ , C̃, E). This should not lead to
confusion. The initial manifold is recovered in Section 9.

Let (M, ξ, ω) be a 5–dimensional closed orientable almost contact manifold.

Definition 6.1. An almost contact structure (M, ξ, ω) is called vertical contact with respect
to an almost contact fibration (f, C) if the fibres of f are contact submanifolds for (ξ, ω) away
from the critical points.

The main result of this section reads:

Theorem 6.2. Let (M, ξ, ω) be an almost contact manifold and (f, C,E) an associated good
ace fibration. Then there exists a homotopic deformation of the almost contact structure
relative to C and E such that the almost contact structure becomes vertical contact for (f, C).

The proof of the theorem relies on the existence of an overtwisted disk in each fibre, such
structure allows more flexibility in handling families of distributions. Hence, it will be es-
sential for the argument to apply that the fibres of the good ace fibration (f, C,E) are
3–dimensional manifolds. In order to obtain a vertical contact fibration we need Eliashberg’s
classification result of overtwisted contact structures [El].

The almost contact structure obtained in Theorem 6.2 is constructed as a deformation of
the vertical distributions {ξz = ξ ∩ Tf−1(z)}z∈CP1 relative to open neighborhoods of C and
E. A naive description of the argument consists of two parts. An overtwisted disk is first
introduced in each fibre. This is the content of Subsection 6.2. Then Eliashberg’s result
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allows us to deform the family {ξz}z∈CP1 to a family of overtwisted contact structures. This
corresponds to Subsection 6.3.

This argument cannot be readily applied because of two issues. On the one hand the almost
contact fibration does not necessarily admit a section. In particular there is no naturally
prescribed continuous family of overtwisted disks. This is solved using two local families to
deal with each of the fibres. On the other hand the argument in [El] deals with families of
distributions over a fixed manifold. In our case the topology of the fibres changes if a curve in
f(C) is crossed. Therefore a refined version of Eliashberg’s arguments is needed. It strongly
uses the relative character of the result, both with respect to the parameter spaces and the
open subsets of the manifold.

A technical step requires to define a suitable finite open cover of CP1 by 2–disks. In particular,
the fibres over each 2–disk are diffeomorphic relative to a certain subset and there exists a
continuous choice of overtwisted disks over each of these fibres. This cover is associated to
(f, C) and a cell decomposition of CP1. This will be explained.

6.1. 3–dimensional Overtwisted Structures. Our setup provides a fibration with a dis-
tribution on each fibre. Given such an almost contact fibration f : M −→ CP1, let Fz denote
the fibre over z ∈ CP1 and (ξz, ωz) the induced almost contact structure on Fz. Then the
family (Fz, ξz) can locally be viewed as a 2–parametric family of 2–distributions on a fixed
fibre.

In the proof of Theorem 6.2 we use a relative version of the following:

Theorem 6.3 (Theorem 3.1.1 in [El]). Let M be a compact closed 3–manifold and let G be a
closed subset such that M \G is connected. Let K be a compact space and L a closed subspace
of K. Let {ξt}t∈K be a family of cooriented 2–plane distributions on M which are contact
everywhere for t ∈ L and are contact near G for t ∈ K. Suppose there exists an embedded
2–disk D ⊂ M \ G such that ξt is contact near D and (D, ξt) is equivalent to the standard
overtwisted disk for all t ∈ K. Then there exists a family {ξ′t}t∈K of contact structures of M
such that ξ′t coincides with ξt near G for t ∈ K and coincides with ξt everywhere for t ∈ L.
Moreover ξ′t can be connected with ξt by a homotopy through families of distributions that is
fixed in (G×K) ∪ (M × L).

In order to allow the case of a 3–manifold with non–empty boundary we also need:

Corollary 6.4. Let M be a compact 3–manifold with boundary ∂M and let G be a closed
subset of M such that M \ G is connected and ∂M ⊂ G. Let K be a compact space and
L a closed subspace of K. Let {ξt}t∈K be a family of cooriented 2–plane distributions on
M which are contact everywhere for t ∈ L and are contact near G for t ∈ K. Suppose
there exists an embedded 2–disk D ⊂ M\G such that ξt is contact near D and (D, ξt) is
equivalent to the standard overtwisted disk for all t ∈ K. Then there exists a family {ξ′t}t∈K
of contact structures of M such that ξ′t coincides with ξt near G for t ∈ K and coincides
with ξt everywhere for t ∈ L. Moreover ξ′t can be connected with ξt by a homotopy through
families of distributions that is fixed in (G×K) ∪ (M × L).

Outline. The proof for the closed case uses a suitable triangulation P of the 3–manifold
having a subtriangulation Q containing G, for which the distributions are already contact
structures. Then Eliashberg’s argument is of a local nature, working with neighborhoods of
the 0, 1, 2 and 3–skeleton of P\Q and assuring that no changes are made in a neighborhood
of Q. Thus the method for a manifold M with ∂M 6= 0 is still valid since P and Q do exist
in this case and only Q contains the boundary. �

We locally treat an almost contact fibration as a 2–parametric family of distributions over a
fixed fibre, thus we may use a disk as a parameter space and the central fibre as the fixed
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manifold. It will be useful to be able to obtain a continuous family of distributions such that
the distributions in a neighborhood of the central fibre become contact structures while the
distributions near the boundary are fixed. Such a family is provided in the following

Corollary 6.5. Consider the notation and hypotheses of Corollary 6.4 with K diffeomorphic
to a disk, S = ∂K its boundary sphere and coordinates (p, r) ∈ S× [0, 1]. Let {ξt} be a family
of distributions parametrized by S × [0, 1] which are contact near G and D. Suppose that {ξt}
are contact distributions for t ∈ λ ⊂ S × [0, 1]. Given a homotopy ξs(p,0) of the distributions

over S × {0}, s ∈ [0, 1], there exists a homotopy {ξst } relative to G×S × [0, 1] ∪M × λ such
that

ξ0
t = ξt, ξst = ξs(p,0) for t = (p, 0) and ξ1

t = ξt for t = (p, 1).

The assumption that K is a disk is not necessary. But we use Corollary 6.5 only in such a
case. Its proof is left as an exercise for the reader.

We need at least one overtwisted disk over each fibre in order to apply Corollary 6.4. The
family should behave continuously. Let us provide such a family of disks.

6.2. Families of overtwisted disks. There are two basics issues to be treated: the location
of the disks and their overtwistedness. The second issue is simply guaranteed since once a
disk with a contact neighborhood is placed in each fibre we can produce overtwisted disks
using Lutz twists. In order to decide the location of the disks in each fibre we need to find a
section of the good ace fibration.

Let (f, C,E) be a good ace fibration. Denote by U(C), U(Ei) open neighborhoods of the
critical curves C and the exceptional spheres Ei ∈ E. Consider U(f) = U(C) ∪ U(Ei) the
union of these open neighborhoods, so in the complement of U(f) the map f becomes a
submersion. Instead of finding a global section mapping away from U(f), we shall construct
two disjoint local sections that will provide at least one overtwisted disk in each fibre Fz =
f−1(z). The distribution ξz = ξ ∩ TFz is well–defined over Fz \ U(f) and varies smoothly
with the parameter z ∈ CP1. The global situation we achieve is described as follows:

Proposition 6.6. Let (f, C,E) be a good ace fibration for (M, ξ, ω). Consider two open
disks B0,B∞ ⊂ CP1, containing 0 and ∞ respectively such that the intersection B0 ∩ B∞ is
an open annulus, the complement of B0 ∩ B∞ consists of two disjoint disks and the curves
∂B0, ∂B∞ are disjoint from the set of curves f(C).

Then there exists a deformation (Fz, ξ̃z)z∈CP1 of the family (Fz, ξz)z∈CP1 fixed at the inter-
section of the set U(f) with each Fz such that there are two disjoint families of embedded

2–disks Diz ⊂ Fz, with z ∈ Bi, for i = 0, 1, not intersecting U(f). The distribution ξ̃z is a

contact structure in a neighborhood of such families and (Diz, ξ̃z) are equivalent to standard
overtwisted disks.

The fact that ξ̃z equals ξz in the intersection of the set U(f) with Fz ensures that no de-
formation is performed near the critical curves nor the exceptional spheres. This is mainly
a global statement, involving the whole of the fibres. In order to prove the result we study
the local model of a tubular neighborhood of an exceptional divisor of the good ace fibration
(f, C,E).

A good ace fibration (f, C,E) is obtained by surgery along the base locus B of a certain
good almost contact Lefschetz pencil. Let Ki be a knot belonging to this base locus B. After
the surgery procedure it is replaced by an exceptional contact divisor Ei ∈ E contactomorphic
to (S3, ξst). As explained in Section 5 the restriction of the fibration f to Ei is the Hopf
fibration. Since the distribution ξ is locally a contact structure the tubular neighborhood
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theorem provides a chart

(1) Ψ : U −→ S3 × D2(ε), Ψ∗ξst = ξ

where ξst = ker{αS3 + r2dθ}, ε ∈ R+ and Ψ(Ei) = S3 × {0}. Suppose ε = 1 in order to ease
notation.

The induced map fU defined as

S3 × D2

fU

$$

Ψ−1
// U

f
��

CP1

can be expressed as fU (x, r, θ) = h(x) for x ∈ S3. The fibres Fz = f−1(z) ∩ U are contact
submanifolds of (S3 × D2, ξstd). The induced contact structure ξv(z) on Fz depends on the
point z ∈ CP1. These fibres are contactomorphic to (S1 × D2, ξv = ker(dβ + r2dθ)) for each
z ∈ CP1. Note that the variable β ∈ S1 parametrizing each Hopf fibre is not global since
the fibration is not trivial. The differential dβ is globally well–defined since it is dual to the
vector field generating the associated S1–action. The standard contact structure in S3 × D2

can be expressed as the direct sum of distributions

(2) ξst(x, r, θ) = ξv(h(x))⊕H(x, r, θ),

where ξv is the standard contact structure in S1 × D2, the vertical direction, and H is a
horizontal complement associated to the fibration of S3 × D2 over CP1.

Topologically, the 4–distribution ξst is expressed as a direct sum of two distributions of 2–
planes. Since the 2–form ω providing the almost contact structure is given and so is ξ, we
may interpret (S3 × D2, ξv(z)) as a non–trivial family of contact structures parametrized by
the base z ∈ CP1. We have detailed the topology and contact structure of the local model of
the good ace fibration along an exceptional sphere Ei. A neighborhood of this exceptional
sphere is a piece of the fibration and the knots are the intersection of the fibres of the almost
contact pencil with it.

The local model described above allows us to prove the following

Lemma 6.7. Let z ∈ CP1 be a coordinate, (S3×D2, ξv(z)) a CP1–family of contact structures
on S3 × D2 and fU : S3 × D2 −→ CP1 the map described above. Consider two open disks
B0,B∞ ⊂ CP1, containing 0 and ∞ respectively such that the intersection B0∩B∞ is an open
annulus and the complement of B0 ∩ B∞ consists of two disjoint disks.

There exists a homotopy ξsv(z) of CP1–families of plane fields, s ∈ [0, 1], such that

- ξ0
v(z) = ξv(z), ∀z ∈ CP1.

- Near the boundary of f−1
U (z) ∼= S1 × D2 and ∀(z, s) ∈ CP1 × [0, 1], ξsv(z) = ξv(z).

- For any z ∈ CP1, the distribution ξ1
v(z) is an overtwisted contact structure on f−1

U (z)
containing two disjoint Lutz tubes L0

z and L∞z away from S3 × {0}.

- There exist a smooth family of embedded overtwisted 2–disks D0
z in L0

z for z ∈ B0 and
D∞z in L∞z for z ∈ B∞.

Both B0\∂B0,B∞\∂B∞ can be thought as neighborhoods of the upper and lower semi–spheres.
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Proof. Let h : S3 −→ CP1 be the Hopf fibration, extend the fibration to h : S3 ×D2 −→ CP1

by projection onto the first factor. The idea is to use the exceptional divisor to create a
couple of sections along B0 and B∞. On the one hand, the exceptional divisor has a contact
structure and we would rather not perturb around a small neighborhood of it. On the other
hand the exceptional divisor is not CP1 but S3. Hence a global section cannot exist. We use
two copies of the exceptional divisor away from S3 × {0} ⊂ S3 × D2 and we cover the base
CP1 with the two disks B0, B∞.

Let q0 = (1/2, 0), q∞ = (0, 1/2) ∈ D2 be two fixed points and consider the two 3–spheres

S3
0 = S3 × {q0}, S3

∞ = S3 × {q∞}.

The fibre of the restriction of the fibration (S3 × D2, ξv(z)) −→ CP1 to the submanifold S3
0

(resp. S3
∞) is a transverse knot Kz

0 (resp. Kz
∞). We will now insert two families of overtwisted

disks.

Apply a full Lutz twist in a small neighborhood of each of those knots Kz
0 ∈ h−1(z) para-

metrically on z ∈ CP1. This produces a 3–dimensional full Lutz twist on each fibre. See
[Lu1],[Ge]. This yields an S3

0–family of overtwisted disks parametrized as {D0
t }t∈S30 , thus

we obtain a S1–family of overtwisted disks at each fibre. Note that the dependency of this
parametric family of full Lutz twists on the point z ∈ CP1 is well–behaved. Indeed, let
iz : K0

z −→ S3
0 be the injection and consider coordinates (ρ, ϕ) in the normal bundle of this

embedding. In a small neighborhood of the zero section, the contact structure reads

ξv(z) = ker{i∗zαS3 + ρ2dϕ}.
The pair of functions (h1, h2) used in Section 4.3 [Ge] to perform the full Lutz twist can be
made ρ–dependent. Thus the resulting contact structure has the form

ξ1
v(z) = ker{h1(ρ) · i∗zαS3 + h2(ρ) · ρ2dϕ}.

This clarifies the dependency of the construction with respect to z ∈ CP1.

Perform the same twist procedure for the family of knots Kz
∞ ∈ h−1(z) to obtain another

family of overtwisted disks {D∞t }t∈S3∞ . The two families of disks can indeed be assumed
disjoint by letting the radius in which we perform the full Lutz twists be small enough. The
support of the pair of full Lutz twists can be chosen not to intersect the exceptional divisor
and be contained in the interior of S3 ×D2. This construction provides the homotopy in the
statement of the Lemma. See Figure 4.

We need the base CP1 to be the parameter space instead of the 3–spheres S3
0 and S3

∞.
Restricted to B0 or B∞ the Hopf fibration becomes trivial and therefore there exist two
sections s0 : B0 −→ S3 ∼= S3

0 and s∞ : B∞ −→ S3 ∼= S3
∞. The required families are defined as

{D0
z} = {D0

s0(z)}, z ∈ B0,

{D∞z } = {D∞s∞(z)}, z ∈ B∞.
Note that the two families of overtwisted disks are disjoint since the two families of Lutz
twists are. Further, there exists a small neighborhood of the exceptional divisor S3 × {0}
where no deformation is performed. The statement of the Lemma follows. �

The global construction can be simply achieved:

Proof of Proposition 6.6. Apply Lemma 6.7 to a neighborhood of one exceptional sphere
E0 ∈ E = {E0, E1, . . . , Es}. The families of overtwisted disks do not meet C or any Ej .
Indeed, the two families are arbitrarily close to E0 and the exceptional divisors are pairwise
disjoint and none of them intersect the critical curves C. Thus, maybe after shrinking the
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q0 q

0

Ε0 FzK
z
0 K

z

Figure 4. The neighborhood of the exceptional divisor intersected with a
fibre Fz. The cylinder on the left (with axis Kz

0 ) is the support of the full
Lutz twist around the knot Kz

0
∼= S1 × {q0} and the cylinder on the right

(with axis Kz
∞) corresponds to the support of the full Lutz twist around the

knot Kz
∞
∼= S1 × {q∞}.

neighborhood U(E0) in the construction, the families are located away from U(f). �

Thus we obtain the families of overtwisted disks required to apply Theorem 6.3. The vertical
deformation is described using a suitable cell decomposition of the base CP1. The vertical
contact condition is ensured progressively above the 0–cells, the 1–cells and the 2–cells.

6.3. Adapted families. Let (f, C) be an almost contact fibration. A finite set of oriented
immersed connected curves T in CP1 will be called an adapted family for (f, C) if it satisfies
the following properties:

- The image of the set of critical values f(C) is part of T .
- Given any element c ∈ T , there exists another element of c′ ∈ T having a non–empty

intersection1 with c. Any two elements of T intersect transversally.
- There exists no triple intersection point between the curves of T .
- The complement CP1 \ |T | is a union of open disks.

|T | ⊂ CP1 denotes the underlying set of points of the elements of T . The elements of an
adapted family T that are not in the image of a component of C are referred to as fake
components. Let N ∈ N be fixed. The insertion of fake curves proves the existence of an
adapted family with diamg0(CP1 \ |T |) ≤ 1/N , g0 the standard round metric.

There is a cell decomposition of CP1 associated to an adapted family, the 1–skeleton being
|T |. See Figure 5. In order to conclude Theorem 6.2 we shall first deform in a neighborhood
of each vertex relative to the boundary, proceed with a neighborhood of the 1–cells and fi-
nally obtain the vertical contact condition in the 2–cells. To be precise in the description of
the procedure, we introduce some notation. This is not strictly necessary but it provides the
adequate pieces in the framework to apply Eliashberg’s result.

1In case c has a self–intersection, then c′ = c is allowed.
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Figure 5. Part of an adapted family T . The associated subdivision consists
of certain 2–cells with their boundaries being a union of parts of various
elements in the family T .

Let Lj ∈ T be a curve, U(Lj) be an open tubular neighborhood and denote

∂U(Lj) = L0
j ∪ L1

j .

Suppose that
⋃
j∈J |Lij | is isotopic to |T | for both i = 0, 1; this can be achieved by taking

a small enough neighborhood of each Lj . See Figure 6. We use V (Lj) to denote a slightly
larger tubular neighborhood satisfying this same condition. Fix an intersection point p of
two elements Lj , Lk ∈ T . Denote by Ap the connected component of the intersection of
U(Lj)∩U(Lk) containing p. Similarly, let VAp be the connected component of the intersec-
tion of V (Lj) ∩ V (Lk) that contains p, and denote AAp = VAp\Ap.

Consider a small neighborhood U(T ) of |T |. The open connected components of

U(T )\{∪Ap}

are homeomorphic to rectangles Bi, p being treated as an index over the intersection points.
A suitable indexing for i is also assumed. The third class of pieces constitute the interior
of the complement in CP1 of the open set formed by the union of the sets Ap and Bi. Its
connected components are denoted Cl. Thus, neighborhoods of the 0–cells, 1–cells and 2–cells
are labeled Ap, Bi and Cl respectively. See Figure 6.

Finally, we define the sets BBi. Let Bi connect a couple of open sets2 of the form Ap. There
exists a curve LBi contained in Bi which is a part of a curve Li ∈ T . LBi is part of a 1–cell
in the decomposition associated to the adapted family T . Let L0

Bi and L1
Bi denote the two

boundary components of Bi which are part of the curves L0
i and L1

i defined above. Then we
declare BB0

i (resp. BB1
i ) to be the connected component of V (Li)\Bj containing the bound-

ary curve L0
i (resp. L1

i ). Their union BB0
i ∪ BB1

i will be denoted BBi. See Figures 7 and 8.

2Both sets may be the same for the self–intersecting curves.
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Figure 6. The sets Ap and Bi associated to the subdivision of the figure 5.
The sets Ap are drawn in darker grey.

Figure 7. Example of two components VAp and VAq in light gray, containing
Ap and Aq, in dark gray.

6.4. The vertical construction. In this subsection we prove Theorem 6.2. The following
lemma is a simple exercise in differential topology and can be considered as a particular case
of Ehresmann’s fibration theorem. It will be used in the proof of Theorem 6.2. We include
it for completeness.

Lemma 6.8. Let f : E −→ D2 be a locally trivial smooth fibration over the unit disk with
compact fibres Ez, z ∈ D2. Decompose ∂E along its corners as ∂E = f−1(∂D2) ∪ ∂hE and
suppose that ∂hE is a smooth closed boundary. Suppose also that there is a collar neighbor-
hood N of ∂hE and a closed submanifold S such that restricting f to S and N induces locally
trivial fibrations. Let S0, N0 be their fibres over 0 ∈ D2.
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B5 B3B4

BB4 BB3BB5

B1

BB1

B2

BB2

Figure 8. Example of the sets Bi and BBi for the subdivision of Figure 7.

Then there exists a diffeomorphism g : E −→ E0×D2 making the following diagram commute

E
g
//

π
��

E0 × D2

π0
��

D2 D2

such that g(N) = N0 × D2 and g(S) = S0 × D2.

Proof. Let g be Riemannian metric in E such that (TEz)
⊥g ⊂ TS and (TEz)

⊥g ⊂ T (∂hE),
for the points z where the condition can be satisfied. Let X = ∂r be the radial vector field
in D2\{0} and construct the connection Hπ associated to the Riemannian fibration:

Hπ(e) = (TeFπ(e))
⊥g.

The condition imposed on the Riemannian metric implies that ∂hE and S are tangent to the

horizontal connection Hπ. Let X̃ be a lift of X through Hπ and φt(e) the flow of this vector
field. Define

E
g−→ E0 × D2

e 7−→ (φ(−||π(e)||)(e), π(e)).

This map satisfies the required properties. �

Proof of Theorem 6.2. Let (f, C,E) be a good ace fibration and T an adapted family to
(f, C,E). Note that a horizontal complement H is defined away from U(C) and provides the
splitting specified in (2). Proposition 6.6 and choose B0 and B∞ in the statement such that
∂B0 and ∂B∞ are both contained in two different 2–cells C0 and C∞. Lemma 2.5 implies that
this procedure preserves the homotopy class of (M, ξ, ω).

In order to establish Theorem 6.2 we need to perform a deformation which is fixed in a
neighborhood of U(C) and leaves the distribution H unchanged, i.e. it should be a strictly
vertical deformation.

Deformation at the 0–cells: Let p be a vertex with neighborhood Ap and

F = f−1(VAp) \ (f−1(VAp) ∩ U(C)).

We can assume that VAp is small enough and choose a neighborhood U(C) such that the map
f restricts to a trivial fibration on F and induces a fibration on ∂F . Consider a trivialization
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of the former fibration over VAp. The manifolds with boundary Fz = f−1(z)\(f−1(z)∩U(C))
are all diffeomorphic. Let Nz be a collar neighborhood of ∂Fz in which the distribution is
contact. Given an exceptional divisor Ei ∈ E denote by U(Ei)z the intersection of U(Ei)
with the fibre Fz. Applying the trivializing diffeomorphism provided in Lemma 6.8, we may
assume Fz × VAp ∼= F , U(Ei)z × VAp ∼= U(Ei) and Nz × VAp ∼= N .

Thus we have a manifold with boundary F with a family of distributions ξz parametrized
by the topological disk VAp containing K = Ap. Also a good set G of submanifolds that
are already contact for any contact fibre over VAp. The good set G consists of the union of
N , U(Ej) and a neighborhood of one of the two overtwisted disks3. Let us say p ∈ B0 and
we choose a neighborhood of D∞. A neighborhood of this set will not be perturbed. The
remaining disk D0 is contactomorphic to the standard overtwisted disk for each element of
the family of distributions. This set–up satisfies the hypotheses of Corollary 6.4. It should be
applied to a smaller parameter space K and then Corollary 6.5 is used with λ = ∅ to obtain
a deformation relative to the boundary. Since we are able to obtain a deformation relative
to the boundary we may perform the deformation at each neighborhood of the 0–cells and
extend trivially to the complement of VAp in CP1.

Deformation at the 1–cells: Almost the same strategy applied to the 0–cells applies, although
we should not undo the deformation in a neighborhood of the 0–cells. Corollaries 6.4 and 6.5
allow us to perform deformations relative to a subfamily, so in this case λ will be non–empty.
See Figure 9.

λ

Ai

AAi

Bi

BBi

λ

Figure 9. The distributions set ξz ⊂ BBi with z ∈ λ are already contact distributions.

Deformation at the 2–cells: In this situation Theorem 6.3 also applies after a suitable trivial-
ization of the smooth fibration provided by Lemma 6.8. Note that in this case the fibres do
not have the boundary contribution of U(C) since its image is not contained in the 2–cells.
The set L is a small tubular neighborhood of the boundary of the 2–cells. Except at C0 and

3These disks are trivialized along with N using Lemma 6.8.
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C∞, we may use any of the two families of overtwisted disks to apply the result. Let it be
D0
z . In the remaining family the distributions are contact and so we include the disks in the

set G, that also contains N and U(Ei). At C0 we use the family D0
z , since it is the only

one well–defined over the whole set. Proceed analogously at C∞. Note that this argument is
possible because the deformation is relative to the boundary. Then Theorem 6.3 applies to
the 2–cells and we extend trivially the deformation. We obtain a vertical contact distribution

(Fz, ξ̃z) away from U(C).

In order to conclude the statement of the Theorem, consider the direct sum ξ̃z⊕H to include
the critical set, which has not been deformed. This is the required vertical contact structure.
Notice that this construction preserves the almost contact class of the distribution since it is
performed homotopically only in the vertical direction. Hence Lemma 2.5 provides a homo-
topy on the complement of U(C) relative to the boundary. This yields a homotopy over the
manifold M . �

7. Horizontal Deformation I

Consider an almost contact distribution (M, ξ, ω) and a good ace fibration (f, C,E) with
associated adapted family T . Theorem 6.2 deforms ξ to a vertical contact structure with
respect to (f, C,E). To obtain a honest contact structure the distribution has to be suitably
changed in the horizontal direction. As in the previous section, this is achieved in three
stages. The content of this Section consists of the first two of these: deformation in the
pre–image of a neighborhood of the 0– and the 1–cells of the adapted family T . The main
result of this Section is the following theorem.

Theorem 7.1. Let (M, ξ, ω) be a vertical contact structure with respect to a good ace fibration
(f, C,E) and T an adapted family. Then there exists a homotopic deformation (ξ′, ω′) of
(ξ, ω) relative to C and E such that (f, C,E) is a good ace fibration for (ξ′, ω′), (ξ′, ω′) is a
vertical contact almost contact structure and ξ′ is a contact structure in the pre–image of a
neighborhood of |T |.

The vertical distribution is fixed along the deformation. In this sense the deformation in the
statement is horizontal. The fibration (f, C,E) will not be deformed to prove this fact, just
the almost contact structure.

Theorem 7.1 follows Proposition 7.7 and Lemma 2.5. To prove the statement we trivialize
the vertical contact fibration over a neighborhood of the 0–cells. Then the deformation is
performed using an explicit local model. The deformation in a neighborhood of the 0–cells
is the content of Proposition 7.6. Then we proceed with the pre–image of a neighborhood of
the 1–cells. This is Proposition 7.7. The same local model is used in both deformations.

7.1. Local model. The following lemma is used to prove Proposition 7.6 and Proposition
7.7. It is a version of results in Section 2.3 of [El] concerning deformations of a family of
distributions near the 1 and 2–skeleta of a 3–manifold. The connectedness condition is stated
there as the vanishing of a relative fundamental group.

Lemma 7.2. Let (F, ξt) be a family of contact structures over a compact 3–manifold F
parametrized by (s, t) ∈ [−ε, ε]× [0, 1] with ξt is constant along the s–lines and αt associated
contact forms. Consider the projection

F × [−ε, ε]× [0, 1]
π // F × [0, 1],

and the distribution ξ on F × [−ε, ε]× [0, 1] defined globally by the kernel of the form

αH(p, s, t) = αt +H(p, s, t)dt, H ∈ C∞(F × [−ε, ε]× [0, 1]).
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Suppose that |H(p, s, t)| ≤ c · |s| and assume that the 1–form αH is a contact form in a
compact set G such that the intersection of G with any segment {p} × [−ε, ε]× {t} is either
connected or empty.

Then, there is a small perturbation H̃ of H relative to G such that α
H̃

defines a contact

structure. In precise terms, |H̃ −H| ≤ 3cε and H̃|G = H|G.

Proof. Let us compute the contact condition on α = αH .

dα = dαt + dt ∧ ∂tαt + dH ∧ dt =⇒ (dα)n = (dαt)
n + (dαt)

n−1 ∧ dH ∧ dt.

Therefore, the contact condition is described as

(dα)n ∧ α = (dαt)
n−1 ∧ αt ∧ (∂sH · ds ∧ dt).

Thus, the 1–form α is a contact form if and only if ∂sH > 0.

Given (p, t) ∈ F × [0, 1], π−1(p, t) is a 4–parametric family of 1–dimensional manifolds. The
connectedness of π−1(p, t)∩G and the compactness of G assure that it is possible to perturb

H to an H̃ relative to G and satisfying the contact condition. Indeed, the connectedness
condition allows us to perturb the function H on at least one end of the curves in F ×
[−ε, ε]× [0, 1] and obtain a function H̃ with ∂sH̃ > 0. �

7.2. Contact connections. The previous Lemma 7.2 can be used if the contact form has
the expression as in the hypotheses of the statement. This is achieved with the choice of
an appropriate trivialization obtained by parallel transport. It is convenient to review the
notions introduced in [Le].

Definition 7.3. A contact fibration is a smooth fibration π : M −→ B with a co–oriented
codimension–1 distribution ξ ⊂ TM such that the intersection of ξ with any fibre induces a
contact structure on that fibre.

Consider a contact fibration (π, ξ), a 1–form α such that ξ = kerα and the vertical bundle
kerπ. A contact fibration has an associated contact connection Hξ. It is defined as the
orthogonal of the symplectic subbundle (kerπ ∩ ξ, dα|kerπ∩ξ) in ξ with respect to dα|ξ. Note
that the contact connection only depends on the contact structure and not on the choice of
the contact form.

Lemma 7.4. Let (π, ξ) be a contact fibration. The parallel transport with respect to a contact
connection is by contactomorphisms.

This is a simple computation. See [Le], [Pr2]. A vertical contact almost contact structure
(M, ξ, ω) with respect to a good ace fibration (f, C,E) is in particular a contact fibration
away from the critical locus C. Suppose that ξ = kerα and let ξv = kerαv be the vertical
distribution. The symplectic structure ω and dα|ξ both provide a horizontal complement for
the vertical distribution ξv in ξ. These are defined as the annihilators of the vertical bundles
with respect to the 2–forms ω and dα|ξ. Let us denote the first one by Hω and note that
the second one is the contact connection Hξ introduced above. The distribution Hξ is not
necessarily symplectic for ω. Consider a symplectic structure ωξ for Hξ coinciding with the
symplectic structure dα|Hξ on a neighborhood of C and E. Then (M, ξ, dαv⊕ωξ) is a vertical
contact almost contact structure for (f, C,E). Lemma 2.5 implies the following

Lemma 7.5. Let (M, ξ, ω) be a vertical contact almost contact structure with respect to a
good ace fibration (f, C,E), αv such that ξv = kerαv and ωξ a symplectic structure for the
contact connection associated to (f, ξ). Then (M, ξ, ω) and (M, ξ, dαv ⊕ ωξ) are homotopic
almost contact structures.
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In order to be able to apply Lemma 7.2 we need a deformation of (M, ξ, ω) such that at least
in one direction the parallel transport along the deformed almost contact connection is a con-
tactomorphism. This allows us to trivialize with the almost contact connection and obtain a
vertical contact distribution constant along that direction. Thus conforming the hypotheses
of Lemma 7.2. Both Lemmas 7.4 and 7.5 provide such a construction. The following two
subsections provide details.

7.3. Deformation along intersection points. In this subsection we obtain a contact
structure in a neighborhood of the fibres over a neighborhood of the intersection points
of an adapted family T . The precise statement reads as follows:

Proposition 7.6. Let (M, ξ, ω) be a vertical contact structure with respect to a good ace
fibration (f, C,E) and T an adapted family. Then there exists a deformation (ξ′, ω′) of (ξ, ω)
relative to C and E such that (f, C,E) is a good ace fibration for (ξ′, ω′) and ξ′ is a contact
structure in the pre–image of a neighborhood of the 0–cells of |T |.

Proof. Let z be a point of intersection of the adapted family T , (φ,U) a sufficiently small
chart centered at z with the diffeomorphism φ : U −→ [−1, 1] × [−1, 1], Cartesian coordi-
nates (s, t) ∈ [−1, 1]× [−1, 1] and N = f−1(U)\U(f). The geometric argument to prove the
statement is simple. Lemmas 7.5 and 7.4 are used to trivialize f over a neighborhood of the
0–cells such that the hypotheses of Lemma 7.2 can be applied. Let us provide the details.

The map f : N −→ U is a smooth trivial fibration with fibre F . Lemma 6.8 provides an
adequate trivializing diffeomorphism g : N −→ F × [−1, 1]× [−1, 1]. Let (λ,Ω) = (g∗ξ, g∗ω)
be the almost contact structure in this local model and

fλ = φ ◦ f ◦ g−1 : F × [−1, 1]× [−1, 1] −→ [−1, 1]× [−1, 1], fλ(p) = (σ(p), τ(p)).

This is a contact fibration for the distribution λ and the almost contact structure (λ,Ω) is a
contact structure near g(∂N \ f−1(∂U)). Consider the 1–forms α and αv defining the distri-
butions λ and λv. Lemma 7.5 allows us to deform the symplectic structure Ω to dαv ⊕ Ωλ

for a suitable choice of symplectic structure Ωλ in the dα–orthogonal of λv in λ. Lemma 7.4
implies that the parallel transport along the lift of the vector field ∂s to the connection Hλ

consists of contactomorphisms. This provides a specific trivialization such that the contact
form satisfies the hypotheses of Lemma 7.2.

Indeed, consider the connection Hλ for the fibration fλ and the vector field ∂s in the base
[−1, 1] × [−1, 1]. Let Xs be the lift of ∂s to Hλ and mτ

p the parallel transport along the
segment

γ : [0, τ ] −→ [−1, 1]× [−1, 1], γ(r) = p+ (r, 0).

That is, mτ
p is the time–τ flow of Xs. There exists a small ε ∈ R+ such that the flow mτ

p is
well–defined for all |τ | < ε and p ∈ {0} × [−1, 1]. This might require a perturbation of the
trivializing diffeomorphism g along a neighborhood of the boundary f−1

λ (∂((−ε, ε)× [−1, 1])).

In order to obtain the required trivialization consider the diffeomorphism

ι : F × (−ε, ε)× [−1, 1] −→ F × (−ε, ε)× [−1, 1], p 7−→ ι(p) = (m
−σ(p)
(0,τ(p))(p), fλ(p)).

The lift of the direction ∂s is part of the trivialized distribution. In precise terms, the push–
forward of ξ in g−1(F × (−ε, ε) × [−1, 1]) along ι ◦ g is a distribution (ι ◦ g)∗ξ given by the
kernel of a 1–form

α(s,t) +H(p, s, t)dt, satisfying ∂sα(s,t) = 0.

Lemma 7.2 can then be applied. The good set G is chosen to be a suitable neighborhood of
the trivialization of the boundary ∂F × (−ε, ε)× [−1, 1]. The statement of the Lemma yields
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a smooth function
H̃ : F × (−ε, ε)× [−1, 1] −→ R

inducing a contact structure in this local model.

The previous procedure has to be considered inside the manifold. We should then perform
the perturbation relative to the boundary of the base (−ε, ε)× [−1, 1]. To this aim, consider
δ ∈ R+ small enough and a smooth cut–off function cδ : [−1, 1] −→ [0, 1] satisfying

cδ(x) = 1 for |x| ≤ δ, cδ(x) = 0 for |x| ≥ 1− δ.
Then the interpolating function

h(p, s, t) = cδ(ε
−1s)cδ(t)H̃(p, s, t) + (1− cδ(ε−1s)cδ(t))H(p, s, t)

induces the form α = α(s,t) + h(p, s, t)dt which coincides with α(s,t) + H(p, s, t)dt near the
boundary of (−ε, ε)× [−1, 1]. The perturbation can thus be made relative to the boundary
and inserted in the manifold. The deformation from the initial distribution to that defined
by the contact form α satisfies the statement of the Proposition. �

7.4. Deformation along curves. Once we have achieved the contact condition in a neigh-
borhood of the fibres over the 0–skeleton, we proceed with a neighborhood of the fibres over
the 1–skeleton.

Proposition 7.7. Let (M, ξ, ω) be a vertical contact structure with respect to a good ace
fibration (f, C,E), T an adapted family and T a neighborhood of T . Suppose that (M, ξ) is a
contact structure on a neighborhood O of the fibres over the 0–cells of T . Then there exists a
deformation (ξ′, ω′) of (ξ, ω) relative to C, E and O such that (f, C,E) is a good ace fibration
for (ξ′, ω′) and ξ′ is a contact structure in the pre–image of T.

Let S be a small neighborhood of the set of fibres over T\O. See Figure 10. The argument

A

AA

B

BB

Figure 10. The deformation domains.

applied over O in the previous subsection works analogously when applied to S. Thus, no
detailed proof is given. The only subtlety lies in the appropriate choice of the compact set
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G when Lemma 7.2 is applied.

Let z, w ∈ CP1 with corresponding neighborhood Oz,Ow; we focus on a line segment S ⊂ |T |
joining these two points. Let (φ,U) be a local chart around S\ (Oz ∪Ow) with cartesian
coordinates (s, t) such that

φ(U) = [−ε, ε]× [0, 1], φ(S) = {0} × [0, 1].

Lemma 7.8. There exist an arbitrarily small neighborhood S of S and a horizontal defor-
mation of the vertical contact almost contact structure (ξ, ω) supported in the pre–image of
S, relative to the pre–images of S∩Oz and S∩Ow, and conforming the following properties:

- The deformation is relative to U(f) where ξ is already a contact structure.
- There exists a local chart (φ,U) such that the parallel transport of the associated

almost contact connection along the vector field φ∗∂s consists of contactomorphisms.

Oz Ow
S

Figure 11. The deformation curves φ∗∂s.

This follows from subsection 7.2.

Proof of Proposition 7.7. Use Lemma 7.8 to ensure that the parallel transport along
the lift of ∂s is by contactomorphisms. Choose the s–coordinate in the neighborhood S in
such a way that the curves which provide the lift of φ∗∂s either have at most one of the
ends in the fibres over a small neighborhood of the 0–skeleton or are contained therein. See
Figure 11. This allows us to choose a compact set G containing the fibres over the two
endpoints plus a neighborhood of the boundary of all the fibres such that the intersection
of G with any such arc is connected. There might be the need to progressively shrink the
neighborhoods of the fibres over the 0–skeleton. Apply Lemma 7.2 to produce a contact
structure in a neighborhood of the fibres over the 1–skeleton without perturbing the existing
contact structure in a small neighborhood of fibres over the endpoints. �

8. Fibrations over the 2–disk.

Let (F, ξv) be a contact 3–manifold, ξv = kerαv and D2 a 2–disk. In this Section we study con-
tact structures on the product manifold F ×D2. Consider the coordinates (p, r, θ) ∈ F ×D2.
The previous sections essentially reduce Theorem 1.1 to the existence of a contact structure
on F × D2 restricting to a prescribed contact structure on a neighborhood of the boundary
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F × ∂D2. See Theorem 9.1 in Section 9 for details on the end of the proof.

Fix an ε ∈ (0, 1) and consider H ∈ C∞(F×D2(1)) to be a smooth function such that ∂rH > 0
for r ∈ (1− ε, 1]. Then the 1–form

α = αv +H(p, r, θ)dθ

defines a distribution ξ = kerα. It can be endowed with the symplectic form

ω = dαv + (1− τ(r)) · rdr ∧ dθ + τ(r)dH ∧ dθ,
where τ : [0, 1] −→ [0, 1] is an strictly increasing smooth function such that

τ(x) = 0 for x ∈ [0, 1− ε] and τ(x) = 1 for x ∈ [1− ε/2, 1].

Then (ξ, ω) is an almost contact structure on F × D2(1) which is a contact structure on the
neighborhood F × (1− ε/2, 1]× S1 of the boundary F × ∂D2(1).

The main result in this Section is the following:

Theorem 8.1. Let (F, ξv) be a contact 3–manifold with c1(ξv) = 0, ξv = kerαv and L a
transverse link. Given ε ∈ (0, 1), consider a function H ∈ C∞(F ×D2(1)) such that ∂rH > 0
in r ∈ (1− ε, 1] and H|L×D2(1) ≥ 0, and the almost contact structure

(ξ, ω) = (ker(αv +H(p, r, θ)dθ), dαv + (1− τ(r)) · rdr ∧ dθ + τ(r)dH ∧ dθ),
where τ is the function described above.

Then there exists a 1–parametric family of almost contact structures {(ξt, ωt)}, constant along
the boundary F × ∂D2(1) and with (ξ0, ω0) = (ξ, ω) such that:

a. (ξ1, ω1) = (kerα, dα) is a contact structure for some contact form α on F × D2(1).
b. The submanifold L×D2(1) is a contact submanifold of (F×D2(1), ξ1) and the induced

contact structure is a small neighborhood of a full Lutz twist along L× {0}.

In coordinates (z, r, θ) ∈ L× D2(1), the contact structure obtained by a full Lutz twist in a
neighborhood N (L) ∼= L× D2 of L along L× {0} is described as

ξ|L×D2(1) = ker(cos(2πr)dz + r sin(2πr)dθ).

Consider the domain L×D2(5/4) with the previous equation defining the contact structure.
The term small neighborhood of a full Lutz twist refers to an open subset U ∼= L×D2(1) such
that it can be contact embedded as L× D2(1) ⊂ U ⊂ L× D2(5/4).

This theorem is used to conclude Theorem 1.1 in Section 9. In brief, it is used to deform
the almost contact structure over the 2–cells of the decomposition associated to an adapted
family T of a vertical good ace fibration (f, C,E). In this description of the fibration over
the 2–cells, the part corresponding to the exceptional divisors is the submanifold L×D2(1).
Although the deformation in the statement is not relative to a neighborhood of them, the
resulting contact structure is described in the part b. of Theorem 8.1.

Example. Suppose that the function H ∈ C∞(F × D2(1)) also satisfies

H(p, 1, θ) > 0, for all (p, θ) ∈ F × S1.

The contact condition for the initial form αv + H(p, r, θ)dθ is ∂rH > 0. Consider a smooth
family {Ht}t∈[0,1] of functions in F × D2(1) such that

H0 = H, H1(p, 0, θ) = 0, ∂rH1 > 0 for r ∈ (0, 1] and Ht(p, 1, θ) = H0(p, 1, θ).

Suppose that H1 vanishes quadratically at the origin (this assumption will be implicitly made
throughout the article). Then αt = αv + Ht(p, r, θ)dθ is a family of almost contact distri-
butions constant along the boundary F × ∂D2(1) such that kerα1 is a contact structure.
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The corresponding symplectic structures on kerαt is readily constructed as in the previous
discussion, and an interpolation to the symplectic form αv + dH1 ∧ dθ is required to obtain
the almost contact structure (kerα, dα). This contact structure does conform property (a)
in Theorem 8.1.

The importance of Theorem 8.1 is that it also covers the case of almost contact distributions
where H is negative along a part of F ×∂D2(1). This case is handled at the cost of changing
the contact structure on L×D2(1). This region is part of the exceptional locus E and should
a priori not be modified, however we will see in Section 9 that the control on this region
ensured by Theorem 8.1 will be enough to correct that change.

8.1. The model. In this subsection we describe the model used to obtain the contact struc-
ture in the statement of Theorem 8.1.

Consider the smooth 5-dimensional manifold F × S2. The submanifolds

i0 : F0 = F × {(1, 0, 0)} −→ F × S2 and i∞ : F∞ = F × {(−1, 0, 0)} −→ F × S2

are referred to as the fibres at zero and infinity. A construction made relative to F∞ should
be thought as construction on F × D2(1) relative to the boundary.

The compact smooth 3–manifold F is parallelizable. Hence the cotangent bundle T ∗F −→ F
is isomorphic to the fibre bundle F ×R3 −→ F given by the projection onto the first factor.
The canonical symplectic structure in the manifold T ∗F induces a contact structure in the
manifold F × S2. For instance, given a Riemannian metric the manifold F × S2 can be iden-
tified with the unit cotangent bundle S(T ∗F ) with respect to that metric. This is a convex
hypersurface in T ∗F and the canonical Liouville vector field defines a contact structure ξcan
on S(T ∗F ) ∼= F × S2. The study of the distribution ξcan has been at the core of contact
geometry since its foundations. See [Lu2] and Appendix 4 in [Ar].

Consider a contact structure (F,Ξ). The choice of a contact form α for Ξ defines an em-
bedding F −→ T ∗F . The image of this embedding can be assumed to lie in S(T ∗F ). Then
(F,Ξ) is seen as a contact submanifold of (S(T ∗F ), ξcan). The symplectic normal bundle of
this contact embedding is isomorphic to Ξ. In particular the embedding has trivial normal
bundle if and only if c1(Ξ) = 0. See [Ge3] for an application.

The construction of the contact structure in the following Proposition begins with the nat-
ural contact structure in S(T ∗F ) thought of as a contact structure in the total space of
F × S2 −→ S2.

In the manifold S1×S2 there exists a unique tight contact structure. It is the contact bound-
ary of the symplectic manifold S1×D3. The first Chern class of this tight contact structure is
0 ∈ H2({0} × S2,Z) ∼= H2(S1 × S2,Z). Consider the overtwisted contact structure ξot in the
homotopy class of plane fields {θ}× TS2. It is obtained by performing half Lutz twist in the
tight contact structure along the transverse knot S1 × {0}. This is said to be the standard
2–overtwisted structure on S1 × S2. Certainly its first Chern class c1(ξot) = 2 coincides with
c1(TS2) = 2. This homotopy class of plane fields is relevant since TS2 is a horizontal bundle
for the projection S1 × S2 −→ S2.

The basic geometric construction used to prove Theorem 8.1 is the content of the following
result. A minor enhancement of the Proposition is also required, it is explained in Corollary
8.3.

Proposition 8.2. Let (F, ξv) be a contact 3–manifold with c1(ξv) = 0, ξv = kerαv and L a
transverse link. Consider the manifold (F × S2, ωS2) the standard area form on S2 and the
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almost contact structure

(ξ, ω) = (kerαv, dαv + ωS2).

Then there exists a contact structure ξf = kerαf on F × S2 conforming the properties:

a. The contact form αf restricts to the initial contact form at the fibres F0 and F∞:

i∗0αf = αv and i∗∞αf = αv.

b. Consider the inclusion iL : L× S2 =
⊔

(S1 × S2) −→ F × S2. Then the contact form
i∗Lαf defines the contact structure ξot on each S1 × S2.

c. The almost contact structures (ξ, ω) and (kerαf , dαf ) are homotopic relative to F∞.

Proof. This is a rather long proof. It is divided according to the construction and the verifi-
cation of each of the three properties.

Construction. Since c1(ξv) = 0, there exist a global framing {X1, X2 ∈ Γ(ξv)} of the
contact distribution ξv. Denote by X0 the Reeb vector field associated to the contact form
α0 = αv. Therefore {X0, X1, X2} is a global framing of TF . Let {α0, α1, α2} be the dual
framing. It can be assumed that the transverse link L is an orbit of the Reeb vector field X0.
In particular α1 and α2 vanish along L. Denote the standard embedding of the 2–sphere as
e = (e0, e1, e2) : S2 −→ R3. The previous discussion endows the smooth manifold F ×S2 with
a natural contact structure. We use an explicit model for the argument. It is a computation
to verify that

λ = e0 · α0 + e1 · α1 + e2 · α2

is a contact form on F ×S2. The important properties are that {α0, α1, α2} is a framing and
the map e is a star–shaped embedding. The contact structure kerλ is contactomorphic to
ξcan. From the classical viewpoint it is clear that kerλ is a contact structure. See [Lu2].

In spherical coordinates (t, θ) ∈ [0, 1]× [0, 1] the embedding can be described as

e0(t, θ) = cos(πt),

e1(t, θ) = sin(πt) cos(2πθ),

e2(t, θ) = sin(πt) sin(2πθ).

Note that F∞ = F × (−1, 0, 0) and F0 = F × (1, 0, 0) are contactomorphic contact subman-
ifolds of (F × S2, kerλ) with trivial normal bundle. Consider two copies of F × S2, we can
perform a contact fibered sum along their F∞ fibres, see [Ge]. This operation is done in order
to obtain two fibres with the contact form α0. Those coming from the two zero fibres F0 in
the two copies of F × S2. Let us provide an explicit equation for the contact form in this
fibered sum.

A tentative modification of λ is obtained by considering the following map

κ0(t, θ) = cos(2πt),

κ1(t, θ) = sin(2πt) cos(2πθ),

κ2(t, θ) = | sin(2πt)| sin(2πθ),

and the 1–form κ0 · α0 + κ1 · α1 + κ2 · α2. Due to the appearance of the absolute value this
form is just continuous. Observe though that in the smooth area it is a contact form. Let us
perturb it to a smooth 1–form.

Define a smooth map t : [0, 1] −→ [0, 1] such that:

t(0) = 0, t(1/2) = 1/2, t(1) = 1, t′(v) > 0 for v ∈ [0, 1/2)∪(1/2, 1] and t(k)(1/2) = 0 ∀k ∈ N.
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This allows us to reparametrize the sphere with coordinates (v, θ) ∈ [0, 1] × [0, 1]. The
following map is denoted by (e0, e1, e2) in order to ease notation. This should not lead to
confusion since the map formerly referred to as (e0, e1, e2) is not to be considered again.
Consider the smooth map

e0(v, θ) = cos(2πt(v)),

e1(v, θ) = sin(2πt(v)) cos(2πθ),

e2(v, θ) = | sin(2πt(v))| sin(2πθ).

It is indeed smooth because t(k)(1/2) = 0. This almost provides the desired 1–form for the
fibre connected sum. Define the smooth function h(v) = v(1 − v) sin(2πv) and the 1–form
η = c · h(v)dθ, where c is a small positive constant.

Assertion. There exists a choice of c ∈ R+ such that the 1–form defined as

(3) αf = e0α0 + e1α1 + e2α2 − η

is a contact form over the fibre connected sum of two copies of F × S2 along the fibres F∞.

This concludes the construction of the contact form in the manifold F × S2 obtained in the
Theorem. The contact form αf also conforms property a. in the statement of the Theorem.

Proof of Assertion. Consider the following volume form ν = sin(πv)dv ∧ dθ ∧α0 ∧α1 ∧α2

on F × S2 and compute the exterior differential

dαf = de0 ∧ α0 + de1 ∧ α1 + de2 ∧ α2 + e0dα0 + e1dα1 + e2dα2 − dη.

The contact condition states that αf ∧ (dαf )2 is a positive multiple of ν. Let us express it as

αf ∧ (dαf )2 = η1 + cη2 + cη3,

where η1, η2, η3 are the following 5–forms:

η1 =

∣∣∣∣∣∣
e0 e1 e2

∂te0 ∂te1 ∂te2

∂θe0 ∂θe1 ∂θe2

∣∣∣∣∣∣ t′(v)2dv ∧ dθ ∧ α0 ∧ α1 ∧ α2 =

= 4π2| sin(2πt(v))|(t′(v))2dv ∧ dθ ∧ α0 ∧ α1 ∧ α2,

η2 = −e2
0 · h′(v) · α0 ∧ dα0 ∧ dv ∧ dθ,

η3 = −
∑
i+j≥1

(ei · ej · h′(v)) · αi ∧ dαj ∧ dv ∧ dθ +
∑
i,j

(ei · h(v)) · dej ∧ dαi ∧ αj ∧ dθ.

The indices belong to i, j ∈ {0, 1, 2}. Evaluating at v = 1/2 we obtain:

η2(p, 1/2, θ) =
π

2
α0 ∧ dα0 ∧ dv ∧ dθ =

π

2
dv ∧ dθ ∧ α0 ∧ α1 ∧ α2,

η1(p, 1/2, θ) = 0,

η3(p, 1/2, θ) = 0.

Therefore, there is a small constant δ > 0 such that the 5–form η2 + η3 is a positive volume
form in the region F × [1/2 − δ, 1/2 + δ] × [0, 1]. The function t(v) is strictly increasing
except at v = 1/2. Hence, there exists a constant B > 0 such that t′(v) > B for any
v ∈ [0, 1/2− δ] ∪ [1/2 + δ, 1].
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Let us write η1(p, v, θ) = g1(p, v, θ)ν and η2 + η3 = g2(p, v, θ)ν. There exist constants
C,M ∈ R+ such that g1 > C > 0 for v ∈ [0, 1/2− δ] ∪ [1/2 + δ, 1], and |g2| ≤M .

Choose the initial constant c ∈ R+ to satisfy cM ≤ C. Then we obtain the following bound
for v ∈ [0, 1/2− δ] ∪ [1/2 + δ, 1]:

αf ∧ (dαf )2 = η1 + cη2 + cη3 = (g1 + cg2)ν > C − cM ≥ 0.

Hence the form αf is a contact form in this region. The following bound holds in the
remaining region v ∈ [1/2− δ, 1/2 + δ]:

αf ∧ (dαf )2 = η1 + cη2 + cη3 = (g1 + cg2)ν > cg2 ≥ 0.

Thus αf is a contact form in the fibre connected sum F × S2. �

Property b. The contact form αv associated to ξv has been chosen such that its Reeb vector
field X0 is tangent to the link L. Thus α1,α2 vanish on L. Restricting the contact form αf
in the equation (3) to the submanifold we obtain

(4) i∗L(αT ) = cos(2πt(v))dz − cv(1− v) sin(2πv)dθ,

where (z, v, θ) ∈ S1×S2. This is an equation of the contact structure ξot on each S1×S2. In-
deed, consider a(v) = cos(2πt(v)) and b(v) = v(1−v) sin(2πv). Then the curve parametrized
by (a(v), b(v)) rotates once around the origin and the tangent vector field (a′(t), b′(t)) is
transverse to the radial direction, i.e. ∂r, on (0, 1).

Property c. Let fF : F −→ [0, 1] be a Morse function on the 3–manifold F with a single
minimum q ∈ F . Then

f(p, v, θ) = fF (p)− (1 + fF (p))v2 : F × S2 −→ [−1, 1]

is a smooth Morse–Bott function on F × S2 whose non–degenerate critical points belong
to the central fibre F0 and has F∞ as a critical manifold. Let us use the associated cell
decomposition relative to the level f−1((−∞,−1]) = F∞. It is generated by the descending
manifolds associated to each critical point. It has a unique 2–cell σ2

q = {q} × (S2\{∞}),
corresponding to the critical point (q, 0, 0).

Note that the resulting almost contact structure and the initial one coincide near F∞ and we
only need to compare them as almost contact structures on the disk relative to the bound-
ary. Due to Lemma 2.4, a pair of almost contact distributions homotopic over the disk σ2

q

relative to its boundary are homotopic on the 5–manifold F × S2. To conclude Property c.
we verify that such relative homotopy exists along σ2

q . The almost contact distribution ξ in

the statement of the Proposition can be written as ξ = kerαv⊕TS2. Its symplectic structure
is induced by the symplectic structure on each of the factors. Note that both kerαv and TS2

are rkR = 2 symplectic bundles. This is tantamount to rkR = 2 oriented bundles.

Consider a trajectory γ of the Reeb flow through q

γ : (−ε, ε) −→ F, γ(0) = q.

The submanifold (V, ξot) = (γ×S2, ξf |γ×S2) is a contact submanifold of the contact manifold

(F × S2, kerαf ). A contact from is given by the equation (4). As suggested by the nota-
tion, the contact form αot = αf |V defines the overtwisted structure ξot on (−ε, ε)×(S2\{∞}).

Hence the two subbundles of TV

ξot −→ σ2
q , TS2 −→ σ2

q

are homotopic as oriented subbundles relative to the boundary of the disk. Thus relative
homotopic as symplectic bundles. This provides a homotopy in the 2–dimensional horizontal
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part. Let us deal with the vertical bundle.

The initial vertical subbundle is ξv = kerαv, it does satisfy the splitting

ξv |σ2
q
⊕ TV|σ2

q
= T (F × S2)|σ2

q
.

The resulting vertical subbundle in the distribution ξf can be constructed as the symplectic
orthogonal subbundle νot of ξot. This yields the decomposition

νot|σ2
q
⊕ TV|σ2

q
= T (F × S2)|σ2

q
.

The space of rank–2 oriented vector bundles transverse to the rank–3 vector bundle TV is
contractible. Hence νot|σ2

q
is homotopic to ξv |σ2

q
as rank–2 symplectic distributions.

On the unique 2–cell σ2
q both splittings ξ = ξv ⊕ TS2 and ξf = νot ⊕ ξot hold. Note that the

bundle TS2 is homotopic to ξot inside TV and ξv is homotopic to νot through planes transverse
to TV . Since the subbundles are pairwise homotopic as symplectic distributions and these
homotopies do not interact, ξ and ξf are also homotopic as symplectic distributions. �

In the proof of Property c. of Proposition 8.2 we have only used the 2–skeleton to verify
the statement. Lemma 2.4 ensures that this is enough. There is an alternative geometric
approach to produce the homotopy. Indeed, the Reeb trajectories of αv produce a foliation
L on F . This induces a foliation L × D2 with 3–dimensional contact leaves. The argument
in the proof of Property c. can be made parametric to construct an explicit almost contact
homotopy.

The norm of the function H in the statement of Theorem 8.1 does translate into a geometric
feature. This is the size of a certain neighborhood. This is explained in the subsequent
subsection. Let us enhance the conclusion of Proposition 8.2 in order to obtain an arbitrarily
large contact neighborhood of a fibre.

Property d. Let R ∈ R+ be given. There exists a neighborhood U∞ of the fibre F∞ and a
trivializing diffeomorphism ψ : F × D2(R) −→ U∞ such that

- ψ(F × {0}) = F∞,
- ψ∗αf = αv + r2dθ.

This property could have been included in the statement of Proposition 8.2. It is stated
apart to ease the comprehension.

Corollary 8.3. There exists a contact manifold (F × S2, ξf = kerαf ) conforming a. to d.

Proof. The contact structure (F × S2, ξf = kerαf ) obtained in Proposition 8.2 does sat-
isfy properties a.– c. Let us modify it in order to satisfy Property d. The contact neigh-
borhood theorem provides a neighborhood U∞ of the fibre F∞ and a contactomorphism
ψε : F × D2(ε)→ U∞, for some ε ∈ R+. In case R ≤ ε the statement follows.

Suppose that R ≥ ε, then we use the following covering trick (introduced in [NP]). Let k ∈ N
be an integer and consider the ramified covering

φk : F × S2 = F × CP1 −→ F × CP1

(p, z) 7−→ (p, zk).

The branch locus consists of the fibres F0 and F∞. Both fibres are contact submanifolds in
(F × S2, kerαf ) and we can lift the contact form to a contact form αkf = φ∗kαf in the domain

of the covering map. Lifting the formula (3), we obtain

(5) αkf = cos(2πt(v))α0 + sin(2πt(v)) cos(2πkθ)α1 + | sin(2πt(v))| sin(2πkθ)α2 + kη
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The reader can verify that properties a.– c. are still satisfied by the contact structure kerαkf .

Regarding Property d, observe that ψ∗αkf = αv+kr2dθ. Consider the scaling diffeomorphism

gk : F × D2(
√
k · ε) −→ F × D2(ε)

(p, r, θ) 7−→ (p, r/
√
k, θ).

Then the trivializing diffeomorphism ψε ◦ gk satisfies (ψε ◦ gk)∗αkf = αv + r2dθ. Choose k ∈ N
such that

√
k · ε ≥ R to conclude the statement. �

To ease notation, we can refer to the contact structures resulting either of Proposition 8.2 or
Corollary 8.3 as ξf . Since the latter has better properties than the former, ξf refers to that
in Corollary 8.3.

Remark. Suppose that the contact manifold (F, ξv) is overtwisted, then the contact structure
ξf contains a plastikstufe. Confer [Ni],[Pr2]. It can be constructed as follows.

Restrict the contact form αkf to {(p, v, θ) ∈ F × S2 : v = 1/2} ∼= F × S1. This is a contact

bundle over the S1–factor. The induced contact connection satisfies that π∗∂θ = ∂θ and thus
the parallel transport is the identity. In particular, the parallel transport of the overtwisted
disk on the fibre generates a plastikstufe.

The contact manifold F × D2(1/2) will be contact embedded in our initial manifold (M, ξ),
is PS–overtwisted. Note that Section 6 forces (F, ξv) to be overtwisted contact structures.
Hence the contact structures constructed in Theorem 1.1 are PS–overtwisted.

8.2. The proof. In this subsection we conclude the proof of 8.1. The essential geometric
ideas have been introduced in Proposition 8.2. The necessary details to conclude are provided.

Let us introduce a definition. It is given in order to stress the relevance of the size in a
neighborhood.

Definition 8.4. Let (F, ξv = kerαv) be a contact manifold. For A ∈ R+, the manifold
F × [−A,A]× S1 with the contact structure αA = αv + tdθ is called the A–standard contact
band associated to (F, kerαv).

The role of this definition is elucidated in the following lemma.

Lemma 8.5. Let (F, ξF ) be a contact manifold, ξF = kerαF . Consider a contact manifold
(F × [0, 1]× S1, ξ) with contact form αF +Hdθ, H ∈ C∞(F × [0, 1]× S1).

Suppose that |H| < A, for some A ∈ R+. Then, there exists a strict contact embedding of
(F × [0, 1]× S1, α) in the A–standard contact band associated to (F, αF ).

Proof. Consider the embedding defined as

ΨA : F × [0, 1]× S1 −→ F × [−A,A]× S1

(p, t, θ) −→ (p,H(p, t, θ), θ) .

This is a diffeomorphism onto its image because the form αF + Hdθ is a contact form, or
equivalently ∂tH > 0. �

The remaining ingredient for the proof of Theorem 8.1 is the subsequent lemma.

Let l ∈ R+ be a constant, l > 1. Consider a smooth function κl : [0, 2l + 1] −→ [0, l] with

κl(r) = 0 for r ∈ [0, l], κl(r) = r − l − 1 for r ∈ [2l, 2l + 1].

Consider (r, θ) ∈ D2
l to be polar coordinates for the 2–disk D2

l of radius 2l + 1. Suppose
that F is a manifold, the subset F × {a ≤ r ≤ b} of the product F × D2 will be denoted
F × [a, b]× S1. Similarly, F × (a, b]× S1 refers to the subset F × {a < r ≤ b} × S1.
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Lemma 8.6. Let (F, ξv) be a contact 3–manifold with c1(ξv) = 0, ξv = kerαv, l ∈ (1,∞) and
L a transverse link. Consider the standard area ωD on the 2–disk D2

l and the almost contact
structure on F × D2

l described as

(ξ, ω) = (ker(αv + κl(r)dθ), dαv + ωD).

Then there exists a contact structure ξ1 = kerα1 on F × D2
l such that:

A. The region F × [1, 2l + 1]× S1 is an l–standard contact band for (F, kerαv):

α1|F×[1,2l+1]×S1 = αv + (r − l − 1)dθ.

B. Consider the inclusion iL : L×D2
l =

⊔
(S1×D2

l ) −→ F ×D2
l . Then the contact form

i∗Lαf defines a small neighborhood of a full Lutz twist on each S1 × D2
l .

C. (ξ, ω) and (ξ1, dα1) are homotopic relative to the boundary F × ∂D2
l .

Proof. Consider Property d. in Proposition 8.2 and Corollary 8.3 with radius R =
√
l. Let

(F × S2, ξf = kerαf ) be the contact manifold obtained in Corollary 8.3. Then there exists a
contact neighborhood U∞ of the fibre F∞ and a trivializing diffeomorphism

ψ : F × D2(
√
l) −→ U∞ such that ψ∗αf = αv + r2dθ.

The diffeomorphism ψ also identifies ψ : F × (0,
√
l]× S1 −→ U∞ \ F∞.

Define the following map

m : F × [−l, 0)× S1 −→ F × (0,
√
l]× S1, m(p, x, θ) = (p,

√
−x,−θ).

It satisfies (ψ ◦ m)∗αf = αv + rdθ. This form extends to the region F × [−l, l] × S1 with
the same expression. Then the manifold F × D2

l is obtained by gluing the annular region
F × [0, l]× S1 to the annular region

F × (0,
√
l]× S1 ∼= F × [−l, 0)× S1 identified via m,

and using the contactomorphism ψ restricted to F × (0,
√
l] × S1 to perform the gluing

construction in (F × S2) \ F∞. The construction implies that Property A holds. Properties
B and C follow from Properties b and c in Corollary 8.3 since the manifold (F × S2) \ F∞
satisfies them. �

Proof of Theorem 8.1. Let ε > 0 be a small constant. The function H is C0–bounded
on the compact manifold F = F × D2(1). Let l ∈ (1,∞) be an upper bound such that
‖H‖C0 < l − ε/4. Consider coordinates (p, r, θ) ∈ F and a smooth function h ∈ C∞(F) such
that

- h(p, r, θ) = 0 for r ∈ [0, 1− 2ε],
- h(p, r, θ) = r − l − (1− ε) for r ∈ [1− ε, 1− 3ε/4],
- ∂rh > 0 for r ∈ [1− 3ε/4, 1− ε/2],
- h(p, r, θ) = H(p, r, θ) for r ∈ [1− ε/2, 1].

The almost contact structure (ξ, ω) is homotopic relative to the boundary to the almost
contact structure defined by

(ξh, ωh) = (ker(αv + h(p, r, θ)), dαv + (1− τ(r)) · rdr ∧ dθ + τ(r)dh ∧ dθ).
The homotopy is provided by a relative homotopy between the functions h(p, r, θ) and
H(p, r, θ) and Lemma 2.5. Hence the departing almost contact structure can be consid-
ered to be (ξh, ωh) .

The neighborhood F × (1 − ε, 1] × S1 of the boundary F × ∂D2(1) ⊂ F is a contact man-
ifold. By Lemma 8.5, F × (1 − ε, 1] × S1 contact embeds in an l–standard contact band
F × [−l, l]× S1. Denote this embedding by φ. It depends on the Hamiltonian h ∈ C∞(F) in
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the interval (1−ε, 1]. Observe that φ(F×{1−ε}×S1) = F×{−l}×S1 since h(p, 1−ε, θ) = −l.

Consider the almost contact manifold (F × D2
l , ξ1 = kerα1) in the statement of Lemma 8.6.

Property A implies the existence of a contactomorphism

ι : F × [−l, l]× S1 −→ F × [1, 2l + 1]× S1 ⊂ (F × D2
l , ξ1), ι(p, r, θ) = (p, r + (l + 1), θ)

embedding the l–standard contact band in a neighborhood of size 2l of the boundary of
F × D2

l . Consider the composition

j = ι ◦ φ : F × (1− ε, 1]× S1 −→ F × D2
l .

In particular it satisfies j(F × {1 − ε} × S1) = F × {1} × S1 ⊂ F × D2
l and embeds a

neighborhood of the boundary F × {1− ε} × S1 via

j : F × (1− ε, 1− 7ε/8)× S1 ⊂ F −→ F × [1, 2l+ 1]× S1 ⊂ F ×D2
l , j(p, r, θ) = (p, r+ ε, θ).

The required contact structure in the statement of Theorem 8.1 is obtained by extending j
to the interior of the manifold F ×D2(1−ε) ⊂ F and pulling–back the contact structure from

(F × D2
l , kerα1). Indeed, consider j̃ a smooth embedding such that

j̃ : F × D2(1) −→ F × D2
l , j̃|F×(D2(1)\D2(1−ε)) = j.

For instance one can consider the extension to be

j̃|F×D2(1−ε) : F × D2(1− ε) −→ F × D2(1), (p, r, θ) 7−→ (p, c(r), θ),

where c : [0, 1− ε] −→ [0, 1] is a smooth function such that

- c(t) = t near t = 0,
- c(t) = t+ ε near t = 1− ε,
- c′(t) > 0 for t ∈ [0, 1].

Then j̃∗(ξ1) is the required contact structure. Property B in Lemma 8.6 and the fact that
the function H is positive in a neighborhood of L imply Property b in the Theorem.

Let us justify that the obtained contact structure is homotopic to the initial almost contact
structure relative to the boundary F × ∂D2(1). The homotopy obstruction appears in the
2–skeleton and therefore it is enough to find the homotopy at a disk {p} × D2(1) ⊂ F. An
analogous computation to the one detailed in the proof of Property c. of Proposition 8.2
yields the same result. Hence the resulting contact structure ξ1 is homotopic as an almost
contact structure to the initial almost contact structure (ξ, ω) relative to the boundary. �

Remark 8.7. The central ingredient in this construction is the existence of a contact struc-
ture ξ on F × S2 with the following two properties:

- It restricts to a given contact structure (F, ξF ) on a fibre F × {p},
- The contact structure ξ is homotopic to the almost contact structure ξF ⊕ TS2.

The use of the space of contact elements space forces the fibre to have vanishing Chern class
and part of Section 5 is invested to achieve this hypothesis. Since the submission of this
article, the articles [BCS, HW] provide a contact structure on F × S2 conforming the above
properties. Their use would simplify Subsection 5.3.

9. Horizontal Deformation II

The arguments in the previous sections are gathered to conclude the proof of Theorem 1.1.
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9.1. Contact Structure in the fibration.

Theorem 9.1. Let (M, ξ, ω) be an almost contact structure and (f, C,E) a good ace fibration
adapted to it. Suppose that (ξ, ω) is vertical with respect to (f, C) and T is an adapted family
such that ξ is a contact structure over a regular neighborhood of |T |. Then (ξ, ω) is homotopic
to a contact structure ξ′ and the restriction of ξ′ to the exceptional 3–spheres in E induces
the homotopically standard overtwisted contact structure.

The standard overtwisted structure is the unique overtwisted contact structure on S3 homo-
topic to the standard contact structure ξstd.

A neighborhood of the intersection of an exceptional 3–sphere with a fibre of f is diffeomor-
phic to S1 × D2 × D2. Let (z, r, θ, ρ, φ) be coordinates for such a neighborhood, the triple
(z, ρ, φ) belong to the fibre. It can be considered as a trivial fibration over the first pair of
factors

π : S1 × D2 × D2 −→ S1 × D2, (z, r, θ, ρ, φ) 7−→ (z, r, θ).

There also exists a contact structure given by the contact form α = dz + r2dθ+ ρ2dφ on the
neighborhood. This induces a contact connection Aπ for the fibration π. Let δ ∈ R+ and
suppose the horizontal 2–disk (ρ, φ) ∈ D2(δ) is of radius δ.

Lemma 9.2. Consider the contact manifold (S1×D2×D2(δ), ker(dz+ r2dθ+ ρ2dφ)), π the
projection onto the first pair of factors and Aπ the associated contact connection. The flow
of the lift of ∂r to Aπ preserves the submanifold {(z, r, θ, ρ, φ) ∈ X : ρ = δ/2}.
Proof. The vector field ∂r belongs to the contact distribution. The vertical directions are
generated by ∂ρ, ∂φ and the symplectic form pairs them via ρ · dρ∧ dφ. Hence ∂r is itself the
lift to Aπ. The statement follows. �

Proof of Theorem 9.1. The complement of a regular neighborhood of |T | in CP1 is a
disjoint collection {B1, . . . , Ba} of 2–disks. The distribution ξ is a contact structure in the
fibres of f close to the boundary of B1 ∪ . . . ∪ Ba. The restriction of f to the preimages of
each B ∈ {Bi} is a smooth fibration since the critical values of f lie in the complement of the
set B1 ∪ . . .∪Ba. In order to conclude the statement of the Theorem we produce a deforma-
tion over each ball B supported away from the boundary and resulting in a contact structure.

The proof of the statement now uses the results in Section 8. Let us precise the neces-
sary details regarding the trivializations. Choose a ball B ∈ {B1, . . . , Ba} and a local chart
ϕ : B −→ B2(1). Consider the map g = ϕ ◦ f : f−1(B) −→ B2(1). For ε > 0 a small
constant, we may assume that g−1(B2(1)\B2(1− ε)) is an open set where the distribution ξ
is a contact structure.

Consider an exceptional divisor E. According to the local model used in Section 5, there
exists a neighborhood E of E and a contactomorphism

ϕE : (S3 × D2(δ), αstd + ρ2dφ) −→ E .
The composition f ◦ ϕE : S3 × D2(δ) −→ S2 restricts to the Hopf fibration at S3 × {0}.
Restricting to the region f−1(B) ∩ E we obtain a fibration

ϕ ◦ f ◦ ϕE : S1 ×B2(1)× D2(δ) −→ B2(1)

over the 2–ball. Lemma 9.2 implies that the contact parallel transport along the neighbor-
hoods of the boundary is tangent to it. Lemma 7.4 allows us to radially trivialize and express
the contact structure as

ξ = ker(αv +Hdθ).

Observe that the contact fibration is a contact structure in the neighborhood E , therefore
∂rH ≥ 0 is satisfied on E . Since H(p, 0, 0) = 0, we also conclude that H ≥ 0 over E .
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This setup satisfies the hypotheses of Theorem 8.1. It applies producing a homotopy ξt of
almost contact structures over f−1(B) relative to its boundary such that ξ0 = ξ and ξ1 is a
contact structure. The exceptional divisors are contact submanifolds of ξ1 and their induced
contact structure is the standard contact structure ξstd with a full Lutz twist performed. The
construction is made relative to the pre–image of a neighborhood of the boundary of the ball
B. The argument successively applies to the elements of {B1, . . . , Ba}. This concludes the
statement. �

9.2. Interpolation at the exceptional divisors. Let (M, ξ, ω) be an almost contact man-
ifold. The argument for proving Theorem 1.1 begins with a good almost contact pencil

(f, C,E). Section 5 provides a good ace fibration in a modified manifold (M̃, ξ̃, ω̃). The
results in Sections 6, 7 and 8 confer good ace fibrations. These exist not on the manifold

(M, ξ, ω) but in (M̃, ξ̃, ω̃). In the previous subsection a contact structure has been obtained

in the almost contact manifold (M̃, ξ̃, ω̃) such that a neighborhood of the exceptional spheres
has remained contact. It is left to obtain a contact structure in the initial manifold M .

The exceptional spheres in (M̃, ξ̃) have the standard tight contact structure (S3, ξstd) at
the beginning of the argument. In the deformation performed in Section 8 the exceptional
spheres become overtwisted and we cannot directly obtain a contact structure on M . This has
a simple solution, we deform the contact distribution on a neighborhood of the exceptional
spheres to the standard one. This is the content of the following

Theorem 9.3. Let (S3 ×B2(4), ξ0) have the contact form

(6) η = αot + δ · r2dθ,

where δ ∈ R+ is a constant and αot is any contact form associated to an overtwisted contact
structure homotopic to the standard contact structure on S3.

Let ξstd be a tight contact structure on S3. Then there exists a deformation ξ1 of ξ0 supported
in S3×B2(3) such that the ξ1 is a contact structure and S3×{0} inherits the contact structure
ξstd.

This result is a consequence of Lemma 3.2 in [EP]. Let us give an alternative argument,
pointed out to us by Y. Eliashberg.

Proof of Theorem 9.3. Let us begin with the tight contact structure on the 3–sphere
(S3, ξstd). Performing a Lutz twist along a given transverse trivial knot K produces an over-
twisted contact structure ξ1

ot in S3 homotopic to ξstd as an almost contact distribution. The
contact structure ξ1

ot is isotopic to the contact structure ξ2
ot = kerαot. Consider both a trivial

Legendrian knot L ⊂ (S3, ξstd) whose positive transverse push–off is K, and its Legendrian
push–off L′ with two additional zig–zags. According to [DGS] a Lutz twist along K is tan-
tamount to a contact (+1)–surgery along L and L′. Hence, given (S3, ξ1

ot) there exists a
(−1)–surgery on (S3, ξ1

ot) producing (S3, ξstd). Such surgery provides a Liouville cobordism
(W,λ) from (S3, ξ1

ot) to (S3, ξstd).

The cobordism obtained by a (+1)–surgery along L and L′ can be made smoothly trivial, see
[DGS]. Consider θ ∈ S1 and η1 = λ+ µ · dθ, for a constant µ ∈ R+. Then the contactization
(W × S1, η1) of the exact symplectic manifold (W,λ) ∼= (S3 × [0, 1], λ) is diffeomorphic to
S3 × [0, 1] × S1. We have obtained a contact structure on the 3–sphere times the annulus
such that the inner boundary S3 × {0} has fibres (S3, ξstd), and (S3, ξ1

ot) are the fibres of the
outer bundary S3 × {1}. The inner part is a convex boundary and it can be filled with the
contact manifold

(S3 × D2, ker(αstd + r2dθ))
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in order to obtain a contact structure on S3 × D2 with (S3, ξstd) as central fibre. For a
choice of µ small enough, there exists a small constant δ ∈ R+ such that in a neighborhood
S3 × (1− ε, 1]× S1 of the outer boundary the contact structure can be expressed as

η1 = α1
ot + δ · r2dθ.

The contact forms α1
ot and α2

ot = αot are isotopic via a family of contact forms {αrot}, r ∈ [1, 2].
On the manifold S3 × [1, 4]× S1 consider the 1–form

η2 = α̃ot + δ · r2dθ for r ∈ [1, 2] and η2 = α2
ot + δ · r2dθ for r ∈ [2, 4]

where α̃ot(p, r, θ) = αrot(p). The form η2 is a contact form because the form r2dθ does not
depend on the point p ∈ S3. The gluing of the contact forms η1 and η2 is the required contact
structure ξ1 on S3 ×B2(4). �

Notice that this deformation gives a homotopy of almost contact structures.

9.3. Proof of Theorem 1.1. Let (M, ξ, ω) be an almost contact structure. Applying
Lemma 2.2 we suppose that (ξ, ω) is an exact quasi–contact structure. Proposition 5.8 al-
lows us to construct a good almost contact pencil for an homotopic almost contact structure
also referred to as (ξ, ω). Then Theorem 5.6 provides a good ace fibration (f, C,E) on an

almost contact manifold (M̃, ξ̃, ω̃), a contact neighborhood N (B) of B and a diffeomorphism

Π : M̃ \ E −→M \B such that (Π∗ξ̃,Π∗ω̃) = (ξ, ω).

Theorems 6.2, 7.1 and 9.1 subsequently applied to this almost contact manifold and good ace

fibration yield a contact structure ξ̃c on M̃ . It induces the standard overtwisted structure on
the exceptional spheres since a sequence of full Lutz twists are performed. Apply Theorem
9.3 to deform the contact structure to be the initial tight contact structure near each of the

exceptional spheres. Then, maybe after a small deformation, it coincides with (ξ̃, ω̃) in a

tubular neighborhood N (E) of E. Let us still refer to this contact structure as ξ̃c. The dis-

tribution Π∗ξ̃c defines a contact structure on M \N (B). It coincides with (Π∗ξ̃,Π∗ω̃) = (ξ, ω)
in the submanifold Π(N (E) \ E). The almost contact structure (ξ, ω) is a contact structure

in a neighborhood of N (B). In consequence Π∗ξ̃c can be extended to a contact structure
ξc on M . This concludes the proof of the existence of a contact structure ξc in the manifold M .

Let us prove that ξ and ξc are homotopic. There exists a homotopy between (ξ̃, ω̃) and ξ̃c
over M̃ . This homotopy restricts to a homotopy over the open submanifold M̃ \E. Then, the
diffeomorphism Π yields a homotopy between (ξ, ω) and ξc in the open manifold M \N (B).
Let us consider a cell decomposition of the manifold M such that N (B) does not intersect
the 2–skeleton. Such decomposition exists because B is 1–dimensional, M is 5–dimensional
and the genericity of transversality. Thus (ξ, ω) and ξc are homotopic over the 2–skeleton of
this cell decomposition. Then Lemma 2.4 implies that the almost contact structures (ξ, ω)
and ξc are also homotopic over M . �

9.4. Uniqueness. The uniqueness of a contact structure in every homotopy class of almost
contact structures does not hold in a 5–manifold. There are many examples in the literature,
for instance [Pr2] provides two non–contactomorphic contact structures in the same almost
contact homotopy class.

The construction described in this article requires a fair amount of choices. Though, the
dependence of the contact structure with respect to them may be understood. The three
main ingredients are the stabilization procedure of almost contact pencils, in the same spirit
than Giroux’s stabilization for a contact open book decomposition [Co, Ko], the addition of
fake curves in the triangulation increasing the amount of holes filled with the local model
and the surgery procedure.
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10. Non–coorientable case

10.1. Definitions. Let M be a (2n + 1)–dimensional closed manifold, not necessarily ori-
entable. In order to state the Theorem 1.1 in the non–coorientable setting, we need to give
a definition of a non–coorientable almost contact structure. This is a distribution with a
suitable reduction of the structure group along with a property requiring a relation between
the normal bundle and the distribution. First we introduce the Lie group A(n) defined as

A(n) = {A ∈ O(2n) : AJ = ±JA}, where J =

(
0 Idn
−Idn 0

)
Notice the following properties:

1. The group A(n) has two connected components. It is homeomorphic to U(n)× Z2.
2. Its group structure is isomorphic to a semidirect product U(n)oρZ2. More precisely,

let I =

(
Idn 0
0 −Idn

)
, then the action

ρ : Z2 −→ Aut(U(n)), a 7−→ (U 7−→ IaUIa)

induces the semidirect product structure in the usual way.
3. There is a natural group morphism s : A(n) −→ Z2 defined as

s(A) = tr(JAJ−1A−1)/(2n),

i.e. under the previous isomorphism, s is the projection onto the second factor of
U(n) oρ Z2.

Let us deduce some topological implications of the existence of a contact structure. Let
ξ ⊂ TM be a possibly non–coorientable contact structure on M with a fixed set {Ui} of
trivializing contractible charts. Choose αi as a local equation for ξ|Ui , then

αi = aijαj , with aij : Ui ∩ Uj −→ {±1}.

This implies that {aij} are the transition function of the normal line bundle TM/ξ. Further,
(dαi)|ξ = aij(dαj)|ξ. In particular, we may choose a family of compatible complex structures
{Ji} for the bundle ξ satisfying Ji = aijJj .

First, note that there is a group injection

A(n) −→ O(2n+ 1), A 7−→
(
A 0
0 s(A)

)
and thus the structure group of M reduces to A(n). And second, a A(n)–bundle E induces via
the morphism s a real line bundle s(E). This construction applied to ξ gives the line bundle
TM/ξ in the case above. These two properties will be the ones required in the following:

Definition 10.1. An almost contact structure on a manifold M is a codimension 1 distri-
bution ξ ⊂ TM such that the structure group of ξ reduces to A(n) and s(ξ) ∼= TM/ξ.

Observe that the definition for a cooriented almost contact distribution coincides with the
one previously given. There are some immediate topological consequences of the existence
of such a ξ. Indeed:

(i) If n is an even integer, then A(n) ⊂ SO(2n). Thus the distribution ξ is oriented.
(ii) If n is an even integer, there is an isomorphism

(7) TM/ξ ∼= det(TM).

Hence, any almost contact structure in an orientable 5–dimensional manifold is coori-
ented. Conversely, any non–orientable 5–manifold can only admit non–corientable
almost contact structures.
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(iii) If n is an odd integer, then s = det as morphisms from A(n) to Z2. Therefore M is
orientable since

det(TM) ∼= det(ξ ⊕ (TM/ξ)) ∼= det(ξ)⊗ s(ξ) ∼= det(ξ)2 ∼= R

Let M2n+1 be a non–orientable manifold with n an even integer. Then there exists a canonical
2 : 1 cover

π2 : M2 −→M

satisfying the following properties:

1. M2 is an orientable manifold.
2. Any almost contact structure ξ on M lifts to an almost contact structure π∗2ξ on M2.

Moreover, such a distribution is cooriented because of equation (7).

10.2. Statement of the main result. Let us state the equivalent of Theorem 1.1 in the
non–coorientable setting:

Theorem 10.2. Let M be a non–orientable closed 5–dimensional manifold. Let ξ be an
almost contact structure. Then there exists a contact structure ξc homotopic to ξ.

Proof. Let π2 : (M2, π
∗
2ξ) −→ (M, ξ) be an orientable double cover. The constructions

developed in this article can be performed in a Z2–invariant manner. Let us discuss it:

(i) An almost contact pencil (f,B,C) can be made Z2–invariant. To be precise, the loci
B and C are Z2–invariant subsets and f is a Z2–invariant as a map. In particular
the action preserves the fibres. This is because the approximately holomorphic tech-
niques can be developed in that setting. See [IMP] for the details of the construction
in the Z2–invariant setting.

(ii) The deformations performed in Section 4 can easily be done in a Z2–invariant way.
Also, the surgery along a Z2–invariant loop can be built to preserve that symmetry.

(iii) Subsection 6.2 is also prepared for the Z2–invariant setting. Instead of having a single
pair of overtwisted disks, we require two pairs of overtwisted disks. Each pair in the
image of the other through the Z2–action.

(iv) Eliashberg’s construction is not Z2–invariant. Therefore we proceed by quotienting
the whole manifold by the Z2–action, we then obtain an almost contact pencil over
the quotient. The fibres are oriented since they are 3–dimensional almost contact
manifolds. The induced almost contact distribution on them is non–coorientable.
However, there is no hypothesis on the coorientability in the results of [El]. Once
the procedure described in Section 6 is applied, we consider the orienting double cover.

(v) Section 7 is trivially adapted to the Z2–invariant setting if a serious increase of nota-
tion is allowed.

(vi) Filling the 2–cells as in Section 8 and 9. We need to produce a Z2–invariant standard
model over M × S2, with (M,α0) a contact manifold with a Z2–invariant action.
The only required ingredient is to ensuring that the framing {α0, α1, α2} is chosen
Z2–invariant. The rest of the proof works through up to notation details.

(vii) The arguments in Section 9 are still Z2–invariant if the previous choices have been
done Z2–invariantly. Therefore, we obtain a Z2–invariant contact structure ξ2

c on M2.
Its quotient produces a contact structure ξc on M .

This proves the existence part of the statement. The statement concerning the homotopy
follows since the homotopies can be easily made Z2–invariant. �
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(2006) 91–118.
[CPP] R. Casals, D. Pancholi, F. Presas, Contact Blow–up, to appear in Exp. Math.
[DGS] F. Ding, H. Geiges, A. Stipsicz, Lutz Twist and Contact Surgery, Asian J. Math. 9 (2005), 57–64.
[Do1] S. Donaldson, Symplectic submanifolds and almost–complex geometry, Journal of Differential Geom-

etry 44 (1996), 666–705.
[Do2] S. Donaldson, Lefschetz pencils on symplectic manifolds, Journal of Differential Geometry 53 (1999),

205–236.
[El] Y. Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. math. 98 (1989),

623–637.
[EKP] Y. Eliashberg, S. S. Kim, L. Polterovich, Geometry of contact transformations and domains: order-

ability versus squeezing. Geom. Topol. 10 (2006), 1635–1747.
[EM] Y. Eliashberg, N. Mishachev, Introduction to the h–Principle, Graduate studies in Mathematics, Vol.

48, AMS publications (2002).
[EP] J. Etnyre and D. Pancholi, On generalizing Lutz twists, J. London Math. Society 84 (2011), 670–688.
[Et] J. Etnyre, Contact Structures on 5–manifolds, arXiv:1210.5208.
[Ge] H. Geiges, An Introduction to Contact Topology, Cambridge studies in Advanced Mathematics 109.

Cambridge University Press (2008).
[Ge1] H. Geiges, Contact structures on 1–connected 5–manifolds, Mathematica 38 (1991), 303–311.
[Ge2] H. Geiges, Applications of contact surgery, Topology 36 (1997), 1193–1220.
[Ge3] H. Geiges, Constructions of contact manifolds, Mathematical Proceedings of the Cambridge Philosoph-

ical Society, 121 (1997), 455–464.
[GT1] H. Geiges, C.B. Thomas, Contact topology and the structure of 5–manifolds with π1 = Z2, Ann. Inst.

Fourier 48 (1998), 1167–1188.
[GT2] H. Geiges, C. B. Thomas, Contact structures, equivariant spin bordism, and periodic fundamental

groups, Math. Ann. 320 (2001), 685–708.
[GS] H. Geiges and A. Stipticz, Contact structures on product five-manifolds and fibre sums along circles,

Math. Ann., 348 (2010), 195–210.
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