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Abstract

Online alignment in machine translation refers001
to the task of aligning a target word to a002
source word when the target sequence has only003
been partially decoded. Good online align-004
ments facilitate important applications such as005
lexically constrained translation where user-006
defined dictionaries are used to inject lexical007
constraints into the translation model. We008
propose a novel posterior alignment technique009
that is truly online in its execution and su-010
perior in terms of alignment error rates com-011
pared to existing methods. Our proposed in-012
ference technique jointly considers alignment013
and token probabilities in a principled man-014
ner and can be seamlessly integrated within015
existing constrained beam-search decoding al-016
gorithms. On five language pairs, including017
two distant language pairs, we achieve con-018
sistent drop in alignment error rates. When019
deployed on seven lexically constrained trans-020
lation tasks, we achieve significant improve-021
ments in BLEU specifically around the con-022
strained positions.023

1 Introduction024

Online alignment seeks to align a target word to a025

source word at the decoding step when the word026

is output in an auto-regressive neural translation027

model (Kalchbrenner and Blunsom, 2013; Cho028

et al., 2014; Sutskever et al., 2014). This is un-029

like the more popular offline alignment task that030

uses the entire target sentence (Och and Ney, 2003;031

Jalili Sabet et al., 2020; Dou and Neubig, 2021).032

An important application of online alignment is033

lexically constrained translation which allows in-034

jection of domain-specific terminology and other035

phrasal constraints during decoding (Hasler et al.,036

2018; Hokamp and Liu, 2017; Alkhouli et al., 2018;037

Crego et al., 2016). Other applications include038

preservation of markups between the source and039

target (Müller, 2017), and supporting source word040

edits in summarization (Shen et al., 2019). These041

applications need to infer the specific source token 042

which aligns with output token. Thus, alignment 043

and translation is to be done simultaneously. 044

Existing online alignment methods can be cate- 045

gorized into Prior and Posterior alignment methods. 046

Prior alignment methods (Garg et al., 2019; Song 047

et al., 2020) extract alignment based on the atten- 048

tion at time step t when outputting token yt. The at- 049

tention probabilities at time-step t are conditioned 050

on tokens output before time t. Thus, the alignment 051

is estimated prior to observing yt. Naturally, the 052

quality of alignment can be improved if we condi- 053

tion on the target token yt (Shankar and Sarawagi, 054

2019). This motivated Chen et al. (2020) to propose 055

a posterior alignment method where alignment is 056

calculated from the attention probabilities at the 057

next decoder step t + 1. While alignment qual- 058

ity improved as a result, their method is not truly 059

online since it does not generate alignment syn- 060

chronously with the token. The delay of one step 061

makes it difficult and cumbersome to incorporate 062

terminology constraints during beam decoding. 063

We propose a truly online posterior alignment 064

method that provides higher alignment accuracy 065

than existing online methods, while also being syn- 066

chronous. Because of that we can easily integrate 067

posterior alignment to improve lexicon-constrained 068

translation in state of the art constrained beam- 069

search algorithms such as VDBA (Hu et al., 2019). 070

Our method (Align-VDBA) presents a signifi- 071

cant departure from existing papers on alignment- 072

guided constrained translation (Chen et al., 2020; 073

Song et al., 2020) that employ a greedy algorithm 074

with poor constraint satisfaction rate (CSR). For 075

example, on a ja→en their CSR is 20 points lower 076

than ours. Moreover, the latter does not benefit 077

from larger beam sizes unlike VDBA-based meth- 078

ods that significantly improve with larger beam 079

widths. Compared to Chen et al. (2020), our 080

method improves average overall BLEU scores by 081

1.2 points and average BLEU scores around the 082
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constrained span by up to 9 points. In the evalua-083

tions performed in these earlier work, VDBA was084

not allocated the slightly higher beam size needed085

to pro-actively enforce constraints without com-086

promising BLEU. Compared to Hu et al. (2019)087

(VDBA), this paper’s contributions include online088

alignments and their use in more fluent constraint089

placement and efficient allocation of beams.090

Contributions091

• A truly online posterior alignment method that092

integrates into existing NMT sytems via a train-093

able light-weight module.094

• Higher online alignment accuracy on five lan-095

guage pairs including two distant language pairs096

where we improve over the best existing in seven097

out of ten translation models.098

• Principled method of modifying VDBA to in-099

corporate posterior alignment probabilities in100

lexically-constrained decoding. VDBA enforces101

constraints ignoring source alignments, our102

change (Align-VDBA), leads to more fluent con-103

straint placement and significant BLEU increase104

particularly for smaller beams.105

• Establishing that VDBA-based pro-active106

constrained inference should be preferred107

over prevailing greedy alignment-guided108

inference (Chen et al., 2021; Song et al., 2020).109

Further, VDBA and our Align-VDBA inference110

with beam size 10 provide 1.2 BLEU increase111

over these methods with the same beam size.112

2 Posterior Online Alignment113

Given a sentence x = x1, . . . , xS in the source lan-114

guage and a sentence y = y1, . . . , yT in the target115

language, an alignmentA between the word strings116

is a subset of the Cartesian product of the word po-117

sitions (Brown et al., 1993; Och and Ney, 2003):118

A ⊆ {(s, t) : s = 1, . . . , S; t = 1, . . . , T} such119

that the aligned words can be considered transla-120

tions of each other. An online alignment at time-121

step t commits on alignment of the tth output token122

conditioned only on x and y<t = y1, y2, . . . yt−1.123

Additionally, if token yt is also available we call124

it a posterior online alignment. We seek to embed125

online alignment with existing NMT systems. We126

will first briefly describe the architecture of state127

of the art NMT systems. We will then elaborate128

on how alignments are computed from attention129

distributions in prior work and highlight some limi-130

tations, before describing our proposed approach.131

2.1 Background 132

Transformers (Vaswani et al., 2017) adopt the pop- 133

ular encoder-decoder paradigm used for sequence- 134

to-sequence modeling (Cho et al., 2014; Sutskever 135

et al., 2014; Bahdanau et al., 2015). The en- 136

coder and decoder are both multi-layered networks 137

with each layer consisting of a multi-headed self- 138

attention and a feedforward module. The decoder 139

uses multi-headed attention to encoder states. We 140

elaborate on this mechanism next since it plays an 141

important role in alignments. 142

2.1.1 Decoder-Encoder Attention in NMTs 143

The encoder transforms the S input tokens into 144

a sequence of token representations H ∈ RS×d. 145

Each decoder layer (indexed by ` ∈ {1, . . . , L}) 146

computes multi-head attention over H by aggregat- 147

ing outputs from a set of η independent attention 148

heads. The attention output from a single head 149

n ∈ {1, . . . , η} in decoder layer ` is computed 150

as follows. Let the output of the self-attention 151

sub-layer in decoder layer ` at the tth target to- 152

ken be denoted as g`t . Using three projection ma- 153

trices W`,n
Q , W`,n

V , W`,n
K ∈ Rd×dn , the query 154

vector q`,nt ∈ R1×dn and key and value matrices, 155

K`,n ∈ RS×dn and V`,n ∈ RS×dn , are computed 156

using the following projections: q`,nt = g`tW
`,n
Q , 157

K`,n = HW`,n
K , and V`,n = HW`,n

V .1 These are 158

used to calculate the attention output from head n, 159

Z`,nt = P (a`,nt |x,y<t)V`,n, where: 160

P (a`,nt |x,y<t) = softmax

(
q`,nt (K`,n)ᵀ√

d

)
(1) 161

For brevity, the conditioning on x,y<t is dropped 162

and P (a`,nt ) is used to refer to P (a`,nt |x,y<t) in 163

the following sections. 164

Finally, the multi-head attention output is given 165

by [Z`,1t , . . . ,Z`,ηt ]WO where [ ] denotes the 166

column-wise concatenation of matrices and WO ∈ 167

Rd×d is an output projection matrix. 168

2.1.2 Alignments from Attention 169

Several prior work have proposed to extract 170

word alignments from the above attention prob- 171

abilities. For example Garg et al. (2019) pro- 172

pose a simple method called NAIVEATT that 173

aligns a source word to the tth target token using 174

1dn is typically set to d
η

so that a multi-head attention layer
does not introduce more parameters compared to a single head
attention layer.
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argmaxj
1

η

η∑
n=1

P (a`,nt,j |x,y<t) where j indexes175

the source tokens. In NAIVEATT, we note that the176

attention probabilities P (a`,nt,j |x,y<t) at decoding177

step t are not conditioned on the current output to-178

ken yt. Alignment quality would benefit from con-179

ditioning on yt as well. This observation prompted180

Chen et al. (2020) to extract alignment of token yt181

using attention P (a`,nt,j |x,y≤t) computed at time182

step t+ 1. The asynchronicity inherent to this shift-183

by-one approach (SHIFTATT) makes it difficult184

and more computationally expensive to incorporate185

lexical constraints during beam decoding.186

2.2 Our Proposed Method: POSTALN187

We propose POSTALN that produces posterior188

alignments synchronously with the output tokens,189

while being more computationally efficient com-190

pared to previous approaches like SHIFTATT. We191

incorporate a lightweight alignment module to con-192

vert prior attention to posterior alignments in the193

same decoding step as the output. Figure 1 illus-194

trates how this alignment module fits within the195

standard Transformer architecture.196

The alignment module is placed at the penulti-197

mate decoder layer ` = L − 1 and takes as input198

1) the encoder output H, 2) the output of the self-199

attention sub-layer of decoder layer `, g`t and, 3)200

the embedding of the decoded token e(yt). Like201

in standard attention it projects H to obtain a key202

matrix, but to obtain the query matrix it uses both203

decoder state g`t (that summarizes y<t) and e(yt)204

to compute the posterior alignment P (a
post
t ) as:205

P (a
post
t ) =

1

η

η∑
n=1

softmax

(
qnt,post(K

n
post)

ᵀ

√
d

)
,206

qnt,post = [g`t , e(yt)]W
n
Q,post, K

n
post = HWn

K,post207

Here Wn
Q,post ∈ R2d×dn and Wn

K,post ∈ Rd×dn .208

This computation is synchronous with produc-209

ing the target token yt, thus making it compatible210

with beam search decoding (as elaborated further211

in Section 3). It also accrues minimal computa-212

tional overhead since P (a
post
t ) is defined using H213

and gL−1
t , that are both already cached during a214

standard decoding pass. Note that if the query vec-215

tor qnt,post is computed using only gL−1
t , without216

concatenating e(yt), then we get prior alignments217

that we refer to as PRIORATT. In our experiments,218

we explicitly compare PRIORATT with POSTALN219

to show the benefits of using yt in deriving align-220

Inputs x

Input Emb

Positional
Encoding

Layer 1

Layer 2

Layer L

H

Outputs y<t

Output Emb

Positional
Encoding

Layers 1 to `− 1

Self-Attention

Add and Norm

Cross-Attention
Alignment
Module

Add and Norm

Feed Forward

Add and Norm

Layers `+ 1 to L

Linear & Softmax

Output
Probabilities

Alignment
Probabilities

yt

g`
t

Figure 1: Our alignment module is an encoder-
decoder attention sub-layer, similar to the existing
cross-attention sub-layer. It takes as inputs the encoder
output H as the key, and the concatenation of the output
of the previous self-attention layer g`

t and the currently
decoded token yt as the query, and outputs posterior
alignment probabilities apost

t .

ments while keeping the rest of the architecture 221

intact. 222

Training Our posterior alignment sub-layer is 223

trained using alignment supervision, while freez- 224

ing the rest of the translation model parameters. 225

Specifically, we train a total of 3d2 additional pa- 226

rameters across the matrices Wn
K,post and Wn

Q,post. 227

Since gold alignments are very tedious and expen- 228

sive to create for large training datasets, alignment 229

labels are typically obtained using existing tech- 230

niques. We use bidirectional symmetrized SHIF- 231

TATT alignments, denoted by Si,j that refers to an 232

alignment between the ith target word and the jth 233

source word, as reference labels to train our align- 234

ment sub-layer. Then the objective (following Garg 235

et al. (2019)) can be defined as: 236

max
Wn

Q,post,W
n
K,post

1

T

T∑
i=1

S∑
j=1

Si,j log
(
P (a

post
i,j |x,y≤i)

)
237

Next, we demonstrate the role of posterior online 238

alignments on an important downstream task. 239

3 Lexicon Constrained Translation 240

In the lexicon constrained translation task, for 241

each to-be-translated sentence x, we are given a 242

set of source text spans and the corresponding 243

target tokens in the translation. A constraint Cj 244

comprises a pair (Cxj , Cyj ) where Cxj = (pj , pj + 245
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1 . . . , pj + `j) indicates input token positions, and246

Cyj = (yj1, y
j
2 . . . , y

j
mj ) denote target tokens that247

are translations of the input tokens xpj . . . xpj+`j .248

For the output tokens we do not know their po-249

sitions in the target sentence. The different con-250

straints are non-overlapping and each is expected251

to be used exactly once. The goal is to translate the252

given sentence x and satisfy as many constraints253

in C =
⋃
j Cj as possible while ensuring fluent254

and correct translations. Since the constraints do255

not specify target token position, it is natural to256

use online alignments to guide when a particular257

constraint is to be enforced.258

3.1 Background: Constrained Decoding259

Existing inference algorithms for incorporating lex-260

icon constraints differ in how pro-actively they en-261

force the constraints. A passive method is used in262

Song et al. (2020) where constraints are enforced263

only when the prior alignment is at a constrained264

source span. Specifically, if at decoding step t,265

i = argmaxi′ P (at,i′) is present in some constraint266

Cxj , the output token is fixed to the first token yj1267

from Cyj . Otherwise, the decoding proceeds as268

usual. Also, if the translation of a constraint Cj has269

started, the same is completed (yj2 through yjmj ) for270

the next mj − 1 decoding steps before resuming271

unconstrained beam search. The pseudocode for272

this method is provided in Appendix G.273

For the posterior alignment methods of Chen274

et al. (2020) this leads to a rather cumbersome in-275

ference (Chen et al., 2021). First, at step t they pre-276

dict a token ŷt, then start decoding step t+ 1 with277

ŷt as input to compute the posterior alignment from278

attention at step t+ 1. If the maximum alignment279

is to the constrained source span Cxj they revise the280

output token to be yj1 from Cyj , but the output score281

for further beam-search continues to be of ŷt. In282

this process both the posterior alignment and token283

probabilities are misrepresented since they are both284

based on ŷt instead of the finally output token yj1.285

The decoding step at t + 1 needs to be restarted286

after the revision. The overall algorithm continues287

to be normal beam-search, which implies that the288

constraints are not enforced pro-actively.289

Many prior methods have proposed more pro-290

active methods of enforcing constraints, including291

the Grid Beam Search (GBA, Hokamp and Liu292

(2017)), Dynamic Beam Allocation (DBA, Post293

and Vilar (2018)) and Vectorized Dynamic Beam294

Allocation (VDBA, Hu et al. (2019)). The latest295

of these, VDBA, is efficient and available in pub- 296

lic NMT systems (Ott et al., 2019; Hieber et al., 297

2020). Here multiple banks, each corresponding to 298

a particular number of completed constraints, are 299

maintained. At each decoding step, a hypothesis 300

can either start a new constraint and move to a new 301

bank or continue in the same bank (either by not 302

starting a constraint or progressing on a constraint 303

mid-completion). This allows them to achieve near 304

100% enforcement. However, VDBA enforces the 305

constraints by considering only the target tokens 306

of the lexicon and totally ignores the alignment of 307

these tokens to the source span. This could lead 308

to constraints being placed at unnatural locations 309

leading to loss of fluency. Examples appears in 310

Table 4 where we find that VDBA just attaches the 311

constrained tokens at the end of the sentence. 312

3.2 Our Proposal: Align-VDBA 313

We modify VDBA with alignment probabilities to 314

better guide constraint placement. The score of a 315

constrained token is now the joint probability of 316

the token, and the probability of the token being 317

aligned with the corresponding constrained source 318

span. Formally, if the current token yt is a part of 319

the jth constraint i.e. yt ∈ Cyj , the generation prob- 320

ability of yt, P (yt|x,y<t) is scaled by multiplying 321

with the alignment probabilities of yt with Cxj , the 322

source span for constraint i. Thus, the updated 323

probability is given by: 324

P (yt, Cxj |x,y<t)︸ ︷︷ ︸
Joint Prob

= P (yt|x,y<t)︸ ︷︷ ︸
Token Prob

∑
r∈Cxj

P (apost
t,r |x,y≤t)

︸ ︷︷ ︸
Src Align. Prob.

(2) 325

P (yt, Cxj |x,y<t) denotes the joint probability of 326

outputting the constrained token and the align- 327

ment being on the corresponding source span. 328

Since the supervision for the alignment proba- 329

bilities was noisy, we found it useful to recali- 330

brate the alignment distribution using a temper- 331

ature scale T , so that the recalibrated probability is 332

∝ Pr(a
post
t,r |x,y≤t)

1
T . We used T = 2 i.e., square- 333

root of the alignment probability. 334

Align-VDBA uses posterior alignment probabil- 335

ities to also improve the efficiency of DBA. Cur- 336

rently, DBA attempts beam allocation for each un- 337

met constraint since it has no way to discriminate. 338

In Align-VDBA we allocate only when the align- 339

ment probability is greater than a threshold. When 340

the beam size is small (say 5) this yields higher 341

accuracy due to more efficient beam utilization. 342
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Algorithm 1 Align-VDBA: Modifications to DBA shown in blue. (Adapted from Post and Vilar (2018))
1: Inputs beam: K hypothesis in beam, scores: K × |VT | matrix of scores where scores[k, y] denotes the score of kth

hypothesis extended with token y at this step, constraints: {(Cxj , Cyj )}
2: candidates← [(k, y, scores[k, y], beam[k].constraints.add(y)] for k, y in ARGMAX_K(scores)
3: for 1 ≤ k ≤ K do . Go over current beam
4: for all y ∈ VT that are unmet constraints for beam[k] do . Expand new constraints
5: alignProb← Σconstraint_xs(y) POSTALN(k, y) . Modification in blue (Eqn (2))
6: if alignProb > threshold (= 0.1) then
7: candidates.append( (k, y, scores[k, y] × alignProb), beam[k].constraints.add(y) ) )
8: candidates.append( (k, y, scores[k, y], beam[k].constraints.add(y) ) ) . Original DBA Alg.
9: w = ARGMAX(scores[k, :])

10: candidates.append( (k,w, scores[k,w], beam[k].constraints.add(w) ) ) . Best single word
11: newBeam← ALLOCATE(candidates, K)

We present the pseudocode of our modification343

(steps 5, 6 and 7, in blue) to DBA in Algorithm 1.344

Other details of the algorithm including the han-345

dling of constraints and the allocation steps (step346

11) are involved and we refer the reader to Post347

and Vilar (2018) and Hu et al. (2019) to understand348

these details. The point of this code is to show that349

our proposed posterior alignment method can be350

easily incorporated into these algorithms so as to351

provide a more principled scoring of constrained352

hypothesis in a beam than the ad hoc revision-based353

method of Chen et al. (2021). Additionally, pos-354

terior alignments lead to better placement of con-355

straints than in the original VDBA algorithm.356

4 Experiments357

We first compare our proposed posterior online358

alignment method on quality of alignment against359

existing methods in Section 4.2, and in Section 4.3,360

we demonstrate the impact of the improved align-361

ment on the lexicon-constrained translation task.362

4.1 Setup363

We deploy the fairseq toolkit (Ott et al., 2019)364

and use transformer_iwslt_de_en pre-365

configured model for all our experiments. Other366

configuration parameters include: Adam optimizer367

with β1 = 0.9, β2 = 0.98, a learning rate of 5e−4368

with 4000 warm-up steps, an inverse square root369

schedule, weight decay of 1e−4, label smoothing370

of 0.1, 0.3 probability dropout and a batch size of371

4500 tokens. The transformer models are trained372

for 50,000 iterations. Then, the alignment module373

is trained for 10,000 iterations, keeping the other374

model parameters fixed. A joint byte pair encoding375

(BPE) is learned for the source and the target lan-376

guages with 10k merge operation (Sennrich et al.,377

2016) using subword-nmt.378

All experiments were done on a single 11GB379

de-en en-fr ro-en en-hi ja-en
Training 1.9M 1.1M 0.5M 1.6M 0.3M
Validation 994 1000 999 25 1166
Test 508 447 248 140 1235

Table 1: Number of sentence pairs for the five datasets
used. Note that gold alignments are available only for
a handful of sentence pairs in the test set.

Nvidia GeForce RTX 2080 Ti GPU on a machine 380

with 64 core Intel Xeon CPU and 755 GB memory. 381

The vanilla Transformer models take between 15 382

to 20 hours to train for different datasets. Starting 383

from the alignments extracted from these models, 384

the POSTALN alignment module trains in about 3 385

to 6 hours depending on the dataset. 386

4.2 Alignment Task 387

We evaluate online alignments on ten translation 388

tasks spanning five language pairs. Three of these 389

are popular in alignment papers (Zenkel et al., 390

2019): German-English (de-en), English-French 391

(en-fr), Romanian-English (ro-en). These are all 392

European languages that follow the same subject- 393

verb-object (SVO) ordering. We also present re- 394

sults on two distant language pairs, English-Hindi 395

(en-hi) and English-Japanese (ja-en), that follow a 396

SOV word order which is different from the SVO 397

word order of English. Data statistics are shown in 398

Table 1 and details are in Appendix C. 399

Evaluation Method: For evaluating alignment 400

performance, it is necessary that the target sentence 401

is exactly the same as for which the gold alignments 402

are provided. Thus, for the alignment experiments, 403

we force the output token to be from the gold tar- 404

get and only infer the alignment. We then report 405

the Alignment Error Rate (AER) (Och and Ney, 406

2000) between the gold alignments and the pre- 407

dicted alignments for different methods. Though 408
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Dela
y de-en en-fr ro-en en-hi ja-en

Method de→en en→de en→fr fr→en ro→en en→ro en→hi hi→en ja→en en→ja
Statistical Methods (Not Online)

GIZA++ (Och and Ney, 2003) End 18.9 19.7 7.3 7.0 27.6 28.3 35.9 36.4 41.8 39.0
FastAlign (Dyer et al., 2013) End 28.4 32.0 16.4 15.9 33.8 35.5 - - - -

No Alignment Training
NAIVEATT (Garg et al., 2019) 0 32.4 40.0 24.0 31.2 37.3 33.2 49.1 53.8 62.2 63.5
SHIFTATT (Chen et al., 2020) +1 20.0 22.9 14.7 20.4 26.9 27.4 35.3 38.6 53.6 48.6

With Alignment Training
PRIORATT 0 23.4 25.8 14.0 16.6 29.3 27.2 36.4 35.1 52.7 50.9
SHIFTAET (Chen et al., 2020) +1 15.8 19.5 10.3 10.4 22.4 23.7 29.3 29.3 42.5 41.9
POSTALN [Ours] 0 15.5 19.5 9.9 10.4 21.8 23.2 28.7 28.9 41.2 42.2

Table 2: AER for de-en, en-fr, ro-en, en-hi, ja-en language pairs. “Delay" indicates the decoding step at which
the alignment of the target token is available. NAIVEATT, PRIORATT and POSTALN are truly online and output
alignment at the same time step (delay=0), while SHIFTATT and SHIFTAET output one decoding step later.

our focus is online alignment, for comparison to409

previous works, we also report results on bidirec-410

tional symmetrized alignments in Appendix D.411

Methods compared: We compare our method412

with both existing statistical alignment models,413

namely GIZA++ (Och and Ney, 2003) and FastAl-414

ign (Dyer et al., 2013), and recent Transformer-415

based alignment methods of Garg et al. (2019)416

(NAIVEATT) and Chen et al. (2020) (SHIFTATT417

and SHIFTAET). Chen et al. (2020) also propose a418

variant of SHIFTATT called SHIFTAET that delays419

computations by one time-step as in SHIFTATT,420

and additionally includes a learned attention sub-421

layer to compute alignment probabilities. We also422

present results on PRIORATT which is similar to423

POSTALN but does not use yt.424

Results: The alignment results are shown in Ta-425

ble 2. First, AERs using statistical methods FastAl-426

ign and GIZA++ are shown. Here, for fair compar-427

ison, the IBM models used by GIZA++ are trained428

on the same sub-word units as the Transformer429

models and sub-word alignments are converted430

to word level alignments for AER calculations.431

(GIZA++ has remained a state-of-the-art alignment432

technique and continues to be compared against.)433

Next, we present alignment results for two vanilla434

Transformer models - NAIVEATT and SHIFTATT435

- that do not train a separate alignment module. The436

high AER of NAIVEATT shows that attention-as-is437

is very distant from alignment but posterior atten-438

tion is closer to alignments than prior. Next we look439

at methods that train alignment-specific parameters:440

PRIORATT, a prior attention method; SHIFTAET441

and POSTALN, both posterior alignment methods.442

We observe that with training even PRIORATT443

has surpassed non-trained posterior. The posterior444

attention methods outperform the prior attention445

methods by a large margin, with an improvement 446

of 4.0 to 8.0 points. Within each group, the meth- 447

ods with a trained alignment module outperform 448

the ones without by a huge margin. POSTALN per- 449

forms better or matches the performance of SHIF- 450

TAET (achieving the lowest AER in nine out of 451

ten cases in Table 2) while avoiding the one-step 452

delay in alignment generation. Even on the distant 453

languages, POSTALN achieves significant reduc- 454

tions in error. For ja→en, we achieve a 1.3 AER 455

reduction compared to SHIFTAET which is not a 456

truly online method. Figure 2 shows an example 457

to illustrate the superior alignments of POSTALN 458

compared to NAIVEATT and PRIORATT. 459

4.3 Impact of POSTALN on 460

Lexicon-Constrained Translation 461

We next depict the impact of improved AERs from 462

our posterior alignment method on a downstream 463

lexicon-constrained translation task. Following pre- 464

vious work (Hokamp and Liu, 2017; Post and Vilar, 465

2018; Song et al., 2020; Chen et al., 2020, 2021), 466

we extract constraints using the gold alignments 467

and gold translations. Up to three constraints of 468

up to three words each are used for each sentence. 469

Spans correctly translated by a greedy decoding 470

are not selected as constraints. 471

Metrics: Following prior work (Song et al., 2020): 472

we report BLEU (Papineni et al., 2002), time to 473

translate all test sentences, and Constraint Satisfac- 474

tion Rate (CSR). and However, since it is trivial to 475

get 100% CSR by always copying, we report an- 476

other metric to evaluate the appropriateness of con- 477

straint placement: We call this measure BLEU-C 478

and compute it as the BLEU of the constraint (when 479

satisfied) and a window of three words around it. 480

All numbers are averages over five different sets of 481
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Figure 2: Alignments for de→en by NAIVEATT, PRIORATT, and POSTALN. Note that POSTALN is most similar
to Gold alignments in the last column.

de→en en→fr ro→en en→hi ja→en
Method BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time
No constraints 0.0 4.6 32.9 87 0.0 8.7 34.8 64 0.0 8.8 33.4 47 0.0 6.3 19.7 21 0.0 8.8 18.9 237
NAIVEATT 28.7 86.1 36.6 147 36.5 88.0 38.3 93 33.3 92.3 36.5 99 22.5 88.4 23.6 27 15.1 75.9 20.2 315
PRIORATT 35.0 92.8 37.6 159 42.1 94.4 38.9 97 36.0 91.2 37.2 100 27.2 91.5 24.4 28 16.7 79.7 20.4 326
SHIFTATT 41.0 96.6 38.7 443 45.0 93.5 38.7 239 39.2 94.2 37.4 241 23.2 78.7 21.9 58 15.2 72.7 19.3 567
SHIFTAET 43.1 97.5 39.1 458 46.6 94.3 39.0 235 40.8 94.4 37.6 263 24.3 80.2 22.0 62 18.1 75.9 19.7 596
POSTALN 42.7 97.2 39.0 399 46.3 94.1 38.7 218 40.0 93.5 37.4 226 23.8 79.0 22.0 47 18.2 75.7 19.7 460
VDBA 44.5 98.9 38.5 293 51.9 98.5 39.5 160 43.1 99.1 37.9 165 29.8 92.3 24.5 49 24.3 95.6 21.6 494
Align-VDBA 44.5 98.6 38.6 357 52.9 98.4 39.7 189 44.1 98.9 38.1 203 30.5 91.5 24.7 70 25.1 95.5 21.8 630

Table 3: Constrained translation results showing BLEU-C, CSR (Constraint Satisfaction Rate), BLEU scores and
total decoding time (in seconds) for the test set. Align-VDBA has the highest BLEU-C on all datasets.

randomly sampled constraint sets. The beam size482

is set to ten by default; results for other beam sizes483

appear in Appendix E.484

Methods Compared: First we compare all the485

alignment methods presented in Section 4.2 on the486

constrained translation task using the alignment487

based token-replacement algorithm of Song et al.488

(2020) described in Section 3.1. Next, we present a489

comparison between VBDA (Hu et al., 2019) and490

our modification Align-VDBA.491

Results: Table 3 shows that VDBA and our Align-492

VDBA that pro-actively enforce constraints have a493

much higher CSR and BLEU-C compared to the494

other lazy constraint enforcement methods. For ex-495

ample, for ja→en greedy methods can only achieve496

a CSR of 76% compared to 96% of the VDBA-497

based methods. In terms of overall BLEU too these498

methods provide an average increase in BLEU of499

1.2 and an average increase in BLEU-C of 5 points.500

On average, Align-VDBA has a 0.7 point greater501

BLEU-C compared to VDBA. It also has a greater502

BLEU than VDBA on all the five datasets. In Ta-503

ble 9 of Appendix we show that for smaller beam-504

size of 5, the gap between Align-VDBA and VDBA505

is even larger (2.1 points greater BLEU-C and 0.4506

points greater BLEU).Table 4 lists some example507

translations by VDBA vs Align-VDBA. We ob-508

serve that VDBA places constraints at the end of509

the translated sentence (e.g., “pusher", “develop-510

ment") unlike Align-VDBA. In some cases where 511

constraints contain frequent words (like of, the, 512

etc.), VDBA picks the token in the wrong posi- 513

tion to tack on the constraint (e.g., “strong backing 514

of", “of qualified") while Align-VDBA places the 515

constraint correctly. 516

Dataset→ IATE.414 Wiktionary.727
Method (Beam Size) ↓ BLEU (∆) CSR BLEU (∆) CSR
Baseline (5) 25.8 76.3 26.0 76.9
Train-by-app. (5) 26.0 (+0.2) 92.9 26.9 (+0.9) 90.7
Train-by-rep. (5) 26.0 (+0.2) 94.5 26.3 (+0.3) 93.4
No constraints (10) 29.7 77.0 29.9 72.4
SHIFTAET (10) 29.9 95.9 30.4 97.2
VDBA (10) 30.9 99.8 30.9 99.4
Align-VDBA (10) 30.9 (+1.2) 99.8 31.1 (+1.2) 99.5

Table 5: Constrained translation results on the two real
world constraints from Dinu et al. (2019).

Real World Constraints: We also evaluate on real 517

world constraints extracted from IATE and Wik- 518

tionary datasets by Dinu et al. (2019). Table 5 519

compares Align-VDBA with the soft-constraints 520

method of Dinu et al. (2019) that requires special 521

retraining to teach the model to copy constraints. 522

We reproduced the numbers from their paper in the 523

first three rows. Their baseline is almost 4 BLEU 524

points worse than ours since they used a smaller 525

NMT model, thus making running times incompa- 526

rable. When we compare the increment ∆ in BLEU 527

over the respective baselines, Align-VDBA shows 528
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Constraints (gesetz zur, law also), (dealer, pusher)
Gold of course, if a drug addict becomes a pusher, then it is right and necessary that he should pay and answer before the law also.
VDBA certainly, if a drug addict becomes a dealer, it is right and necessary that he should be brought to justice before the law also pusher.
Align-VDBA certainly, if a drug addict becomes a pusher, then it is right and necessary that he should be brought to justice before the law also.
Constraints (von mehrheitsverfahren, of qualified)
Gold ... whether this is done on the basis of a vote or of consensus, and whether unanimity is required or some form of qualified majority.
VDBA ... whether this is done by means of qualified votes or consensus, and whether unanimity or form of majority procedure apply.
Align-VDBA ... whether this is done by voting or consensus, and whether unanimity or form of qualified majority voting are valid.
Constraints (zustimmung der, strong backing of)
Gold ... which were adopted with the strong backing of the ppe group and the support of the socialist members.
VDBA ... which were then adopted with broad agreement from the ppe group and with the strong backing of the socialist members.
Align-VDBA ... which were then adopted with strong backing of the ppe group and with the support of the socialist members.
Constraints (den usa, the usa), (sicherheitssystems an, security system that), (entwicklung, development)
Gold matters we regard as particularly important are improving the working conditions between the weu and the eu

and the development of a european security system that is not dependent on the usa .
VDBA we consider the usa ’s european security system to be particularly important in improving working conditions

between the weu and the eu and developing a european security system that is independent of the united states development .
Align-VDBA we consider the development of the security system that is independent of the usa to be particularly important

in improving working conditions between the weu and the eu .

Table 4: Anecdotes showing constrained translations produced by VDBA vs. Align-VDBA.

much greater gains of +1.2 vs. their +0.5. Also,529

Align-VDBA provides a larger CSR of 99.6 com-530

pared to their 92. Results for other beam sizes and531

other methods and metrics appear in Appendix F.532

5 Related Work533

Online Prior Alignment from NMTs: Zenkel534

et al. (2019) find alignments using a single-head535

attention submodule, optimized to predict the next536

token. Garg et al. (2019) and Song et al. (2020)537

supervise a single alignment head from the penul-538

timate multi-head attention with prior alignments539

from GIZA++ alignments or FastAlign. Bahar et al.540

(2020) and Shankar et al. (2018) treat alignment541

as a latent variable and impose a joint distribution542

over token and alignment while supervising on the543

token marginal of the joint distribution.544

Online Posterior Alignment from NMTs:545

Shankar and Sarawagi (2019) first identify the role546

of posterior attention for more accurate alignment.547

However, their NMT was a single-headed RNN.548

Chen et al. (2020) implement posterior attention in549

a multi-headed Transformer but they incur a delay550

of one step between token output and alignment.551

We are not aware of any prior work that extracts552

truly online posterior alignment in modern NMTs.553

Offline Alignment Systems: Several recent meth-554

ods apply only in the offline setting: Zenkel et al.555

(2020) extend an NMT with an alignment module;556

Nagata et al. (2020) frame alignment as a question557

answering task; and Jalili Sabet et al. (2020); Dou558

and Neubig (2021) leverage contextual embeddings559

from pretrained multilangual models.560

Lexicon Constrained Translation: Hokamp and561

Liu (2017) and Post and Vilar (2018); Hu et al.562

(2019) modify beam search to ensure that tar- 563

get phrases from a given constrained lexicon are 564

present in the translation. These methods ignore 565

alignment with the source but ensure high success 566

rate for appearance of the target phrases in the con- 567

straint. Song et al. (2020) and Chen et al. (2021) 568

do consider source alignment but they do not en- 569

force constraints leading to lower CSR. Dinu et al. 570

(2019) and Lee et al. (2021) propose alternative 571

training strategies for constraints, whereas we fo- 572

cus on working with existing models. Recently, 573

non autoregressive methods have been proposed 574

for enforcing target constraints but they require that 575

the constraints are given in the order they appear in 576

the target translation (Susanto et al., 2020). 577

6 Conclusion 578

In this paper we proposed a simple modification to 579

NMT systems to obtain accurate online alignments. 580

The key idea that led to high alignment accuracy 581

was conditioning on the output token. Further, our 582

alignment module enables such conditioning to be 583

performed synchronously with token generation. 584

This property led us to Align-VDBA, a principled 585

decoding algorithm for lexically constrained trans- 586

lation based on joint distribution of target token 587

and source alignments. 588

Limitations: All existing methods for hard con- 589

strained inference, including ours, come with con- 590

siderable runtime overheads. Soft constrained 591

methods are not accurate enough. 592

Future work: Future work could try to increase 593

efficiency of constrained inference and handle other 594

forms of constraints including nested constraints. 595
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A Alignment Error Rate873

Given gold alignments consisting of sure align-874

ments S and possible alignments P , and the pre-875

dicted alignments A, the Alignment Error Rate876

(AER) is defined as (Och and Ney, 2000):877

AER = 1− |A ∩ P|+ |A ∩ S||A|+ |S|878

Note that here S ⊆ P . Also note that since our879

models are trained on sub-word units but gold align-880

ments are over words, we need to convert align-881

ments between word pieces to alignments between882

words. A source word and target word are said to883

be aligned if there exists an alignment link between884

any of their respective word pieces.885

B BLEU-C886

Given a reference sentence, a predicted translation887

and a set of constraints, for each constraints, a seg-888

ment of the sentence is chosen which contains the889

constraint and window size words (if available) sur-890

rounding the constraint words on either side. Such891

segments, called spans, are collected for the refer-892

ence and predicted sentences in the test and BLEU893

is computed over these spans. If a constraint is not894

satisfied in the prediction, the corresponding span895

is considered to be the empty string. An example896

is shown in Table 6. Table 7 shows how BLEU-C897

varies as a function of varying window size for a898

fixed English-French constraint set with beam size899

set to 10.900

Window Size→ 2 3 4 5 6 7 8
No constraints 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NAIVEATT 34.4 32.0 30.4 29.5 29.4 29.5 29.7
PRIORATT 41.5 38.7 36.4 35.1 34.9 35.0 35.2
SHIFTATT 44.9 41.5 38.9 37.3 36.4 36.2 36.0
SHIFTAET 47.0 43.2 40.4 38.7 38.0 37.6 37.4
POSTALN 46.4 42.7 39.8 38.0 37.1 36.9 36.6
VDBA 54.9 50.5 46.8 44.6 43.5 43.0 42.6
Align-VDBA 56.4 51.7 47.9 45.6 44.4 43.7 43.3

Table 7: BLEU-C vs Window Size

C Description of the Datasets901

The European languages consist of parallel sen-902

tences for three language pairs from the Europarl903

Corpus and alignments from Mihalcea and Peder-904

sen (2003), Och and Ney (2000), Vilar et al. (2006).905

Following previous works (Ding et al., 2019; Chen906

et al., 2020), the last 1000 sentences of the training907

data are used as validation data.908

For English-Hindi, we use the dataset from Mar-909

tin et al. (2005) consisting of 3440 training sentence910

pairs, 25 validation and 90 test sentences with gold 911

alignments. Since training Transformers requires 912

much larger datasets, we augment the training set 913

with 1.6 million sentences from the IIT Bombay 914

Parallel Corpus (Kunchukuttan et al., 2018). We 915

also add the first 50 sentences from the dev set of 916

IIT Bombay Parallel Corpus with manually anno- 917

tated alignments to the test set giving a total of 140 918

test sentences. 919

For Japanese-English, we use The Kyoto Free 920

Translation Task (Neubig, 2011). It comprises 921

roughly 330K training, 1166 validation and 1235 922

test sentences. As with other datasets, gold align- 923

ments are available only for the test sentences. The 924

Japanese text is already segmented and we use it 925

without additional changes. 926

The real world constraints datasets of Dinu et al. 927

(2019) are extracted from the German-English 928

WMT newstest 2017 task with the IATE dataset 929

consisting of 414 sentences (451 constraints) and 930

the Wiktionary 727 sentences (879 constraints). 931

The constraints come from the IATE and Wik- 932

tionary termninology databases. 933

All datasets were processed using the scripts 934

provided by Zenkel et al. (2019) at https:// 935

github.com/lilt/alignment-scripts. 936

Computation of BLEU and BLEU-C, and the 937

paired test were performed using sacrebleu (Post, 938

2018). 939

D Bidirectional Symmetrized Alignment 940

We report AERs using bidirectional symmetrized 941

alignments in Table 8 in order to provide fair com- 942

parisons to results in prior literature. The sym- 943

metrization is done using the grow-diagonal heuris- 944

tic (Koehn et al., 2005; Och and Ney, 2000). Since 945

bidirectional alignments need the entire text in both 946

languages, these are not online alignments. 947

Method de-en en-fr ro-en en-hi ja-en
Statistical Methods

GIZA++ 18.6 5.5 26.3 35.9 39.7
FastAlign 27.0 10.5 32.1 - -

No Alignment Training
NAIVEATT 29.2 16.9 31.4 43.8 57.1
SHIFTATT 16.9 7.8 24.3 30.9 46.2

With Alignment Training
PRIORATT 22.0 10.1 26.3 32.1 48.2
SHIFTAET 15.4 5.6 21.0 26.7 40.1
POSTALN 15.3 5.5 21.0 26.1 39.5

Table 8: AERs for bidirectional symmetrized align-
ments. POSTALN consistently performs the best.
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Reference we consider the development of a robust security system that is independent of the
Prediction we consider developing a robust security system which is independent of the

BLEU-C (Window Size = 2)
Cons. No Reference Spans Predicted Spans
1 consider the development of a (empty sentence)
2 a robust security system that is a robust security system which is
BLEU-C = BLEU(Reference Spans, Predicted Spans)

Table 6: An example BLEU-C computation

E Additional Lexicon-Constrained948

Translation Results949

Constrained translation results for beam sizes 5950

and 10 are shown in Table 9. Paired bootstrap951

resampling test results with respect to Align-VDBA952

for beam size 10 are shown in Table 10.953

F Additional Real World Constrained954

Translation Results955

Results on the real world constrained translation956

datasets of Dinu et al. (2019) for all the methods in957

Table 3 with beam sizes 5, 10 and 20 are presented958

in Table 11. Paired bootstrap resampling test results959

with respect to Align-VDBA for beam size 5 are960

shown in Table 12961

G Alignment-based Token Replacement962

Algorithm963

The pseudocode for the algorithm used in Song964

et al. (2020); Chen et al. (2021) and our non-VDBA965

based methods in Section 4.3 is presented in Al-966

gorithm 2. As described in Section 3.1, at each967

decoding step, if the source token having the max-968

imum alignment at the current step lies in some969

constraint span, the constraint in question is de-970

coded until completion before resuming normal971

decoding.972

Though different alignment methods are rep-973

resented using a call to the same ATTENTION974

function in Algorithm 2, these methods incur975

varying computational overheads. For instance,976

NAIVEATT incurs little additional cost, PRIO-977

RATT and POSTALN involve a multi-head atten-978

tion computation. For SHIFTATT and SHIFTAET,979

an entire decoder pass is done when ATTENTION is980

called, thereby incurring a huge overhead as shown981

in Table 3.982

H Layer Selection for Alignment 983

Supervision of Distant Language Pairs 984

For the alignment supervision, we used align- 985

ments extracted from vanilla Transformers using 986

the SHIFTATT method. To do so, however, we 987

need to choose the decoder layers from which to 988

extract the alignments. The validation AERs can 989

be used for this purpose but since gold validation 990

alignments are not available, Chen et al. (2020) sug- 991

gest selecting the layers which have the best con- 992

sistency between the alignment predictions from 993

the two translation directions. 994

For the European language pairs, this turns out to 995

be layer 3 as suggested by Chen et al. (2020). How- 996

ever, for the distant language pairs Hindi-English 997

and Japanese-English, this is not the case and layer 998

selection needs to be done. The AER between the 999

two translation directions on the validation set, with 1000

alignments obtained from different decoder layers, 1001

are shown in Tables 13 and 14. 1002
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de→en en→fr ro→en en→hi ja→en
Beam
Size

Method BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time

5 No constraints 0.0 5.0 32.9 78 0.0 8.7 34.6 61 0.0 8.4 33.3 45 0.0 5.6 19.7 18 0.0 7.9 19.1 221
NAIVEATT 28.9 86.2 36.7 127 36.7 88.6 38.0 87 32.9 91.8 36.3 88 23.0 89.9 23.9 25 15.1 77.0 20.3 398
PRIORATT 35.3 93.0 37.7 136 42.2 94.7 38.6 89 36.0 91.6 37.0 89 27.6 91.7 24.7 26 16.8 80.2 20.6 353
SHIFTATT 41.0 96.7 38.7 268 45.2 93.8 38.4 167 39.2 94.4 37.2 160 23.8 81.8 22.0 42 15.1 72.6 19.3 664
SHIFTAET 43.1 97.6 39.1 291 46.5 94.8 38.6 165 40.8 94.7 37.5 163 24.5 83.6 22.1 44 18.0 76.5 19.6 583
POSTALN 42.7 97.3 39.0 252 46.1 93.9 38.5 151 39.8 93.5 37.3 141 23.3 79.7 21.7 39 17.9 75.3 19.6 469
VDBA 39.6 99.4 37.8 203 45.9 99.5 38.5 109 36.6 99.2 36.7 117 27.3 96.6 24.2 37 22.1 96.9 20.9 397
Align-VDBA 41.3 98.8 38.2 236 48.0 98.9 38.7 128 42.0 96.6 37.5 134 28.2 91.3 24.7 45 22.6 93.9 21.2 445

10 No constraints 0.0 4.6 32.9 87 0.0 8.7 34.8 64 0.0 8.8 33.4 47 0.0 6.3 19.7 21 0.0 8.8 18.9 237
NAIVEATT 28.7 86.1 36.6 147 36.5 88.0 38.3 93 33.3 92.3 36.5 99 22.5 88.4 23.6 27 15.1 75.9 20.2 315
PRIORATT 35.0 92.8 37.6 159 42.1 94.4 38.9 97 36.0 91.2 37.2 100 27.2 91.5 24.4 28 16.7 79.7 20.4 326
SHIFTATT 41.0 96.6 38.7 443 45.0 93.5 38.7 239 39.2 94.2 37.4 241 23.2 78.7 21.9 58 15.2 72.7 19.3 567
SHIFTAET 43.1 97.5 39.1 458 46.6 94.3 39.0 235 40.8 94.4 37.6 263 24.3 80.2 22.0 62 18.1 75.9 19.7 596
POSTALN 42.7 97.2 39.0 399 46.3 94.1 38.7 218 40.0 93.5 37.4 226 23.8 79.0 22.0 47 18.2 75.7 19.7 460
VDBA 44.5 98.9 38.5 293 51.9 98.5 39.5 160 43.1 99.1 37.9 165 29.8 92.3 24.5 49 24.3 95.6 21.6 494
Align-VDBA 44.5 98.6 38.6 357 52.9 98.4 39.7 189 44.1 98.9 38.1 203 30.5 91.5 24.7 70 25.1 95.5 21.8 630

Table 9: Lexically Constrained Translation Results with different beam sizes. All numbers are average over 5
randomly sampled constraint sets and running times are in seconds.
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Figure 3: Alignments for en→hi by NAIVEATT, PRIORATT, and POSTALN. Note that POSTALN is most similar
to Gold alignments in the last column.

de→en en→fr ro→en
No constraints 0.0001* 0.0001* 0.0001*
NAIVEATT 0.0001* 0.0001* 0.0001*
PRIORATT 0.0001* 0.0001* 0.0001*
SHIFTATT 0.1700 0.0001* 0.0001*
SHIFTAET 0.0015* 0.0001* 0.0018*
POSTALN 0.0032* 0.0001* 0.0003*
VDBA 0.2666 0.0020* 0.0229*

Table 10: Paired bootstrap resampling tests with 10000
bootstrap samples for BLEU on Table 3 datasets for
beam size 10. * denotes statistically significant differ-
ence from Align-VDBA at power 0.05 (p-value < 0.05).

Dataset→ IATE.414 Wiktionary.727
Beam
Size

Method ↓ BLEU-C CSR BLEU Time BLEU-C CSR BLEU Time

5 No constraints 27.9 76.6 29.7 134 26.3 72.0 29.9 217
NAIVEATT 29.2 96.9 29.2 175 29.0 95.3 29.1 341
PRIORATT 31.2 97.1 29.7 198 32.2 95.9 29.9 306
SHIFTATT 34.9 96.7 29.9 355 35.3 96.5 30.0 568
SHIFTAET 35.2 96.3 30.0 378 35.8 97.1 30.2 637
POSTALN 35.3 96.7 30.0 272 35.8 96.7 30.2 467
VDBA 35.3 98.8 29.8 258 35.0 99.2 30.4 442
Align-VDBA 36.1 98.3 30.1 268 35.9 98.8 30.6 523

10 No constraints 28.3 77.0 29.7 113 26.3 72.4 29.9 164
NAIVEATT 28.9 97.3 29.1 145 29.2 95.3 29.1 269
PRIORATT 31.3 96.9 29.5 155 32.3 96.0 29.9 260
SHIFTATT 34.9 96.3 29.8 345 35.3 96.8 30.3 600
SHIFTAET 35.2 95.9 29.9 350 35.9 97.2 30.4 664
POSTALN 35.1 95.9 29.9 287 35.8 97.0 30.3 458
VDBA 37.6 99.8 30.9 257 36.9 99.4 30.9 451
Align-VDBA 37.5 99.8 30.9 353 37.2 99.5 31.1 540

20 No constraints 28.4 77.2 29.9 103 26.3 72.1 30.0 177
NAIVEATT 28.9 96.9 29.0 188 29.1 95.4 29.3 325
PRIORATT 31.3 96.9 29.6 203 32.6 96.4 30.1 338
SHIFTATT 34.7 96.1 29.8 528 35.3 96.8 30.2 892
SHIFTAET 35.0 95.8 29.9 539 36.1 97.3 30.4 923
POSTALN 35.1 96.1 29.9 420 36.0 97.0 30.4 751
VDBA 37.8 99.8 30.9 381 37.4 99.2 31.2 680
Align-VDBA 37.9 99.8 30.9 465 38.0 99.5 31.3 818

Table 11: Additional results for the real world con-
straints for all methods and different beam sizes.
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Algorithm 2 k-best extraction with argmax replacement decoding.
Inputs: A k × |VT | matrix of scores (for all tokens up to the currently decoded ones). k beam states.

1: function SEARCH_STEP(beam, scores)
2: next_toks, next_scores← ARGMAX_K(scores, k=2, dim=1) . Best 2 tokens for each beam
3: candidates← []
4: for 0 ≤ h < 2 · k do
5: candidate← beam[h//2]
6: candidate.tokens.append(next_toks[h//2, h%2])
7: candidate.scores← next_scores[h//2, h%2]
8: candidates.append(candidate)
9: attention← ATTENTION(candidates)

10: aligned_x← ARGMAX(attention, dim=1)
11: for 0 ≤ h < 2 · k do
12: if aligned_x[h] ∈ Cxi for some i and not candidates[h].inprogress then . Start constraint
13: candidates[h].inprogress← True
14: candidates[h].constraintNum← i
15: candidates[h].tokenNum← 0
16: if candidates[h].inprogress then . Replace token with constraint tokens
17: candidates[h].tokens[-1]← constraints[candidates[h].constraintNum][candidates[h].tokenNum]
18: candidates[h].tokenNum← candidates[h].tokenNum + 1
19: if constraints[candidates[h].constraintNum].length == candidates[h].tokenNum then
20: candidates[h].inprogress← False . Finish current constraint
21: candidates← REMOVE_DUPLICATES(candidates)
22: newBeam← TOP_K(candidates)
23: return newBeam

Dataset IATE.414 Wiktionary.727
Method BLEU µ± 95% CI p-value BLEU µ± 95% CI p-value
Align-VDBA 30.1 (30.0±1.7) 30.6 (30.6±1.2)
No constraints 29.7 (29.7±1.7) 0.1059 29.9 (29.9±1.2) 0.0054*
NAIVEATT 29.2 (29.2±1.7) 0.0121* 29.1 (29.1±1.2) 0.0001*
PRIORATT 29.7 (29.6±1.6) 0.0829 29.9 (29.8±1.2) 0.0041*
SHIFTATT 29.9 (29.8±1.6) 0.1827 30.0 (30.0±1.2) 0.0229*
SHIFTAET 30.0 (29.9±1.6) 0.2824 30.2 (30.2±1.2) 0.0588
POSTALN 30.0 (30.0±1.6) 0.3813 30.2 (30.2±1.2) 0.0646
VDBA 29.8 (29.7±1.6) 0.0849 30.4 (30.4±1.2) 0.0960

Table 12: Paired bootstrap resampling tests with 10000
bootstrap samples for BLEU on Dinu et al. (2019)
datasets for beam size 5. * denotes statistically signif-
icant difference from Align-VDBA at power 0.05 (p-
value < 0.05).
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1 2 3 4 5 6
1 65.5 55.8 56.1 95.2 94.6 96.6
2 59.2 47.5 44.5 95.1 91.9 95.8
3 62.6 52.1 48.3 93.7 91.4 95.2
4 88.6 83.3 82.1 89.9 88.0 90.3
5 91.6 87.7 88.5 91.4 88.8 90.2
6 93.5 91.1 92.5 92.5 90.5 90.7

Table 13: AER between en→hi and hi→en SHIF-
TATT alignments on the validation set for EnHi

1 2 3 4 5 6
1 93.5 90.0 94.4 92.2 95.1 95.1
2 86.5 58.7 86.9 69.4 87.2 86.2
3 87.4 59.4 87.1 69.1 87.1 86.2
4 89.1 69.1 85.9 74.2 84.9 85.4
5 93.4 88.5 89.1 87.1 86.8 88.1
6 93.5 89.4 90.0 88.1 87.7 88.7

Table 14: AER between ja→en and en→ja SHIF-
TATT alignments on the validation set for JaEn
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