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Abstract

Online alignment in machine translation refers
to the task of aligning a target word to a
source word when the target sequence has only
been partially decoded. Good online align-
ments facilitate important applications such as
lexically constrained translation where user-
defined dictionaries are used to inject lexical
constraints into the translation model. We
propose a novel posterior alignment technique
that is truly online in its execution and su-
perior in terms of alignment error rates com-
pared to existing methods. Our proposed in-
ference technique jointly considers alignment
and token probabilities in a principled man-
ner and can be seamlessly integrated within
existing constrained beam-search decoding al-
gorithms. On five language pairs, including
two distant language pairs, we achieve con-
sistent drop in alignment error rates. When
deployed on seven lexically constrained trans-
lation tasks, we achieve significant improve-
ments in BLEU specifically around the con-
strained positions.

1 Introduction

Online alignment seeks to align a target word to a
source word at the decoding step when the word
is output in an auto-regressive neural translation
model (Kalchbrenner and Blunsom, 2013; Cho
et al., 2014; Sutskever et al., 2014). This is un-
like the more popular offline alignment task that
uses the entire target sentence (Och and Ney, 2003;
Jalili Sabet et al., 2020; Dou and Neubig, 2021).
An important application of online alignment is
lexically constrained translation which allows in-
jection of domain-specific terminology and other
phrasal constraints during decoding (Hasler et al.,
2018; Hokamp and Liu, 2017; Alkhouli et al., 2018;
Crego et al., 2016). Other applications include
preservation of markups between the source and
target (Miiller, 2017), and supporting source word
edits in summarization (Shen et al., 2019). These

applications need to infer the specific source token
which aligns with output token. Thus, alignment
and translation is to be done simultaneously.

Existing online alignment methods can be cate-
gorized into Prior and Posterior alignment methods.
Prior alignment methods (Garg et al., 2019; Song
et al., 2020) extract alignment based on the atten-
tion at time step ¢ when outputting token y;. The at-
tention probabilities at time-step ¢ are conditioned
on tokens output before time ¢. Thus, the alignment
is estimated prior to observing y;. Naturally, the
quality of alignment can be improved if we condi-
tion on the target token 7; (Shankar and Sarawagi,
2019). This motivated Chen et al. (2020) to propose
a posterior alignment method where alignment is
calculated from the attention probabilities at the
next decoder step ¢ + 1. While alignment qual-
ity improved as a result, their method is not truly
online since it does not generate alignment syn-
chronously with the token. The delay of one step
makes it difficult and cumbersome to incorporate
terminology constraints during beam decoding.

We propose a truly online posterior alignment
method that provides higher alignment accuracy
than existing online methods, while also being syn-
chronous. Because of that we can easily integrate
posterior alignment to improve lexicon-constrained
translation in state of the art constrained beam-
search algorithms such as VDBA (Hu et al., 2019).
Our method (Align-VDBA) presents a signifi-
cant departure from existing papers on alignment-
guided constrained translation (Chen et al., 2020;
Song et al., 2020) that employ a greedy algorithm
with poor constraint satisfaction rate (CSR). For
example, on a ja—en their CSR is 20 points lower
than ours. Moreover, the latter does not benefit
from larger beam sizes unlike VDBA-based meth-
ods that significantly improve with larger beam
widths. Compared to Chen et al. (2020), our
method improves average overall BLEU scores by
1.2 points and average BLEU scores around the



constrained span by up to 9 points. In the evalua-
tions performed in these earlier work, VDBA was
not allocated the slightly higher beam size needed
to pro-actively enforce constraints without com-
promising BLEU. Compared to Hu et al. (2019)
(VDBA), this paper’s contributions include online
alignments and their use in more fluent constraint
placement and efficient allocation of beams.

Contributions

* A truly online posterior alignment method that
integrates into existing NMT sytems via a train-
able light-weight module.

» Higher online alignment accuracy on five lan-
guage pairs including two distant language pairs
where we improve over the best existing in seven
out of ten translation models.

* Principled method of modifying VDBA to in-
corporate posterior alignment probabilities in
lexically-constrained decoding. VDBA enforces
constraints ignoring source alignments, our
change (Align-VDBA), leads to more fluent con-
straint placement and significant BLEU increase
particularly for smaller beams.

» Establishing that VDBA-based pro-active
constrained inference should be preferred
over prevailing greedy alignment-guided
inference (Chen et al., 2021; Song et al., 2020).
Further, VDBA and our Align-VDBA inference
with beam size 10 provide 1.2 BLEU increase
over these methods with the same beam size.

2 Posterior Online Alignment

Given a sentence X = z1, ..., xg in the source lan-
guage and a sentence y = y1, . . ., Y in the target
language, an alignment A between the word strings
is a subset of the Cartesian product of the word po-
sitions (Brown et al., 1993; Och and Ney, 2003):
AC{(st):s=1,...,8t=1,...,T} such
that the aligned words can be considered transla-
tions of each other. An online alignment at time-
step t commits on alignment of the ¢ output token
conditioned only on x and y«; = y1,¥2, - - Yr—1.
Additionally, if token y; is also available we call
it a posterior online alignment. We seek to embed
online alignment with existing NMT systems. We
will first briefly describe the architecture of state
of the art NMT systems. We will then elaborate
on how alignments are computed from attention
distributions in prior work and highlight some limi-
tations, before describing our proposed approach.

2.1 Background

Transformers (Vaswani et al., 2017) adopt the pop-
ular encoder-decoder paradigm used for sequence-
to-sequence modeling (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015). The en-
coder and decoder are both multi-layered networks
with each layer consisting of a multi-headed self-
attention and a feedforward module. The decoder
uses multi-headed attention to encoder states. We
elaborate on this mechanism next since it plays an
important role in alignments.

2.1.1 Decoder-Encoder Attention in NMTs

The encoder transforms the S input tokens into
a sequence of token representations H € R9*4,
Each decoder layer (indexed by ¢ € {1,...,L})
computes multi-head attention over H by aggregat-
ing outputs from a set of 7 independent attention
heads. The attention output from a single head
n € {1,...,n} in decoder layer ¢ is computed
as follows. Let the output of the self-attention
sub-layer in decoder layer ¢ at the t™ target to-
ken be denoted as gf. Using three projection ma-
trices Wé”, Wf}", Wﬁgn € R¥dn the query
vector qf’" € R4 and key and value matrices,
K" € RS%4n and V" € R9%4n  are computed
using the following projections: q." = nggn,
K" = HWY", and VA" = HW{".! These are
used to calculate the attention output from head n,
ZE" = P(al™|x, y <) V™, where:

ln In
In _ q; (K ' )T
P(a;"|x,y<t) = softmax < 7 ) (1)
For brevity, the conditioning on x, y «; is dropped
and P(al™) is used to refer to P(al”|x,y<¢) in
the following sections.

Finally, the multi-head attention output is given
by [Ze', ..., ZE"TWO where [ | denotes the
column-wise concatenation of matrices and W¢ ¢
R%*4 is an output projection matrix.

2.1.2 Alignments from Attention

Several prior work have proposed to extract
word alignments from the above attention prob-
abilities. For example Garg et al. (2019) pro-
pose a simple method called NAIVEATT that
aligns a source word to the t target token using

'd,, is typically set to % so that a multi-head attention layer
does not introduce more parameters compared to a single head
attention layer.



1
argmax; p Z P(af:;l X,y<¢) where j indexes

n=1

the source tokens. In NAIVEATT, we note that the
attention probabilities P(af:;‘\x, y<t) at decoding
step t are not conditioned on the current output to-
ken y;. Alignment quality would benefit from con-
ditioning on y; as well. This observation prompted
Chen et al. (2020) to extract alignment of token y;
using attention P(af:?\x, y<¢) computed at time
step ¢ + 1. The asynchronicity inherent to this shift-
by-one approach (SHIFTATT) makes it difficult
and more computationally expensive to incorporate
lexical constraints during beam decoding.

2.2 Our Proposed Method: POSTALN

We propose POSTALN that produces posterior
alignments synchronously with the output tokens,
while being more computationally efficient com-
pared to previous approaches like SHIFTATT. We
incorporate a lightweight alignment module to con-
vert prior attention to posterior alignments in the
same decoding step as the output. Figure 1 illus-
trates how this alignment module fits within the
standard Transformer architecture.

The alignment module is placed at the penulti-
mate decoder layer £ = L — 1 and takes as input
1) the encoder output H, 2) the output of the self-
attention sub-layer of decoder layer /, gf and, 3)
the embedding of the decoded token e(y;). Like
in standard attention it projects H to obtain a key
matrix, but to obtain the query matrix it uses both
decoder state g/ (that summarizes y ;) and e(y;)

to compute the posterior alignment P(aP*") as:

1 n n K» T
P(afOS[) == Z softmax <qt’p05t( pOSt) ) ,
N n=1 \/8

q?,post = [gf7 e(yt)]wa,postv K;)lost = HW?(,post
Here W(, | € R*n and Wi e Rn,

This computation is synchronous with produc-
ing the target token g, thus making it compatible
with beam search decoding (as elaborated further
in Section 3). It also accrues minimal computa-
tional overhead since P(al™™") is defined using H
and gtL ~1, that are both already cached during a
standard decoding pass. Note that if the query vec-
tor gy’ pos 18 computed using only gtL ~1, without
concatenating e(y; ), then we get prior alignments
that we refer to as PRIORATT. In our experiments,
we explicitly compare PRIORATT with POSTALN
to show the benefits of using y; in deriving align-
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Figure 1: Our alignment module is an encoder-

decoder attention sub-layer, similar to the existing
cross-attention sub-layer. It takes as inputs the encoder
output H as the key, and the concatenation of the output
of the previous self-attention layer g/ and the currently

decoded token y; as the query, and outputs posterior

alignment probabilities aP**.

ments while keeping the rest of the architecture
intact.

Training Our posterior alignment sub-layer is
trained using alignment supervision, while freez-
ing the rest of the translation model parameters.
Specifically, we train a total of 3d? additional pa-
rameters across the matrices Wi o and W¢§ oo
Since gold alignments are very tedious and expen-
sive to create for large training datasets, alignment
labels are typically obtained using existing tech-
niques. We use bidirectional symmetrized SHIF-
TATT alignments, denoted by S; ; that refers to an
alignment between the i target word and the j®
source word, as reference labels to train our align-
ment sub-layer. Then the objective (following Garg
et al. (2019)) can be defined as:

T S
1
. pOSt i
o HEX E E S;jlog (P(am. \x,y§2)>

n
Q,post? K ,post i=1 J:1

Next, we demonstrate the role of posterior online
alignments on an important downstream task.

3 Lexicon Constrained Translation

In the lexicon constrained translation task, for
each to-be-translated sentence x, we are given a
set of source text spans and the corresponding
target tokens in the translation. A constraint C;
comprises a pair (Cf,CJy) where C7 = (pj,pj +



1...,p; + ¢;) indicates input token positions, and
ci = (v, 9. .. ,yfﬁj) denote target tokens that
are translations of the input tokens xp, ... xp, 1¢;.
For the output tokens we do not know their po-
sitions in the target sentence. The different con-
straints are non-overlapping and each is expected
to be used exactly once. The goal is to translate the
given sentence x and satisfy as many constraints
inC = ;C; as possible while ensuring fluent
and correct translations. Since the constraints do
not specify target token position, it is natural to
use online alignments to guide when a particular
constraint is to be enforced.

3.1 Background: Constrained Decoding

Existing inference algorithms for incorporating lex-
icon constraints differ in how pro-actively they en-
force the constraints. A passive method is used in
Song et al. (2020) where constraints are enforced
only when the prior alignment is at a constrained
source span. Specifically, if at decoding step ¢,
i = argmax; P(ay) is present in some constraint
C}’ , the output token is fixed to the first token y{
from C;-y. Otherwise, the decoding proceeds as
usual. Also, if the translation of a constraint C; has
started, the same is completed (yg through y%j) for
the next m; — 1 decoding steps before resuming
unconstrained beam search. The pseudocode for
this method is provided in Appendix G.

For the posterior alignment methods of Chen
et al. (2020) this leads to a rather cumbersome in-
ference (Chen et al., 2021). First, at step ¢ they pre-
dict a token g, then start decoding step ¢ + 1 with
¢ as input to compute the posterior alignment from
attention at step ¢ + 1. If the maximum alignment
is to the constrained source span Cf they revise the

output token to be y{ from ij, but the output score
for further beam-search continues to be of ¢;. In
this process both the posterior alignment and token
probabilities are misrepresented since they are both
based on y; instead of the finally output token y{
The decoding step at ¢ + 1 needs to be restarted
after the revision. The overall algorithm continues
to be normal beam-search, which implies that the
constraints are not enforced pro-actively.

Many prior methods have proposed more pro-
active methods of enforcing constraints, including
the Grid Beam Search (GBA, Hokamp and Liu
(2017)), Dynamic Beam Allocation (DBA, Post
and Vilar (2018)) and Vectorized Dynamic Beam
Allocation (VDBA, Hu et al. (2019)). The latest

of these, VDBA, is efficient and available in pub-
lic NMT systems (Ott et al., 2019; Hieber et al.,
2020). Here multiple banks, each corresponding to
a particular number of completed constraints, are
maintained. At each decoding step, a hypothesis
can either start a new constraint and move to a new
bank or continue in the same bank (either by not
starting a constraint or progressing on a constraint
mid-completion). This allows them to achieve near
100% enforcement. However, VDBA enforces the
constraints by considering only the target tokens
of the lexicon and totally ignores the alignment of
these tokens to the source span. This could lead
to constraints being placed at unnatural locations
leading to loss of fluency. Examples appears in
Table 4 where we find that VDBA just attaches the
constrained tokens at the end of the sentence.

3.2 Our Proposal: Align-VDBA

We modify VDBA with alignment probabilities to
better guide constraint placement. The score of a
constrained token is now the joint probability of
the token, and the probability of the token being
aligned with the corresponding constrained source
span. Formally, if the current token y; is a part of
the j™ constraint i.e. 3, € C;’, the generation prob-
ability of y;, P(y¢|x,y<¢) is scaled by multiplying
with the alignment probabilities of y; with C7, the
source span for constraint ¢. Thus, the updated
probability is given by:

P(ytacf‘xvy<t) = P(ytlxay<t) Z P(ag?rrs-l|x’ ySt)
reC?®
Token Prob 7
Src Align. Prob.

Joint Prob

(@3]
Py, C7|x,y<t) denotes the joint probability of
outputting the constrained token and the align-
ment being on the corresponding source span.
Since the supervision for the alignment proba-
bilities was noisy, we found it useful to recali-
brate the alignment distribution using a temper-
ature scale 7', so that the recalibrated probability is
o Pr(af?x, y<)T. We used T = 2 i.e., square-
root of the alignment probability.

Align-VDBA uses posterior alignment probabil-
ities to also improve the efficiency of DBA. Cur-
rently, DBA attempts beam allocation for each un-
met constraint since it has no way to discriminate.
In Align-VDBA we allocate only when the align-
ment probability is greater than a threshold. When
the beam size is small (say 5) this yields higher
accuracy due to more efficient beam utilization.



Algorithm 1 Align-VDBA: Modifications to DBA shown in blue. (Adapted from Post and Vilar (2018))

1: Inputs beam: K hypothesis in beam, scores: K x |Vr| matrix of scores where scores[k, y] denotes the score of k™

hypothesis extended with token y at this step, constraints: {(
: candidates < [(k, y, scores[k, y], beam[k].constraints.add(y)] for k, y in ARGMAX_K(scores)

forl1 <k < Kdo

alignPrOb «— Ecnnstraint_xs(y) POSTALN(k7 y)
if alignProb > threshold (= 0.1) then

w = ARGMAX(scores[k, :])

SS90 % NaUuE®wn

—

: newBeam < ALLOCATE(candidates, K)

for all y € V7 that are unmet constraints for beam[k] do

candidates.append( (k, w, scores[k, w], beam[k].constraints.add(w) ) )

c;.C))

> Go over current beam
> Expand new constraints
> Modification in blue (Eqn (2))

candidates.append( (k, y, scores[k, y] x alignProb), beam[k].constraints.add(y) ) )

> Original DBA Alg.

> Best single word

We present the pseudocode of our modification
(steps 5, 6 and 7, in blue) to DBA in Algorithm 1.
Other details of the algorithm including the han-
dling of constraints and the allocation steps (step
11) are involved and we refer the reader to Post
and Vilar (2018) and Hu et al. (2019) to understand
these details. The point of this code is to show that
our proposed posterior alignment method can be
easily incorporated into these algorithms so as to
provide a more principled scoring of constrained
hypothesis in a beam than the ad hoc revision-based
method of Chen et al. (2021). Additionally, pos-
terior alignments lead to better placement of con-
straints than in the original VDBA algorithm.

4 Experiments

We first compare our proposed posterior online
alignment method on quality of alignment against
existing methods in Section 4.2, and in Section 4.3,
we demonstrate the impact of the improved align-
ment on the lexicon-constrained translation task.

4.1 Setup

We deploy the fairseq toolkit (Ott et al., 2019)
and use transformer_iwslt_de_en pre-
configured model for all our experiments. Other
configuration parameters include: Adam optimizer
with 81 = 0.9, B2 = 0.98, a learning rate of 5e—4
with 4000 warm-up steps, an inverse square root
schedule, weight decay of 1e—4, label smoothing
of 0.1, 0.3 probability dropout and a batch size of
4500 tokens. The transformer models are trained
for 50,000 iterations. Then, the alignment module
is trained for 10,000 iterations, keeping the other
model parameters fixed. A joint byte pair encoding
(BPE) is learned for the source and the target lan-
guages with 10k merge operation (Sennrich et al.,
2016) using subword-nmt.

All experiments were done on a single 11GB

de-en en-fr ro-en | en-hi ja-en
Training IOM 1L.IM 05M | 1L.6M 0.3M
Validation 994 1000 999 25 1166
Test 508 447 248 140 1235

Table 1: Number of sentence pairs for the five datasets
used. Note that gold alignments are available only for
a handful of sentence pairs in the test set.

Nvidia GeForce RTX 2080 Ti GPU on a machine
with 64 core Intel Xeon CPU and 755 GB memory.
The vanilla Transformer models take between 15
to 20 hours to train for different datasets. Starting
from the alignments extracted from these models,
the POSTALN alignment module trains in about 3
to 6 hours depending on the dataset.

4.2 Alignment Task

We evaluate online alignments on ten translation
tasks spanning five language pairs. Three of these
are popular in alignment papers (Zenkel et al.,
2019): German-English (de-en), English-French
(en-fr), Romanian-English (ro-en). These are all
European languages that follow the same subject-
verb-object (SVO) ordering. We also present re-
sults on two distant language pairs, English-Hindi
(en-hi) and English-Japanese (ja-en), that follow a
SOV word order which is different from the SVO
word order of English. Data statistics are shown in
Table 1 and details are in Appendix C.

Evaluation Method: For evaluating alignment
performance, it is necessary that the target sentence
is exactly the same as for which the gold alignments
are provided. Thus, for the alignment experiments,
we force the output token to be from the gold tar-
get and only infer the alignment. We then report
the Alignment Error Rate (AER) (Och and Ney,
2000) between the gold alignments and the pre-
dicted alignments for different methods. Though



& de-en en-fr ro-en en-hi ja-en
Method K de—en en—de | en—fr fr—en | ro—~en en—ro | en—hi hi—en | ja—en en—ja
Statistical Methods (Not Online)

GIZA++ (Och and Ney, 2003) | End 18.9 19.7 7.3 7.0 27.6 28.3 35.9 36.4 41.8 39.0
FastAlign (Dyer et al., 2013) End 28.4 32.0 16.4 15.9 33.8 355 - - - -
No Alignment Training
NAIVEATT (Garg et al., 2019) 0 324 40.0 24.0 31.2 37.3 332 49.1 53.8 62.2 63.5
SHIFTATT (Chen et al., 2020) +1 20.0 229 14.7 204 26.9 274 353 38.6 53.6 48.6
With Alignment Training
PRIORATT 0 234 25.8 14.0 16.6 29.3 27.2 36.4 35.1 52.7 50.9
SHIFTAET (Chen et al., 2020) +1 15.8 19.5 10.3 10.4 224 23.7 29.3 29.3 42.5 41.9
POSTALN [Ours] 0 15.5 19.5 9.9 10.4 21.8 23.2 28.7 28.9 41.2 422

Table 2: AER for de-en, en-fr, ro-en, en-hi, ja-en language pairs. “Delay" indicates the decoding step at which
the alignment of the target token is available. NAIVEATT, PRIORATT and POSTALN are truly online and output
alignment at the same time step (delay=0), while SHIFTATT and SHIFTAET output one decoding step later.

our focus is online alignment, for comparison to
previous works, we also report results on bidirec-
tional symmetrized alignments in Appendix D.

Methods compared: We compare our method
with both existing statistical alignment models,
namely GIZA++ (Och and Ney, 2003) and FastAl-
ign (Dyer et al., 2013), and recent Transformer-
based alignment methods of Garg et al. (2019)
(NAIVEATT) and Chen et al. (2020) (SHIFTATT
and SHIFTAET). Chen et al. (2020) also propose a
variant of SHIFTATT called SHIFTAET that delays
computations by one time-step as in SHIFTATT,
and additionally includes a learned attention sub-
layer to compute alignment probabilities. We also
present results on PRIORATT which is similar to
POSTALN but does not use y;.

Results: The alignment results are shown in Ta-
ble 2. First, AERs using statistical methods FastAl-
ign and GIZA++ are shown. Here, for fair compar-
ison, the IBM models used by GIZA++ are trained
on the same sub-word units as the Transformer
models and sub-word alignments are converted
to word level alignments for AER calculations.
(GIZA++ has remained a state-of-the-art alignment
technique and continues to be compared against.)
Next, we present alignment results for two vanilla
Transformer models - NATVEATT and SHIFTATT
- that do not train a separate alignment module. The
high AER of NAIVEATT shows that attention-as-is
is very distant from alignment but posterior atten-
tion is closer to alignments than prior. Next we look
at methods that train alignment-specific parameters:
PRIORATT, a prior attention method; SHIFTAET
and POSTALN, both posterior alignment methods.
We observe that with training even PRIORATT
has surpassed non-trained posterior. The posterior
attention methods outperform the prior attention

methods by a large margin, with an improvement
of 4.0 to 8.0 points. Within each group, the meth-
ods with a trained alignment module outperform
the ones without by a huge margin. POSTALN per-
forms better or matches the performance of SHIF-
TAET (achieving the lowest AER in nine out of
ten cases in Table 2) while avoiding the one-step
delay in alignment generation. Even on the distant
languages, POSTALN achieves significant reduc-
tions in error. For ja—en, we achieve a 1.3 AER
reduction compared to SHIFTAET which is not a
truly online method. Figure 2 shows an example
to illustrate the superior alignments of POSTALN
compared to NAIVEATT and PRIORATT.

4.3 Impact of POSTALN on
Lexicon-Constrained Translation

We next depict the impact of improved AERs from
our posterior alignment method on a downstream
lexicon-constrained translation task. Following pre-
vious work (Hokamp and Liu, 2017; Post and Vilar,
2018; Song et al., 2020; Chen et al., 2020, 2021),
we extract constraints using the gold alignments
and gold translations. Up to three constraints of
up to three words each are used for each sentence.
Spans correctly translated by a greedy decoding
are not selected as constraints.

Metrics: Following prior work (Song et al., 2020):
we report BLEU (Papineni et al., 2002), time to
translate all test sentences, and Constraint Satisfac-
tion Rate (CSR). and However, since it is trivial to
get 100% CSR by always copying, we report an-
other metric to evaluate the appropriateness of con-
straint placement: We call this measure BLEU-C
and compute it as the BLEU of the constraint (when
satisfied) and a window of three words around it.
All numbers are averages over five different sets of
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Figure 2: Alignments for de—en by NAIVEATT, PRIORATT, and POSTALN. Note that POSTALN is most similar

to Gold alignments in the last column.

de—en en—fr ro—en en—hi ja—en
Method BLEU-C CSR BLEU Time|BLEU-C CSR BLEU Time|BLEU-C CSR BLEU Time | BLEU-C CSR BLEU Time | BLEU-C CSR BLEU Time
No constraints 00 46 329 87 00 87 348 64 00 88 334 47 00 63 197 21 00 88 189 237
NAIVEATT 28.7 86.1 36.6 147 36.5 88.0 383 93 333923 365 99 225 884 236 27 15.1 759 202 315
PRIORATT 35.0 92.8 37.6 159 42.1 944 389 97 36.0 91.2 372 100 272 915 244 28 16.7 79.7 204 326
SHIFTATT 41.0 96.6 38.7 443 45.0 93.5 387 239 39.2 942 374 241 232 787 219 58 152 727 193 567
SHIFTAET 43.1 97.5 39.1 458 46.6 943 39.0 235 40.8 944 37.6 263 243 802 220 62 18.1 759 19.7 596
POSTALN 427 972 39.0 399 463 94.1 387 218 40.0 93.5 374 226 238 79.0 220 47 182 757 19.7 460
VDBA 44.5 989 385 293 51.9 985 395 160 43.1 99.1 379 165 29.8 923 245 49 243 956 21.6 494
Align-VDBA 44.5 98.6 38.6 357 529 984 39.7 189 44.1 989 38.1 203 305915 247 70 25.1 955 21.8 630

Table 3: Constrained translation results showing BLEU-C, CSR (Constraint Satisfaction Rate), BLEU scores and
total decoding time (in seconds) for the test set. Align-VDBA has the highest BLEU-C on all datasets.

randomly sampled constraint sets. The beam size
is set to ten by default; results for other beam sizes
appear in Appendix E.

Methods Compared: First we compare all the
alignment methods presented in Section 4.2 on the
constrained translation task using the alignment
based token-replacement algorithm of Song et al.
(2020) described in Section 3.1. Next, we present a
comparison between VBDA (Hu et al., 2019) and
our modification Align-VDBA.

Results: Table 3 shows that VDBA and our Align-
VDBA that pro-actively enforce constraints have a
much higher CSR and BLEU-C compared to the
other lazy constraint enforcement methods. For ex-
ample, for ja—en greedy methods can only achieve
a CSR of 76% compared to 96% of the VDBA-
based methods. In terms of overall BLEU too these
methods provide an average increase in BLEU of
1.2 and an average increase in BLEU-C of 5 points.
On average, Align-VDBA has a 0.7 point greater
BLEU-C compared to VDBA. It also has a greater
BLEU than VDBA on all the five datasets. In Ta-
ble 9 of Appendix we show that for smaller beam-
size of 5, the gap between Align-VDBA and VDBA
is even larger (2.1 points greater BLEU-C and 0.4
points greater BLEU).Table 4 lists some example
translations by VDBA vs Align-VDBA. We ob-
serve that VDBA places constraints at the end of
the translated sentence (e.g., “pusher”, “develop-

ment") unlike Align-VDBA. In some cases where
constraints contain frequent words (like of, the,
etc.), VDBA picks the token in the wrong posi-
tion to tack on the constraint (e.g., “strong backing
of", “of qualified") while Align-VDBA places the
constraint correctly.

Dataset — IATE.414 Wiktionary.727

Method (Beam Size) | | BLEU (A) CSR | BLEU (A) CSR
Baseline (5) 25.8 76.3 | 26.0 76.9
Train-by-app. (5) 26.0 (+0.2) 929 | 26.9 (+0.9) 90.7
Train-by-rep. (5) 26.0 (+0.2) 945|263 (+0.3) 934
No constraints (10) 29.7 77.0 | 29.9 72.4
SHIFTAET (10) 29.9 95.9 | 30.4 97.2
VDBA (10) 30.9 99.8 | 30.9 99.4
Align-VDBA (10) 30.9 (+1.2) 99.8 | 31.1 (+1.2) 99.5

Table 5: Constrained translation results on the two real
world constraints from Dinu et al. (2019).

Real World Constraints: We also evaluate on real
world constraints extracted from IATE and Wik-
tionary datasets by Dinu et al. (2019). Table 5
compares Align-VDBA with the soft-constraints
method of Dinu et al. (2019) that requires special
retraining to teach the model to copy constraints.
We reproduced the numbers from their paper in the
first three rows. Their baseline is almost 4 BLEU
points worse than ours since they used a smaller
NMT model, thus making running times incompa-
rable. When we compare the increment A in BLEU
over the respective baselines, Align-VDBA shows



Constraints (gesetz zur, law also), (dealer, pusher)

VDBA

Gold of course, if a drug addict becomes a pusher, then it is right and necessary that he should pay and answer before the law also.
certainly, if a drug addict becomes a dealer, it is right and necessary that he should be brought to justice before the law also pusher.

VDBA

Align-VDBA

Align-VDBA | certainly, if a drug addict becomes a pusher, then it is right and necessary that he should be brought to justice before the law also.
Constraints (von mehrheitsverfahren, of qualified)

Gold ... whether this is done on the basis of a vote or of consensus, and whether unanimity is required or some form of qualified majority.
VDBA ... whether this is done by means of qualified votes or consensus, and whether unanimity or form of majority procedure apply.
Align-VDBA | ... whether this is done by voting or consensus, and whether unanimity or form of qualified majority voting are valid.

Constraints (zustimmung der, strong backing of)

Gold ... which were adopted with the strong backing of the ppe group and the support of the socialist members.

VDBA ... which were then adopted with broad agreement from the ppe group and with the strong backing of the socialist members.
Align-VDBA | ... which were then adopted with strong backing of the ppe group and with the support of the socialist members.

Constraints (den usa, the usa), (sicherheitssystems an, security system that), (entwicklung, development)

Gold matters we regard as particularly important are improving the working conditions between the weu and the eu

and the development of a european security system that is not dependent on the usa .

we consider the usa ’s european security system to be particularly important in improving working conditions

between the weu and the eu and developing a european security system that is independent of the united states development .
we consider the development of the security system that is independent of the usa to be particularly important

in improving working conditions between the weu and the eu .

Table 4: Anecdotes showing constrained translations produced by VDBA vs. Align-VDBA.

much greater gains of +1.2 vs. their +0.5. Also,
Align-VDBA provides a larger CSR of 99.6 com-
pared to their 92. Results for other beam sizes and
other methods and metrics appear in Appendix F.

5 Related Work

Online Prior Alignment from NMTs: Zenkel
et al. (2019) find alignments using a single-head
attention submodule, optimized to predict the next
token. Garg et al. (2019) and Song et al. (2020)
supervise a single alignment head from the penul-
timate multi-head attention with prior alignments
from GIZA++ alignments or FastAlign. Bahar et al.
(2020) and Shankar et al. (2018) treat alignment
as a latent variable and impose a joint distribution
over token and alignment while supervising on the
token marginal of the joint distribution.

Online Posterior Alignment from NMTs:
Shankar and Sarawagi (2019) first identify the role
of posterior attention for more accurate alignment.
However, their NMT was a single-headed RNN.
Chen et al. (2020) implement posterior attention in
a multi-headed Transformer but they incur a delay
of one step between token output and alignment.
We are not aware of any prior work that extracts
truly online posterior alignment in modern NMTs.
Offline Alignment Systems: Several recent meth-
ods apply only in the offline setting: Zenkel et al.
(2020) extend an NMT with an alignment module;
Nagata et al. (2020) frame alignment as a question
answering task; and Jalili Sabet et al. (2020); Dou
and Neubig (2021) leverage contextual embeddings
from pretrained multilangual models.

Lexicon Constrained Translation: Hokamp and
Liu (2017) and Post and Vilar (2018); Hu et al.

(2019) modify beam search to ensure that tar-
get phrases from a given constrained lexicon are
present in the translation. These methods ignore
alignment with the source but ensure high success
rate for appearance of the target phrases in the con-
straint. Song et al. (2020) and Chen et al. (2021)
do consider source alignment but they do not en-
force constraints leading to lower CSR. Dinu et al.
(2019) and Lee et al. (2021) propose alternative
training strategies for constraints, whereas we fo-
cus on working with existing models. Recently,
non autoregressive methods have been proposed
for enforcing target constraints but they require that
the constraints are given in the order they appear in
the target translation (Susanto et al., 2020).

6 Conclusion

In this paper we proposed a simple modification to
NMT systems to obtain accurate online alignments.
The key idea that led to high alignment accuracy
was conditioning on the output token. Further, our
alignment module enables such conditioning to be
performed synchronously with token generation.
This property led us to Align-VDBA, a principled
decoding algorithm for lexically constrained trans-
lation based on joint distribution of target token
and source alignments.

Limitations: All existing methods for hard con-
strained inference, including ours, come with con-
siderable runtime overheads. Soft constrained
methods are not accurate enough.

Future work: Future work could try to increase
efficiency of constrained inference and handle other
forms of constraints including nested constraints.
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A Alignment Error Rate

Given gold alignments consisting of sure align-
ments S and possible alignments P, and the pre-
dicted alignments A, the Alignment Error Rate
(AER) is defined as (Och and Ney, 2000):

_ANPI+[ANS]
Al + S

Note that here S C P. Also note that since our
models are trained on sub-word units but gold align-
ments are over words, we need to convert align-
ments between word pieces to alignments between
words. A source word and target word are said to
be aligned if there exists an alignment link between
any of their respective word pieces.

AER =1

B BLEU-C

Given a reference sentence, a predicted translation
and a set of constraints, for each constraints, a seg-
ment of the sentence is chosen which contains the
constraint and window size words (if available) sur-
rounding the constraint words on either side. Such
segments, called spans, are collected for the refer-
ence and predicted sentences in the test and BLEU
is computed over these spans. If a constraint is not
satisfied in the prediction, the corresponding span
is considered to be the empty string. An example
is shown in Table 6. Table 7 shows how BLEU-C
varies as a function of varying window size for a
fixed English-French constraint set with beam size
set to 10.

Window Size — 2 3 4 5 6 7 8
No constraints 00 00 00 00 00 00 00
NAIVEATT 344 320 304 295 294 295 29.7
PRIORATT 415 387 364 351 349 350 352
SHIFTATT 449 415 389 373 364 362 36.0
SHIFTAET 47.0 432 404 387 380 376 374
POSTALN 46.4 427 39.8 38.0 37.1 369 36.6
VDBA 549 50.5 46.8 446 435 43.0 426
Align-VDBA 564 517 479 456 444 437 433

Table 7: BLEU-C vs Window Size

C Description of the Datasets

The European languages consist of parallel sen-
tences for three language pairs from the Europarl
Corpus and alignments from Mihalcea and Peder-
sen (2003), Och and Ney (2000), Vilar et al. (2006).
Following previous works (Ding et al., 2019; Chen
et al., 2020), the last 1000 sentences of the training
data are used as validation data.

For English-Hindi, we use the dataset from Mar-
tin et al. (2005) consisting of 3440 training sentence
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pairs, 25 validation and 90 test sentences with gold
alignments. Since training Transformers requires
much larger datasets, we augment the training set
with 1.6 million sentences from the IIT Bombay
Parallel Corpus (Kunchukuttan et al., 2018). We
also add the first 50 sentences from the dev set of
IIT Bombay Parallel Corpus with manually anno-
tated alignments to the test set giving a total of 140
test sentences.

For Japanese-English, we use The Kyoto Free
Translation Task (Neubig, 2011). It comprises
roughly 330K training, 1166 validation and 1235
test sentences. As with other datasets, gold align-
ments are available only for the test sentences. The
Japanese text is already segmented and we use it
without additional changes.

The real world constraints datasets of Dinu et al.
(2019) are extracted from the German-English
WMT newstest 2017 task with the IATE dataset
consisting of 414 sentences (451 constraints) and
the Wiktionary 727 sentences (879 constraints).
The constraints come from the IATE and Wik-
tionary termninology databases.

All datasets were processed using the scripts
provided by Zenkel et al. (2019) at https://
github.com/lilt/alignment—-scripts.
Computation of BLEU and BLEU-C, and the
paired test were performed using sacrebleu (Post,
2018).

D Bidirectional Symmetrized Alignment

We report AERs using bidirectional symmetrized
alignments in Table 8 in order to provide fair com-
parisons to results in prior literature. The sym-
metrization is done using the grow-diagonal heuris-
tic (Koehn et al., 2005; Och and Ney, 2000). Since
bidirectional alignments need the entire text in both
languages, these are not online alignments.

Method ‘de-en en-fr ro-en en-hi ja-en
Statistical Methods
GIZA++ 18.6 5.5 26.3 359 39.7
FastAlign | 27.0 10.5 32.1 - -
No Alignment Training
NAIVEATT| 29.2 169 31.4 43.8 57.1
SHIFTATT | 169 7.8 243 309 46.2

With Alignment Training

PRIORATT | 22.0 10.1 26.3 32.1 48.2
SHIFTAET | 154 5.6 21.0 26.7 40.1
POSTALN | 153 5.5 21.0 26.1 39.5

Table 8: AERs for bidirectional symmetrized
ments. POSTALN consistently performs the best.

align-


https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts

Reference

we consider the development of a robust security system that is independent of the

Prediction | we consider developing a robust security system which is independent of the
BLEU-C (Window Size = 2)
Cons. No | Reference Spans Predicted Spans

1 consider the development of a
2 a robust security system that is

(empty sentence)
a robust security system which is

BLEU-C = BLEU(Reference Spans, Predicted Spans)

Table 6: An example BLEU-C computation

E Additional Lexicon-Constrained
Translation Results

Constrained translation results for beam sizes 5
and 10 are shown in Table 9. Paired bootstrap
resampling test results with respect to Align-VDBA
for beam size 10 are shown in Table 10.

F Additional Real World Constrained
Translation Results

Results on the real world constrained translation
datasets of Dinu et al. (2019) for all the methods in
Table 3 with beam sizes 5, 10 and 20 are presented
in Table 11. Paired bootstrap resampling test results
with respect to Align-VDBA for beam size 5 are
shown in Table 12

G Alignment-based Token Replacement

Algorithm

The pseudocode for the algorithm used in Song
et al. (2020); Chen et al. (2021) and our non-VDBA
based methods in Section 4.3 is presented in Al-
gorithm 2. As described in Section 3.1, at each
decoding step, if the source token having the max-
imum alignment at the current step lies in some
constraint span, the constraint in question is de-
coded until completion before resuming normal
decoding.

Though different alignment methods are rep-
resented using a call to the same ATTENTION
function in Algorithm 2, these methods incur
varying computational overheads. For instance,
NAIVEATT incurs little additional cost, PRIO-
RATT and POSTALN involve a multi-head atten-
tion computation. For SHIFTATT and SHIFTAET,
an entire decoder pass is done when ATTENTION is
called, thereby incurring a huge overhead as shown
in Table 3.
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H Layer Selection for Alignment
Supervision of Distant Language Pairs

For the alignment supervision, we used align-
ments extracted from vanilla Transformers using
the SHIFTATT method. To do so, however, we
need to choose the decoder layers from which to
extract the alignments. The validation AERs can
be used for this purpose but since gold validation
alignments are not available, Chen et al. (2020) sug-
gest selecting the layers which have the best con-
sistency between the alignment predictions from
the two translation directions.

For the European language pairs, this turns out to
be layer 3 as suggested by Chen et al. (2020). How-
ever, for the distant language pairs Hindi-English
and Japanese-English, this is not the case and layer
selection needs to be done. The AER between the
two translation directions on the validation set, with
alignments obtained from different decoder layers,
are shown in Tables 13 and 14.



de—en en—fr ro—en en—hi ja—en
SB:;m Method BLEU-C CSR BLEU Time |BLEU-C CSR BLEU Time |BLEU-C CSR BLEU Time|BLEU-C CSR BLEU Time|BLEU-C CSR BLEU Time
5 No constraints 00 50 329 78 00 87 346 61 00 84 333 45 00 56 197 18 00 79 191 221
NAIVEATT 289 862 36.7 127 36.7 88.6 380 87 329 918 363 88 230 899 239 25 15.1 77.0 203 398
PRIORATT 353 93.0 377 136 422 947 386 89 36.0 916 370 89 27.6 91.7 247 26 16.8 80.2 20.6 353
SHIFTATT 41.0 96.7 387 268 452 938 384 167 39.2 944 372 160 23.8 81.8 220 42 15.1 72.6 193 664
SHIFTAET 431 976  39.1 291 46.5 948 386 165 40.8 947 375 163 245 836 221 44 18.0 76.5 19.6 583
POSTALN 427 973 39.0 252 46.1 939 385 151 39.8 935 373 141 233 797 217 39 179 753  19.6 469
VDBA 39.6 994 37.8 203 459 995 385 109 36.6 99.2  36.7 117 273 96.6 242 37 22.1 969 209 397
Align-VDBA 413 98.8 382 236 48.0 989 38.7 128 42.0 96.6 375 134 282 913 247 45 22.6 939 212 445
10 No constraints 00 46 329 87 00 87 348 64 00 88 334 47 00 63 197 21 00 88 189 237
NAIVEATT 28.7 86.1 36.6 147 365 88.0 383 93 333 923 365 99 225 884 236 27 15.1 759 202 315
PRIORATT 350 928 37.6 159 42.1 944 389 97 36.0 912 37.2 100 272 915 244 28 16.7 79.7 204 326
SHIFTATT 41.0 96.6 387 443 45.0 935 38.7 239 39.2 942 374 241 232 787 219 58 152 727 193 567
SHIFTAET 43.1 975 39.1 458 46.6 943 39.0 235 40.8 944 37.6 263 243 802 220 62 18.1 759 19.7 596
POSTALN 427 972 39.0 399 463 94.1 387 218 40.0 935 374 226 23.8 790 220 47 182 757 19.7 460
VDBA 445 989 385 293 519 985 395 160 431 99.1 379 165 29.8 923 245 49 243 956 21.6 494
Align-VDBA 445 98.6 38.6 357 529 984 39.7 189 44.1 989 381 203 30.5 915 247 70 25.1 955 21.8 630

Table 9: Lexically Constrained Translation Results with different beam sizes. All numbers are average over 5
randomly sampled constraint sets and running times are in seconds.
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Figure 3: Alignments for en—hi by NAIVEATT, PRIORATT, and POSTALN. Note that POSTALN is most similar
to Gold alignments in the last column.

Dataset — IATE.414 Wiktionary.727
]sgfzzm Method |  |BLEU-C CSR BLEU Time|BLEU-C CSR BLEU Time
5 No constraints 279 76.6 29.7 134 26.3 72.0 299 217
NAIVEATT 292969 292 175|  29.0 953 29.1 341
PRIORATT 312 971 297 198) 322959 299 306
de—en | en—fr ro—en SHIFTATT 34.9 967 299 355| 353 965 300 568
- SHIFTAET 352963 300 378 358 97.1 302 637

* * *
No constraints | 0.0001* | 0.0001* | 0.0001 POSTALN 353967 300 272| 358 967 302 467
NAIVEATT 0.0001* | 0.0001%* | 0.0001%* VDBA 353 988 29.8 258| 350 992 304 442
Align-VDBA 36.1 983 30.1 268) 359 988 30.6 523
PRIORATT 0.0001* | 0.0001* | 0.0001* 10 [Noconstraints| 283 77.0 297 113| 263 724 299 164
* * NAIVEATT 289 97.3 291 145| 292 953 29.1 269
SHIFTATT 0.1700 | 0.0001 0.0001 PRIORATT 313 969 295 155| 323 960 299 260
SHIFTAET 0.0015* | 0.0001* | 0.0018%* SHIFTATT 349 963 29.8 345 353 968 303 600
SHIFTAET 352959 299 350 359 972 304 664
* * *

POSTALN 0.0032* | 0.0001 0.0003 POSTALN 351959 299 287 358 97.0 303 458
VDBA 0.2666 | 0.0020% | 0.0229* VDBA 37.6 9.8 309 257 369 994 309 451
Align-VDBA 37.5 998 309 353 372995 311 540
) ) ) 20 |Noconstraints| 284 772 299 103| 263 721 300 177
Table 10: Paired bootstrap resampling tests with 10000 NAIVEATT 289 969 200 188  29.1 954 293 325
bootstrap samples for BLEU on Table 3 datasets for PRIORATT 31.3 969296 203 326 964 301 338
: N o C. ; SHIFTATT 347961 298 528 353 968 302 892
beam size 10. denotes Statlstlcally SIgnlﬁcant differ- SHIFTAET 350 95.8 29.9 539 36.1 97.3 304 923
ence from Align-VDBA at power 0.05 (p-value < 0.05). POSTALN 35.1 961 29.9 4201 360 97.0 304 751
VDBA 37.8 998 309 381 374 992 312 680
Align-VDBA 37.9 998 309 465 380 995 313 818

Table 11: Additional results for the real world con-
straints for all methods and different beam sizes.
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Algorithm 2 k-best extraction with argmax replacement decoding.

Inputs: A k£ x |Vr| matrix of scores (for all tokens up to the currently decoded ones). k beam states.

1: function SEARCH_STEP(beam, scores)

2 next_toks, next_scores <— ARGMAX_K(scores, k=2, dim=1) > Best 2 tokens for each beam
3 candidates < []

4: for0<h<2-kdo

5: candidate <— beam[h//2]

6 candidate.tokens.append(next_toks[h//2, h%?2])

7 candidate.scores < next_scores[h//2, h%2]

8 candidates.append(candidate)

9

: attention <— ATTENTION(candidates)
10: aligned_x <— ARGMAX(attention, dim=1)

11: for0<h<2-kdo

12: if aligned_x[h] € C; for some 7 and not candidates[h].inprogress then > Start constraint
13: candidates[h].inprogress <— True

14: candidates[h].constraintNum < ¢

15: candidates[h].tokenNum < O

16: if candidates[h].inprogress then > Replace token with constraint tokens
17: candidates[h].tokens[-1] < constraints[candidates[h].constraintNum][candidates[h].tokenNum]
18: candidates[h].tokenNum < candidates[h].tokenNum + 1

19: if constraints[candidates[h].constraintNum].length == candidates[h].tokenNum then

20: candidates[h].inprogress <— False > Finish current constraint
21: candidates <~ REMOVE_DUPLICATES(candidates)

22: newBeam < TOP_K(candidates)

23: return newBeam

Dataset IATE 414 Wiktionary.727

Method BLEU p=£ 95% CI p-value |BLEU p+ 95% CI p-value

Align-VDBA | 30.1 (30.0£1.7) 306 (30.6£12)

No constraints| 29.7  (29.7+1.7) 0.1059 29.9 (29.9£1.2) 0.0054*
NAIVEATT 29.2 (29.2%#1.7) 0.0121%] 29.1 (29.1x1.2) 0.0001*
PRIORATT 29.7 (29.6+1.6) 0.0829 29.9 (29.8+1.2) 0.0041*

SHIFTATT 299 (29.8+1.6) 0.1827 | 30.0 (30.0£1.2) 0.0229%
SHIFTAET 300 (29.9+1.6) 0.2824 | 302 (30.2+1.2) 0.0588
POSTALN 300 (30.0£1.6) 0.3813 | 30.2 (30.2£1.2) 0.0646
VDBA 298 (29.7+1.6) 0.0849 | 304 (30.4+1.2) 0.0960

Table 12: Paired bootstrap resampling tests with 10000
bootstrap samples for BLEU on Dinu et al. (2019)
datasets for beam size 5. * denotes statistically signif-
icant difference from Align-VDBA at power 0.05 (p-
value < 0.05).
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1 2 3 4 5 6 1 2 3 4 5 6
1655 558 561 952 946 96.6 11935 900 944 922 951 951
21592 475 445 951 919 958 21865 587 869 694 872 86.2
31626 521 483 937 914 952 31874 594 87.1 69.1 87.1 86.2
4|88.6 833 821 8.9 88.0 903 41891 69.1 859 742 849 854
51916 877 885 914 88.8 902 51934 885 89.1 87.1 86.8 88.1
6935 91.1 925 925 90.5 90.7 61935 894 900 88.1 &7.7 88.7

Table 13: AER between en—hi and hi—en SHIF- Table 14: AER between ja—en and en—ja SHIF-
TATT alignments on the validation set for EnHi TATT alignments on the validation set for JaEn
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