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The regulatory network of E. coli metabolism as a boolean dynamical system exhibits

both homeostasis and flexibility of response
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Elucidating the architecture and dynamics of large scale genetic regulatory networks of cells is an
important goal in systems biology. We study the system level dynamical properties of the genetic
network of Escherichia coli that regulates its metabolism, and show how its design leads to biologi-
cally useful cellular properties. Our study uses the database (Covert et al., Nature 2004) containing
583 genes and 96 external metabolites which describes not only the network connections but also
the boolean rule at each gene node that controls the switching on or off of the gene as a function
of its inputs. We have studied how the attractors of the boolean dynamical system constructed
from this database depend on the initial condition of the genes and on various environmental con-
ditions corresponding to buffered minimal media. We find that the system exhibits homeostasis
in that its attractors, that turn out to be fixed points or low period cycles, are highly insensitive
to initial conditions or perturbations of gene configurations for any given fixed environment. At
the same time the attractors show a wide variation when external media are varied implying that
the system mounts a highly flexible response to changed environmental conditions. The regulatory
dynamics acts to enhance the cellular growth rate under changed media. Our study shows that
the reconstructed genetic network regulating metabolism in E. coli is hierarchical, modular, and
largely acyclic, with environmental variables controlling the root of the hierarchy. This architecture
makes the cell highly robust to perturbations of gene configurations as well as highly responsive to
environmental changes. The twin properties of homeostasis and response flexibility are achieved by
this dynamical system even though it is not close to the edge of chaos.

Introduction

Large scale biological networks and their associated dy-
namical systems have a crucial role to play in unravel-
ling the systemic properties of cells. Structural studies of
large scale metabolic, protein interaction and genetic reg-
ulatory networks have uncovered some unexpected pat-
terns leading to interesting hypotheses and questions (for
reviews see [1, 2, 3]). For a deeper understanding of
system level phenomena, it now seems that we need to
explore the relationship between network structure and
the dynamics of genes, proteins and other biomolecules.
In this paper we study the Escherichia coli regulatory
network and show that the dynamics leads to biologi-
cally important properties such as cellular homeostasis
and flexibility of response to varied environments. Our
study reveals that some very simple features of the ge-
netic regulatory network are responsible for these prop-
erties. These design features may be universal across
prokaryotes and possibly have vestiges in higher organ-
isms as well.

Large scale mathematical models for dynamical phe-
nomena are difficult to construct due to paucity of data
and are difficult to profitably analyze due to their com-
plexity. In this context flux balance analysis (FBA) has
proved to be a useful computational technique to ex-
plore steady state flows in large scale metabolic networks
[4, 5, 6, 7]. A conceptual framework to study dynam-
ics of large scale genetic regulatory networks as boolean
systems was introduced by Kauffman [8, 9, 10]. In this

paper we use this approach to study the large scale tran-
scriptional regulatory network (TRN) of an organism in
which both the network and the boolean functions have
been constructed from real data. Our study is based on
the database iMC1010v1 [11] which describes the regula-
tory network controlling metabolism in E. coli.

The boolean approach provides a coarse-grained model
of the dynamics of TRNs, in which each gene’s configu-
ration has only two allowed values (corresponding to the
gene being off or on), each gene’s update is given by a
boolean function of all its inputs, time is discrete and (in
our work) all genes are updated synchronously. A differ-
ential equation based simulation of large scale TRNs is
not feasible at the moment due to lack of kinetic data,
and the large number of unknown parameters would also
render the results of such a simulation difficult to in-
terpret [12]. On the other hand boolean simulations of
smaller biological systems have provided useful insights
[13, 14, 15, 16, 17]. The boolean approach can provide
useful information about some qualitative features of the
dynamics, e.g., the nature of the attractors of the system,
and through that, insights about what might happen in
a more detailed simulation and the system itself.

The genetic network regulating E. coli metabolism as
a boolean dynamical system

The database iMC1010v1 contains 583 genes. These
are collectively regulated by a set of 103 transcription
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FIG. 1: Map of the transcriptional regulatory network controlling metabolism in E. coli. In this figure, there are genes coding
for the TFs (pink circles), genes coding for enzymes (brown circles), external metabolites (green squares), certain internal fluxes
(purple parallelograms), stimuli (yellow triangles) and other conditions (blue diamonds). See text for details.

FIG. 2: Example of a boolean function Gi representing the
regulatory logic at the promoter region of gene b2720 that
determines its expression. The gene b2720 is on if and only
if both the transcription factors coded by genes b2731 and
b3202 are present and oxygen is absent in the environment.
For all other cases, the gene b2720 is off.

factors (TFs) which are gene products of 104 of the genes
in the set, 96 external metabolites, 19 other conditions,
21 internal fluxes of metabolic reactions and 9 stimuli.
The directed graph of this network is shown in Fig. 1,
where a directed link from one node to another denotes
a regulatory interaction.

The database also provides the boolean input-output
map at each node, e.g., the configuration of each gene (on
or off), as a function of the on-off states of all its inputs.
Using this information we construct the following discrete
dynamical system describing E. coli’s TRN (for details,
see Methods section):

gi(t + 1) = Gi(g(t),m); i = 1, 2, . . . , 583. (1)

Here gi(t) is the configuration of gene i at time t. Time
is measured in discrete units: t = 0, 1, 2, . . .. gi(t) = 1
(0) means that at time t gene i is on (off). The vec-
tor g(t) collectively denotes the configurations of all the
genes at time t; its ith component is gi(t). The vector
m denotes the configuration of external metabolites; its
ith component mi = 1 if metabolite i (i = 1, 2, . . . , 96)
is present in the external environment for uptake into
the cell, and mi = 0 if it is absent. The above equa-
tion expresses the fact that the on-off state of a gene at
any time instant is controlled by the state of the genes
at the previous time instant as well as the state of the
external environment. The interaction of genes is medi-
ated by transcription factors. Thus a single time unit
corresponds to the average time between the initiation of
transcription of a gene coding for a transcription factor
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and the initiation of transcription of a gene regulated by
that transcription factor.

In principle m can also change with time as the cell
uses up food molecules in its external environment for its
metabolism and excretes other molecules [18, 19]. How-
ever, in the present work we consider only buffered media
which are characterized by mi that are constant in time.
m thus defines a constant external environment of the
cell. We have considered two classes of buffered media,
(a) a set of 93 minimal media (62 aerobic and 31 anaero-
bic) each capable of supporting the growth of the cell as
determined by FBA (see Table S1 for a list), and (b) a
much larger library of 109732 minimal media constructed
using the method described by Barrett et al [19].

The functions Gi contain all information about the in-
ternal wiring of the network (who influences whom) as
well as the logic of each gene’s regulation (given the con-
figuration of all of gene i’s inputs at time t, whether gene
i will be on or off at t + 1). Each function Gi typically
depends only upon those components of g and m that
directly affect the expression of gene i (see Fig. 2 for
an example). We have considered the dynamical sys-
tem (1) with two slightly different forms of the functions
Gi, called 1A and 1B, arising from two different treat-
ments of intermediate variables (the internal fluxes of
certain metabolic reactions) that appear in the database
iMC1010v1. In the first approach (1A) for simplicity
we have treated only the genes and their products as
dynamical variables, keeping these internal fluxes fixed.
The second approach (1B) includes the effect of some
other internal variables such as concentrations of inter-
nal metabolites (as reflected through these fluxes) also
being dynamical. The latter effectively introduce addi-
tional interactions among the genes.

The conceptual framework for studying TRNs as
boolean dynamical systems of the type gi(t + 1) =
Gi(g(t)) was set up by Kauffman [8, 9] almost four
decades back and subsequently has been studied exten-
sively, resulting in several important insights (see, e.g.,
[10, 20, 21, 22, 23, 24]). In particular Kauffman found
that such systems with a large number of components
possess an ordered regime in which the attractors have
short periods and large basins. In this regime these sys-
tems have the property of homeostasis or robustness to
perturbations of the genetic configuration. In the absence
of detailed molecular data on the real genetic networks,
this approach was used for ensembles of biologically moti-
vated random boolean networks, and, more recently, real
networks with the functions Gi chosen randomly from a
suitable ensemble of boolean functions[23, 24].

References [13, 14, 15, 16, 17] have applied the boolean
approach to specific biological gene regulatory networks
where detailed genetic data is available. These networks
are smaller than the ones mentioned above, and have
up to 40 distinct genes, proteins and other molecules
[13, 14, 15, 16, 17]. In reference [14], where a boolean

network of 180 nodes is considered, the network contains
15 distinct genes and proteins (with 12 nodes for each of
them corresponding to 12 distinct cells). These models,
apart from reproducing several observed phenomena of
these systems, have also found that the networks pos-
sess the property of homeostasis, as well as robustness to
genetic mutations.

The present study is inspired by the work of Kauffman
and extends the above development in two important
ways. One, it studies the empirically derived network
of a real organism, but one that much larger than the bi-
ological systems mentioned above. The present network
[11] has 583 genes and 96 external metabolites account-
ing for close to half of all genes currently believed to be
involved in metabolism in E. coli. Being more than an
order of magnitude larger (in terms of the number of
genes involved) than other real genetic networks consid-
ered as boolean systems, this allows us a qualitatively
different systemic view of the organization of the genetic
network of an organism. We not only find homeostasis
in this large system, but also identify the design feature
of the network responsible for this property. Two, we are
able to study the effect of the external environment on
the TRN dynamics through the vector m in Eq. (1) in
a much more systematic and extensive way than before.
This sheds light on a different property of the network,
namely its flexibility of response to a diversity of envi-
ronments.

Results

Homeostasis: The final state is essentially the same
after any perturbation of the genes

We simulated the dynamical system 1A for each of
the 93 m vectors corresponding to the 93 minimal media
mentioned above, starting from a set of 10000 randomly
chosen initial conditions for the gi. For each m and each
initial condition of the genes, the system reached a fixed
point attractor in a maximum of 4 time steps. Further-
more, for each m the fixed point was independent of the
chosen initial condition of the genes. This is shown in
Fig. 3 for glucose aerobic medium for four initial condi-
tions. We also considered the library of 109732 minimal
media for a single randomly chosen initial condition each.
A fixed point attractor was found in each case. There are
in principle 2583 possible initial conditions. We present
later the analytic argument as to why a unique final con-
figuration independent of initial condition is inevitable
for each fixed m, given the architecture of the TRN. This
property means that as long as the external environment
remains fixed, the TRN regulating E. coli metabolism
will revert to a unique configuration of its genes after
any perturbation of the latter.

The dynamical system 1B, which includes some ad-
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ditional links between the genes compared to 1A, was
also studied for the 93 minimal media with 1000 ran-
domly chosen initial conditions each. In this case for 89
of the 93 media, we found 36 distinct attractors (8 fixed
point attractors and 28 two-cycles). For the remaining 4
minimal media, there were 10 distinct attractors (4 fixed
point attractors and 6 two-cycles). Again the attractor
was reached in a maximum of 4 time steps. For each of
the cycles, we found that most of the genes (562 to 567
out of 583) were in fact locked in a fixed configuration,
and only 16 to 21 genes oscillated back and forth between
zero and one with period two. Kauffman has character-
ized random boolean networks as having two regimes,
an ordered regime wherein the attractors have a large
‘frozen core’ of genes locked in a fixed configuration to-
gether with a few ‘twinkling islands’ of genes that switch
on and off, and a chaotic regime wherein the number of
‘frozen’ genes is much less than those of the ‘twinkling’
ones [10]. Our findings above are consistent with Kauff-
man’s hypothesis that real genetic regulatory networks
are in the ordered regime.

Furthermore for any given medium we found that each
of the frozen genes had the same configuration across all
the attractors (36 or 10). This means that for any given
medium, most genes (562 or more out of 583) end up in
the same fixed configuration independent of the initial
conditions of the genes. It can analytically be checked
that there are no other attractors of this system, using
its structural properties.

Collectively, our results of both dynamical systems im-
ply that the E. coli TRN exhibits a high degree of home-
ostasis, in that it is highly insensitive to initial conditions
and for any given medium all genetic perturbations die
out quickly, restoring an overwhelming majority of genes
to a configuration that is independent of the perturba-
tion.

Flexibility: The system has a wide range of response
to changes in environmental conditions

While homeostasis is a useful property in any given
environmental condition, the organism also needs to re-
spond flexibly to changes in the environment. We inves-
tigated flexibility of the TRN to environmental changes
in two ways. First, we determined the hamming distance
between attractor states of the system 1A corresponding
to pairs of minimal media. For the set of 93 minimal me-
dia, we found the largest hamming distance between two
attractor states corresponding to two different minimal
media to be 114. We also determined the attractors of the
dynamical system 1A for the larger library of 109732 min-
imal media (all attractors are fixed points whose basin of
attraction is the entire configuration space). We ran con-
strained FBA for each of these attractors to determine
which of them supports a nonzero growth rate (see Meth-
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FIG. 3: Dynamical behaviour of the E. coli TRN for a fixed
environment, glucose aerobic minimal media. For all initial
conditions the system is attracted to a fixed point whose con-
figuration depends upon the medium. The plots depict, as a
function of time, the hamming distance of the configuration
from the fixed point attractor corresponding to the medium. 4
different initial conditions are shown. One is a randomly cho-
sen initial condition. Another is the ‘hamming inverse’ of the
attractor (in which the configuration of every gene is reversed
with respect to the attractor). Two other initial conditions
are the attractor configurations of other minimal media.
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FIG. 4: The E. coli TRN is flexible in response to chang-
ing environmental conditions encountered. Changing the en-
vironmental condition can lead to a wide range of hamming
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different environmental conditions is shown. Inset: Enlarge-
ment of the graph for large hamming distances. The largest
hamming distance obtained between attractors for two differ-
ent environmental conditions is 145.

ods section for details). This yielded a subset of 15427
minimal media. We computed the pairwise hamming
distances among this set of 15427 attractors also. The
largest of these distances was found to be 145. The dis-
tribution of these hamming distances is trimodal similar
to that found by [19], and is shown in Fig. 4. Thus, al-
though the attractor for a fixed environmental condition
is unique, the attractors for two different environmen-
tal conditions can be quite far apart. Therefore, while
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FIG. 5: The histogram of standard deviation of a gene’s con-
figurations across 15427 attractors for different environmental
conditions. The left-most bar corresponds to 209 genes whose
configuration remains unchanged.

the system is insensitive to fluctuations in gene configu-
rations in a fixed external environment, it can move to
quite a different attractor when it encounters a change
in environment. Thus the system shows flexibility of re-
sponse to changing environmental conditions.

Second, we found that across these 15427 conditions
the genes that had a configuration that differed between
any pair of attractors were drawn from a set of 374 out
of the 583 genes. The remaining 209 genes had the same
configuration (75 off and 134 on) in all the 15427 at-
tractors. The variability of a gene’s configuration across
different environmental conditions can be characterized
by the standard deviation of its value (zero or one) across
this set. We found this standard deviation to range from
zero to close to its maximum possible value 0.5, with the
mean of the 374 standard deviations mentioned above be-
ing 0.20. The histogram of standard deviation values is
shown in Fig. 5. These observations quantify the consid-
erable variety in a gene’s variability across environmental
conditions.

Adaptability: The genetic network’s response to
changed media increases metabolic efficiency

To further investigate flexibility, we tracked how the
metabolic response of the cell, as measured by its growth
rate computed using FBA, changes when its environment
changes. A reaction in the metabolic network can be as-
sumed to be off if none of the enzymes catalyzing it are
being produced, or, equivalently, in our dynamical sys-
tem, if the genes coding for those enzymes are in the off
state. For any configuration of the metabolic genes, FBA
can thus be used to compute the growth rate of the cell
by turning off all reactions whose corresponding genes are
in the off state in that configuration, thereby capturing
the effect of gene regulation on metabolic function (see
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mal media. The growth rate increases in three and remains
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FIG. 7: Histogram of the ratio of constrained FBA growth
rate in the attractor of each of 15427 minimal media discussed
in text to the pure FBA growth rate in that medium. This is
peaked in the bin with the largest ratio (≥ 0.9).

Methods section). We computed this ‘constrained FBA’
growth rate for each of the attractors of the TRN dynam-
ical system 1A for the 93 minimal media. 81 of them,
listed in Table S2 in Additional File 1, gave a nonzero
growth rate. Starting from an initial condition of the
TRN that corresponds to the attractor of one of these
81 media, say X, we computed the time course of the
TRN configuration in another buffered medium Y, until
it reached the attractor corresponding to Y. For each of
the TRN configurations in the trajectory we computed
the growth rate using constrained FBA. This effectively
tracks how the constrained growth rate of the cell changes
with time after its environment changes suddenly from X
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FIG. 8: Frequency distribution of the number of random
knockouts needed to make a cell unviable for growth for all 81
minimal media. The red curve is the best fit to an exponential
distribution.

to Y. The result is shown in Fig. 6 for the cases where
the carbon source in X is glutamate and in Y is glu-
tamine, lactate, fucose or acetate. In the attractor of X
the growth rate is low for the medium Y. The TRN con-
figuration changes with time so as to typically increase
the growth rate.

We found that for the above 81 minimal media, the
growth rate in the attractor configuration of the medium
was greater than the average growth rate in the other
80 attractors by a factor of 3.5 (averaged over the 81
media). Moreover the average time to move to the at-
tractor from such initial configurations was only 2.6 time
steps. In other words regulatory dynamics enables the
cell to adapt to its environment to increase its metabolic
efficiency very substantially, fairly quickly.

We also calculated the growth rate for each of the
15427 minimal media in their respective attractor config-
urations as a ratio of the maximal growth rate possible in
those media (the latter computed for each medium using
FBA on the full metabolic network without imposing any
regulatory constraints). The average value of this ratio
was found to be as high as 0.815 and was less than 0.5 for
only 7 % of the media (for the histogram of these ratios
see Fig. 7). This shows that the regulatory dynamics
results in a close-to-optimal metabolic functioning un-
der a large set of conditions. This observation also lends
support to the usefulness of FBA in probing metabolic
organization.

Robustness of the network to gene knockouts

In order to test the robustness of network functionality
to successive gene knockouts, we considered the progres-
sive decline of metabolic performance for an ensemble
of 1000 ‘random knockout trajectories’. Each trajectory
was constructed as follows: One out of 583 genes was

chosen at random and knocked out, i.e., its gi was set to
be identically 0. The constrained FBA growth rate was
determined for the attractors of the resultant dynamical
system of 582 genes for each of the 81 minimal media
discussed above. This was repeated after knocking out
another gene chosen at random from the remaining 582
genes, and so on until the attractors for all the 81 me-
dia became dysfunctional (i.e., gave a zero growth rate).
The number of knockout steps, n, needed for the net-
work to become metabolically dysfunctional for all the
81 media was determined for each of the 1000 random
knockout trajectories constructed in this way. Figure 8
shows the number or frequency f(n) of trajectories with
a given value of n. The curve fits the exponential dis-
tribution f(n) ∼ exp(−n/n0) with n0 = 12.1. Thus the
chances of survival decrease exponentially with the num-
ber of knockouts.

Design features of the regulatory network: Origin of
homeostasis and flexibility

The following structural characteristics of the TRN ex-
plain several of the dynamical features described above:
The TRN 1A is an acyclic directed graph with maximal
depth 4. The largest connected component is displayed
as a hierarchy in Fig. 9, in which all links are point-
ing downwards. At the bottom of the hierarchy are 479
metabolic genes in the full system (409 in the largest
connected component) coding for enzymes that have no
outgoing links. Thus these nodes do not influence the
dynamics of any other gene. We refer to these as the
‘leaves’ of the acyclic graph. At the top of the hierar-
chy are nodes with no incoming links, or ‘root nodes’.
The depth of a node in the acyclic graph is the length
of the longest path to it from a root node. Root nodes
correspond to external metabolites and other variables
that have fixed values in the system 1A such as certain
conditions, fluxes, etc. Since we consider only buffered
media the m variables, by virtue of their root location,
act as control variables of the dynamical system. The
genes coding for TFs are at intermediate levels in the
graph. These observations immediately explain why (a)
there are only fixed point attractors of this system, (b)
their basin of attraction is the entire configuration space,
(c) it takes at most 4 time steps to reach the attractors
from any initial configuration, and (d) the attractor con-
figuration depends upon the medium. For, the m vector
determines the configuration of the root level. This fixes
the configurations of all nodes at the next level (depth
1) at the next time instant (t = 1) and subsequent times
irrespective of their values at t = 0, because the input
variables to the boolean functions controlling them are
fixed. This fixes the configurations of all nodes of depth
2 at t = 2 irrespective of their configurations at t = 1,
and so on, until at t = 4, the configuration of the max-
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imum depth leaves are fixed irrespective of the config-
uration they held earlier. A change in the medium or
external environment is a change in the configuration of
root nodes; this also percolates down in a maximum of
4 steps resulting in a new fixed point. The acyclicity of
the E. coli TRN was noted by [25]. Its maximum depth
being 5 (including parts of the network that regulate sys-
tems other than metabolism) was remarked upon by [26].
That root control of this acyclic graph is in the hands of
environmental signals has been observed by [27]. How-
ever, to our knowledge the present work is the first one
that brings these facts together to study dynamics and
elaborate upon their consequences for homeostasis and
flexibility of the system.

Disconnected structure of the reduced dynamical system:

modularity, flexibility and evolvability

Since leaf nodes do not affect the dynamics of upstream
nodes, it is worthwhile to ask about the dynamics of the
‘reduced dynamical system’ which is obtained from the
full system by removing the leaves. When leaf nodes in
the system are removed along with all their links, one
is left with Fig. 10. This is a surprisingly disconnected
graph; the large connected component has broken up into
38 disconnected components. It has several small compo-
nents containing upto only 4 nodes at depth ≥ 1 and one
component with 27 nodes at depth ≥ 1. The latter com-
ponent is regulated by oxygen, some inorganic sources
of nitrogen, and certain amino acids and sugars. Other
components are typically regulated by single metabolites
or groups of biochemically related metabolites. This pro-
cedure reduces the number of outgoing links from global
regulators drastically. For example the gene b3357 cod-
ing for Crp is left with only 3 outgoing links instead of
105.

Two components of a dynamical system that are dis-
connected from each other are dynamically independent:
the dynamics of each can be analysed independently of
the other. The dynamics of the full system, in partic-
ular its attractors and basins of attraction, can be re-
constructed from those of its disconnected components.
Such a disconnected or ‘product’ structure of a dynam-
ical system greatly simplifies its mathematical analysis.
Modularity of biological systems refers to the existence of
subsystems that are relatively independent of each other
[28]. Each connected component of Fig. 10 can therefore
be regarded as a core of a module, and modularity of the
present genetic regulatory system is then nothing but the
property that it is composed of disconnected components
at this level of description.

Restoring the leaves and their links in Fig. 10 will
take us back to Fig. 1 which contains the large con-
nected component shown in Fig. 9. This means that leaf
nodes typically receive links from more than one mod-

ule core. The structure is like a banyan tree which has
multiple trunks emanating from independent roots and in
which leaves receive sustenance from more than one root.
In this picture, there is no direct crosstalk between the
module cores but they can affect common leaves. This
enables many leaf nodes to be influenced by several en-
vironmental conditions. This ‘multitasking’ adds to the
complexity of cellular response to different environments
and possibly contributes to greater metabolic efficiency.
When a minimal medium is changed by replacing its car-
bon source by another that belongs to a different mod-
ule, the genetic network needs to respond by activating
genes coding for enzymes that catalyze metabolic reac-
tions needed to break down the new source and process
its moieties. The connections of the leaf nodes to the
modules above them must be such that that is achieved,
given our finding that the constrained FBA growth rate
increases as the new attractor is reached.

The location and dynamical autonomy of the mod-
ules could also contribute to evolvability. A new mod-
ule added to Fig. 10 would not affect existing ones; thus
the organism can explore new niches characterized by
new food sources without jeopardizing existing capabili-
ties. This may be a particular case of the more general
observation [29, 30] that the architectural features of or-
ganisms responsible for their flexibility to environmental
conditions also contribute to their evolvability.

The graph of the dynamical system 1B is not com-
pletely acyclic. Effectively some of the genes that are
leaves in 1A now get outgoing links that feed back to
genes coding for transcription factors. This results in
the cycles we have seen as attractors. Our analysis of
this dynamical system, not discussed here, reveals that
removing the leaves of this system exposes a modular
structure in terms of which the attractors can be under-
stood.

Almost all input functions are canalyzing in the E. coli TRN

It has been shown by Kauffman and his colleagues that
the stability in the genetic regulatory networks to per-
turbations can arise due to the canalyzing property of
boolean functions [23, 24]. A canalyzing boolean func-
tion has at least one input such that at least one of the
two values of this input determines the output of the
function [10]. For a given number of inputs, K, the frac-
tion of boolean functions that are canalyzing decreases
as K increases. All boolean rules compiled for eukary-
otes from the available literature have been found to be
canalyzing functions [21]. For the present E. coli TRN
the frequency distribution of the number of genes with K
regulatory inputs is given in Table S4 in Additional File
1. We found that boolean functions for 579 of the 583
genes in the E. coli TRN possess the canalyzing prop-
erty. Only 4 genes had input functions that were not
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FIG. 9: Largest connected cluster of the TRN controlling metabolism in E. coli. The colour coding of all nodes is as in Fig. 1.

FIG. 10: Picture of the regulatory network obtained when all leaf nodes in the network of Fig. 1 are removed along with all
their links. The colour coding of all nodes is as in Fig. 1. The red hexagon denotes the lone TF in the network that is coded for
by two genes. The nomenclature for conditions C1 to C7 and S1 to S8 is given in Table S3 in Additional File 1. The electronic
version of this figure can be zoomed in to read node names.

canalyzing.

The dynamical system achieves flexibility even though it is

far from the edge of chaos

One might expect that a dynamical system whose at-
tractors have large frozen cores and very small ‘twinkling
islands’ is rather rigid and therefore unlikely to be adapt-
able to the external environment and also unlikely to be
evolvable. This expectation has given rise to the con-

jecture (see [10]) that genetic regulatory systems ought
to be close to the ‘edge of chaos’, the boundary that
separates the ordered phase from the chaotic phase in
the space of dynamical systems. However, as discussed
above in the section on homeostasis, the present dynam-
ical system is deep in the ordered phase, since it always
falls into the same attractor that is a fixed point or has
isolated low period cycles for all initial conditions in a
few time steps (all or most genes get frozen). In other
words it is far from the edge of chaos. We have seen
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that this is an inevitable consequence of the hierarchi-
cal, largely acyclic architecture of the network (see the
section on design features). At the same time, we have
seen that the system is also highly responsive to the en-
vironment. How have these two properties managed to
co-exist? The answer lies in the observation that root
nodes of the hierarchy are largely the environmental vari-
ables – the external metabolites in the present case. The
attractor configuration is thus a function of the external
environment, specified by the variable m. While for any
fixed m there is a global attractor in which most or all
genes have frozen configurations, when m changes the
genes ‘unfreeze’ and move to a new attractor configu-
ration. The modular organization of the network with a
lot of crosstalk between modules at the leaf level (enzyme
coding genes) ensures that the melting and refreezing is
quite substantial. The same architecture that produces
this flexibility of response to the external environment
can also enhance evolvability.

The present architecture as an alternative to the edge
of chaos hypothesis for simultaneously producing home-
ostasis and flexibility has not been noticed earlier be-
cause the earlier literature has primarily focussed on the
abstract genetic network itself without much reference
to the environmental control variables that abound in
the real systems. Here, since we are investigating the
database iMC1010v1 which brings together, within the
same network, genes as well as nodes describing external
environmental signals, this possibility has become evi-
dent.

Discussion and Conclusions

The overall organizational picture of the system that
emerges from our study is the following: The network’s
largely acyclic structure means that there must exist
nodes that have no incoming links from within the net-
work (root nodes, sitting at the top of the hierarchy).
If the configuration of the root nodes is held fixed, the
network dynamics necessarily flows to a fixed point at-
tractor whose configuration is insensitive to the initial
configuration or perturbation of the rest of the nodes.
It turns out that the root nodes are typically the ex-
ternal metabolites and other environmental conditions,
while the rest of the network consists of genes. Thus the
system simultaneously possesses the two properties that
attractor configurations are (a) insensitive to initial gene
configurations or their perturbations (homeostasis) and
(b) sensitive to external environmental conditions (flexi-
bility of response).

Acyclicity also means that there are leaf nodes (with
no outgoing links to the network) at the bottom of the
hierarchy. Deleting the leaf nodes along with their links
reveals the remainder of the network to be consisting of
a large number of disconnected components; see Fig. 10.

By construction each of these components is a subsystem
whose dynamics is independent of the rest of the system.
An aspect of modularity of a system is the dynamical
autonomy of certain subsystems; this property is thus
clearly visible. Most modules are controlled at the root
by a set of biochemically related metabolites or a single
metabolite.

All our results, being derived from the database
iMC1010v1, have some limitations that stem from the
database itself. First, the database covers the regulation
of only about half of the metabolic genes in E. coli. Even
among these genes the present set of connections could
have false positives as well as negatives, especially the
latter. Additional nodes and connections would modify
the dynamics reported here. However, new nodes and
connections corresponding to genes coding for enzymes
are unlikely to affect our qualitative conclusions about
the nature of attractors significantly. The reason is that
most such genes are likely to be leaves of the network like
the nodes at the bottom of Fig. 9, in which case they
would not affect the dynamics of other nodes. However
the inclusion of such genes as well as additional connec-
tions of existing genes in the network would add to the
constraints on FBA; it would be interesting to see the
extent to which regulatory dynamics enhances metabolic
efficiency in different environmental conditions.

The inclusion of more TF genes and modified connec-
tions among existing genes would affect the dynamics. In
particular feedback loops could bring in longer cycles as
attractors. Several genes are known to have autoregula-
tory self-loops [31] that are not included in the present
database. These could produce 2-cycles at the individ-
ual nodes even at constant input. Present work seems
to indicate that apart from self-loops, TRNs are largely
acyclic [25, 26, 27] and have a small depth (about 5).
Furthermore the kind of modularity described here for
the TRN regulating metabolism seems to exist for other
parts of the E. coli TRN. This together with the evi-
dence of preponderance of canalyzing functions suggests
that cyclic attractors where they do exist are likely to be
of low period and localized. Cyclicity is needed for explic-
itly temporal phenomena like the cell cycle or circadian
rhythms. It is possible that metabolism being a function-
ality that needs to be active whenever food is available
is largely regulated without cycles at the genetic level,
with feedbacks typically entering at the level of metabo-
lites regulating enzymes to ensure efficient functioning on
a faster time scale. Nevertheless it would be important
to explore these questions with an enlarged database.

We end with a comment relating this to earlier works
and a speculation. Kauffman [8, 10] has found biologi-
cally motivated random boolean networks to possess mul-
tiple attractors that he has interpreted as different cell
types of a multicellular organism. In the present work, we
have studied the genetic network regulating metabolism
in a prokaryote. Perhaps not surprisingly, we get a much
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simpler picture of the network exhibiting a much higher
degree of order in the dynamics than the systems Kauff-
man investigated. While we also find that the system can
go into different attractors (see the discussion above on
flexibility), yet, unlike Kauffman, for whom different at-
tractors were realized via different initial conditions of
the genes, in the present case the different attractors
are realized when the control variables (metabolites in
the external environment) have different configurations.
When the control variables are held fixed we find no
(or very little) multiplicity of attractors irrespective of
the initial condition of the genes (see the discussion on
homeostasis). This architecture and dynamics is proba-
bly quite suitable for prokaryotic lifestyles and evolution.
The question remains open whether for eukaryotes and
especially multicellular ones, Kauffman’s hypothesis that
associates different cell types with different attractors of
the regulatory dynamics is valid. While that hypothe-
sis remains an enticing possibility, it is worth noting that
the present simple architecture would have its uses in the
eukaryotic case as well. Environmental control of cellu-
lar attractors (via the architecture discussed above) can
itself cause a cell to differentiate into another type, the
environment being determined in the multicellular case
by the state of other cells in the organism. The modu-
lar structure discussed above would even permit a cell to
hop through several attractors in the course of develop-
ment of the organism as the environmental cues to this
cell change. Such an architecture could thus contribute
to developmental flexibility and, potentially, evolvabil-
ity of eukaryotes as well. The multiplicity of internal
attractor basins pointed out by Kauffman would be an
asset in keeping the cell in its new attractor after a tran-
sient environmental cue has caused it to shift from one
basin to another. It would be interesting to investigate
these questions when a database similar to iMC1010v1
becomes available for a multicellular organism.

Methods

Construction of the boolean dynamical system
describing the genetic regulation of E. coli

metabolism

We have represented the E. coli TRN regulating its
metabolism as a boolean dynamical system given by the
equation (1) where gi(t) represents the configuration of
gene i (with values 0 or 1 representing the gene be-
ing off or on, respectively) at time t, and the vector
m = (m1, . . . , m96) describes the buffered external en-
vironment (mi being 0 or 1 if metabolite i is absent
or present, respectively, in the external environment).
This dynamical system was constructed from the inte-
grated regulatory and metabolic network iMC1010v1 for
E. coli [11]. This database was downloaded from the

website |http://gcrg.ucsd.edu/—. The regulatory inter-
actions and the boolean rules incorporated in this recon-
structed network are based on various literature sources.
The TRN accounts for 583 genes of which 479 are cod-
ing for enzymes catalyzing metabolic reactions and 104
are coding for TFs. The 583 genes, 103 TFs, 96 exter-
nal metabolites, 19 conditions, and 21 internal fluxes of
metabolic reactions are respectively denoted by the vec-
tors g, t,m, c,v, all of which can, in principle, depend
upon time t. E.g., ti(t) (i = 1, 2, . . . , 103), the ith com-
ponent of t(t), equals unity if the TF i is present in the
cell at time t and zero if not. ci(t) (i = 1, 2, . . . , 19), the
ith component of c(t), equals unity if the ith condition
holds at time t and zero if not. vi(t) (i = 1, 2, . . . , 21), the
ith component of v(t), equals unity if the ith metabolic
reaction in the above mentioned set of internal metabolic
reactions is happening inside the cell at time t (with
a flux greater than a specified value) and zero if not.
The additional 9 stimuli (e.g. stress, etc.) are as-
sumed to be absent. Thus the overall system contains
583+103+96+19+21=823 boolean variables. Its dynam-
ics is organized as follows: The presence or absence of
the transcription factors, external metabolites, and the
status of the internal fluxes and other conditions at time
t determines the on-off state of the 583 genes at t:

gi(t) = Fi(t(t),m(t), c(t),v(t)), i = 1, 2, . . . , 583.
(2)

The database iMC1010v1 gives the form of the functions
Fi in terms of AND, OR and NOT operations on the
boolean arguments. The 103 transcription factors are
coded for by a subset of 104 genes (two genes together
code for one TF and the remaining 102 genes code for one
TF each). The on-off state of these genes at the previous
time step t−1 determines whether the TFs they code for
are present at t (a single time step therefore corresponds
to the average time for transcription and translation).
Thus

ti(t) = Ti(g(t − 1)), i = 1, 2, . . . , 103, (3)

where the function Ti(g) = gi for 102 transcription fac-
tors that are coded for by single genes; for the TF coded
for by 2 genes Ti(g) = gi1 AND gi2 . Substituting this in
the previous equation gives

gi(t) = Fi(T(g(t − 1)),m(t), c(t),v(t)). (4)

This equation provides the dynamical rule for updating
the gene configurations from one instant to the next, pro-
vided the status of the variables m, c,v is known.

Treatment of external metabolites m

In this work we considered only buffered media in
which the external environment was assumed constant.

|
http://gcrg.ucsd.edu/
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Thus m(t) = m, independent of t. For each medium
considered, the components of m corresponding to the
metabolites present in the external environment were
set to unity and the remaining components were set
to zero. E. coli is known to be capable of transport-
ing 143 metabolites into the cell, including 131 organic
and 12 inorganic molecules [32] of which 96 (86 organic
and 10 inorganic) are included in the regulatory part of
the database iMC1010v1. We considered the following
classes of minimal media in this work:
(a) 93 minimal media (61 aerobic and 32 anaerobic):
These are characterized by a single organic source of car-
bon (listed in Supplementary Table S1), and the ions of
ammonium, sulphate, phosphate, hydrogen, iron, potas-
sium and sodium. The components of m corresponding
to these metabolites were set to unity and others were set
to zero in a given minimal medium. Oxygen was set to
unity in the aerobic media and to zero in anaerobic me-
dia. In principle 86 organic carbon sources would yield
172 media (aerobic plus anaerobic). Out of these we re-
stricted ourselves to that subset of media for which the
E. coli metabolic network supports growth of the cell as
determined by Flux Balance Analysis (FBA); i.e., me-
dia for which the optimal growth rate calculated by FBA
without imposing regulatory constraints is nonzero (see
below). This condition yielded the list of 93 media listed
in Supplementary Table S1. Most of the work reported
in this paper was performed with this set of minimal me-
dia.
(b) For part of our work we also considered a much larger
library of minimal media, described by [19], in which
all possible combinations of single sources of carbon, ni-
trogen, sulphur, phosphorus, etc., from among the 143
metabolites ingested by E. coli are considered. Following
the method described in the supplementary material of
[19] gave us a library of 109732 minimal media.

Treatment of the conditions c and internal fluxes v

The c variables: Of the 19 boolean variables ci(t), 15
depend only on the configuration of a subset of TFs and
external metabolites at time t, i.e., ci(t) = Ci(t(t),m(t)),
i = 1, 2, . . . , 15, where the Ci are specified boolean func-
tions in the database. These functions can be substituted
in Eq. 2. This eliminates these 15 variables ci from the
dynamical system at the expense of a more complicated
effective dependence of gi(t) on t(t) and m. Of the
remaining 4 conditions, one, representing growth of the
cell, is set to unity (since we primarily consider only
those conditions in which the cell has a nonzero growth
rate). Another condition represents the pH of the
external environment, which we take to be between 5.5
and 7 (weakly acidic, as, for example, in the human gut).
The pH condition affects only 3 genes in the database.
For two of them the operative regulatory clause is ‘pH <

4’; we take the boolean variable ci corresponding to pH
to be zero (false) for these two genes. For the third gene
the clause is ‘pH < 7’; for this gene we take this variable
to be unity (true). Two other conditions, designated
as ‘surplus FDP’ and ‘surplus PYR’ in the database,
correspond to whether ‘surplus’ amounts of fructose
1,6-bisphosphate and pyruvate are being produced in
the cell. These conditions depend upon the values of
some of the internal fluxes vi and the presence of an
external metabolite, fructose, through specified boolean
functions. The latter variable is treated as unity if the
minimal medium includes fructose and zero otherwise,
as discussed above. The treatment of the internal fluxes
is discussed below.

The v variables: The 21 components of the vector v rep-
resent fluxes of 21 metabolic reactions. As mentioned
by [11], these are surrogate for other conditions inside
the cell, e.g., concentrations of metabolites produced by
those reactions, which can affect gene regulation. We
have treated these variables in two distinct ways.
(A) In the first approach we identified whether the par-
ticular metabolic reaction was a ‘blocked reaction’ or not
[33, 34, 35]. A reaction is said to be blocked in a par-
ticular environmental condition (specified by a buffered
medium) if under that medium no steady-state flux is
possible through it [34]. This can be determined using
metabolic flux analysis methods from a knowledge of the
metabolic network. For each medium (specified by the
vector m) we chose the fixed value zero for a particular
flux variable vi(t) if it was found to be blocked for that
condition, and unity otherwise. Thus in this approach
the vi were not dynamical variables, but rather fixed pa-
rameters (albeit fixed with an eye on self-consistency).
(B) In the second approach, we allowed the vi to be dy-
namical, but made a simplifying assumption about their
dynamics. In the cell, the flux values of individual reac-
tions are determined by the concentrations of participat-
ing metabolites and the catalyzing enzymes, the latter
being controlled by the activity of their respective genes.
In a discrete-time approximation, an enzyme is present
at time t if the genes coding for it are active at t − 1.
Thus we set vi(t) = 1 if the genes coding for the en-
zyme of that metabolic reaction were active at t− 1, and
vi(t) = 0 otherwise. This could be done for a subset of 10
out of 21 reactions, since the genes of their enzymes were
part of the 583 genes in the database. Genes coding for
the enzymes of the remaining 11 reactions were not part
of the database and hence the corresponding vi could not
be made dynamical variables in this fashion. These latter
vi were fixed as in part (A) for each medium. The ap-
proach (B) introduces feedbacks in the genetic regulatory
network.

Our above treatment defines the substitutions to be
made in Eq. 2 for the variables c(t),v(t). Each com-
ponent of c in Eq. 2 is either a specified boolean func-
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tion of t(t), m, and v(t), or is a suitably chosen boolean
constant. Each component of v(t) is, in turn, either a
specified boolean function of g(t − 1), or is a suitably
chosen boolean constant. These substitutions together
with Eq. 3 make the right hand side of Eq. 2 a func-
tion of only g(t − 1) and m, i.e., Eq. 2 reduces to
gi(t) = Gi(g(t − 1),m), which is the same as Eq. 1.
The functions Gi define the final dynamical system, and
include information coming from the functions Fi, as well
as the dependence of t, c and v on g and m. Note that
the choices (A) and (B) for the v variables yield differ-
ent dynamical systems for Eq. 1 which we denote as 1A
and 1B respectively; in 1B 6 out of 583 genes have addi-
tional links from other genes in the set compared to 1A.
Programs implementing these two dynamical systems are
available from the authors.

Computation of Growth rate of E. coli for a given
environmental condition

Flux Balance Analysis (FBA) is a computational tech-
nique that determines the maximal steady state growth
rate of a cell that its metabolic network can support
in any given buffered medium [4, 5, 7]. The database
iMC1010v1 [11] includes the E. coli metabolic network
database iJR904 [32] to which FBA can be applied. In
this work we use FBA in two ways:

Pure (unconstrained) FBA. This uses the full metabolic
network iJR904 (without any constraints from regula-
tion) to calculate the maximal growth rate of the cell
under various media. A zero value of the maximal
growth rate for a particular medium means that the
metabolic network does not contain pathways to convert
the substances present in the medium into ‘biomass
metabolites’ needed for cell growth.

FBA with regulatory constraints. Of the 583 genes in
the database iMC1010v1 479 genes code for enzymes of
the metabolic reactions in the database iJR904. In any
given configuration of the genetic network a subset of
these genes is off and the remaining are on. Thus one
can run FBA wherein those reactions of the metabolic
network are switched off whose enzymes are not being
produced (i.e., whose corresponding genes are off). We
will refer to this as ‘constrained FBA’. In this way one
can track the optimal growth rate as a function of time as
the configuration of the genes changes according to the
dynamics of the genetic regulatory network, as discussed
in [11, 18]. The growth rate obtained from constrained
FBA for any configuration of the genes is, by definition,
less than or equal to that obtained from pure FBA (for
the same medium).
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Serial 
number

Carobon Source Abbreviation of the carbon source 

1 2-Dehydro-3-deoxy-D-gluconate  2ddglcn 

2 N-acetyl-D-glucosamine acgam 

3 L-Arabinose arab-L 

4 Cytidine cytd 

5 D-Fructose fru 

6 L-Fucose fuc-L 

7 D-Glucose 6-phosphate g6p 

8 D-Galactose gal 

9 D-Galactarate galct-D 

10 D-Galactonate galctn-D 

11 Galactitol galt 

12 D-Glucosamine gam 

13 D-Glucose glc-D 

14 D-Gluconate glcn 

15 D-Glucarate glcr 

16 L-idonate idon-L 

17 Inosine ins 

18 Lactose lcts 

19 Maltose malt 

20 Maltohexaose malthx 

21 Maltopentaose maltpt 

22 Maltotriose malttr 

23 Maltotetraose maltttr 

24 D-Mannose man 

25 Melibiose melib 

26 D-Ribose rib-D 

27 L-Rhamnose rmn 

28 D-Sorbitol sbt-D 

29  Trehalose  tre 

30 Xanthosine xtsn

31 D-Xylose xyl-D 

32 3-(3-hydroxy-phenyl)propionate 3hpppn 

33 Acetate ac 

34 Acetoacetate acac 

35 D-Alanine ala-D 

36 L-Alanine ala-L 

37 L-Arginine arg-L 

38 L-Asparagine asn-L 

39 L-Asparate asp-L 

40 Citrate cit 

41 Fumarate fum 

42 L-Glutamine gln-L 

43 L-Glutamate glu-L 

44 Glycine gly 

45 Glycerol glyc 

46 Glycolate glyclt 

47 Hexadecanoate (n-C16:0) hdca 

Table S1: List of minimal media considered as environmental conditions to study E. coli  TRN. The 62 minimal media 
listed here are considered in aerobic conditions. The first 31 media shaded in grey are considered also in anaerobic 
conditions. Each carbon source is provided along with ammonia, sulphate, phosphate, proton, iron, potassium and 
sodium for uptake. Oxygen is provided in aerobic conditions. See supporting text (section on Treatment of external 
metabolites m) for a discussion on how this list was compiled.

Supporting Tables



48 D-Lactate lac-D 

49 L-Lactate lac-L 

50 L-Malate mal-L 

51 D-Mannitol mnl 

52 Octadecanoate (n-C18:0) ocdca 

53 Phenylpropanoate pppn 

54 L-Proline pro-L 

55 Pyruvate pyr 

56 D-Serine ser-D 

57 L-Serine ser-L 

58 Succinate succ 

59 L-tartrate tartr-L 

60 L-Threonine thr-L 

61 L-Tryptophan trp-L 

62 Tetradecanoate (n-C14:0) ttdca



Serial 
Number

Minimal Media
Oxygen 

Availability

Growth Rate 
with regulatory 

constraints 
(GRreg)

Growth Rate 
with no 

regulatory 
constraints 
(GRpure)

Ratio 
(GRreg/GRpure)

1 ac aerobic 0.234 0.234 0.998

2 ala-D aerobic 0.416 0.423 0.985

3 ala-L aerobic 0.416 0.423 0.985

4 arab-L anaerobic 0.785 0.786 0.998

5 arab-L aerobic 0.220 0.222 0.992

6 arg-L aerobic 0.743 0.784 0.948

7 asn-L aerobic 0.452 0.452 0.999

8 asp-L aerobic 0.451 0.451 0.998

9 cytd anaerobic 0.826 0.872 0.948

10 cytd aerobic 0.282 0.394 0.716

11 ddglcn anaerobic 0.830 0.831 0.998

12 ddglcn aerobic 0.226 0.228 0.993

13 fru anaerobic 0.955 0.957 0.998

14 fru aerobic 0.297 0.299 0.992

15 fuc-L aerobic 0.526 0.915 0.575

16 fuc-L anaerobic 0.156 0.158 0.993

17 fum aerobic 0.439 0.439 0.998

18 g6p anaerobic 0.990 0.992 0.998

19 g6p aerobic 0.377 0.380 0.992

20 gal anaerobic 0.944 0.946 0.998

21 gal aerobic 0.270 0.272 0.992

22 galct-D anaerobic 0.663 0.664 0.998

23 galct-D aerobic 0.209 0.210 0.993

24 galctn-D anaerobic 0.830 0.831 0.998

25 galctn-D aerobic 0.226 0.228 0.993

26 galt anaerobic 1.007 1.009 0.998

27 galt aerobic 0.253 0.255 0.993

28 gam anaerobic 0.955 0.957 0.998

29 gam aerobic 0.297 0.299 0.992

30 glc-D anaerobic 0.955 0.957 0.998

31 glc-D aerobic 0.297 0.299 0.992

32 glcn anaerobic 0.876 0.877 0.998

33 glcn aerobic 0.241 0.243 0.990

34 glcr anaerobic 0.663 0.664 0.998

35 glcr aerobic 0.209 0.210 0.993

36 gln-L aerobic 0.644 0.644 0.999

37 glu-L aerobic 0.670 0.674 0.994

38 glyc aerobic 0.555 0.555 0.998

39 glyclt aerobic 0.177 0.177 0.998

40 hpppn aerobic 1.124 1.125 0.999

41 idon-L anaerobic 0.866 0.867 0.998

42 idon-L aerobic 0.207 0.208 0.992

43 ins anaerobic 0.888 0.889 0.998

44 ins aerobic 0.350 0.352 0.995

45 lac-D aerobic 0.410 0.413 0.992

46 lac-L aerobic 0.372 0.375 0.992

Table S2: Comparison of growth rate obtained using pure (unconstrained) FBA with that obtained 
using constrained FBA for various minimal media (see main text, methods section). For each media, 
the amount of carbon source uptake was set to 10 mM per g-DCW per hr and the uptake rates of all 
other inorganics in the media was left unconstrained.



47 lcts anaerobic 1.900 1.903 0.998

48 lcts aerobic 0.566 0.571 0.992

49 mal-L aerobic 0.427 0.439 0.971

50 malt anaerobic 1.911 1.914 0.998

51 malt aerobic 0.593 0.598 0.992

52 malthx anaerobic 5.826 5.835 0.998

53 malthx aerobic 1.995 2.010 0.992

54 maltpt anaerobic 4.824 4.832 0.998

55 maltpt aerobic 1.591 1.603 0.992

56 malttr anaerobic 2.867 2.871 0.998

57 malttr aerobic 0.890 0.897 0.992

58 maltttr anaerobic 3.822 3.828 0.998

59 maltttr aerobic 1.186 1.195 0.992

60 man anaerobic 0.955 0.957 0.998

61 man aerobic 0.297 0.299 0.992

62 melib anaerobic 1.900 1.903 0.998

63 melib aerobic 0.566 0.571 0.992

64 mnl aerobic 1.020 1.025 0.995

65 pro-L aerobic 0.754 0.762 0.990

66 pyr aerobic 0.346 0.348 0.992

67 rib-D anaerobic 0.750 0.751 0.998

68 rib-D aerobic 0.139 0.140 0.992

69 rmn aerobic 0.526 0.915 0.575

70 rmn anaerobic 0.156 0.158 0.993

71 sbt-D anaerobic 1.020 1.025 0.995

72 sbt-D aerobic 0.256 0.258 0.992

73 ser-D aerobic 0.346 0.348 0.992

74 ser-L aerobic 0.354 0.356 0.994

75 succ aerobic 0.469 0.469 0.998

76 tre anaerobic 1.911 1.914 0.998

77 tre aerobic 0.593 0.598 0.992

78 xtsn anaerobic 0.857 0.859 0.998

79 xtsn aerobic 0.346 0.348 0.995

80 xyl-D anaerobic 0.785 0.786 0.998

81 xyl-D aerobic 0.220 0.222 0.992



Abbreviation Name

C1 CRP noGLC

C2 Surplus FDP

C3 Surplus PYR

C4 NRI_low

C5 NRI_hi

C6 Growth

C7 pH

S1 Dipyridyl

S2 High NAD

S3 Heat shock

S4 Stress

S5 Oxidative stress

S6 LBMedia

S7 High osmolarity

S8 Salicylate

Table S3: Abbreviations used to label nodes corresponding to 
conditions and stimuli in Fig. 4 and their corresponding names 



Number of regulatory inputs 
K 

Number of Genes

1 259

2 189

3 68

4 39

5 10

6 4

8 2

Table S4: The table shows the number of genes in E. coli TRN 
with K regulatory inputs


