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SYMPLECTIC EMBEDDINGS OF 4–MANIFOLDS VIA LEFSCHETZ FIBRATIONS

DISHANT M. PANCHOLI AND FRANSICO PRESAS

Abstract. In this article we study proper symplectic and iso-symplectic embeddings of 4–manifolds in
6–manifolds. We show that a closed orientable smooth 4–manifold admitting a Lefschetz fibration over
CP 1 admits a symplectic embedding in the symplectic manifold (CP 1

× CP 1
× CP 1, ωpr), where ωpr is

the product symplectic form on CP 1
×CP 1

×CP 1. We also show that there exists a sub-critical Weinstein
6–manifold in which all finite type Weinstein 4–manifolds admit iso-symplectic embeddings.

1. Introduction

The study of embeddings of manifolds has a long and fascinating history. Many important techniques
essential for the study of geometric topology originated from the study embeddings of manifolds. To name
a few, (1) H. Whiteny’s famous trick [25] was discovered by him to establish embeddings of n–dimensional
manifolds in R2n, (2) Nash’s C1–isometric embedding theorem [23] – which can be regarded as precursor to
the phenomenon of h–principle discovered and popularized by M. Gromov [12], and (3) Kodiara’s embedding
theorem [19] which characterizes which complex manifolds are projective.

In this article we discuss proper symplectic and iso-symplectic embeddings of manifolds. Recall that by
a symplectic embedding of an even dimensional manifold M in a symplectic manifold (W,ωW ), we mean a
proper smooth embedding of M in W such that the pull-back of the symplectic form ωW via the embedding
induces a symplectic structure on M. In case M is symplectic with symplectic form ωM , and the pull back
f∗(ωW ) via an embedding f of M in W is the form ωM , then we say that f is an iso-symplectic embedding
of (M,ωM ) in (W,ωW ).

The study of symplectic and iso-symplectic embeddings of symplectic manifolds in a given symplectic
manifold was initiated by M. Gromov. Gromov showed that the question of iso-symplectic and symplectic
embeddings of symplectic manifolds abides by the h-principle provided the co-dimension of the embedding
is at least 4. In case, (M,ωM ) is an open manifold, Gromov showed that the iso-symplectic and symplectic
embedding problem abides by the h–principle even in the case when the co-dimension of embeddings under
consideration is 2. Apart form these earlier works of Gromov, a major break through in producing symplectic
sub-manifolds of a closed symplectic manifold came through the works of Donaldson [8]. Donaldson, using
his approximately holomorphic technique, provided many symplectic sub-manifolds of a given closed sym-
plectic manifold. In particular, he produce closed symplectic sub-manifolds in co-dimension 2. Donaldson’s
technique, though very powerful and extremely useful, does not provide any insight into the question finding
which manifold might occur as a co-dimension 2 symplectic sub-manifold of a given symplectic manifold.

In the present article we try to address this question. We will focus on symplectic embeddings of closed
4–manifolds in co-dimension 2, and proper symplectic as well as iso-symplectic embeddings of Weinstein
manifolds in co-dimension 2.

Let us now proceed towards stating precisely statements of main results. It is well known that a large
class of symplectic manifolds admit Lefschetz fibrations. In this article we will discuss symplectic and iso-
symplectic embedding of manifolds admitting Lefschetz fibration. We will also mostly focus on embeddings
of 4–manifolds in 6–dimensional symplectic manifolds occasionally pointing out the places where there is
a possibility of generalisations to higher dimensions. We begin by first discussing statements regarding
symplectic embeddings of closed manifolds.
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1.1. Embeddings of closed manifolds.

Let us recall few notions related to Lefschetz fibrations.

Definition 1.1 (Lefschetz fibration). Let M be an oriented 2n–dimensional compact manifold, possibly
with a non-empty boundary and corners. By a Lefschetz fibration on M, we mean a map f : M → S, where
S is either CP 1 or a closed unit 2–disk D2, which satisfies the following property.

For every x at which the map f is singular, there exists an orientation preserving parameterization
φ : U ⊂ M → Cn, and an orientation preserving parameterization ψ : V ⊂ S → C such that the following
properties are satisfied:

(1) x ∈ U, and φ(x) = (0, · · · , 0) ∈ Cn.

(2) f(x) ∈ V, and ψ(f(x)) = 0 ∈ C.

(3) For the map g : Cn → C given by g(z1, z2, · · · , zn) = z21 + z22 + · · · + z2n, the following diagram
commutes:

U ⊂M C2

V ⊂ S C.

φ

f g

ψ

It is well known that given a Lefschetz fibration, a fiber containing a singular point is obtained from a
nearby fiber F by collapsing an embedded n–sphere S to a point. The sphere S is called a vanishing cycle.
When S is homologically non-trivial, we say that S is an essential cycle.

A Lefschetz fibration πM :M → Σ, on M which satisfies: (1) the map πM restricted to the set of critical
points is injective, (2) every vanishing cycle is essential is also known as simplified Lefschetz fibration [4].
Most Lefschetz fibrations that one generally encounter satisfy these properties. Further, in most cases,
given a manifold M admitting a Lefschetz fibration which is not simplified, it is possible to produce another
Lefschetz fibration on M which is simplified. For this reason, we will only focus on simplified Lefschetz
fibration. Hence from now on, by a Lefschetz fibration, we will always mean a simplified Lefschetz fibration.

We use Lefschetz fibrations to produce embeddings, for this we need to recall the notion of Lefschetz
fibration embedding. This notion was discussed in [14].

Definition 1.2. Let πM :M → S and πN : N → S be two Lefschetz fibrations. An embedding φ :M →֒ N

is said to be a Lefschetz fibration embedding of M in N, provided the following diagram commutes:

M N

S S.

φ

πM πN

Id

We fix the following convention:
For the ease of notations in this article article we will denote by P the manifold CP 1 × CP 1 × CP 1 and

by πi : P → CP 1 the projection on the i’th factor, for i ∈ {1, 2, 3}. On the manifold P there is a natural
symplectic form defined as π∗

1(ωFS)+π
∗

2(ωFS)+π
∗

3(ωFS), where ωFS is the standard Fubini-Study symplectic
form on CP 1. Let us denote this symplectic form by ωpr. The map π3 : P → CP 1 is clearly trivial symplectic
fibration having fiber symplectomorphic to the symplectic manifold (CP 1 ×CP 1, π∗

1ωFS + π∗

2ωFS). We will
denote the symplectic manifold CP 1×CP 1 with symplectic form π∗

1ωFS+π
∗

2ωFS by (CP 1×CP 1, ωFS+ωFS).

Theorem 1.3. Let M be a closed orientable 4–manifold, and let πM : M → CP 1 be a Lefschetz fibration.
There exists a Lefschetz fibration embedding of M in (P , ωpr) which satisfies the following:

(1) the embedding is symplectic,
(2) any smooth fiber of the fibration πM :M → CP 1 is symplectic sub-manifold of a fiber of π3.

Since its introduction in symplectic geometry in the seminal article [9] by S. K. Donaldson, the notion
of Lefschetz fibration has become extremely important in symplectic topology. An almost immediate conse-
quence of [9, Theorem 2] – which provides the existence of Lefschetz pencil on symplectic manifolds – and
Theorem 1.3 is the following:
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Theorem 1.4. Let (M,ω) be a closed 4–dimensional symplectic manifold. After a finite number of blow-up
there exist a symplectic embedding of the blown-up manifold BM in symplectic manifold (CP 1 × CP 1 ×
CP 1, ωpr), where ωpr is the product symplectic form on CP 1 × CP 1 × CP 1.

1.2. Embeddings of Weinstein manifolds.

Next, we apply our method of studying embedding via Lefschetz fibration to the case of Weinstein mani-
folds. Recall that a Weinstein manifoldW is a manifold admitting a triple (ω, φ,X), where ω is a symplectic
structure on W, φ is a exhausting Morse function for W , and X is a complete vector field on W which is
exhaustive for φ and Liouville for ω. The triple (ω, φ,X) is known as a Weinstein structure on W. In this
article we will only deal with Weinstein manifolds that admit exhaustive Morse function with only finite
number of critical points. Recall that such Weinstein manifolds are known as finite type Weinstein manifolds.
Finally recall that a Weinstein manifold V 2n of dimension 2n admitting a exhaustive Morse function having
critical points of index at most n

2 − 1 is known as a sub-critical Weinstein manifold.
Our main result related to iso-symplectic embeddings of Weinstein manifolds is the following:

Theorem 1.5. Let L(−3) denote the complex line bundle over CP 1 with Chern class −3. The manifold
L(−3)× C admits a Weinstein structure (ωU , X, φ) which satisfies the following property.

If (V, φ,X) is a Weinstein manifold of dimension 4 satisfying the property that φ has only finite number
of critical points, then there exists an iso-symplectic embedding of (V,X, φ) in (L(−3)× C, ωU , φ,X).

We would like to point out that the universal model for iso-symplectic embeddings that we have con-
structed is not unique. A large class of Stein manifolds can serve as universal model. See the remark after
the proof of Theorem 1.5 at the end of Section 6. Furthermore, since any Stein manifold has an underly-
ing Weinstein structure, Theorem 1.5 provides iso-symplectic embeddings of Stein manifolds which are not
holomorphic embeddings.

It was pointed out to us by Prof. Yakov Eliashberg that a complete h–principle for iso-symplectic em-
bedding of Weinstein manifold in co-dimension 2 is well known provided the target manifold is flexible.
This follows form the work discussed in [6]. However, producing an embedding of Weinstein manifold which
is formally iso-symplectic is generally not very easy. We circumvent this problem by producing explicit
iso-symplectic embeddings.

Let us have few words regarding the arrangement of this article. Essential preliminaries related to Lefschetz
fibration and mapping class groups are collected in Section 2. In Section 3 we discuss main ideas involved
in proofs of Theorem 1.3 and Theorem 1.5. The notion of flexible embeddings of surfaces is discussed in
Section 4 while sections 5 and 6 deal with proof of Theorem 1.3 and Theorem 1.5 respectively.

1.3. Acknowledgments. We are extremely thankful to Prof. Yakov Eliashberg for his constant encour-
agement, support, and critical comments. Dishant Pancholi is very thankful to T R Ramadas and Krishna
Hanumantu for various discussions related to this article. F. Presas is supported by the Spanish Research
Projects SEV-2015-0554, MTM2016-79400-P, and MTM2015-72876-EXP.

2. Preliminaries

We start this section by recalling some results related to Lefschetz fibrations.

2.1. Lefschetz fibration.

In this sub-section we recall two theorems about Lefschetz fibrations. First of which is due S. K. Don-
aldson [9, Theorem:2] and J.Amorś, V. Muñoz and F. Presas [1], which roughly says that every symplectic
manifold, after finite number of blow-up admits a Lefschetz fibration structure. The second one is due to
R. Gompf which –in certain sense – establishes the converse of Donaldson’s result providing the existence of
symplectic structures on Lefschetz fibrations.

Theorem 2.1 (S. Donaldson [9], J. Amorós, V. Muñoz, and F.Presas [1]). Let (M,ω) be a closed symplectic
manifold. After finite number of blow-ups of M, there exists a Lefschetz fibration structure on the blown-up

manifold M̃ which satisfies the property that regular fiber of this fibration is a symplectic sub-manifold of M̃.

Furthermore, we can always find a Lefschetz fibration on M̃ which is simplified.
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We would like to mention here that Theorem 2.1 is actually not stated in the form mentioned here but
it is an easy consequence of Theorem 2 of [9], and [1, Theorem 1.3]. Theorem 2 of [9] provides us with the
existence of Lefschetz pencils, while [1, Theorem 1.3] shows that given a pair of vanishing cycles c1 and c2
associated to a symplectic Lefschetz fibration, there exists a symplectic isotopy of the symplectic manifold
which send c1 to c2. This implies that even if one vanishing cycle is essential all vanishing cycles are essential.
This, in particular, implies that pencil induced by large degree line bundles satisfy the property that all its
vanishing cycles are essential.

Finally let us state a result due to R. Gompf [16, Theorem:10.2.18]:

Theorem 2.2 (R.Gompf). Let X2n be a smooth manifold that admits a Lefschetz fibration π : X → S
with fiber F. Then X admits a symplectic structure on ω for which the fiber F is symplectic if and only if
[F ] in H2(X,Z) is non-zero. Furthermore, if {e1, e2, · · · en} is a finite collection of sections of the Lefschetz
fibration, then the symplectic structure can be assumed to be such that each one of these sections is symplectic.

We would like to remark that we are not assuming that X is a closed manifold in the statement of
Theorem 2.2. This will be the case provided S is CP 1. In case, S is D2, then X is a manifold with boundary
and corners.

2.2. Review of symplectic mapping class group.

One of the main ingredient for establishing symplectic embeddings is the notion of flexible embedding of
surfaces. In order to get flexible embeddings of surfaces, we use some results about mapping class groups of
surfaces. Let us review these.

Throughout this article by the mapping class group of an orientable surface (Σ, ω) we mean the group of
symplectic form preserving diffeomorphism of Σ up to a symplectic isotopy. In case, the boundary of Σ is non-
empty, then the mapping class group consists of all symplectomorphisms which are identity when restricted
to the boundary of Σ up to isotopies that are identity when restricted to the boundary of Σ.. Furthermore,
since the symplectic isotopy class of a particular symplectomorphism is the only thing that is relevant for
this article, the word symplectomorphism will always mean the isotopy class of the symplectomorphism.

It follows from the works of M. Dehn [7] and C. Lickorish [20] that the mapping class group of a closed
orientable surface is generated by Dehn twists [5, Section 3.1.1]. S. Humphries extended their work to
established the most economical set of generators for the mapping class group of an orientable genus g
surface. He showed that the mapping class group is generated by Dehn twists along the curves ai, i = 1 to
g, bj , j = 1 to g1, c1, and c2 as depicted in Figure 2.2 provided, Σ is a closed orientable surface of genus
g, g ≥ 2.

Since we are working with surfaces together with a symplectic form ω, Σ naturally comes equipped with
an orientation. When we say a positive (left handed) Dehn twist [5, Section 3.1.1], we always mean a positive
Dehn twist with respect to this orientation. The general term Dehn twist refers to either a positive or a
negative Dehn twist.

For a surface (Σ, ∂Σ) having a unique boundary component as depicted in Figure 2.2, the mapping class
group is generated by the same set of Humphries generators together with Dehn twist along boundary parallel
curve d as depicted in Figure 2.2.

Having collected necessary preliminaries, we proceed now to provide proofs of main results. To make our
ideas accessible, in the next section, we outline the main ideas involved in the proofs.

3. Main ideas involved in proofs of Theorem 1.3 and Theorem 1.5

.
Let us first discuss ideas involved in establishing Theorem 1.3. Given any Lefschetz fibration πM : M →

CP 1, we know that removing finite number of singular fibers, we get a fiber bundle over punctured CP 1.

We also know that the monodromy around each of this puncture is a positive Dehn twist.
Let F denote a fixed smooth fiber of the Lefschetz fibration πM : M → CP 1. We observe the following:

if there exists a symplectic manifold (W,ωW ) and a symplectic embedding i : F →֒ W such that for every
symplectomorphism ψ : F → F the embeddings ψ ◦ i and i are symplectically isotopic, then the fiber bundle
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c1

c2

a1

b1
a2 a3 bg−1

ag

Figure 1. The picture depicts the set of Humphries generators for the mapping class group
of a closed orientable surface of genus g. The curves ai’s are depicted in green, curves bj’s
are depicted in blue, curves c1 and c2 are depicted in red.

c1

c2

a1

b1
a2 a3 bg−1

ag

d

Figure 2. The figure depicts Humphries generators for the mapping class group of a surface
with single boundary component and a surface having exactly one puncture. The mapping
class group of punctured surface is generated by Dehn twists along ai, bj , c1, and c2, while
to generate the mapping class group of the surface with one boundary component we need
an additional Dehn twist along the curve d.

over punctured CP 1 admits a symplectic embedding in W ×CP 1. An embedding satisfying this property is
termed as symplectically flexible embeddings. We refer to Section 4 for a precise definition of symplectically
flexible embeddings.

We observe that (CP 1 × CP 1, ωFS + ωFS) is the symplectic manifold in which every genus g surface
admits a symplectically flexible embedding. The existence of symplectically flexible embeddings is discussed
in Lemma 4.4. As remarked earlier, Lemma 4.4 implies that there is fiber preserving symplectic embedding
of the Lefschetz fibration πM : M → CP 1 restricted to the complement of singular fibers in the trivial
fibration π3 : P → CP 1, where recall that P = CP 1 × CP 1 × CP 1 with product symplectic form and π3 is
the projection on the third factor.

In order to extend the fiber preserving embedding constructed in previous paragraph to an embedding of
M we turn to local model of Lefschetz critical point. We observe that there exist a symplectic embedding
φof C2 in C3 given by φ(z1, z2) = (z1, z2, 0) such that the following diagram commutes:

C2 C3

C C,

φ

f g

id

where f(z1, z2, z3) = z1z2 + z3 and g = f ◦φ. Observe that this implies we can get embed a neighborhood of
Lefschetz singular point in a standard symplectic ball such that trivial fibration of this ball to a disk induces
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the given Lefschetz fibration on the neighborhood of Lefschetz singularity. This observation allows us to
extend the embeddings obtained at the end of first step to neighborhoods of singular fibers. Though we
have not written down final argument in this explicit format, the main idea behind proofs is this. We refer
to [14] for smooth embeddings of all 4–manifolds in CP 3 using similar ideas. In fact, our main observation
was that most of the ideas discussed in [14] can be adopted in symplectic setting.

Let us end this section be briefly discussing main ideas in the proof of Theorem 1.5. Theorem 1.5 follows
relatively easily from Theorem 6.7 where we discuss Stein Lefschetz fibration embedding in a fixed Stein
domain.

The ideas involved in producing Stein Lefschetz fibration embeddings are similar to the one discussed
earlier for the proof of Theorem 1.3. It is clear that one needs to produce a Stein manifold W which admits
flexible embeddings of Stein 1–manifolds. We observe that the Stein manifold DL(−3) has the property
that every Stein 1–manifold which is biholomorphic to a once punctured Riemann surface, admit a proper
symplectically flexible embedding in DL(−3). See Lemma 4.6 for a precise statement regarding flexible
embeddings in DL(−3). Rest of the proof to establish Theorem 6.7 follows essentially the same logic.

4. Flexible embeddings of surfaces

We begin by recalling few definitions regarding flexible embeddings of surfaces from [14].

Definition 4.1. Let Σ be an orientable surface. Let (M,ω) be a symplectic manifold. Let Ψ : Σg →֒ (M,ω)
be a symplectic embedding. Let f be an element of MCG(Σ,Ψ∗(ω) = Ω). We say that the element f is
conjugate via the embedding Ψ provided the following properties are satisfied:

(1) There exits a 1–parametric family φt of symplectomorphisms of (M,ω) such that φ0 = id and
φ1(Ψ(Σ)) = Σ.

(2) Ψ−1 ◦ φ1 ◦Ψ = f.

Definition 4.2 (Symplectically flexible embedding). A symplectic embedding Ψ of an orientable surface Σ
in a symplectic manifold (M,ω) is said to be symplectically flexible provided every f ∈ MCG(Σ,Ψ∗(ω)) is
conjugated by a symplectic isotopy of (M,ω).

For the sake of brevity, we will refer to a symplectically flexible embedding just by the term flexible
embedding. Recall that the term flexible embedding is used in [15] for smooth embedding satisfying properties
similar to the define in Definition 4.2. Since in this article, we will only be dealing with symplectically flexible
embeddings, we are going to take slight liberty and refer them as flexible embeddings in the rest of the article
unless stated otherwise explicitely.

Consider a pencil π :M4 \B → CP 1 on a closed symplectic manifold (M,ω). Let c be a critical point for
the pencil and let ν be a vanishing cycle corresponding to the critical point c. Our first lemma is regarding
the existence of a symplectic isotopy of M which conjugates the element τν , where τν denotes the positive
Dehn twist along the curve ν.

Lemma 4.3. Let p : M \B → CP 1, c, ν, and τν be as in the previous paragraph. Let F be a fiber of pencil
with ν ⊂ F. Then there exists a 1-parametric family, Ψt, t ∈ [0, 1], of symplectomorphisms of M and a 4–ball
embedded in M which satisfies the following:

(1) The 4–ball is symplectomorphic to standard symplectic 4–ball of some radius r.
(2) For each t, Ψt is the identity outside B4 and Ψ0 is the identity.
(3) The family Ψt conjugates τν .

Proof. In order to prove this result, let us first consider an abstract Weinstein Lefschetz fibration πB : B4 →
D2, where D2 is the closed disk of radius δ around 0 in C, which satisfies the following properties:

(1) The fibration has a unique Lefschetz critical point on the fiber over 0, and each fiber symplectomor-
phic to a Weinstein domain DT ∗S1, where DT ∗S1 denotes a disk bundle associated to the co-tangent
bundle T ∗S1.

(2) The fibrations is such that the monodromy associated to the fiber bundle πB : B4 \ π−1
B ({0}) →

D2 \ {0} is a Dehn twist which is supported away from a neighborhood of ∂DT ∗S1.
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Consider a vector-field V on D such that the flow associated to this vector field keeps a small collar of the
boundary ∂D fixed and rotates the circle of radius less than or equal to 1

4δ by 2π while rotating the circle

of radius 1
2δ by π as depicted in Figure 4. The lift of this vector field via a symplectic connection on the

fibration produces a flow that conjugates the monodromy Dehn twist on the fiber π−1
B {(12 , 0)} Let us denote

this flow by φ̃t.
Next, construct a properly embedding of an annulus A in B which satisfies the following:

(1) A = D̃T ∗S1 ⊂ DT ∗S1, where D̃ is disk of smaller radius than the radius of the disk D, and the disk

D̃ is chosen such that the monodromy Dehn twist associated to the fibration πB : B → D is the

identity when restricted to DT ∗S1 \ D̃T ∗S1.

(2) ∂A = π−1
B ({0}) ∩ ∂B4.

(3) The embedding is symplectic.

Observe that the flow φ̃t conjugates the Dehn twist on A, This implies by enlarging the vertical boundary

of the Weinstein fibration πB : B4 → D, we get that there exists a Weinstein fibration π : B̃ → D2, and an

embedding of an annlus Ã in B̃ which satisfies the following:

(1) A ⊂ Ã.

(2) There exist a family φ̃t of diffeomorphism which conjugates a Dehn twist on Ã

(3) For φ̃t = φt, when restricted to B ⊂ B̃.

Till now, we have produce the flow φ̃t which need not be a symplectic flow, however, φ̃t
−1

({ 1
2 , 0})} is

a 1–parametric family of symplectic sub-manifolds of B4 all of them have common boundary embedded in
∂B4. Hence in light of [2][Proposition:4] by D. Auroux, we get that there exits a flow φt which preserve
the symplectic structure associated to the Weinstein fibration – i.e., φt is a symplectomorphism for each t –

πB : B → D, and agrees with φ̃t near the boundary of B4. Clearly, φt Observe that the pair (Ã, φt) satisfy
the following properties:

(1) Ã is a symplectically embedded annulus in B4 symplectomorphic to a unit disk bundle associated
to T ∗S1.

(2) φt is a 1–parametric family of symplectomorphism of B4 each identity close to ∂B4 and which

conjugates the Dehn twist on Ã.

Now, given p : M \B → CP 1, c, ν, and τν , without loss of generality we can assume that τν is supported
in a small neighborhood of ν. This implies that there exists a neighborhood N of the critical point c
symplectomorphic to some abstract Weinstein fibration of the type πB : B → D2. This clearly implies

that there exits a family Ψ̃t of symplectomorphisms of supported in N which conjugates positive Dehn twist
on an annulus A embedded in N which satisfies the property that ∂A is pair of circles on the singular fiber
π−1
M ({c}).

Finally, consider the symplectic sub-manifold F̃ of M which is the union of A with π−1
M ({c}) \N . Clearly,

this is a symplectically embedded sub-manifold symplectically isotopic to any smooth fiber F of the pencil
πM : M \ B → CP 1. Hence, we get that given a fiber F and ν, on the fiber F there exists a family Ψt of
symplectomorphisms of M which conjugates τν . Hence the proof.

�

4.1. Flexible embeddings in CP 1 × CP 1.

Lemma 4.4. Consider the symplectic manifold (CP 1 × CP 1, ωFS + ωFS). For every g positive there exists
a flexible symplectic embedding of genus g surface in (CP 1 × CP 1, ωFS + ωFS).

Proof. Recall that CP 1×CP 1 admits holomorphic Lefschetz pencil having its smooth fiber a symplectically
embedded 2–torus T2, and the base locus consisting of 8 points. Furthermore, the 2–torus is the zero of a
generic section of the line bundle O(2) ⊗ O(2), and the vanishing cycles – up to Hurewicz moves – consist

of curves a and b as depicted in Figure 4.1 having relation (τa · τb)
6
= Id. Let us denote this pencil by

π(2,2) : CP
1 ×CP 1 \B(2,2) → CP 1, where B(2,2) denotes the base locus for the pencil consisting of 8 points.
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Figure 3. The picture depict the flow assoicated to the vector field whose lift via symplectic
connection produces the flow on B4 which induces positive Dehn twist on the fiber over
1
2δ + i0. The vector field is such that the associated flow rotates the blue disk by 2π while
keeping the boundary fixed. The red curve depicts the time 1 image of the black curve
under the flow.

Since the homology class of this torus is (2, 2), we know that any such torus is symplectically isotopic to
a symplectically embedded torus constructed via the following procedure.

Choose a pair of points N,S in CP 1. Next, consider two vertical CP 1 given by {N}×CP 1 and {S}×CP 1.

Next, consider two horizontal CP 1’s given by CP 1 × {N} and CP 1 × {S}. Now perform ambient Gromov
sum at the points {(N,N), (N,S)(S,N), (S, S)}. Let us denote this torus by T(2,2).

We claim that T(2,2) is flexible in (CP 1 × CP 1, ωFS + ωFS). This is because, the pencil π(2,2) on CP 1 ×
CP 1 with fiber T(2,2) has vanishing cycles isotopic to the curves a and b as depicted in the Figure 4.1.
Hence according to Lemma 4.3 we can conjugate Dehn twists τa and τb via family symplectomorphisms.
Furthermore, each one of this family is supported in a small ball which contains a tubular neighborhood of
the vanishing cycle. We know that τa and τb generate the mapping class group of any torus, and hence we
get that T(2,2) is flexible in CP 1 × CP 1.

b

a

Figure 4. The left of the figure is the schematic description of the embedded curve T(2,2).

Two vertical lines correspond to sphere {N}×CP 1 and {S}×CP 1, while the two horizontal
lines depict CP 1 × {N} and CP 1 × {S}. The red disk depicts the Gromov sum along the
point of intersection. On the right of the figure the picture depicts the curve T(2,2) obtained

as a result Gromov sum of two vertical CP 1’s with two horizontal CP 1’s together with
vanishing cycles for the pencil π(2,2).

Till now we have shown that there exists a flexible embedding of tours in CP 1 ×CP 1. We now show how
to produce a symplectic embedding of a surface of genus g for any g > 0. Consider g − 1 distinct points
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P1, · · · , Pg−1 on CP 1 such that {P1, · · · , Pg1} ∩ {N,S} = ∅. Furthermore, we choose the points so that non
of the point in the collections {(N,Pi)} or {(S, Pi)} lie on curves λ and µ embedded in T(2,2) ⊂ CP 1 ×CP 1.

Next, consider the vertical CP 1 × {Pi} which intersect the torus T(2,2) in a pair of points (N,Pi) and
(S, Pi). For each i perform ambient Gromov sum to produce an embedding of genus g surface. We claim
that this embedded surface is flexible. Let us denote this embedded surface by Σg

In order to establish the claim, notice that Σg for each g admits an embedding of a torus isotopic to T(2,2)

minus a pair of disk. This torus consist of the tours obtained by taking ambient Gromov sum of CP 1×{Pi},
CP 1 ×{Pi+1} for i = 0, · · · , g+1, where P0 = N and Pg+1 = S with {N}×CP 1 and {S}×CP 1 along four
points of intersections. Let ai and bi be curves of this torus which corresponds to vanishing cycles for the
pencil π(2,2). Hence, by Lemma 4.3 for the embedded surface Σg, Dehn twists {τai , τbi}, i = 1, · · · , g can be

conjugated in CP 1 × CP 1 via families of symplectomorphisms each family having support in a small ball.
Furthermore, notice that since the relation for the pencil among Dehn twists is

(τai · τbi)
6
= 1,

we get that for the curve c depicted in Figure 4.1 the Dehn twist τc also can be conjugated. Now we know
form Theorem [5] that the mapping class group of genus g surface is generated by Dehn twists along curves
ai, bj, c1 and c2 and the collection of curves on which we can perform Dehn twist in the embedded surfaces
contains these curves. Hence we have the lemma.

�

ci

ai

bi−1

bi

Figure 5. The figure depicts a flexibly embedded surface in CP 1×CP 1 which is constructed
out of a flexibly embedded torus T(2,2). As usual horizontal lines depict CP 1 × {p}, where
p is a point in CP 1, while vertical lies depict {q} × CP 1, where q ∈ CP 1. The red dot
at the intersection depicts that we have performed ambient symplectic Gompf sum in a
neighborhood of an intersection point of a horizontal CP 1 with a vertical CP 1.

Remark 4.5. It is almost immediate that Lemma 4.3 has a natural generalization to higher dimensions,
where we work with Dehn-Seidel twists instead of Dehn twists.

4.2. Flexible embedding of surface in L(−3).
Let L(−3) denote the Stein domain corresponding to the complex disk bundle over CP 1 having first Chern

class −3. Any disk bundle associated to the line bundle L(−3) will be denoted by DL(−3). The purpose of
this section is to show that given a compact orientable surface of genus g having one puncture there exits a
symplectic embedding of the surface in L(−3). More precisely, we have the following:

Lemma 4.6. Let Σ be a once punctured surface of genus g with g ≥ 2. There exists a proper symplectic
embedding of fΣ : Σ →֒ L(−3) which satisfies the following properties:

(1) There exists a plurisubharmonic proper and exhausting function FΣ on L(−3) → [0,∞) such that for
sufficiently large M FΣ has no critical value c with c ≥ M and for all such c, fΣ(Σ) ∩ F

−1
Σ (M,∞)

is a properly embedded annuls in f(Σ).
(2) The embedding is flexible.
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Proof. We know that L(−3) admits a Stein Lefschetz fibration having fiber a genus g surface and vanishing

cycles consisting of curves ai, bj , c1, and c2 depicted in Figure 2.2. Let f̃Σ be the embedding which send Σ̃,

where Σ̃ is a surface with one boundary component, to a smooth fiber of this Lefschetz fibration. Clearly
this embedding is symplectic. By adding an appropriate to the Stein Lefschetz fibration, it is easy to see
that there exists an embedding fΣ of Σ in the Stein manifold L(−3) which satisfies the first property in the
statement. Hence in order to establish the theorem, we just need to show that the embedding is flexible. We
now establish this.

First of all note that we can assume that the monodromy associated to any of the vanishing cycles is
supported in a small neighborhood of the vanishing cycle. Hence by an argument similar to the one used
in the proof of Lemma 4.3, we get that every Dehn twist along vanishing cycles ai, bj , c1, and c2 can be
conjugated. Since the mapping class group of Σ is generated by Dehn twist along ai, bj , c1, and c2 the lemma
follows. �

We would like to remark that Lemma 4.6 is implicitly proved in the article [10] by J. Etnyre and Y. Lekili.
The motivation for studying L(−3) and flexible surfaces in them for them is related to their construction of
universal 5–manifold in which all contact 3–manifolds embed.

5. Proof of Theorem 1.3

Let us now establish Theorem 1.3. The proof is divided in four steps. In the first step we observe that
given a Lefschetz fibration πM : M → CP 1, there is a Lefschetz fibration embedding of a small tubular
neighborhood N of any singular fiber containing a unique critical point such the embedding restricted to
any smooth fiber contained in N is flexible. We denote any such embedding by Li, where i is indexed over
the set of critical points of the fibration πM :M → CP 1.

In the second step we produce embeddings of small tubular neighborhoods of singular fibers using the first
step in such way that no two embeddings intersect, and any pair of smooth fibers are ambiently symplectically
isotopic in CP 1×CP 1. In the third step, we use flexibility of the embedded fibers to produce an embedding
of the Lefschetz fibration πM :M → CP 1 restricted to the inverse image of a disk embedded in CP 1 which
contains all critical values.

In the final step, the triviality of π1 of the group of symplectic form preserving diffeomorphisms isotopic
to the identity of any surface of genus g, g ≥ 2 is used to conclude that we have a symplectic Lefschetz
fibration embedding of M in (P, ωpr) as claimed.

Proof of Theorem 1.3.
We are given a Lefschetz fibration π : M → CP 1. Let x1, x2, · · · , xn be the set of critical points of the

fibration. Let xi be the critical point of M corresponding to the vanishing cycle ci. Denote by Fxi
the fiber

which contains the critical point xi and by N (Fxi
) a neighborhood of Fxi

containing the unique critical
point xi. The neighborhood N (Fxi

) is obtained by taking the inverse image under πM of a small disk Dpi of
radius ǫ(pi), which contains only π(xi) = pi as critical value. The proof is divided in three steps. The first
step deals with embeddings of N (Fxi

).

Step-1:

In this step we prove that there exists an embedding φi of a small tubular neighborhood N (Fxi
) of

Fxi
, i ∈ {1, 2, · · · , l} in V × Σ such that the following diagram commutes:

(1)

N (Fxi
) CP 1 × CP 1 × Dpi

π(N (Fx1
)) Dpi .

φi

π π2
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According to Lemma 4.4 there exists an embedding H : Σg →֒ CP 1×CP 1 which is symplectic and flexible.
Recall that this is a (2, g + 1)–curve embedded in CP 1 × CP 1. We will denote this curve by Σg.

Since any two essential cycles on the fiber of π can be conjugated by an isotopy ofM, we can assume that
the fiber of π over a point p, where p is a point CP 1 which lies on the boundary of Dp1 admits a symplectic
embedding in CP 1×CP 1×{p} such that its image is the flexibly embedded (2, g+1)-curve in CP 1×CP 1×{p}
and the vanishing cycle c1 is mapped a fixed vanishing cycle C for the pencil π(2,n) : CP 1 × CP 1 → CP 1

whose smooth fiber is Σg. Let us denote the vanishing cycle by ν. Consider the blow-up of CP 1 × CP 1 at
base locus B corresponding to the pencil of CP 1 × CP 1 for which Σg is a smooth fiber. Let us denote the

blown-up manifold by ˜CP 1 × CP 1. Let πB : ˜CP 1 × CP 1 → CP 1 be the corresponding Lefschetz fibration.

Let T : ˜CP 1 × CP 1 → CP 1 × CP 1 be the blow-up projection. We know that in ˜CP 1 × CP 1 there exits

a diagonal embedding of N (Fxi
) in ˜CP 1 × CP 1 × Dp1 → Dp1 given by diagonal embedding consisting of

x→ (x, πB(x)) followed by a translation to ensure that the projected disk via πB is mapped to the disk Dp1 .

Call this embedding φ = (φ1, φ2).Given φ we can define the required embedding ofN (Fxi
) in CP 1×CP 1×Dp1

by sending x to (T (φ1(x)), πB(x)). Let us denote this embedding by L1

Step-2:

Following step-1, produce embeddings Li of N (Fxi
) for each i. Observe that the embedding is produced

such that the vanishing cycle ci is mapped to the curve C, which is a fixed vanishing cycle for the pencil
π(2,g+1) : CP

1 × CP 1 → CP 1. In addition, we have that any embedding Li restricted to a smooth fiber is a

flexible embedding embedding of the fiber in CP 1 ×CP 1, and fibers Li(Fui
) and Lj(Fuj

), where ui ∈ Dpi is

a regular value, are symplectically isotopic in CP 1 × CP 1.

Step-3:

For each i let Zi be a point on the boundary of Dpi , and let Fzi denote the embedded fiber over Zi. Fix

the point Z = Z1 ∈ CP 1 which does not lie on any of the disk Dpi when i 6= 1. For each i let ZZi be a

smooth embedded path joining Zi to Z. Furthermore, let us assume that ZZi and ZZj intersect only at Z
when i 6= j.

Let L be a fixed embedding of (2, g+1)–curve Σg in CP 1 ×CP 1 ×{Z} obtained by the restriction of the
embedding L1 to the fiber over Z = Z1. The triviality of the fiber bundle P → CP 1 implies that there exist

an embedding L̃i of Σg in CP 1 ×CP 1 × {zi} obtained by identifying the fiber at Zi with fiber at Z via this

given trivialization such that images of Σg under embedding coming from Li|π
−1{zi} and L̃i coincide.

Observe that the flexibility of the embedding with image L̃i in CP 1 ×CP 1 × {zi} implies that these two
embeddings are isotopic. Hence there exist an embedding of Σg× [0, 1] along the path ZZi such that Σg×{0}
is the embedding Li restricted to π−1(Zi) while Σ× {1} is embedding L.

Observe that till now we have produce an embedding of M \π−1(∪Dpi ∪ zzi) in the manifold P . Consider
a small neighborhood of ∪Dpi ∪ zzi in CP 1. It is clear that this neighborhood is a disk D in CP 1 and there

exits a Lefschetz fibration embedding of M \ π−1
M (D) in P .

Step-4:

Since M is a closed manifold. We know that the product of τci is the identity. This implies that π−1(∂D)
is an embedding of S1 × Σg

Since the genus of smooth fiber is at least 2, and since the fundamental group of any fixed symplectic form
preserving diffeomorphisms of a surface of genus g is trivial, we can assume that M is obtained by gluing
M \ π−1

M (D) with its complement via the identity map.
It is now clear that the constructed embedding can be assumed to agree with the embedding of Σ× ∂D2

given by (x, θ) → (L(x), θ), θ ∈ ∂D. Let us denote this embedding of M \ π−1
M (D) by Ψ̃. Finally, we define

the required embedding of M by the formula:
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Ψ(x) =

{
Ψ̃(x), if x ∈M \ π−1

M (D);

(L(x), x) otherwise.

Hence the theorem.
�

5.1. Proof of Theorem 1.4.

For the sake of completeness, let us discuss how to prove Theorem 1.4 assuming Theorem 1.3.

Proof of Theorem 1.4. Let (M,ω) be a given symplectic manifold. It follows from Theorem 2.1 that after

finite number of blow-ups there exists a (simplified) Lefschetz fibration on the blown-up manifold M̃. It is

clear that the manifold M̃ satisfies the hypothesis of Theorem 1.4. Hence applying Theorem 1.4, we get the
required embedding of BM in (CP 1 × CP 1 × CP 1, ωpr). �

6. Proof of Theorem 1.5

.
In order to establish Theorem ??, we need the notion of Weinstein Lefschetz fibration and the existence

of Weinstein Lefschetz fibration. We will follow the treatment discussed in the article [15] by E. Giroux
and J. Pardon. For this we need need the definition of Stein domains and associated Lefschetz fibration.
Readers familiar with Stein domains and symplectic geometry associated with them can skip this introductory
discussion.

6.1. Stein domains and Stein Lefschetz fibrations.

Let us begin by recalling the definition of a Stein domain.

Definition 6.1 (Stein domain). A Stein domain is a compact complex manifold (V, ∂V ) with boundary
together with a smooth Morse function φ which satisfies the following:

(1) φ is J–convex, i.e., −d(dφ ◦ J)(v, Jv) > 0 for v 6= 0, where J is the almost complex structure
associated to the complex structure on V.

(2) ∂V is a regular level set for the function φ.

Next, we define Stein Lefschetz fibration.

Definition 6.2. Let V be a smooth manifolds with corners and let π : V → D2 be Lefschetz fibration. We
say that this Lefschetz fibration is a Stein Lefschetz fibration provided the following properties are satisfied:

(1) There exists a complex structure on V such that the map π is holomorphic.
(2) There exists a J–convex function φ : V → R with ∂hV = {φ = 0}.

The most important property of a Stein Lefschetz fibration on V is that V can be smoothened out to
obtain a Stein domain which is unique up to a deformation in the following sense.

Let V1 and V2 denote two Stein domains obtained as a result of smoothing of a Stein Lefschetz fibration
π : V → D, then there exits a 1–parametric family Vt, t ∈ [1, 2] of Stein domains connecting V1 and V2.

Hence, form now on by V sm we will mean a Stein domain obtained after smoothing of the total space V of
a Stein Lefschetz fibration π : V → D2.

The converse of this was established by Giroux and Pardon [15, Theorem:1.5].

Theorem 6.3 (Theorem:1.5 [15] ). Let V be a Stein domain. There exists a Stein Lefschetz fibration
π : V ′ → D2 such that V ′sm is a deformation of V. Furthermore, we can always provide a fibration for which
(1) the boundary of the fiber is connected, (2) every vanishing cycle is essential, and (3) the genus of any
smooth fiber is at least 3.

It follows from the definition that the 2–form −d(dφ ◦ J) is a symplectic form on (V, ∂V ). Hence, Stein
domains are natural examples of exact symplectic manifold. the symplectic geometry of Stein domains is
naturally captured by the associated Weinstein domain structure. We now discuss this.
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6.2. Weinstein domains and Weinstein Lefschetz fibration.

Definition 6.4 (Weinstein domain). A Weinstein domain consists of is a compact exact symplectic manifold
with boundary (W,ω = dλ), where λ is a 1-form, admitting a Morse function φ :W → R+ which satisfy the
following:

(1) ∂W is a level set of a regular value of the function φ.
(2) There exists a vector-field Xλ defined as iXλ

ω = λ which is gradient like for the Morse function φ.

Definition 6.5 (Weinstein Lefschetz fibrations). Let (V, J) be a smooth manifolds with corners and let
π : V → D2 be Lefschetz fibration. We say that this Lefschetz fibration is a Weinstein Lefschetz fibration
provided the following properties are satisfied:

(1) there exists a J–convex function φ : V → R such that ∂hV = {φ = 0}, where ∂hV = ∪p∈D2∂(π−1|[p}),
(2) If p ∈ D2 is a regular value then on π−1{p} the pair (φ, J) induces a Weinstein structure on π−1{p}.

It follows from Theorem 6.3 and [15, Theorem 1.10] that every 4–dimensional Weinstein domain admits
a Weinstein Lefschetz fibration as defined in Definition 6.5.

We now define the universal Weinstein manifold U mentioned in the statement of Theorem 1.5.

Definition 6.6 (Definition and basic properties of the universal Weinstein 3–manifold U).

(1) Let L(−3) denote the complex disk bundle of −3 over S2. It is well known that this bundle admits
a natural Stein structure. See [10] and [24] for a precise description of this Stein structure.

(2) Let DL(−3) denote any disk bundle associated to the line bundle L(−3). Observe that DL(−3) are
Stein domains obtained by considering the inverse images under plurisubharmonic Morse functions
of the type (∞, a] which have no critical value in the interval [a,∞).

(3) The product of a Stein manifold with C and the product of a Stein domain with the open unit disk
is a Stein domain. In particular DL(−3)×D2 is a Stein domain after suitable smoothing of corners,
while L(−3)× C is Stein manifold.

The Weinstein manifold structure associated to the Stein manifold L(−3) × C with stein structure as
discussed above will be called the universal Weinstein manifold U .

Let us now state the result regarding embeddings of Weinstein domains via Lefschetz fibrations.

Theorem 6.7. Let πV : V 4 → D2 be any (simplified) Weinstein fibration. There exists a symplectic
Lefschetz fibration embedding of πV : V 4 → D2 in the trivial Weinstein fibration π2 : DL(−3) × D2 → D2

such that ∂hV ⊂ ∂DL(−3)×D2 and ∂vV ⊂ DL(−3)× ∂D2. Furthermore, by choosing the radius of the disk
bundleDL(−3) with respect to an auxiliary metric correctly there exist an iso-symplectic Weinstein fibration
embedding of V 4 in DL(−3)× D2.

We know that the mapping class group of a once punctured surface is generated by product of Dehn twists
along the curves ai, bj, c1 and c2. For a technical reason –which will become clear while going through the
proof of Theorem 6.7 – we need to show that every Dehn twist along a homologically essential simple closed
curve on a surface with one boundary component is also isotopic to the product of Dehn twist along curves
a1, b1, · · · , ag−1, bg−1, ag, c1, and c2 We establish this in the following:

Proposition 6.8. Let (Σg, ∂Σg) be a surface with one boundary component. Let φ be an element of the
mapping class group that brings a non-separating simple closed curve c to ai, for some i, then there exists

an element ψ̃ of the mapping class group of Σg can be expressed as product of Dehn twists τai , τ
−1
ai

τbi , τ
−1
bi
,

τc1 , τ
−1
c1
, τc2 , and τ

−1
c2
, and which satisfies the property that φ(c) = φ̃(c).

Proof. We know that the mapping class group of a genus g surface with one boundary component is generated
by Dehn twists τai , τ

−1
ai
, τbi , τ

−1
bi
, τc1 , τ

−1
c1
, τc2 , τ

−1
c2
, τd, and τ

−1
d Since d does not intersect with ai, bj, c1 and

c2, we can assume that when expressing φ as a product of positive and negative Dehn twists along curves
ai, bj, c1, c2 and d, positive and negative Dehn twists along d appear at the very beginning of the product.
More precisely, φ can be expressed as:



14 DISHANT M. PANCHOLI AND FRANSICO PRESAS

τkd · τ−ld · ψ,

where ψ is a product of positive and negative Dehn twists along curves ai, bj, c1 and c2.

Now define φ̃ = τ ld ◦ τ
−k
d ◦ φ. Since c can be assumed to be disjoint from d, we get that φ̃(c) = φ(c) as

claimed.
�

Proof of Theorem 6.7. We first discuss the case of symplectic embedding of Stein Lefschetz fibration. Con-
sider the given (simplified) Stein Lefschetz fibration π : V 4 → D2. Suppose the regular fiber is a genus
g, g ≥ 3, surface with one boundary component.

Next recall [24] that the Stein domain DL(−3) admits a genus g Stein Lefschetz fibration πg : DL(−3) →
D2 for every g having vanishing cycles c1, c2, a1, b1, · · · ag−1, bg−1, ag.

Fix an identification of a smooth fiber of π : V → D2 with a fiber of πg : DL(−3). Let us denote by Σ
the fiber of π : V → D2 and f it’s identification with a smooth fiber of πg. Next, we claim that we can
produce this identification such that a vanishing cycle on the fiber of π : V → D is mapped to a1 under this
identification.

To begin with pick an identification f̃ : Σ → π−1
g (p) ⊂ DL(−3) for some regular value p of πg. Next

observe that any vanishing cycle under this identification goes to an essential simple closed curve on the
fiber of πg as the fibration π : V → D is simplified. Now, fix a vanishing cycle c on Σ and consider the

essential cycle f̃(c) on π−1
g (p). Next we note, Proposition 6.8 implies that there exists a symplectomorphism

φ : f(Σ) → f(Σ) which send the vanishing cycle f(c) to a1 which is identify when restricted to ∂f(Σ) is the

identity. Clearly φ ◦ f̃ is the required identification f.
Next let c1, c2, · · · , cn be critical points, let di = π(ci) be critical values, and let ν1, ν2, · · · , νn be the

corresponding vanishing cycles of the fibration π : V → D. It is clear that by an argument similar to the one
used in the proof of 1.3 we get for each i, i = 1 to n, an embedding ψi of π

−1(Di, where Di is a small disk
containing the point di, in D(E)(−3)× D2 which satisfy the following:

(1) Whenever i 6= j ψi(π
−1(Di)) ∩ psij(π−1(Dj)) = ∅,

(2) the following diagram Commutes:

(2)

π−1(Di) DL(−3)× Dpi

Di D.

ψi

π π2

(3) The vanishing cycle νi is mapped to the vanishing cycle ai in DL(−3) × {ti} for νi ∈ π−1(ui), for
some ui in ∂Di.

Next, observe that embeddings ψ1 and ψi for each i, i = 2, · · · , n gives rise to two embeddings of Σ in
DL(−3) via their restrictions to π−1({u1}) and π−1({ui}) respectively. Observe that the first embedding is
such that the vanishing cycle ν1 is mapped to a1 while the second embedding is such that νi is mapped to
a1. Observe again that Proposition 6.8 and Lemma 4.6 imply that these two embeddings are isotopic via a
family of symplectomorphims of DL(−3) each of which is identity when restricted to ∂DE(−3.) This implies
we can produce an embedding of V \ π−1(N ), where N is a regular neighborhood of Di union with u1ui
which is fiber preserving. Since N is a disk embedding in D, extending the embedding restricted to π−1(∂N )
fiber wise via identity to V, we get the required embedding of V in DL(−3)× D.

It remains to show that we can upgrade the symplectic embedding of iso-symplectic embedding in a
trivial Stein fibration of the form DL(−3) × D2. In light of Theorem [Theorem:3.1][11] due to Gompf, it is
sufficient to produce an iso-symplectic identification of fiber of the fiber of the fibration πV : V → D2 with
the fiber of DL(−3) for some disk bundle DL(−3). Furthermore, notice that any two symplectic form on a
compact surface having same volume are symplectomorphic implies that we need an identification such that
the induced volume via this identification agrees with the given volume of a smooth fiber of the fibration
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πV : V → D. But by adjusting the size of the disk bundle with respect to a fixed auxiliary metric, this is
always possible. Hence, we get the required iso-symplectic embedding.

�

Proof of Theorem 1.5.
Given a Stein 2–manifold V admitting a plurisubharmonic exhaustive Morse function v : V → R with only

finite number of critical points, let t0 ∈ R be such that there are no critical values that belong to the interval
[t0,∞). Observe that if we iso-symplectically and properly embed the Stein domain V t0 = v−1(−∞, t0] in the
Stein domain Uβ , then we can properly and iso-symplectcially embed V in U . Hence our task is to establish
this.

In order to establish this we first apply Theorem 6.3 to produce a Stein Lefschetz fibration of π : V t0 → D2

such that the fibers of the Stein fibration are connected. Next, we apply [22, Proposition:1.5] to get a new
Stein Lefschetz fibration with connected boundary, connected fiber, and the fibration having every vanishing
cycle essential. That is, we produce a simplified Lefschetz fibration on V t0 .

Hence, by Theorem 6.7 there exits a symplectic Lefschetz fibration embedding of π : V t0 → D in the Stein
trivial Stein Lefschetz fibration associated to Uβ as U is just L(−3)× C.

Finally, observe that applying the smoothing of corner operation on the Stein Lefschetz fibration associated
to Uβ – due to the facts that (1) the smoothing operation induces a smoothing operation on V, and (2) the
smooth is operation is canonical up to deformation equivalence – we get the required symplectic embedding
of V t0 in Uβ .

�

In the end, we would like to remark that if W is a Weinstein manifold such that W is obtained from the
Stein domain Uβ := f−1 ((−∞, β]) ⊂ U by attaching finite number of Weinstein 2-handles along the contact
boundary of Uβ as described in [6], then W is also universal. This is because, for the dimension reasons, the
core of any attached Weinstein handle can always be assumed to be disjoint form ∂V t0 embedded in ∂Uβ.
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