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CONTACT BLOW-UP

ROGER CASALS, DISHANT M. PANCHOLI, AND FRANCISCO PRESAS

ABSTRACT. We introduce definitions of contact blow—up from several perspectives. Such
different approaches to the contact blow—up are related. We prove that the contact topology
coincides in the case of blow—ups along transverse embedded loops.

1. INTRODUCTION

In his book Partial Differential Relations |Gr], M. Gromov proposed a definition of the
blow—up operation in the contact category, see Exercise (c) on page 343. This article dis-
cusses this definition as well as related constructions.

Let M be a smooth manifold and S <+ M an embedded submanifold. The normal bundle
of (S,e) in M will be denoted by v/(S). Recall that it is defined through the short exact
sequence of smooth vector bundles over S

0 — TS =5 TM|s — vpr(S) — 0.

Given a complex vector bundle E — M, we denote by P(E) the fiberwise projectivization
of E.

Suppose the normal bundle vj;(.S) is a complex bundle, then we may produce a manifold M ,
the topological blow—up of M along S. It is defined as the connected sum

M = M+#sP(vy(S) @ C)

of the manifolds M and P(vy(S) & C) with the reversed orientation along S. Let og be the
zero section of vy/(S). The submanifold S is embedded in the first factor through e and in
the second as the section

s:8 — Pwy(S)eC)
p — {((o0®1)).

In the category of symplectic manifolds the normal bundle is a complex bundle and the man-
ifold M can be endowed with a symplectic structure. In this paper we address the question
for contact manifolds.

In the above reference, M. Gromov conjectured that a contact blow—up construction exists
along a contact submanifold S embedded in a contact manifold M provided a pair of hy-
potheses are satisfied. These are:

H1. The contact submanifold (S, as = e*(«)) is a Boothby—Wang manifold. See Defini-
tion[3.1] In particular, the Reeb vector field associated to ag has all its orbits periodic
with the same period. Let W be the quotient space of its orbits and 7 : S — W the
projection map.
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H2. The normal symplectic bundle vj;(.S) is isomorphic to the pull-back of a symplectic
bundle V' — W through 7. That is, there exists an isomorphism vy (S) = 7V of
symplectic bundles.

These two hypotheses allow to give a definition. Nevertheless the contact blow—up will not
be a contact structure on the topological blow—up M of M. We will first illustrate a reason
for this in a simple example, see Section We provide a definition producing a contact
structure on a manifold constructed as a different connected sum with M. It has the same
geometrical properties as the symplectic blow—up. It is this manifold we would rather call
the contact blow—up.

Apart from the construction of contact manifolds, the contact blow—up construction is rele-
vant for the existence problem of contact structures on 5-manifolds. See [CPP].

The content of the paper is organized as follows. The Section [2| provides a brief review of the
topological blow—up. In Section [3] we introduce the classical Boothby—Wang construction
[BW]. It will be described with some concrete examples that shall be used later on. Then,
three alternative constructions of contact blow—up are introduced:

1. The contact blow—up for embedded transverse loops, produced as a surgery operation.
This had been introduced in the article [CPP], it will be reviewed in Section

2. The contact blow—up defined a la Gromov is the content of Section

3. The contact blow—up as a contact quotient is described in Section [6]

These three constructions are inspired by the three alternative constructions for the sym-
plectic blow—up: the ad hoc construction with explicit gluings, the description using frame
bundles, found in pages 239 and 243 in [MS] respectively, and the symplectic cut procedure
discussed in [Le2]. Finally, Section[7|relates these constructions in the case of transverse loops.

Acknowledgements. We want to acknowledge K. Niederkriiger for useful discussions. In
particular for asking us to relate the contact cut and the contact blow—up. This project was
partially developed during the AIM Workshop Contact Topology in Higher Dimensions. The
first and third authors are supported by the Spanish National Research Project MTM2010—
17389. Second author would like to thank ICTP for offering a visiting position that allowed
him to develop this article.

2. PRELIMINARIES

In this section we introduce the basic definitions, explain the topological blow—up procedure
and discuss an example.

Definition 2.1. A contact structure on a smooth manifold M?*"*' is a mazimally non—
integrable smooth field & of tangent hyperplanes.

A contact manifold (M,¢) is a choice of a contact structure & on M. The maximal non—
integrability can be described in terms of local equations for £&. A smooth field £ of tangent
hyperplanes is maximally non—-integrable if and only if for any p € M there exist an open
subset U C M containing p and a 1-form a € Q(U) such that ¢|y = ker o and a A da™ # 0.
Equivalently, the form da is non—degenerate when restricted to £. In case the form « can be
chosen to be globally defined, i.e. a € Q'(M), the contact structure ¢ is called coorientable.
A contact structure is cooriented if a choice of global contact form has been made.



CONTACT BLOW-UP 3

Let (M, €) be a cooriented contact manifold with fixed global contact form o, i.e. a € Q'(M)

satisfies kera = &, a Ada™ # 0. A smooth submanifold S < M is called a contact submani-
fold if the induced distribution g = e*(§) is a contact structure on S.

The notion of a blow—up has its origins in algebraic geometry. First, we define the concept
for a complex vector space. See [Ha] for further details.

Definition 2.2. The blow-up @8“ of the n—dimensional complex vector space C**1 at the
origin is the smooth manifold O(—1) = {([Il,p) : p € I} C CP" x C*" along with the
restriction of the projection onto the second factor o : B(—1) — C™F1,

Note that o restricted to @(—1) \ {([{],p) : p € I,p # 0} induces a diffeomorphism onto the
image C"*!\ {0}. The projective space o~ 1({0}) = CP" is called the exceptional divisor.
The topological blow—up of M along S defined in the previous Section coincides with the
previous definition if S = {0} is the origin in M = C"*!. More generally, from the definition

of M we can conclude the following

Lemma 2.3. Let M be a smooth manifold and (S,e) a submanifold with complex normal
bundle. There exists a smooth submanifold Es C M diffeomorphic to the total space of a
projective smooth bundle over S such that, as smooth manifolds, M\ S = M \ Eg.

The topological blow—up can be performed along any complex submanifold S of a complex
manifold M. In this case the blown—up manifold M inherits a canonical complex structure.
Analogously, if (M,w) is a symplectic manifold and S a symplectic submanifold, the topolog-
ical blow—up manifold M can also be endowed with a symplectic structure. In the symplectic
case there is no uniqueness, see [MS]. The topological blow—up could also be performed along
a contact submanifold of a contact manifold because the normal bundle is symplectic and
hence it is also complex.

Remark 2.4. 1. Suppose the normal bundle vas(S) splits as a direct sum of isomorphic

complex line bundles L: vp(S) = L® ", @®L. Then there is a second projection map mo :

vy (S) — CP"~! defined as follows. Given a point p € S, let sp € L, be non-zero vector in
the fiber. Then a point [l1,--- , 1] € var(S)y is mapped to ma([li,--- 1)) = [l1/Sp, -+, 1r/Sp).
It is simple to verify that the map is well-defined, i.e. independent of the choice of vector s,.

2. The hypothesis above is satisfied in some cases. For instance, let S be the base locus of
a projective, resp. symplectic, Lefschetz pencil. Then S conforms the hypothesis for r = 2.
In such case the fibers of ma are projective, resp. symplectic. This also occurs with contact
pencils, see [Prl].

Example: Let (M?,€) be a 5-dimensional contact manifold and S is a 1-dimensional contact
compact submanifold, i.e. a transverse embedded loop. If we perform a topological blow—up
along S, the exceptional divisor is E = S' x CP! = S! x S2. We are in the hypothesis of
the previous Remark: v(S') is trivial. Therefore we have a projection mo : S' x S? — S2. In
the contact case, if we assume that E is a contact submanifold, it is not possible to ensure
that the fibers of such projection map are contact: there is no contact distribution on S* x S?
whose fibers are all transverse to the contact structure, see [Gi].

In the previous example, the non—transversality of the fibers occurs only because we are us-
ing the topological blow—up as our blown-up manifold. We will further argue from different
perspectives that the blown—up manifold M we should consider in contact topology is not
the topological blow—up discussed above. Instead, the correct manifold is obtained through
a procedure that substitutes S = S' by the standard contact sphere S?, not S' x S2. In such
a case, the natural projection map 7 : S — CP! is the Hopf fibration, whose fibers are
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transverse to the contact structure.

3. BOoOTHBY-WANG CONSTRUCTIONS

In this section we explain the construction of a contact manifold from an integral symplec-
tic manifold as developed in [BW]. It will be used in understanding the contact structure on
the manifold obtained after a contact blow-up.

A symplectic manifold (W, w) is called integral if the class [w] lies in the image of the map
H?(M,Z) — H?(M,R), i.e. the periods of w are integers. Such a form w is called integral.
For instance, a Kahler form on a complex compact manifold is integral if and only if the man-
ifold is a smooth projective algebraic variety. In the definition above a circle has length 1.
Note that the lift of [w] to H2(M, R) may not be unique if H2(M, Z) contains torsion elements.

Given an integral form w € H?(M,R) there exists a Hermitian complex line bundle L,
admitting a compatible connection whose curvature is —iw. See [BT] for the details. This
leads to the following

Definition 3.1. Let (W, w) be an integral symplectic manifold. The Boothby—Wang manifold
Si(W) is the contact manifold whose total space is the unit circle bundle associated to the
line bundle Ly, and its contact structure is defined as the restriction of any connection with
curvature —ikw to the circle bundle.

Remark 3.2. The contact structure is independent of the choice of connection. Indeed, the
space of choices for a connection as above is an affine space modelled on the vector space of
flat connections and hence is contractible. The stability theorem of J. Gray applies to ensure
the uniqueness up to contactomorphisms of the contact structures.

For the case k = 1 we will sometimes omit the subindex. Note that the topology of the total
space varies with the parameter k. The exact relationship between the topology and the
parameter k is the content of the following

Lemma 3.3. Let (W,w) be a symplectic manifold. Then the Boothby—Wang manifold S1(W')
is a k—covering of Sp,(W).

Proof. We fix a Hermitian connection on L, this induces a Hermitian connection on L®*.
Define the unitary non—linear map between line bundles

L — L% u— u®F,

It preserves the connections on the two bundles. There exists a unitary connection—preserving
action of Zy, the cyclic group of order k, in L given by

Zix L — L, (c;u) —s 2™k,

This action induces the trivial action in L®* and thus becomes the deck transformation group
of a covering between the total spaces of the associated circle bundles. This map is certainly
compatible with the contact structures. O

Examples: 1. Let L(k;1,...,1) be a lens space, i.e. the orbit space of the action
Ly x S 5§27 (2, 2,) = (627”/]“21,627”/1‘;22, .. .,eQm/kzn).

The lens space naturally inherits a contact structure &;, from the standard contact structure
of §"~1 induced by the complex tangencies. Lemma provides a contactomorphism be-
tween Si(CP" ') and (L(k;1,...,1),£r).

2. Consider the 2-torus 72 = S! x S! and 7 an integral area form with total area one.
Then the Boothy-Wang manifolds Sy(72) associated to (12, 7) give rise to quotients of the
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Heisenberg group by discrete subgroups I'y, and thus provide several examples of contact
nilmanifolds different from the 3—torus.

The construction of the contact blow—up will involve the quotient of the product of two
Boothby-Wang manifolds. With this in mind, we proceed to describe the Boothby—Wang
construction when the base sympletic manifold is a product. We show that the Boothby—
Wang construction and the Cartesian product commute. In precise terms, let S, o) (W1 x W)
be the Boothby—Wang manifold associated to

(W1 X Wg,bﬂfwl + aﬂ'gwg),
then we have the following:

Theorem 3.4. Let (Wi,w1) and (Wa,wa) be symplectic manifolds and a,b € Z a pair of
coprime integers. Consider the product S(Wy) x S(Wa) of the Boothby—Wang manifolds and
the action

Pla,—b) : St X S(W1) x S(Wa) — S(W1) x S(W>)

(p,q) — 0 (p,q) = (ad - p, —b0 - q)

Then the space of orbits is a manifold diffeomorphic to S, q) (W1 x Wa). This space of orbits
carries a contact structure induced by a connection with curvature

briwi + amyws.

and hence is contactomorphic to Sg, ) (W1 x W2).

Proof. Let G = S' x S! and H = S' C G be the subgroup defined as the image of the
embedding

Pla,—b) St —HcCG, o+ (ao,—bo).
Let P be the G-principal bundle with base space W; x W induced by the S'-principal
bundles S;(W7) and S;(W2). Our aim is to describe P/H as a bundle over Wi x Ws. In
general P — P/H is not a H—principal bundle but it is the case when both G and H are
closed Lie groups and H is a normal sub-group of G. Actually, they are abelian and since
(a,b) =1, P/H is also a G/H-principal bundle over W; x Wy. Taking into account the exact
group sequence

1 —S'*H -G —G/H=S' —1
where the second morphism is given by multiplication by (b, a), we conclude that the space of
orbits P/H is a manifold diffeomorphic to S, 4)(W1 x Wa). The claim about the connection
and the associated curvature follows from the short exact sequence

(a,-b) (b,a)

_ t
0—2"D72ez2%% 7 0.

Finally, it follows from Remark that the manifolds are, in fact, contactomorphic.

There are a few simple cases worth mentioning.

Examples: 1. Let Wy = {pt.} and W; arbitrary. Then neither the topology of the resulting
space nor the contact structure depend on b. Indeed, S! x S;(W3)/ ~ is diffeomorphic to

S(b,a) (pt. X WQ) = Sa(Wg).

Analogously, the parameter a is vacuous if Wy = {pt.}. In particular, S! x S! quotiented by
any (a, —b) coprime S'-action is diffeomorphic to S.
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2. Let Wi = Wy = CP! be symplectic manifolds with the Fubini-Study form. Then the space
S.a(CP' x CP') is diffeomorphic to S* x S? regardless of the values a,b € Z*, see [WZ] for
a proof of this fact. Further, the symplectic structure of the associated line bundle depends
only on @ —b. Note that there is an alternative construction of a contact structure in S x S?
using an open book decomposition with 7*S? pages and an even power of a Dehn twist as
monodromy, however such a procedure may only produce vanishing first Chern class and is
thus different from Sy, ,(CP! x CP') if a # 1. See [Ko| for more.

3. The previous example can be generalized to construct contact structures on S?*+1 x S2.
Indeed the result implies that the total space of S j)(CP™ x CPY) is a S***1-bundle over S?.
The Hopf action is explicit enough for the classifying map to be described as the element

(n+ 1)k € Zy = m(SO(2n + 2)).
Consequently the resulting manifold is diffeomorphic S?"*! x S? if n is odd or k is even.

Remark 3.5. We would like to remark that it is not known whether the product of any
contact manifold with the 2—sphere admits a contact structure.

It will be essential for the contact blow—up construction to be able to extend a connection
on a submanifold to a global connection, let us now prove that this is possible under suitable
conditions:

Lemma 3.6. Let S be a closed submanifold of (M>?",w), possibly with smooth boundary, and
L the line bundle associated to w. Assume that the restriction morphism H*(M) — H(S)
is surjective and let Ag be a connection over Lig whose curvature is —iw. Then, there is a
connection A on L with curvature —iw such that its restriction to S is Ag.

Proof. Let Ag be a connection on the line bundle L — M with curvature —iw. Denote
i:8 — M, then Ag — i*Ag = Bg is a closed 1-form over S. In order to complete our
argument we need to extend Bg to a global closed 1-form.

By hypothesis the map H'(M) — H'(S) is a surjection. Therefore there exists a cohomol-
ogy class [3] on H(M), such that restricted to S coincides with [3s]. Its difference over S
will be the trivial class on H'(S), so 35 —i* = dHg, for some smooth function Hg : S — R.
We extend Hg to a global smooth function H : M — R. The form Ay + 8 + dH is the
required global connection with curvature —iw and extending Ag. O

4. SURGERY ALONG TRANSVERSE LOOPS

Let (M?"*1 ¢) be a contact manifold. In this section we recall the blow—up construction
from Section 5 in [CPP]|. It is an operation defined in a neighborhood of a transversely em-
bedded loop. Topologically it consists of a surgery along the loop: the interior of S' x B
is removed and a tubular neighbourhood of the (2n — 1)-sphere B2 x §?"~! is glued along
the common boundary S! x §2"~1. The sphere {0} x S?*~! whose neighbourhood is attached
is called the exceptional divisor. Let us discuss this surgery operation in the contact category.

Consider the manifold 7 = S' x (0,1) x S?*~! with spherical coordinates (#,r,c). Let
astqg = (dr o 1)|gzn—1 be the standard contact form for the contact structure

£ =TS 1 ni(Ts*™ 1)

on the sphere S~ € C". Define the following two contact forms in 7°:

(1) n=d0 —r’ogq, \=r12d0+ agg.
Fix an integer | € Z and consider the diffeomorphism
¢ : T — T

@ (0.r.2) — (B.r.c02)
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It pulls-back the contact form 7 to A = (—r?) - [(I — r72)df + ).

Given a subset C' C M, let U(C') denote a small neighbourhood of C' in M. These ingredients
suffice to prove the following:

Theorem 4.1. (Thm. 5.1 in [CPP]) Let (M?"*1 €) be a contact manifold. Let S C M be a
smooth transverse loop in M. There exists a manifold M satisfying the following conditions:
- There exists a contact structureg on M.
- There exists a codimension-2 contact submanifold E inside M with trivial normal
bundle. The manifold (E, &) is contactomorphic to the standard contact sphere (S*~1,€).
- The manifolds (M \U(S),&) and (M \ E, ) are contactomorphic.

The manifold (MJ &) will be called the contact surgery blow—up of M along S. The contact
submanifold (E,€) is called the exceptional divisor.

Proof. By Gray’s stability, we may assume that a tubular neighbourhood of the embedded
loop is contactomorphic to S' x B2"(¢) with the contact form 7 as in , for some small radius
r < e. We enlarge this tubular e—neighbourhood using the squeezing technique from [EKP]
to obtain a radius 2 neighbourhood. More precisely, we need the following auxiliary lemma:

Lemma 4.2. (Proposition 1.24 in [EKP|) Let k > 0 be a positive integer and Ry > 0 a
radius. Then the following map is a contactomorphism

Ry
:S! x B*™(R — S'x B | —
Vg (Ro) R
r . .
O,r,wi,...,w,) —> (9, 7,627”’“911)1, .. ,ekagwn )
V1+ kr?

and it restricts to the identity at S* x {0}.

Consider Ry = 2 in the lemma above, then we need k large enough to satisfy

2
Jira o ©
We may therefore assume that the tubular neighbourhood for which the standard equation
holds for n has radius » = 2. In the annulus corresponding to radius (3/2,2) use ¢ to
induce the contact structure given by ker . Declare ker \ to define the contact structure in
the radius area [0,1/2]. It is left to find a strictly increasing function interpolating between
r2 and 1 — =2 in the middle region. This can be done, see Figure O

0 025 05 075 1 125 15 175 2 225
x
0.25

FIGURE 1. Interpolation matching A and A.
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Remark 4.3. The process described in the proof can be modified to include the radius squeez-
ing in the gluing map. It suffices to use ¢; as gluing map instead of ¢1 in the domain. Indeed,
denote T, = S' x (0, p) x S**~! and consider the contact structures

€0 = ker{df — r?agq}, & =ker{(l —r~2)df + cgq}.
Define the map
r
T — Ty, (O,r,2)— [0, ——,2 |,
where €(k) is the obvious radius in the image. Then the following diagram is commutative in
the contact category :

(T2, 61) LN (T2, &)

JW }/)k
(Te (s &) —2 (Tery )

where Lemma[].2 is performed with parameter k =1 — 1.

Note that the contactomorphism type of the exceptional divisor is that of the standard
sphere, the parameter in the construction allows us to discretely vary the radius of the
tubular neighbourhood we are collapsing.

Lemma 4.4. The maps ¢; and ¢y, are smoothly isotopic if and only if (k — )n is even.

Proof. Let t € S be a circle coordinate. Consider the morphism
T : 1 (SO(2n)) — mo(Diff(S' x $2°71),  W(y)(6,2) = (8,79(2)).

If 4}, denotes k-times the standard circle action on S?*»~! € C" induced by C*, then it is clear
that ¢y is realized as WU(yg). Since 71(SO(2n)) ~ Zy and v ~ k - n under this identification,
v = v if and only if (k — {)n is even.

It is left to prove that ¢y and ¢; are not isotopic, for n even. Construct two manifolds X
and X; by gluing two copies of the manifold B? x S?"~! respectively using ¢y and ¢; along
the boundary. These manifolds are not diffeomorphic. A sphere is a spin manifold and the
product formula for characteristic classes implies that so is Xo = S? x S?*~1.

The manifold X7 is not spin. This can be seen by using any section s of the twisted bundle
X1 — S?, such s exists because n > 2. Denote by v(s(S?)) the normal bundle to the
section and let By — S? be the complex bundle over S? such that S(E;) = Xj. Then
s*(v(s(S?) ® R) = Fy. Note that w(Ey) = 1 if n is odd and

wa([s(S%)]) = w2(T X y(s2)) = w2 (v (s(S%)) = wa(s*(v(s(S*) ®R)) = w(En).
Hence ¢g and ¢; are not isotopic. ([

In particular, the smooth type of the contact blow—up manifold will depend on the parity
of the positive integer fixed for the construction. As for the contact type, it follows from
Theorem 1.2 in [EKP] that the maps ¢y and ¢; are not contact compactly supported isotopic
if k # [. This does not imply that the contact structures are different, but at least there is
no local contactomorphism relating the two contact structures.

5. GROMOV’S APPROACH

In this section we develop the contact blow—up along a Boothby—Wang submanifold, as
suggested in [Gr].The existence of a minimum radius for the tubular neighbourhood of the
submanifold along which we will perform the blow—up will play an important role. This
feature will be revisited in the definition provided in Section [6]
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Let us review the definition of the symplectic blow—up, see [MS] for more details.

5.1. Symplectic blow—up. Let (M,w) be a symplectic manifold and S a symplectic sub-
manifold of codimension & > 4. Consider the symplectic normal bundle (vg,7) of S in M
and fix a compatible almost complex structure. The choice of a compatible almost complex
structure for a symplectic form induces a metric and the equality

Uk) = O(2k) N Sp(2k,R)

implies that the structure group of vg can be considered to be U (k). Thus vg is an associated
vector bundle of a U(k)-principal bundle P — S.

The symplectic blow—up of M along S is obtained by the fiberwise symplectic blow—up of
vs. Hence we require Deﬁnition for the case of symplectic vector spaces. Let (R?*,wg) be
the standard symplectic vector space and wrg the standard Fubini-Study form on complex
projective space. We will use the following

Definition 5.1. A symplectic blow—up of (R?*,wy) at the origin with radius § is a symplectic
manifold (R2*,&5) such that:

1. @gk 5 R?* is a topological blow—up of C* at the origin. The symplectic form induced

on the exceptional divisor E =~ CPF1 s 5% CWES.
2. For any € > 0, there exists a symplectomorphism

R\ n 1 (B(§ +¢)) = R* \ B(6 +¢)
3. The unitary group U(k) acts Hamiltonially in (]Egk,fu(g)

The symplectic blow—up of (R?*,wp) at the origin exist for each 6.

Remark 5.2. Note that the definition depends on &, this parameter does not appear in
Definition [2.9 since any linear homothety at the origin is a complex isomorphism.

Let us describe the non-linear symplectic blow—up of M along S. Property 3 in the above
definition allows us to associate to P a bundle (vgs, ) over S with fiber R%k . Let 8 be a
connection in P, there are induced coupling forms « and as, in vg and g respectively,
restricting to the symplectic form on each fiber and coinciding away from the radius § + ¢,
see Thm. 6.17 in [MS]. Define the forms

w, = a+1'wg

Wy, = az+ 7T ws
on the bundles vg and vgs. These are symplectic forms close to the zero section and to the
exceptional divisor respectively.

These forms also coincide away from a neighbourhood of S of radius § + ¢. Let Us;, =
P Xy ) B(do) be a neighbourhood of the zero section of the symplectic normal bundle. By
the symplectic neighbourhood theorem there is a neighbourhood U(S) of the symplectic sub-
manifold S and a symplectomorphism ¥ : U(S) = Us,. Thus any fiberwise symplectic
blow—up on vg with radius 0 < § + & < §p can be glued back to the initial manifold M using
the symplectomorphism W. The resulting manifold is the symplectic blow—up of M along S

with radius 4.

Observe that the radius of the tubular neighbourhood of S cannot be estimated a priori.
Therefore the symplectic volume of the exceptional divisor cannot be assumed to be arbi-
trarily large. This will be an obstruction to develop the Gromov’s approach in the contact
category.
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Example: Let V be a rank—2k symplectic vector bundle over a symplectic manifold (W, w).
Then the total space is symplectic as well. Thus, we are able to blow—up the symplectic
manifold V along its zero section W. In case the symplectic form w is of integer class, the
symplectic form in the resulting blown—up manifold will be of an integer class if the blow—up

radius is m%k-, m € N*. We call this a radius m blow—up.

5.2. Definition of Contact Blow—up. We now define the contact blow—up in terms of the
symplectic blow—up. This is the second notion listed in Section

Let (M,£) be a contact manifold and (S, &g) a contact submanifold. We assume:
H1. The contact submanifold S is contactomorphic to a Boothy—Wang manifold S(W, w).

H2. Let w : S(W) — W be the circle bundle projection. There exists a symplectic bundle

~

V over W such that, as symplectic bundles vy (S) = V.
The total space of V carries a symplectic form @ in the same cohomology class of [w], under
the natural identification of H2(V,R) with H2(W,R). As previously explained, there exists

a symplectic manifold (V,wy ) obtained by blowing up V' along its zero section W. Suppose
that the parameter multiplying the class of the exceptional divisor £ in the symplectic blow—
up is a positive integer, i.e. the symplectic form in V is integral.

The construction of the contact blow—up is based on the following diagram:

v (S) = 7*(V) S(V) S(V) D S(E) =S(V)|g
(W, w)

Diagram 1. Contact Blow—up Setup

Each map is a bundle projection. It is essential to understand the relation between the
contact manifolds S(W),S(V) and S(F). This is the content of the following:

Lemma 5.3. In the hypotheses above, S(W) is a contact submanifold of S(V'). There are
contactomorphic neighbourhoods U(S(W)) and U(S) in S(V') and M respectively.

Proof. The choice of symplectic form on V implies that there exists a symplectic embedding
of W in V and therefore S(W) is contained in S(V') as a contact submanifold. The tubular
neighbourhood theorem states that the normal bundle vy/(S) is diffeomorphic to a small
neighbourhood of S in M, but vy (S) = 7*(V) so the same situation applies to S(W) in
S(V). The statements now follow from the contact neighbourhood theorem. O

In consequence, S(W) C S(V') provides a local model. Thus we only need to perform the
blow—up of V' along W and study whether the Boothby—Wang structures associated to them
allow us to glue back the resulting blown—up model to M. This is the content of the following:

Proposition 5.4. Let S = S(W) be a Boothby—Wang contact submanifold of S(V'). Suppose
we symplectically blow—up W C V' by collapsing a radius 1 neighbourhood. Then, there is
a choice of contact form for S(V) such that S(E) is a contact submanifold of S(f/) and the
complement of an arbitrary small neighbourhood of S(E) in S(v) s contactomorphic to the
complement of some neighbourhood of S(W') in S(V).
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For the sake of a clearer exposition the proof is explained at the end of this subsection.

Suppose we can choose a tubular neighbourhood U (S(W)) C S(V') with radius larger than 1
which is contactomorphic to a tubular neighbourhood U(S) C M. Then we have the following

Definition 5.5. The contact blow-up of (M,§) along (S,£&g) is the contact manifold (M',&")
obtained by removing the neighbourhood U(S) and gluing along its boundary a small neigh-
bourhood of S(E) in S(V).

The contact manifold (M’,¢’) is contactomorphic to M away from small neighbourhoods of
S(FE) and S respectively. The exceptional divisor of the contact blow—up is defined to be
S(FE), where E is the exceptional divisor of the symplectic blow—up over which it is locally
modelled. Observe that for the definition to work we need S to have a tubular neighbourhood
of radius at least 1 inside M.

Example: 1. The most simple example of contact blow—up is the case of a transverse loop
K in (M?,¢). The loop is contactomorphic to S(pt) and its normal bundle is the pull-back
of the trivial bundle over the point. Thus H1 and H2 are satisfied. The symplectic model
corresponds to the blow—up of C? at the origin, collapsing a neighbourhood of radius 1, and
therefore E = CP!. Hence, S(E) = S(CP'), i.e. the standard contact 3-sphere. This partic-
ular case can be seen, at least topologically, as a surgery along a loop.

2. In the previous example we may symplectically blow—up with radius & € N*. The ex-
ceptional divisor is then S(C]P’l, kwept ), i.e. the sphere bundle associated to the polarization
O(k) of CP', which is the lens space L(k;1) with its standard contact structure. Therefore,
even the diffeomorphism type of the blown—up contact manifold changes with the blow—up
radius k € N*.

Note that there is not natural projection map from S(F), the exceptional divisor, to the blow—
up locus S(W). In the case of a loop in a 5—dimensional manifold, the exceptional divisor
for a radius 1 blow—up is S* and the blow—up locus is the circle S'. This is a difference with
respect to the symplectic and algebraic cases where the exceptional divisor is a bundle over
the submanifold along which the blow—up is performed. It is true though that there is a
natural projection S(E) — E — W, but it does not lift to S(W).

Remark 5.6. The assumption of the integer radius can be fulfilled in certain cases. For
instance in the blow-up along a transverse S' we can use the Lemma @ Therefore the
construction in this case will have two natural parameters: the integer radius that determines
the topology of the exceptional divisor, and the choice of framing in the spirit of the lemma.
The above described construction a la Gromov does not show in gemeral the appearance of
this second positive integer, this is a reason to introduce a third way of defining the blow—up
highlighting these two choices.

To conclude this subsection we prove the assertion that allowed us to glue the Boothby—Wang
construction over the exceptional divisor in the contact blow—up construction.

Proof of Proposition We need to ﬁn(i an appropriate connection on the topological
Boothby-Wang manifold corresponding to V.

Notice from the construction of the symplectic blow—up as given in [MS], we know that given
a sufficiently small neighbourhood of E in Vit is possible to choose a symplectic form @ on
V such that complement of that neighbourhood in Vis symplectomorphic to a small neigh-
bourhood of W in V. Furthermore, observe that the exceptional divisor is just the inverse
image of W contained in V' as the zero section under the blow—up projection ¢ : V—V.



12 ROGER CASALS, DISHANT M. PANCHOLI, AND FRANCISCO PRESAS

Now recall from the Definition that the contact structure of S(V) is determined by the
choice of a connection over the associated line bundle whose curvature is —iw. So let A be the
connection over L that determines the contact structure on S(V'), and denote by U an arbi-
trarily small neighbourhood of W inside V. From the construction of the symplectic form w
on V we can assume that the map ¢ is a symplectomorphism of V\U and ¢~1(V\U). There-
fore the connection ¢*(A) satisfies the required properties over ¢~ (V\U). It remains for it to
be extended to a connection all over V with curvature —iw. By Lemma such an extension
is possible provided that the restriction morphism from H'(¢~1(V \ U),R) — H(V,R) is
surjective. It is sufficient to show that w1 (V) = (¢~ (V \ U)).

Indeed, observe that Vs homotopic to a (CP"~!)-bundle over W, with r > 2, and hence
71 (V) = (W) holds. Note that the manifold ¢~1(V '\ U) is diffeomorphic to V' \ U and the
set V'\ U is homotopy equivalent to a sphere bundle over W with fibers of dimension greater

than 2. From the long exact sequence of homotopy we conclude that
T~ (VA U)) Zm(W).

It now follows from Lemma that on S(V) there is a choice of contact form with the
required properties. Away from a given small neighbourhood of S(E) in 8(17) a contact
form can be chosen such that it induces a contactomorphism from the complement of such a
neighbourhood to the complement of some neighbourhood of W in V, this is because we can

choose the symplectic form on V with the required property. O

6. BLOW—UP AS A QUOTIENT

In this section we define the contact blow—up of a contact manifold M along a Boothby—
Wang contact submanifold S using the notion of contact cuts.

6.1. Contact cuts. Given a S'-action on a manifold M, topologically the cut construction is
based on collapsing the boundary of a tubular neighborhood of a given submanifold invariant
by the action. Basic knowledge on the contact reduction procedure is assumed in the next few
paragraphs, see [Ge]. Let us recall the construction of a contact cut for a contact S'-action
as developed by E. Lerman:

Theorem 6.1. (Thm. 2.11 in [Lel]) Let (M,a) be a contact manifold with a S'-action
preserving o and let p denote its moment map. Suppose that S' acts freely on the zero level

set u=1(0). Then the seﬂ
Mi,00) :={m € M|pu(m) € [0,00)}/ ~
is naturally a contact manifold. Moreover, the natural embedding of the reduced space
My = 11~ 1(0) /8"
into Mg is contact and the complement My ooy\ My is contactomorphic to the open subset
{m € M|u(m) > 0} C (M, ).

Remark 6.2. Note that the contact reduction requires the regular value to be 0, whereas in
the symplectic reduction any regqular value is licit. This is so because in the contact reduction
it 1s imposed that the orbits of the isotropy subgroup are tangent to the contact structure,

see [Ge2].

IThe equivalence relation is defined as m ~ m’ = p(m) = p(m’) = 0 and m = 6 - m’ for some 0 € S'.
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6.2. Blow—up procedure. Let (M?"*! ¢) be a contact manifold and (.S, ker @) a codimension—
2k contact submanifold. Suppose that (S, kera) = S,(W) for some symplectic manifold

(W,w), a € Z", and vg = C* as complex bundles over S. We will define the contact blow—up
of M along S.

Remark 6.3. Any isocontact embeddingﬂ of a contact 3—fold in a sphere has trivial nor-
mal bundle. This situation does occur: any closed cooriented 3—fold admits an isocontact
embedding into the standard contact T—sphere.

A tubular neighbourhood of the contact submanifold S is contactomorphic to

sph.coord.

Sp=8xB*™R)" « Sx[0,R)xS* 1  for some R € R,
with the contact structure given by o + r?ayg, where ayyg is the standard contact form in
S%=1 Let b € Z* and consider the S'-action
Pla—p) 1 S' x S x[0,R) x S~ — S(W) x [0, R) x S*~!

0,p,7,2) — ((ab) - p, 7, e~ 27 2)

This action is generated by the field X = aRg — bRsq where Rg, Rgq are the Reeb vector

fields associated to o and agg.
The moment map of the above action is

fi(ap) S x BF(R) — g* =R

(p,r,2) — a — br?
The contact cut can only be performed in the pre-image of the regular value 0 € R, it is thus
a necessary condition that R? > a/b. This can always be achieved if b is large enough.

Definition 6.4. Let S = S,(W) be a contact submanifold of (M, &) with fixed trivial normal

bundle S x B*(R). Let b € ZT be such that R*> > a/b. The (a,b)-contact blow—up Mg of
M along S is defined to be the contact cut of M for the moment map associated to the circle
action Qg _p) :

My := M{Ma,b)SO}

The collapsed region ,u(_alb) (0)/ ~ will be called the exceptional divisor, it is a contact manifold

of dimension 2n — 1. The induced S'-action in the level set
o (0) = 8 x {Va/b} x §%

coincides with the action ¢4, _p) defined in Theorem with W, = W and Wy = CPF 1,
Thus, the orbit space is

u(—a{b)(O) /S 2 S0y (W x CP*1) 2 S(W) x S(CPF 1)/ ~ .

Remark 6.5. Notice that both the topology and the contact structure of the exceptional
divisor strongly depend on the choice of the parameters a and b. Consequently, so does Mg.

Example: 1. In the case of a contact 5—fold, a transverse circle —the simplest contact
submanifold— is replaced by a (quotient of a) standard contact 3—sphere, as in Section
This new construction of the blow—up along a transverse loop will be compared with the
previous ones in the next section.

2. Consider the contact blow—up along a contact 3-sphere S? = S(CP') ¢ M?"*+!. The

topology of the exceptional divisor will depend on the element of the corresponding higher
homotopy group, cf. Section

2The embedding e : (M1,&1) — (Mo, &2) is isocontact if e*(£2) = &;.
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3. If in the previous example (M, &) is a 5—dimensional contact manifold, the exceptional
divisor of the (1, k) blow—up is contactomorphic to S?. In higher dimensions, the exceptional
divisor of a (1,k) blow-up along S? is diffeomorphic to S? x S?"~3 for n > 3 and k even.

6.3. Blow—up general normal bundle. We define the contact blow—up along a contact
submanifold with a general normal bundle. The construction will clearly coincide with the
previous blow—up in the case of a trivial normal bundle.

6.3.1. Preliminaries. In smooth topology the smooth structure of a neighbourhood of a sub-
manifold is retained by the normal bundle. The contact geometry nearby a contact sub-
manifold (S, &g) is determined by the normal bundle vg along with a conformally symplectic
structure. Such a structure exists because vg can be identified with the symplectic orthogonal
ffq-. The statement of the contact neighbourhood theorem is as follows:

Theorem 6.6. (2.5.15 in [Ge]) Let (S1, M1) and (S2, Ma) be contact pairs such that (S1,&s,)
is contactomorphic to (S2,&s,). If §§-1 = §§-2 as conformally symplectic bundles, then there
exists a contactomorphism between suitable neighbourhoods of S1 and Ss.

There exist contact submanifolds with non—trivial normal bundle in a closed contact mani-
fold. Let us provide some examples.

Examples: 1. Let (M, £ = ker a) be a cooriented contact manifold and ¢ itself be non—trivial
as an abstract vector bundle. The contact form provides a contact embedding o : M —
S(T*M) such that the normal bundle of the contact submanifold M is isomorphic to &.

2. Let (V,w) be an integral symplectic manifold and W a symplectic submanifold with non—
trivial normal bundle. For instance, (W, V) = (CP!,CP?). Then the normal bundle of the
contact submanifold S(W) in S(V) is also non-trivial.

3. Let (M2 ¢) be a closed cooriented contact manifold. Consider an isocontact embedding
(M2n+17 f) — <S4n+37 gstd)y

see [Gr] for the existence of such an embedding. Since the tangent bundle of the spheres are
stable, it is simple to give sufficient conditions for the normal bundle to be non—trivial, e.g.
M not spin.

Remark 6.7. The contact blow-up construction has been used in another context. Given a
complex vector bundle E on M, the contact submanifold S C M 1is defined as the vanishing
set of a section in HO(M,E). Then c1(v(S)) = PD([S]) # 0. This occurs for the base locus
of contact Lefschetz pencil decompositions of (M,§). See [CPP].

6.3.2. Definition. In the blow—up construction for the trivial normal bundle case there are
two circle actions. The first one exists on the contact submanifold .S, since it is a Boothby—
Wang manifold, and it is extended to a local neighbourhood. The second circle action is
the gauge action provided by the complex structure in the conformally symplectic normal
bundle. The latter is still available in the non—trivial normal bundle case, the former can a
priori no longer be extended in a neighbourhood.
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We hence require a lifting condition for the circle action on S: the appropriate set—up is
depicted as in the Diagram 1 in Section

vm(S) = 7(V) S(V)

| |

(5,8s) =Sa(W) (V,w)

(W,w)

where V' is a symplectic bundle over a symplectic manifold W. Assume a = 1 for simplicity.

Lemma 6.8. In the hypotheses above, the circle action provided by the Boothby—Wang struc-
ture can be naturally extended to a neighbourhood of S.

Proof. Since W is a symplectically embedded submanifold of V', S(W) is a contact subman-
ifold of S(V). The tubular neighbourhood theorem tells us that the normal bundle v/ (5)
is diffeomorphic to a small neighbourhood of S in M, but after the smooth isomorphism
vy (S) = 7*(V) the same situation applies to S(W) in S(V'). Since the isomorphism holds
at the level of symplectic bundles, the contact tubular neighbourhood theorem ensures that
there exists a contactomorphism ® between a contact neighbourhood of the zero section in
v(S) and a contact neighbourhood of S(W) in S(V'). Consequently, the circle action in S(V)
can be carried along ® to a neighbourhood of S. U

Let us spell out the moment map of the circle action. We refer to the circle action on the
normal bundle induced by its complex structure as the gauge action. This action is the
natural S!-action when working with a contact pair (S, M). Further, the radius coordinate
r € R2% is a global coordinate regardless of the non-triviality of the normal bundle. The
remaining action described above will be referred as the Boothby—Wang action. It is the
natural action when identifying a neighbourhood of S in M with a neighbourhood of S(WW)
in S(V') via the map ® in the proof of the lemma.

Lemma 6.9. The moment map of the S —action a1y s 1— O(r)2.

Proof. The moment map of the gauge action is —r2. For the Boothby-Wang one, the circle
action realizes the Reeb vector field and thus its moment map is 1. We express the r
coordinate through the contactomorphism @ as ®(r). Since we are using the action ¢ _)
the statement follows.

Recall that the contact cut can be performed if 0 lies in the image of the moment map.

Remark 6.10. The same argument using a multiple of the gauge action concludes that we
may modify the action in order to ensure this: ® maps the zero section to S(W) and thus the
values of 1 — b?>®(r)? form a decreasing sequence in b that eventually crosses zero, R<Y being
bounded below.

The Boothby—Wang action may as well be arranged to period a: the concatenation action is
denoted ¢, _p). We are in position to write the

Definition 6.11. (Contact Blow-Up) Let S = S,(W) be a contact submanifold of (M,§).
Let a,b € Z* be such that the origin is contained in the image of the moment map W(ap) Jor

the action (4 ). The (a,b)-contact blow-up Ms of M along S is defined to be the contact
cut of M for the action ¢, _y), i.e. Mg = M{u<a by <O}
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7. UNIQUENESS FOR TRANSVERSE LOOPS

In this section we relate the three constructions of the contact blow—up. The construction
that can be performed in the most general situation is the one involving the contact cut.
It has two degrees of freedom: a pair of positive integers a and b. These two parameters
relate to previous integers appearing in the first two constructions. Indeed, the parameter [
in the contact surgery blow—up corresponds to b. For Gromov’s construction, the choice of
collapsing radius k € Z* gives rise, in the case of transverse loops, to the exceptional divisor
L(k,1) and it corresponds to the parameter a. It is quite obvious that the diffeomorphism
type of the blown—up manifolds is the same regardless of the chosen construction as soon as
the parameters coincide as just mentioned.

Let us turn our attention to the contact structure: we restrict ourselves to the case of
transverse loops. Denote by M, the surgery contact blow—up defined in Section [4f with
parameter b. The contact blow—up as defined in Section |5 with radius a is denoted by
M;. And M, will be the contact—cut blow—up as defined in Section @ performed with
parameters (a,b). Let us show that uniqueness holds in this case, more precisely we prove
the following

Theorem 7.1. Let (M,§) be a contact manifold. Performing the blow-up along a fized
transverse loop with the three procedures introduced previously, the resulting blown—up mani-
folds My, M| and M1y endowed with the blown—up contact structures are contactomorphic.
Further, given any pair of integers (a,b), the following contactomorphisms hold:

(M, &) = (M(1,b)7§(1,b)> ;o (Mg = (M(a,1)7g(a,1)> :

The relation between the different constructions is already hinted in Section [l Since the
exceptional contact divisors coincide and the procedure is of a local nature, i.e. the contact
manifold is not altered away from a neighbourhood of the embedded transverse loop, the
study should focus on the natural annulus contact fibration. Let us review a few facts.

A contact fibration is a fibration (M, &) — B such that the fibers are contact submanifolds.
We consider contact fibrations over the disk f : (V,£) — B2. The base being contractible,
the fibration is trivial and we also assume it to be trivialized. Let us introduce the following

Definition 7.2. Let (r,0) be polar coordinates on the disk B%. A trivialized contact fibration
over the disk m : F x B> — B? is said to be radial if the contact structure admits the
following equation

(3) ker oy = ker{ap + Hdb},
where H : F x B2 — R is a smooth function such that H = O(r?).

Notice that for the total space of a radial contact fibration to have an induced contact
structure it is required that

H
(4) 887‘>0’ for r > 0.

It is convenient to extend the previous definition in order to include the general situation,
where lens spaces may appear as exceptional contact divisors:

Definition 7.3. A trivialized radial contact fibration m : S x B2 — B? is Z,—equivariant
if the natural diagonal Z,—action on the fibration preserves the radial contact structure.

S?7—1 is generated by an %”frotation along the Hopf fiber,

The action in the fiber sphere
whereas the action in the base B? is the standard %’Lrotation in the disk. They preserve

respectively the standard contact structure in S?*~! and the 1-form df in the disk. Hence,
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the fibration becomes equivariant if the function H is preserved by the action.

Topologically it is fairly straightforward that the blow—up operations we are performing are
tantamount to a priori different fillings of the fibration over an annulus to form a manifold
lying over the disk — this being always considered up to a finite action Z,, for lens spaces
fillings. The transition from S' x B?" to B? x S?"~! can be understood in these terms: both
fibrations over the annulus —produced by restricting to r € (0.5,1)— are filled in the origin
with a circle and S?"~! respectively. In the transverse loop case it will be enough to use the
following

Lemma 7.4. Let V be a manifold with contact structures § and &,. Assume that there are
two smoothly isotopic diffeomorphisms

fo:V—FxB?and f, : V — F x B,

which are contactamorphz’smﬂ for & and & respectively. Let the two fibrations be radial
contact fibrations with common contact fiber F' and satisfying that the diffeomorphism

fiofo': Fx B> — FxB?

is the identity close to the boundary. Then, the contact structures & are £ are isotopic.

Further, if the fiber is F = S?"~1 and the contact fibrations are Zq—equivariant, the contact
structures are isotopic through Z,—equivariant contactomorphisms.

Proof. This can be reduced to the setup with a fibration F' x B? with two different radial
contact structures

ay = ap+ Hydb,

o1 = ap+ Hido,
such that the Hamiltonians Hy and H; coincide close to the boundary. In that setting, we
just need to construct a path of functions H; : F x B2 — R connecting them, relative to

the boundary, satisfying the contact equation and the condition H; = O(r?). But this is
possible since the space of such functions is convex.

The argument still works in the equivariant case: the only sentence to be added is that the
space of equivariant Hamiltonians is also convex. O

Thus, to conclude uniqueness we study the contact topology of the different blow—up con-
structions and ensure that the lemma applies.

Proof of Theorem Let us describe the common model fibration that underlies the three
constructions in this case. Consider a standard contact neighbourhood St x (0,2) x S?"~1 of
the given fixed loop and the morphism
Glap) : (S % (0,2) x §71)  — S x(0,2) x §2!
@,r,z) — (ab,r, e2mb9z).

It does generalize the diffeomorphism provided by equation that reflects the case a = 1.
If a is greater than 1, it becomes a a : 1 covering. The covering transformation is provided
by Z, acting through:

Za x (ST x (0,2) x $*»71)  — (S? x (0,2) x $*»71)

(l, (9,7",1?)) N (277[ +0,r, eZm’bl/ap> ,

a

3A priori, not necessarily contact isotopic.
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which is free as long as (a,b) = 1. To understand the change in the contact structure, note
that the pull-back of the standard contact form 7 = df — r2ayq is given by

A= Gy = (=r?) - [(b— ar™)df + aga).

Denote by Ry = (%)l/ ? the critical radius where the distribution becomes horizontal. In
these coordinates, for any fixed small € > 0, the projection onto the first two factors

7S x (Ry+¢,2) x S 1 — S x (Ry +¢,2)

provides a radial contact fibration on the annulus and since the function (ar™* —b) is strictly
positive in (Ry+¢,2), it can be extended to the interior of the disk to a Z,—equivariant radial
contact fibration. In order to glue back the model to the manifold we should quotient the
equivariant contact fibration by Z,, this allows us to use the map ¢, to insert the model
back into the manifold.

2

It is thus left to verify that the three blow—up procedures provide examples of such an ex-
tension for particular values of (a,b). Then Lemma will apply to provide the uniqueness
of the constructions. Note that the contact surgery blow—up construction is by definition a
radial contact fibration, with a = 1, as shown in Section [d] Let us study the two remaining
cases.

To understand the proof in Section [5| let us proceed backwards and instead of applying the
Boothby-Wang construction, we produce a contact structure and then quotient the resulting
contact manifold by the Reeb S'-action to study whether it is the correct object. Once the
coordinate change ¢, ;) is performed, the Reeb vector field dp becomes

1
¢>(ka,b) (89) = a
This vector field extends to the interior of the disk fibration and so we may quotient the
resulting manifold B? x S?”~1. We obtain the blown—up symplectic ball B%" as its quotient.
We can further quotient by the free Z,—action to obtain a non—trivial fibration over the disk

B2. This proves that a suitable choice of connection leads to an equivariant contact fibration.

(Op — bRstq) -

There are other choices of connection though. From the principal bundle point of view, a
radial contact fibration over the annulus S' x (0, 2) corresponds to a connection on

32 % S2n71 SN EQTL
Certainly, after Proposition the contact structure is fixed with the choice of a connec-
tion. Note that the space of connections is affine and thus, after Gray’s stability theorem,

the resulting contact structures are contact isotopic for different choices of connections. In
conclusion, this second model also provides an extension of the model fibration.

We describe the third procedure also beginning with the resulting contact manifold and
giving the pull-back of the action. This contact cut construction is also an equivariant radial
contact fibration since the pull-back of the vector field generating the S'-action, that is

X = ady — bRst4,

is expressed as ¢>(*a b)X = Oy after the coordinate change. There, the contact cut is just an
equivariant radial contact fibration, see the proof of Theorem 2.11 in [Lel]. O

Remark 7.5. Using Lemma[7.]], we can show that the contact blow-up is unique up to the
choice of a trivializing chart of the neighbourhood of the transverse loop. In order to prove
the uniqueness of the blow—up along transverse loops, we would need to study the space of
isocontact embeddings of the contact manifold S* x B?™ in M. It is probably false that it is
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connected, which is the requirement needed to ensure the uniqueness of the blow—up once the
parameters a,b are fized.
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