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Abstract
Pristine tin telluride (SnTe)with a similar electronic structure to PbTe shows inferior thermoelectric
performance owing to high p-type hole concentration (1021 cm−3), high lattice thermal conductivity,
κlatt (∼2.8WmK−1 at room temperature) and large energy gap between light and heavy hole valence
bands. Interestingly, 30mol% substitution of lead in SnTe decreases the excess hole carrier
concentration and lattice thermal conductivity (∼0.67Wm−1K−1 at 300 K) significantly. Here, we
report the promising thermoelectric performance in Sn0.70Pb0.30Te by enhancing the Seebeck
coefficient via the co-adjuvant effect of resonant level formation and valence band convergence.We
obtain a Seebeck coefficient value of∼141 μVK−1 at 300 K,which further increases to∼260 μVK−1 at
708 K for Sn0.70Pb0.30Te—3%Cd and 0.50% In sample. This is one of the highest S values for SnTe
based system, to the best of our knowledge. In andCd have discrete but complementary roles to
augment the Seebeck coefficient value of Sn0.70Pb0.30Tewhere In acts as a resonant dopant andCd
serves as valence band convergent, respectively, as demonstrated by thewell-knownPisarenko plot of
SnTe. Finally, we have achieved amaximum thermoelectric figure ofmerit, zT, of∼0.82 at 654 K for
Sn0.70Pb0.30Te—3%Cd and 0.25% In sample.

Introduction

Thermoelectric (TE) technology has attracted attention recently as they are able to convert waste heat directly
into electricity. The efficiency of TEmaterials is dependent upon the delicate concert of adversely
interdependent parameters and is quantified in termof a dimensionless figure ofmerit (zT), defined as

s
=

k + k
z

S
T T

2

el latt

Where S is Seebeck coefficient,σ is electrical conductivity, κel is electrical thermal conductivity, κlatt is lattice
thermal conductivity andT is absolute temperature [1–9]. These threemutually interdependent parameters
such asσ, S and κel provide hindrance in the pursuit of higher zT in a singlematerial [1, 2]. The Last few decades
havewitnessed a significant enhancement of thermoelectric performance either by enhancing the Seebeck
coefficient viamanipulating the electronic band structure (band convergence or generation of the resonant level
near Fermi level) [10–14] and/or reducing the thermal conductivity (lattice) by engineering phonon scattering
sources [15–18].

PbTe is considered as an efficient thermoelectricmaterial among IV–VI family formid-temperature power
generation applications [10, 13, 16]. However, pristine SnTewith a similar electronic structure to PbTe is not so
popular as thermoelectricmaterial because of its poor thermoelectric performance [5, 19]. This can be attributed
to its high carrier concentration (1021 cm−3), resulting from intrinsic Sn vacancy and large energy separation
between light and heavy hole valence bands (∼0.3–0.4 eV) than that of PbTe (∼0.18 eV)which inhibit the
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contribution of heavy hole valence band in the electrical transport and results low Seebeck coefficient [5, 16,
19–22].Manipulation of electronic structure is an effective approach to improve the thermoelectric
performance of SnTe by enhancing the Seebeck coefficient [5, 11, 12, 19, 23, 24]. Previously, Ren and coworkers
revealed that indium (In) acts as a resonant dopant in SnTe and enhances the Seebeck coefficient significantly
near room temperature [14]. Tan et al demonstrated that addition of Cd in SnTe decreases the energy gap
between two valence bands and improves its Seebeck coefficient [23].

Moreover, pristine SnTe showsκlatt of∼2.8Wm−1K−1 which is notably higher compare to its theoretical
limit ofminimum lattice thermal conductivity (κmin∼0.5Wm−1K−1) at 300 K [18]. However, several
approaches have been endeavored to reduce the κlatt of SnTe based alloys to enhance the thermoelectric
performance such as entropy engineering via introduction ofmulti principle element alloying [25], addition of
nanoprecipitates of CdSe/HgTe [23, 26], encapsulation of layered intergrowth compound inmatrix[18].
Recently, we have effectively reduced theκlatt to∼0.67Wm−1K−1 in Sn1−xGexTe by introducing the
ferroelectric instability concept in the systemwithout degrading the electrical transport [27]. In our previous
work, we have shown that substitution of 30 mol%of Pb in SnTe effectively reduced the excess hole carrier
concentration of SnTe and lattice thermal conductivity to∼0.67Wm−1K−1 at 300 K due to the enhanced solid
solution point defect scattering [28].Motivated by all these results, here, we thought to study the effect of co-
substitution of In andCd in Sn0.70Pb0.30Te sample, whichmay improve the S values over a broad temperature
range through the co-adjuvant effect of the resonance level formation and valence band convergence.

Herein, we demonstrate the promising thermoelectric performance of Sn0.70Pb0.30Te sample by
enhancing its Seebeck coefficient via the co-adjuvant effect of formation of the resonance level by In doping
and valence band convergence enables by Cd doping. Co-doping of In and Cd increases the Seebeck
coefficient of Sn0.70Pb0.30Te sample significantly throughout themeasured temperature range (300–710 K)
compared to that of singly doped (In andCd) Sn0.70Pb0.30Te samples.We have attained a Seebeck coefficient
value of∼141 μV K−1 at 300 K, which further increases to 260 μV K−1 at 708 K for Sn0.70Pb0.30Te—3%Cd
and 0.50% In sample. As a result, amaximum zT of∼0.82 at 654 K for Sn0.70Pb0.30Te—3%Cd and 0.25% In
sample which is higher compared to pristine SnTe and undoped Sn0.70Pb0.30Te samples.

Results and discussion

The balance between the resonant level and valence band convergence is necessary to optimize the
thermoelectric performance of the Sn0.70Pb0.30Te system. Band convergence always requires relative high
doping concentration tomanipulate band dispersion in k-space [29]. In this work, we select Cd as the valence
band convergent. The effect of band convergencewill be stronger if the concentration of Cd is high [29].
Previous results confirm that the solubility of Cd is only 3 mol% in SnTe [23, 29]. Thuswe fix the concentration
of Cd is 3 mol% in the present work and then varies the concentration of resonant dopant, In. The resonant state
is the deformation of the density of states (DOS)near Fermi level, and it reduces electrical conductivity
significantly due to the reduction of carriermobility at higher doping concentration [29]. Therefore, a lower
concentration of resonant dopant and a higher concentration of band convergence dopant are always desired.
Thus, the amount of In is varied fromx=0 to x=0.50 mol%.

First, we have synthesized high quality crystalline ingots of Sn0.70Pb0.30Te—x%Cd and y% In (x=0,
y=0; x=3, y=0.05, 0.25, 0.50) samples by vacuum sealed tubemelting reaction (Details inmethods,
supporting information, SI). Powder x-ray diffraction (PXRD) patterns of Sn0.70Pb0.30Te—x%Cd and y% In
(x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples are presented infigures 1 and S1 available online at
stacks.iop.org/MRX/6/104010/mmedia (zoomed version). The patterns confirm the formation of single-
phasematerials which crystallize in rock-salt structure (space group Fm-3m).

The temperature variations of electrical conductivity,σ, of Sn0.70Pb0.30Te—x%Cd and y% In (x=0,
y=0; x=3, y=0.05, 0.25, 0.50) samples are shown infigure 2(a). Theσ values for all the samples decrease
with increasing temperature, like a degenerate semiconductor. Substitution of 3 mol%Cd reduces theσ from
∼4260 S cm−1 for Sn0.70Pb0.30Te to∼2500 S cm−1 for Sn0.67Cd0.03Pb0.30Te sample at 300 K (figures 2(a) and
S2(a), SI). This confirms that the tendency of formation of Sn vacancy decreases withCd substitution and
reduces the hole carrier concentrations (table 1). Substitution of indium in Sn0.70Pb0.30Te—3%Cd sample
further decreases the electrical conductivity owing to the significant reduction in carriermobility due to
resonant scattering, resulting from In doping (see table 1). Typically,σ of Sn0.70Pb0.30Te sample is to be
∼5471 S cm−1 at 300 K,which further decreases to∼ 620 S cm−1 at∼708 K. At room temperature,
Sn0.70Pb0.30Te—3%Cd and 0.25% In sample exhibits aσ value of∼773 S cm−1 and reduces to∼264 S cm−1

at 708 K.
To determine the carrier concentration of Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0; x=3,

y=0.05, 0.25, 0.50) samples, Hallmeasurements were carried out (table 1). At room temperature, Hall
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coefficients, RH for all the samples are positive, indicating p-type conduction. Carrier concentration of undoped
Sn0.70Pb0.30Te sample is∼8×1019 cm−3. Substitution of 3 mol%Cddecreases the carrier concentration of
Sn0.70Pb0.30Te sample due to the decreasing of Sn vacancies. The carrier concentration of Sn0.70Pb0.30Te—3%
Cd and y% In samples decrease furtherwith increasing In concentration (table 1). Notably, Sn0.70Pb0.30Te—3%
Cd and y% In samples exhibit significantly low carriermobility, resulting from resonant carrier scattering
(table 1).

The temperature variations of Seebeck coefficient, S, of Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0;
x=3, y=0.05, 0.25, 0.50), controlled 3%Cddoped Sn0.70Pb0.30Te and 0.25% In doped Sn0.70Pb0.30Te
samples are shown infigure 2(b) and S2(b), SI, respectively. Seebeck coefficient values for all the samples are
positive which are consistent with ourHall coefficient data. Interestingly, for In andCd co-doped Sn0.70Pb0.30Te
samples exhibit higher Seebeck coefficient value throughout themeasured temperature range (300–710 K)
compared to that of controlled In orCd single doped Sn0.70Pb0.30Te samples (figure S2(b), SI). Typically, the
Seebeck coefficient value of Sn0.70Pb0.30Te—3%Cd and 0.50% In sample is∼140 μV K−1 at 300 K and further
increases to∼260 μV K−1 at 708 K (figures 2(b), S3, SI). Thus, the synergistic effect of In andCd co-doping in
Sn0.70Pb0.30Te is responsible for the observed notable augmentation in the Seebeck coefficient. At room
temperature, highest Seebeck coefficient value is achieved in the present Sn0.70Pb0.30Te—3%Cd and 0.50% In
samplewhich is higher than that of state-of-art SnTe basedmaterials, to the best of our awareness [11, 12, 23–29,
31, 32].

To gain further insight into theorigin of high Seebeck coefficient,wehave plotted S values of
Sn0.70Pb0.30Te—x%Cdand y% In (x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples as a functionofp and
comparedwith the renownedPisarenko line of SnTe (figure 2(c)) at 300 K [14]. Controlled Indoped sample
exhibits higher S value compared to theoretical Pisarenko linedue to the formation of resonance level near the
valence bandof Sn0.70Pb0.30Te similar to previously reported In doped SnTe and Indoped Sn0.70Pb0.30Te sample
[14, 28]. ControlledCddoped Sn0.70Pb0.30Te sample shows a slightly higher Seebeck value compared to
Pisarenko line, which is attributed to the effective valence band convergence. Interestingly,Cd and In co-doped
Sn0.70Pb0.30Te samples show remarkably higher Seebeck coefficient compared to that of singly doped (In andCd)
Sn0.70Pb0.30Te samples. This confirms that In andCdhave distinct but complementary role to enhance the Seebeck
coefficient, where In forms resonant level near valence band andCd enables valence band convergence
synergistically.

The temperature variations of power factor, S2σ, of Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0;
x=3, y=0.05, 0.25, 0.50) samples are shown infigure 2(d). Typically, the Sn0.70Pb0.30Te—3%Cd and 0.25%
In sample exhibits an S2σ value of∼9.8μWcm−1 K−2 at 300 K,which increases further to∼ 15.9μWcm−1 K−2

at 654 K.Co-substitution of In andCd increases the Seebeck value in Sn0.70Pb0.30Te but no improvement in S2σ
value is observed owing to the significant decrease in electrical conductivity andmobility.

The temperature variations of total thermal conductivity, κtotal, of Sn0.70Pb0.30Te—x%Cd and y% In
(x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples are shown in figure 3(a). Co-substitution of In andCd
decreases the κtotal value of Sn0.70Pb0.30Te sample. At 300 K,κtotal value reduces from4.62Wm−1K−1 for
Sn0.70Pb0.30Te to 1.54Wm−1K−1 for Sn0.70Pb0.30Te—3%Cd and 0.25% In sample.

Figure 1.Powder XRDpatterns of SnTe and Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples.
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The noteworthy reduction in κtotal can be ascribed to the decrease in electrical thermal conductivity (κel)
(figure 3(b)). The κel values for Sn0.70Pb0.30Te—3%Cd and y% In (y=0.05, 0.25 and 0.50) samples are
significantly lower compared to that of undoped Sn0.70Pb0.30Te, which is due to the considerably lower electrical
conductivity for co-doped samples than that of undoped Sn0.70Pb0.30Te sample (figure 2(a)). The κel values were
calculated by usingWiedemann–Franz relation, κel=LσT,whereσ ismeasured electrical conductivity and L is
calculated Lorenz number from reduced Fermi energy, which is acquired from thefitting of the temperature
dependent S value [11, 12]. Typically, Sn0.70Pb0.30Te—3%Cd and 0.25% In sample exhibits κel value of
∼0.43Wm−1K−1 at 300 K and further reduces to∼0.30Wm−1K−1 at 708 K. The lattice thermal conductivity,

Figure 2.Temperature variations of (a) electrical conductivity (σ) and (b) Seebeck coefficient (S) of Sn0.70Pb0.30Te—x%Cd and y% In
(x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples. (c) Seebeck coefficient (S) of Sn0.70Pb0.30Te—x%Cd and y% In samples as a
function of carrier concentration (p) at room temperature. For comparison, experimental data of un-doped Sn0.70Pb0.30Te (present
work), controlled Cd doped and In doped Sn0.70Pb0.30Te (present work), previously reported In-Cd codoped SnTe [24], In-Ag
codoped SnTe [11], In-Mg codoped Sn0.70Pb0.30Te [28], undoped andCudoped SnTe are presented in (c) [14, 30]. (d)Temperature
variations of power factor (σS 2) of Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples.

Table 1.Room temperature carrier concentration (p) andmobility (μ) of Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0; x=3,
y=0.05, 0.25, 0.50), Sn0.70Pb0.30Te—3%Cd and Sn0.70Pb0.30Te—0.25% In samples.

Samples p (1019 cm−3) μ (cm2 V−1s−1)

Sn0.70Pb0.30Te 8 333

Sn0.70Pb0.30Te—3%Cd and 0.05% In 4.47 209

Sn0.70Pb0.30Te—3%Cd and 0.25% In 4.16 116

Sn0.70Pb0.30Te—3%Cd and 0.50% In 5.53 38

Sn0.70Pb0.30Te—3%Cd 4.86 321

Sn0.70Pb0.30Te—0.25% In 7.2 122
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κlatt was estimated after subtraction of electronic contribution from total thermal conductivity.
Sn0.70Pb0.30Te—3%Cd and 0.25% In sample shows κlatt value of 1.12Wm−1K−1 at 300 K and decreases to
1.06Wm−1K−1 at 708 K (figure S3, SI).Mentionmust bemade that κlatt values for Sn0.70Pb0.30Te—3%Cd and
y% In (y=0.05, 0.25 and 0.50) samples do not follow any systematic trendwith dopant concentrationwhich is
similar with previously reported Ag-In co-doped SnTe and In-Mg co-doped Sn0.70Pb0.30Te samples [11, 28].

The temperature variations of thermoelectricfigure ofmerit, zT, of Sn0.70Pb0.30Te—x%Cd and y% In
(x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples are shown in figure 4. Sn0.70Pb0.30Te—3%Cd and 0.25% In
sample exhibits the highest zT of∼0.82 at 654 Kwhich is higher than undoped controlled Sn0.70Pb0.30Te sample
(∼0.60 at 708 K).

Conclusions

Wehave prepared crystalline ingots of In andCd codoped Sn0.70Pb0.30Te samples via vacuum-sealed tube
melting reaction. Sn0.70Pb0.30Te sample exhibits κlatt of∼0.67Wm−1K−1 at 300which is close to the κmin of
SnTe (∼0.50Wm−1K−1) due to the enhanced solid solution point defect scattering. Co-substitution of In and
Cd increases the Seebeck coefficient of Sn0.70Pb0.30Te sample significantly over awide range of temperatures
(300–710 K) compared to that of singly doped (In andCd) Sn0.70Pb0.30Te samples due to the co-adjuvant effect
of resonance level formation near Fermi level and effective valence band convergence. At room temperature,
highest Seebeck coefficient value has been realized in the present Sn0.70Pb0.30Te—3%Cd and 0.50% In sample
(∼141 μV K−1)which is higher compared to that of state-of-the-art SnTe basedmaterials. AmaximumzTof

Figure 3.Temperature variations of (a) total thermal conductivity (κtotal) and (b) electrical thermal conductivity (κel) of Sn0.70Pb0.30Te
—x%Cd and y% In (x=0, y=0; x=3, y=0.05, 0.25, 0.50) samples.

Figure 4.Temperature variations of thermoelectricfigure ofmerit (zT) of Sn0.70Pb0.30Te—x%Cd and y% In (x=0, y=0; x=3,
y=0.05, 0.25, 0.50) samples.
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∼0.82 is observed for Sn0.70Pb0.30Te—3%Cd and 0.25% In sample at 654 Kwhich is higher than that of pristine
SnTe and controlled Sn0.70Pb0.30Te samples. Thermoelectric performance of Sn0.70Pb0.30Te sample can be
further improved by engineering phonon scattering centers via nanostructuring or all-scale hierarchical
architecture.
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