

Ultrahigh Thermoelectric Figure of Merit and Enhanced Mechanical Stability of *p*-type AgSb_{1-x}Zn_xTe₂

Subhajit Roychowdhury, Rajarshi Panigrahi, Suresh Perumal, and Kanishka Biswas*0

New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560 064, India

S Supporting Information

ABSTRACT: High-performance thermoelectric materials are desirable in the lowermedium temperature range (450–650 K) for low-grade waste heat recovery. We report a thermoelectric figure of merit (zT) of 1.9 at 585 K in *p*-type AgSb_{1-x}Zn_xTe₂, which is the highest value measured among the *p*-type materials in the 450–650 K range. A high average thermoelectric figure of merit (zT_{avg}) of 1.3 is achieved in AgSb_{0.96}Zn_{0.04}Te₂. Moreover, the AgSb_{1-x}Zn_xTe₂ sample exhibits a hardness value of ~6.3 GPa (nanoindentation), which is significantly higher than that of the pristine AgSbTe₂. Substitution of Zn in AgSbTe₂ suppresses the formation of intrinsic Ag₂Te impurity phases, which indeed increases the thermal and mechanical stability. The lattice thermal conductivity for AgSb_{1-x}Zn_xTe₂ samples is reasonably reduced compared to that of the pristine AgSbTe₂ because of the significant solid solution point defect phonon scattering. Aliovalent Zn²⁺ doping in Sb³⁺ sites in AgSbTe₂ increases the *p*-type carrier concentration, which boosts the electrical conductivity of AgSb_{1-x}Zn_xTe₂.

hermoelectric (TE) materials are a potential candidate for waste heat to electrical energy conversion. The efficiency of thermoelectric materials depends on dimensionless figure of merit, $zT = \sigma S^2 T / \kappa$, where σ , S, κ , and T are electrical conductivity, Seebeck coefficient, total thermal conductivity, and temperature, respectively.¹⁻⁵ It is a great challenge to improve overall zT by simultaneous optimization of σ , S, and κ because of their interdependent nature. Higher power factor (σS^2) and/or lower thermal conductivity are necessary for the enhancement of zT. Significant efforts have been made to improve the Seebeck coefficient via introduction of resonance levels in electronic bands near the Fermi level^{6,7} and convergence of electronic band valleys.^{8–10} On the other hand, recent advances show that high thermoelectric performance could be achieved mainly through the remarkable decrease in the lattice thermal conductivity via phonon scattering by introducing solid solution point defects, second phase nanoprecipitates,^{11–13} mesoscale grain boundaries,^{14,15} intrinsic bond anharmonicity,^{16–20} and rattling modes.^{19,20}

AgSbTe₂ is considered to be a promising thermoelectric material for power generation application in the temperature range of 400–700 K because of its glasslike anomalously low thermal conductivity $(0.6-0.7 \text{ W m}^{-1} \text{ K}^{-1})$.^{17,21–24} At room temperature, AgSbTe₂ crystallizes in a disordered rock-salt structure (space group, $Fm\overline{3}m$) in which Ag and Sb randomly occupy the cation site and Te occupies the anion site.²⁵ Previous studies indicate that strong anharmonicity in Sb–Te

bonds is responsible for ultralow thermal conductivity, which is mainly caused by the existence of the stereochemically active $5s^2$ lone pair on Sb.²³ Moreover, narrow band gap semiconductor, AgSbTe₂, exhibits *p*-type conduction with high thermopower due to the presence of multiple flat valence band valleys.²⁶ Notably, alloys of AgSbTe₂ with PbTe-rich [(AgSbTe₂)_{1-x}(PbTe)_x (LAST)]²⁷ and GeTe rich [(AgSbTe₂)_{1-x}(GeTe)_x (TAGS)]²⁸ phases are famous for their excellent thermoelectric performance.

Thermoelectric materials must be thermodynamically stable and mechanically robust for long-term applications. Despite its high thermoelectric performances, thermodynamic stability of AgSbTe₂ has remained a challenging issue since its discovery.^{29,30} Detailed studies on pseudobinary Sb₂Te₃–Ag₂Te and Sb₂Te₃–Ag₂Te–Te phase diagrams confirm the non-existence of a thermodynamically stable compound with the exact stoichiometric composition of AgSbTe₂.^{31–33} A stable cubic phase with a wide range of compositions (Ag_{1-x}Sb_{1+x}Te_{2+x}; x =0.06–0.28) is the only ternary compound in the Sb₂Te₃–Ag₂Te phase diagram.¹⁸ This nonstoichiometric AgSbTe₂ slowly decomposes into a solid solution of Ag in Sb₂Te₃ and solid solution of Sb in β -Ag₂Te at 630 K.^{31–34} Moreover, several groups have reported the presence of a small amount of α -Ag₂Te as a second phase in AgSbTe₂ at room temperature

Received: November 30, 2016 Accepted: January 11, 2017

Figure 1. (a) Powder X-ray diffraction pattern for $AgSb_{1-x}Zn_xTe_2$ (x = 0-0.06) samples, (b) variation of lattice parameter as a function of Zn (x) concentration in $AgSb_{1-x}Zn_xTe_2$ (x = 0-0.06), and (c) DSC curves for $AgSb_{1-x}Zn_xTe_2$ (x = 0.0, 0.02, 0.04) samples.

despite their different synthesis procedure such as melting and slow cooling,^{29,30} mechanical alloying,³⁵ and zone melting,³⁶ which indicates that the matrix is always Sb-rich (Ag-poor) in AgSbTe₂. The Ag₂Te impurity may have a negative impact on the thermoelectric properties of AgSbTe₂ because of its *n*-type conduction and structural phase transition at ~425 K.³² Thus, blocking the formation of the Ag₂Te impurity during synthesis of AgSbTe₂ is important for optimization of the thermoelectric and mechanical properties of AgSbTe₂. Another major drawback of the AgSbTe₂ compound is its low electrical conductivity caused by the heavy hole carriers, which are due to the effect of the flat valence band maximum. Nevertheless, enhancement in the electrical conductivity has been achieved in Na-doped nonstoichiometric AgSbTe₂, which exhibited a zT of 1.5 at 570 K.²⁴

Cubic AgSbSe₂, an analogue of AgSbTe₂, is thermodynamically stable below its melting point and shows promising thermoelectric properties for practical application.^{37–39} Recently, Du et al. have shown that partial substitution of Se in place of in AgSbTe₂ suppresses the formation of impurity phases such as Ag₂Te and Ag_{0.35}Sb_{0.09}Te_{0.56}.³² A zT value of ~1.35 at 565 K is reported for the nominal composition of AgSbTe_{1.98}Se_{0.02}.³² Recently, In doping in AgSbTe₂ resulted in a zT of 1.35 at 650 K.⁴⁰ Moreover, we have previously shown that Zn doping in AgSbSe₂ boosts the thermoelectric

performance through synergistic effect of nanostructuring, carrier engineering, and bond anharmonicity.³⁸ Motivated by the above fact, we have studied the effect of Zn doping ($x = 0-6 \mod \%$) on thermoelectric properties of AgSbTe₂.

Here, we report a remarkably high thermoelectric figure of merit, zT, of 1.9 at 585 K in p-type $AgSb_{1-x}Zn_xTe_2$ (x = 0-0.06) ingots via simultaneous carrier engineering and reduction of lattice thermal conductivity. The zT of 1.9 at 585 K in AgSb_{0.96}Zn_{0.04}Te₂ is the highest zT value measured for *p*-type materials to date in the lower-medium temperature range (450-650 K). Importantly, AgSb_{0.96}Zn_{0.04}Te₂ possesses an average thermoelectric figure of merit, zT_{avg} , value of ~1.3 in the 300-600 K range, which is highest value measured to date for AgSbTe₂-based compounds. Because Zn²⁺ doping in place of Sb³⁺ in AgSbTe₂ acts as an acceptor, it increases p-type carrier concentration and thereby enhances the electrical conductivity. Increased *p*-type carriers in AgSb_{1-x}Zn_xTe₂ easily access the multiple flat valence band valleys in AgSbTe₂, which results in a large Seebeck coefficient. In addition, reduction in lattice thermal conductivity was observed upon Zn doping in AgSbTe₂ because of phonon scattering due to solid solution point defects. Interestingly, substitution of Zn at a Sb site in AgSbTe₂ suppresses the unavoidable formation of Ag₂Te by increasing the solubility of Ag₂Te in AgSbTe₂, which indeed increases the thermal and mechanical stability of AgSbTe2. The maximum hardness value of ~ 6.3 GPa was measured by nanoindentation method for the AgSb_{0.96}Zn_{0.04}Te₂ sample, which is significantly higher than that of the pristine AgSbTe₂.

We have synthesized high-quality crystalline ingots of several $AgSb_{1-x}Zn_xTe_2$ (x = 0, 0.02, 0.04, 0.06) compositions by mixing appropriate ratios of high-purity starting materials of Ag, Sb, Zn, and Te in a quartz tube. Quartz tubes were then sealed under vacuum (10^{-5} Torr), slowly heated to 1123 K, then slowly cooled to room temperature (see Experimental Section in the Supporting Information). Bar- and coin-shaped samples obtained after cutting and polishing as-synthesized ingot were used for electrical and thermal transport property measurement, respectively.

Powder X-ray diffraction (PXRD) pattern of $AgSb_{1-x}Zn_xTe_2$ (x = 0, 0.02, 0.04, 0.06) samples could be indexed based on cubic $AgSbTe_2$ structure (space group, $Fm\overline{3}m$) (Figure 1a). Careful analysis of PXRD data for the compositions of x = 0and x = 0.02 shows the weak diffraction peaks of Ag_2Te , which is consistent with the previously reported literature (Figure S1).^{15,17,19} Interestingly, with the addition of Zn (x = 0-6 mol %) in $AgSbTe_2$, impurity peaks corresponding to Ag_2Te become weaker and finally disappear with higher concentration of Zn (Figure S1). This suggests that substitution of Sb with Zn in $AgSbTe_2$ suppresses the formation of the Ag_2Te phase. The lattice parameter of $AgSb_{1-x}Zn_xTe_2$ depends linearly on the concentration of Zn which is consistent with solid solution Vegard's law (Figure 1b).

The DSC curves for $AgSb_{1-x}Zn_xTe_2$ (x = 0, 0.02, 0.04) samples are presented in Figure 1c. A small endothermic peak observed around 425 K is associated with $\alpha - \beta$ structural transition of Ag2Te for the pristine AgSbTe2 and AgSb_{0.98}Zn_{0.02}Te₂. Transition due to Ag₂Te disappears completely for the composition of $x \ge 0.04$, which also confirms the blocking of Ag₂Te formation on Zn doping in AgSbTe₂. The exothermic peak around 510 K in the DSC curve is responsible for the appearance of unstable phase Sb₇Te, which is earlier observed in Cu- and Mn-doped AgSbTe₂ samples.^{41,42} Additionally, one endothermic peak around 602 K is observed for all the samples that correspond to the presence of Ag₅Te₃.³³ The DSC curves show the presence of the large endothermic peak at about 635 K, which corresponds to the decomposition of AgSbTe₂ into Ag₂Te and Sb₂Te₃.^{33,34} This decomposition limits the thermoelectric studies of AgSbTe2 in the 300-600 K range, and here we have focused our thermoelectric measurement in the same temperature range.

To understand the surface morphology and microstructure compositions, backscattered electron imaging (BSE) and EDS are performed during FESEM measurement. Figure 2 shows BSE-FESEM micrographs of AgSbTe₂ (a and b) and $AgSb_{0.96}Zn_{0.04}Te_2$ (c and d) samples. For the pristine $AgSbTe_2$ sample, we have observed nanoprecipitates with lighter contrast with respect to dark contrast AgSbTe₂ matrix. EDS analysis indicates that the matrix is Sb-rich AgSbTe₂ (Figure S2). The light contrast nanoprecipitates observed in BSE-FESEM are α -Ag₂Te. Substitution of Zn in AgSbTe₂ suppresses the formation of Ag₂Te in the matrix; thus, we do not see any nanoprecipitates in AgSb_{0.96}Zn_{0.04}Te₂ (Figure 2c,d). We have prepared ingots by a melt-cooling synthesis route. In the cooling process, Ag₂Te with a higher melting point solidifies and slowly grows into microscale precipitates in the \mbox{AgSbTe}_2 matrix, resulting in an inhomogeneous multiphase material. With addition of Zn, concentration of Ag₂Te decreases, which

Figure 2. Backscattered electron images taken during FESEM for (a, b) pristine AgSbTe₂ and (c, d) AgSb_{0.96}Zb_{0.04}Te₂ samples.

is similar to the Se-doped AgSbTe₂ sample in which Se helps to reduce the Ag₂Te phase.³² Actually, Zn increases the solubility limit of Ag₂Te in the AgSbTe₂ matrix because Ag₂Te forms a solid solution with ZnTe in the lower concentration range. Similar behavior is observed in GeTe, where 3 mol % Bi₂Te₃ increases the solubility limit of Pb in GeTe.⁴³

Figure 3a represents the temperature dependence of electrical conductivity (σ) for AgSb_{1-x}Zn_xTe₂ (x = 0-0.06) samples in the 300-635 K range. Aliovalent substitution of Zn^{2+} at Sb³⁺ site in AgSbTe₂ increases the σ from ~136 S/cm for pristine AgSbTe₂ to ~160 S/cm for AgSb_{0.96}Zn_{0.04}Te₂ at 300 K. With the increase in temperature, electrical conductivity of AgSb_{1-x}Zn_xTe₂ passes through minima and then starts to increase at high temperature, which is due to the onset of bipolar conduction in a narrow band gap semiconductor. Typically, the AgSb_{0.96}Zn_{0.04}Te₂ sample exhibits a σ value of \sim 160 S/cm at room temperature, which decreases to \sim 145 S/ cm at 475 K and finally increases to ~227 S/cm at 632 K. We observe a small hysteresis in electrical conductivity during the heating-cooling cycle measurement (Figure S6). With addition of Zn (4–6 mol %) in AgSbTe₂, the concentration of Ag_2Te decreases significantly, but small amounts of Sb₇Te and Ag₅Te₃ phases still exist in AgSbTe2, which can be shown from the DSC plot of $AgSb_{1-x}Zn_xTe_2$ (Figure 1c). Hysteresis in the temperature dependence of electrical conductivity during heating and cooling cycles occurs because of the unstable phases Sb₇Te and Ag₅Te₃.

To understand the effect of Zn doping on electrical transport behavior in AgSbTe₂ system, Hall measurement was carried out to estimate the carrier concentration (*n*) and carrier mobility (μ) of AgSb_{1-x}Zn_xTe₂ samples, which are summarized in Table 1. Doping of Zn in AgSbTe₂ increases the *p*-type carrier concentration from ~1.14 × 10¹⁹ cm⁻³ for pristine AgSbTe₂ to ~4.8 × 10¹⁹ cm⁻³ for the AgSb_{0.96}Zn_{0.04}Te₂ sample. This indicates that Zn²⁺ dopes at Sb³⁺ sublattice and contributes one hole per doping in AgSbTe₂. Increase in *p*-type carrier concentration indeed increases the σ in AgSb_{1-x}Zn_xTe₂.

Temperature dependence of Seebeck coefficients (S) of $AgSb_{1-x}Zn_xTe_2$ samples are presented in Figure 3b. Positive Seebeck coefficient values indicate *p*-type conduction, which is consistent with the Hall coefficient data. The Seebeck value for

Figure 3. Temperature-dependent (a) electrical conductivity (σ), (b) Seebeck coefficient (S), and (c) power factor (σ S²) for AgSb_{1-x}Zn_xTe₂ (x = 0-0.06) samples.

Table 1. Carrier Concentration (*n*), Carrier Mobility (μ), and Effective Mass (m^*) of AgSb_{1-x}Zn_xTe₂ (x = 0.0, 0.02, 0.04, and 0.06) Samples at Room Temperature

sample	$n ({\rm cm}^{-3})$	$\mu ({ m cm}^2{ m V}^{-1}{ m S}^{-1})$	m^*
AgSbTe ₂	1.14×10^{19}	74	$1.32m_0$
$AgSb_{0.98}Zn_{0.02}Te_2$	2.7×10^{19}	31	$2.82m_0$
$AgSb_{0.96}Zn_{0.04}Te_2$	4.8×10^{19}	32.5	$2.65m_0$
$AgSb_{0.94}Zn_{0.06}Te_2$	5.14×10^{19}	20.4	$2.53m_0$

the pristine AgSbTe₂ sample is ~264 μ V/K at room temperature, which increases to ~360 μ V/K at ~438 K. The large Seebeck value of AgSbTe₂ is attributed to the presence of a flat and multivalley valence band.²⁶ Typically, the AgSb_{0.96}Zn_{0.04}Te₂ sample shows a room-temperature Seebeck value of ~235 μ V/K which increases to ~275 μ V/K at 610 K. The high S value in AgSbTe₂-based compounds is due to high density of state effective mass (*m**). Assuming a single parabolic band model with acoustic phonon scattering (*r* = -1/2), we have estimated the *m** according to the following equation using the measured Seebeck coefficients and Hall carrier concentrations (*n*):^{37,44,45}

$$m^* = \frac{h^2}{2Tk_{\rm B}} \left[\frac{n}{4\pi F_{1/2}(\eta)}\right]^{2/3}$$

$$S = \pm \frac{k_{\rm B}}{e} \left(\frac{(r+3/2)F_{r+3/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \eta \right)$$
$$F_n(\eta) = \int_0^\infty \frac{x^n}{1+e^{x-\eta}} dx$$

where η is the reduced Fermi energy, $F_n(\eta)$ the *n*th order Fermi integral, k_B the Boltzmann constant, *e* the electron charge, *h* the Planck constant, and *r* the scattering factor. The reduced Fermi energy was extracted based on fitting the respective Seebeck data. Calculated values of m^* for AgSbTe₂ and AgSb_{0.96}Zn_{0.04}Te₂ samples are $1.32m_0$ and $2.65m_0$, respectively (Table 1). Similar high m^* values have also been observed in cases of doped AgSbSe₂ and AgSbTe₂.^{37,45,46} The increase in m^* value with the increase in Zn concentration in AgSbTe₂ is attributed to increases in *p*-type carriers, which easily accesses the multiple flat valence band valleys of AgSbTe₂. Notably, we have also observed that Zn-doped samples exhibit hole mobility (μ) that is relatively lower than that of the pristine sample because of the presence of heavy holes (Table 1).

Figure 3c represents the temperature-dependent power factors (σS^2) for AgSb_{1-x}Zn_xTe₂ samples. Typically, AgSbTe₂ exhibits the $S^2\sigma$ value of ~9.6 μ W cm⁻¹K⁻² at 300 K, which decreases to ~7.9 μ W cm⁻¹K⁻² at 610 K. However, the AgSb_{0.96}Zn_{0.04}Te₂ sample exhibits the $S^2\sigma$ value of ~11.5 μ W cm⁻¹K⁻² at 300 K, which reaches the maximum value of ~17.3 μ W cm⁻¹K⁻² at 585 K.

Figure 4. Temperature-dependent (a) total thermal conductivity (κ_{total}) and (b) lattice thermal conductivity (κ_{latt}) for AgSb_{1-x}Zn_xTe₂ (x = 0 - 0.06) samples.

Figure 5. (a) Temperature-dependent thermoelectric figure of merit (zT) of $AgSb_{1-x}Zn_xTe_2$ (x = 0-0.06) samples. (b) The best zT obtained in this study compared with some of the state-of-the-art thermoelectric materials. The *p*-type Zn-doped AgSbTe₂ shows the highest zT in the lower-medium temperature range (450-650 K). (c) zT_{avg} values for several popular polycrystalline thermoelectric materials compared with the present AgSb_{1-x}Zn_xTe₂.

Temperature-dependent thermal conductivities of AgSb_{1-x}Zn_xTe₂ samples are illustrated in Figure 4. The total thermal conductivities, κ_{total} , of all the samples were estimated by using the formula $\kappa_{\text{total}} = DC_p\rho$, where D is the thermal

diffusivity (Figure S3a), $C_{\rm p}$ the specific heat (Figure S4), and ρ the density (Table S2) of the sample in the temperature range of 300–650 K. At 300 K, $\kappa_{\rm total}$ values for all the samples range from 0.55 W/mK to 0.65 W/mK, which agree with previous

results.^{17,21-24} However, with increasing temperature, we observe the enhanced contribution of bipolar thermal conductivity, which is typical of a narrow band gap semiconductor. Previous theoretical electronic structure calculation indicates that AgSbTe₂ exhibits a semimetallic band structure where the conduction band goes below the top of the valence band.²⁶ It is well-known that most density functional theory calculations tend to underestimate the band gaps of semiconductors, and we cannot exclude the possibility that AgSbTe₂ is a semiconductor with a small band gap. Previous diffuse reflectance measurement in AgSbTe2 provided an apparent band gap (0.35 eV), whereas electrical conductivity suggested a band gap of 0.1 eV.²⁶ These results clearly indicate that AgSbTe₂ is a narrow band gap semiconductor. Substitution of a small amount of Zn at the position of Sb in AgSbTe₂ does not change the narrow band gap nature of AgSbTe₂, which can be seen from temperature-dependent thermal conductivity which shows similar onset temperature for bipolar thermal conduction compared to pristine AgSbTe₂.

 κ_{total} of AgSb_{1-x}Zn_xTe₂ is mainly governed by its lattice component, κ_{latt} , which corresponds to proliferation of phonons. Temperature-dependent κ_{latt} for AgSb_{1-x}Zn_xTe₂ samples were estimated by subtracting electronic thermal conductivity ($\kappa_{el} = L\sigma T$ (Figure S3b)), where *L* is the Lorenz number which can be obtained based on the fitting of the respective Seebeck values that estimate the reduced chemical potential as explained elsewhere³⁷) from κ_{total} . The intrinsically low thermal conductivity of AgSbTe₂ arises because of the presence of strong bond anharmonicity, resulting from the stereochemically active $5s^2$ lone pair on Sb, which deforms lattice vibration significantly.¹⁷ At 600 K, the AgSb_{0.96}Zn_{0.04}Te₂ sample exhibits a κ_{latt} value of ~0.36 W/mK, which reaches close to the theoretical minimum limit of the thermal conductivity (~0.3 W/mK) in AgSbTe₂ calculated using the formula described by Cahill et al.⁴⁷ Reduction in the lattice thermal conductivity was $\sim 26\%$ in AgSb_{0.96}Zn_{0.04}Te₂ when compared to the pristine AgSbTe₂. The decrease in κ_{latt} of AgSb_{0.96}Zn_{0.04}Te₂ compared to that of pristine AgSbTe₂ is due to scattering of heat-carrying phonons via solid solution point defects.

We have estimated the dimensionless figure of merit (zT) for $AgSb_{1-x}Zn_xTe_2$ (x = 0, 0.02, 0.04, 0.06) samples by using measured values of σ , S, and κ in the 300-635 K temperature range (Figure 5a). Although, room-temperature zT values of all the samples were comparable, the advantage of addition of Zn is clearly distinguishable at elevated temperatures. We have obtained a maximum zT of ~1.9 at ~585 K for $AgSb_{0.96}Zn_{0.04}Te_2$, which is significantly higher compared to that of the pristine $AgSbTe_2$ sample and other reported values for doped $AgSbTe_2$ (Figure SS).

The *p*-type $Bi_{0.5}Sb_{1.5}Te_3^{48,49}$ based materials exhibit high performance in the 300–400 K range, whereas *p*-type PbTe¹⁴ and SnSe⁵⁰ based materials show high performance in the 700– 900 K range (Figure 5b). High-performance *p*-type materials are desirable in the 450–650 K range for lower-medium temperature power generation applications. *p*-type MgAgSb,⁵¹ CdSb,⁵² and Zn₄Sb₃⁵³ based materials show promising performance in the 450–650 K range (Figure 5b). *p*-type AgSb_{0.96}Zn_{0.04}Te₂ exhibits zT of 1.9 at 584 K, which is the highest value obtained in the 450–650 K range among the *p*type materials. The average zT value (zT_{avg}) of AgSb_{0.96}Zn_{0.04}Te₂ is estimated to be ~1.3 by considering the cold and hot side temperatures of 300 and 600 K, respectively, which is on par with that of high-performance state-of-the-art thermoelectric materials (Figure 5c).^{14,50,51,54,55}

In addition to high zT and high zT_{avg} , materials should possess high mechanical stability for device applications. The mechanical properties, reduced elastic modules and hardness, of $AgSb_{1-x}Zn_xTe_2$ samples were measured by the nanoindentation method (Table S1). Figure 6 shows the load (*P*) versus

Figure 6. Load (P) vs displacement (h) curve and hardness value (GPa) of $AgSb_{1-x}Zn_xTe_2$ (x = 0.0, 0.04) samples measured by nanoindentation.

displacement (h) curves of AgSbTe₂ and AgSb_{0.96}Zn_{0.04}Te₂ samples. The pristine AgSbTe₂ sample possesses the hardness value of ~2.54 GPa, whereas the $AgSb_{0.96}Zn_{0.04}Te_2$ sample shows the maximum hardness value of ~6.3 GPa. Substitution of Zn in AgSbTe2 increases the hardness of the matrix significantly by increasing the rigidity of the material. Generally, hardness or strength of materials can be defined by dislocation motion in the lattice of the matrix material.⁵⁶ Hardness can be effectively controlled by introducing solid solution, grain boundaries, and second phase nanoprecipitates in the matrix, where solute atoms in solid solution, grain boundaries, and small nanoprecipitates impede the motion of a dislocation, thereby increasing the strength and hardness of the material.⁵ Because Zn doping increases the solubility of Ag₂Te in the AgSbTe₂ matrix, we anticipate that the increased point defects due to solid solution impede the dislocation propagation, thereby enhancing the hardness of the material. This result indicates that Zn-doped AgSbTe₂-based materials have a significantly high mechanical stability, which is useful during large-scale device fabrication.

In summary, crystalline ingots of *p*-type $AgSb_{1-x}Zn_xTe_2$ exhibit a zT of 1.9 at 585 K, which is the highest in the lower-medium temperature range (450–600). An average zT_{avg} value of 1.3 is obtained in the 300–600 K range for the $AgSb_{0.96}Zn_{0.04}Te_2$ sample, which is comparable to that of the best polycrystalline thermoelectric materials. Moreover, we have achieved a hardness value of ~6.3 GPa for the highperformance $AgSb_{0.96}Zn_{0.04}Te_2$ sample, which is significantly higher than that of the pristine $AgSbTe_2$. Zn doping in $AgSbTe_2$ suppresses the formation of the Ag_2Te impurity phase, which indeed increases the thermal and mechanical stability. Zn^{2+} acts as an acceptor dopant in $AgSbTe_2$, thereby enhancing the electrical conductivity and power factor. Moreover, the lattice thermal conductivities for $AgSb_{1-x}Zn_xTe_2$. samples were reduced substantially because of the increased phonon scattering resulting from solid solution point defects.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergy-lett.6b00639.

Experimental section; zoomed PXRD (Figure S1); EDS for AgSbTe₂ (Figure S2); diffusivity and electrical thermal conductivity for AgSb_{1-x}Zn_xTe₂ (Figure S3); deatiled specific heat for AgSbTe₂ (Figure S4); comparison of zT_{max} and zT_{avg} of AgSbTe₂-based materials (Figure S5); heating and cooling cycle for AgSb_{1-x}Zn_xTe₂ samples (Figures S6 and S7); reproducibility of thermoelectric figure of merit (zT) for a typical sample (Figure S8); electrical transport data of two bars from different parts of the same ingot of AgSbTe₂ (Figure S9); reduced elastic modules and hardness values (Table S1) and densities of AgSb_{1-x}Zn_xTe₂ samples (Table S2); EDAX of two bars from different parts of the same ingot of AgSbTe₂ (Table S3) (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: kanishka@jncasr.ac.in.

ORCID

Kanishka Biswas: 0000-0001-9119-2455

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank SERB, DST (EMR/2016/000651), and Sheikh Saqr Laboratory for support. S.R. thanks CSIR for fellowship. K.B. acknowledges DST Ramanujan Fellowship. K.B. and S.P. thank TRC project, DST for support.

REFERENCES

(1) Sootsman, J.; Chung, D. Y.; Kanatzidis, M. G. New and old concepts in thermoelectric materials. *Angew. Chem., Int. Ed.* **2009**, *48*, 8616–8639.

(2) Tan, G.; Zhao, L. D.; Kanatzidis, M. G. Rationally designing highperformance bulk thermoelectric materials. *Chem. Rev.* 2016, 116, 12123–12149.

(3) Zhao, L. D.; Dravid, V. P.; Kanatzidis, M. G. The panoscopic approach to high performance thermoelectrics. *Energy Environ. Sci.* **2014**, *7*, 251–268.

(4) Kim, H. S.; Liu, W.; Chen, G.; Chu, C.-W.; Ren, Z. Relationship between thermoelectric figure of merit and energy conversion efficiency. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112*, 8205–8210.

(5) Perumal, S.; Roychowdhury, S.; Biswas, K. High performances thermoelectric materials and devices based on GeTe. *J. Mater. Chem. C* **2016**, *4*, 7520–7536.

(6) Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. *Science* **2008**, *321*, 554–557.

(7) Zhang, Q.; Liao, B.; Lan, Y.; Lukas, K.; Liu, W.; Esfarjani, K.; Opeil, C.; Broido, D.; Chen, G.; Ren, Z. High thermoelectric performance by resonant dopant indium in nanostructured SnTe. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110*, 13261–13266.

(8) Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. *Nature* **2011**, *473*, 66–69.

(9) Banik, A.; Shenoy, U. S.; Saha, S.; Waghmare, U. V.; Biswas, K. High power factor and enhanced thermoelectric performance of SnTe-AgInTe₂: synergistic effect of resonance level and valence band convergence. *J. Am. Chem. Soc.* **2016**, *138*, 13068–13075.

(10) Roychowdhury, S.; Shenoy, U. S.; Waghmare, U. V.; Biswas, K. Tailoring of electronic structure and thermoelectric properties of a topological crystalline insulator by chemical doping. *Angew. Chem., Int. Ed.* **2015**, *54*, 15241–15245.

(11) Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G. Strained endotaxial nanostructures with high thermoelectric figure of merit. *Nat. Chem.* **2011**, *3*, 160–166.

(12) Zhao, L. D.; Hao, S.; Lo, S. H.; Wu, C. I.; Zhou, X.; Lee, Y.; Li, H.; Biswas, K.; Hogan, T. P.; Uher, C.; et al. High thermoelectric performance via hierarchical compositionally alloyed nanostructures. *J. Am. Chem. Soc.* **2013**, *135*, 7364–7370.

(13) Banik, A.; Vishal, B.; Perumal, S.; Datta, R.; Biswas, K. The origin of low thermal conductivity in $Sn_{1-x}Sb_xTe$: phonon scattering via layered intergrowth nanostructures. *Energy Environ. Sci.* **2016**, *9*, 2011–2019.

(14) Biswas, K.; He, J.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. *Nature* **2012**, 489, 414–418.

(15) Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. *Science* **2008**, *320*, 634–638.

(16) Zhao, L. D.; Lo, S. H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. *Nature* **2014**, *508*, 373–377.

(17) Morelli, D. T.; Jovovic, V.; Heremans, J. P. Intrinsically minimal thermal conductivity in cubic I-V-VI₂ semiconductors. *Phys. Rev. Lett.* **2008**, *101*, 035901.

(18) Guin, S. N.; Pan, J.; Bhowmik, A.; Sanyal, D.; Waghmare, U. V.; Biswas, K. Temperature dependent reversible p-n-p type conduction switching with colossal change in thermopower of semiconducting AgCuS. J. Am. Chem. Soc. **2014**, 136, 12712–12720.

(19) Shi, X.; Yang, J.; Salvador, J. R.; Chi, M.; Cho, J. Y.; Wang, H.; Bai, S.; Yang, J.; Zhang, W.; Chen, L. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. *J. Am. Chem. Soc.* **2011**, *133*, 7837–7846.

(20) Jana, M. K.; Pal, K.; Waghmare, U. V.; Biswas, K. The Origin of Ultralow thermal conductivity in InTe: lone-pair-induced anharmonic rattling. *Angew. Chem., Int. Ed.* **2016**, *55*, 7792–7796.

(21) Ma, J.; Delaire, O.; May, A. F.; Carlton, C. E.; McGuire, M. A.; VanBebber, L. H.; Abernathy, D. L.; Ehlers, G.; Hong, T.; Huq, A.; et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe₂. *Nat. Nanotechnol.* **2013**, *8*, 445–451.

(22) Zhang, S. N.; Zhu, T. J.; Yang, S. H.; Yu, C.; Zhao, X. B. Phase compositions, nanoscale microstructures and thermoelectric properties in $Ag_{2,y}Sb_yTe_{1+y}$ alloys with precipitated Sb_2Te_3 plates. *Acta Mater.* **2010**, *58*, 4160–4169.

(23) Nielsen, M. D.; Ozolins, V.; Heremans, J.-P. Lone pair electrons minimize lattice thermal conductivity. *Energy Environ. Sci.* 2013, *6*, 570–578.

(24) Du, B. L.; Li, H.; Tang, X. F. Enhanced thermoelectric performance in Na-doped *p*-type non-stoichiometric AgSbTe₂ compound. *J. Alloys Compd.* **2011**, *509*, 2039–2043.

(25) Armstrong, R. W.; Faust, J. W.; Tiller, W. A. A structural study of the compound AgSbTe₂. J. Appl. Phys. **1960**, 31, 1954.

(26) Hoang, K.; Mahanti, S. D.; Salvador, J. R.; Kanatzidis, M. G. Atomic ordering and gap formation in Ag-Sb-based ternary chalcogenides. *Phys. Rev. Lett.* **200**7, *99*, 156403.

(27) Hsu, K. F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J. S.; Uher, C.; Hogan, T.; Polychroniadis, E. K.; Kanatzidis, M. G. Cubic $AgPb_mSbTe_{2+m}$: bulk thermoelectric materials with high figure of merit. *Science* **2004**, *303*, 818–821.

(28) Rosi, F. D.; Dismukes, J. P.; Hockings, E. F. Semiconductor materials for thermoelectric power generation up to 700 C. *Electr. Eng.* **1960**, *79*, 450.

(29) Wojciechowski, K. T.; Schmidt, M. Structural and thermoelectric properties of AgSbTe₂-AgSbSe₂ pseudo-binary system. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2009**, *79*, 184202.

(30) Sugar, J. D.; Medlin, D. L. Precipitation of Ag₂Te in the thermoelectric material AgSbTe₂. J. Alloys Compd. **2009**, 478, 75–82. (31) Ayralmarin, R. M.; Brun, G.; Maurin, M.; Tedenac, J. C. Contribution to the study of AgSbTe₂. Eur. J. Solid State Inorg. Chem.

1990, *27*, 747–757. (32) Du, B.; Li, H.; Xu, J.; Tang, X.; Uher, C. Enhanced figure-ofmerit in Se-doped *p*-type AgSbTe₂ thermoelectric compound. *Chem. Mater.* **2010**, *22*, 5521–5527.

(33) Wyzga, P. M.; Wojciechowski, K. T. Analysis of the influence of thermal treatment on the stability of $Ag_{1-x}Sb_{1+x}Te_{2+x}$ and Se-doped AgSbTe₂. J. Electron. Mater. **2016**, 45, 1548–1554.

(34) Du, B.; Yan, Y.; Tang, X. Variable-temperature in situ X-ray diffraction study of the thermodynamic evolution of $AgSbTe_2$ thermoelectric compound. *J. Electron. Mater.* **2015**, *44*, 2118–2123.

(35) Wang, H.; Li, J.; Zou, M.; Sui, T. Synthesis and transport property of AgSbTe₂ as a promising thermoelectric compound. *Appl. Phys. Lett.* **2008**, *93*, 202106.

(36) Wolfe, R.; Wernick, J.; Haszko, S. Anomalous hall effect in AgSbTe₂. J. Appl. Phys. **1960**, 31, 1959–1964.

(37) Guin, S. N.; Chatterjee, A.; Negi, D. S.; Datta, R.; Biswas, K. High thermoelectric performance in tellurium free *p*-type AgSbSe₂. *Energy Environ. Sci.* **2013**, *6*, 2603–2608.

(38) Guin, S. N.; Negi, D. S.; Datta, R.; Biswas, K. Nanostructuring, carrier engineering and bond anharmonicity synergistically boost the thermoelectric performance of *p*-type AgSbSe₂–ZnSe. *J. Mater. Chem.* A **2014**, *2*, 4324–4331.

(39) Guin, S. N.; Biswas, K. Sb deficiencies control hole transport and boost the thermoelectric performance of *p*-type AgSbSe₂. *J. Mater. Chem. C* **2015**, *3*, 10415–10421.

(40) Mohanraman, R.; Sankar, R.; Boopathi, K. M.; Chou, F.-C.; Chu, C.-W.; Lee, C.-H.; Chen, Y.-Y. Influence of In doping on the thermoelectric properties of an AgSbTe₂ compound with enhanced figure of merit. J. Mater. Chem. A **2014**, 2, 2839–2844.

(41) Zhang, H.; Luo, J.; Zhu, H. T.; Liu, Q. L.; Liang, J. K.; Rao, G. H. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe₂. *Acta Phys. Sin.* **2012**, *61*, 086101.

(42) Zhang, H.; Luo, J.; Zhu, H.-T.; Liu, Q.-L.; Liang, J.-K.; Li, J.-B.; Liu, G.-Y. Synthesis and thermoelectric properties of Mn-doped AgSbTe₂ compounds. *Chin. Phys. B* **2012**, *21*, 106101.

(43) Wu, D.; Zhao, L.-D.; Hao, S.; Jiang, Q.; Zheng, F.; Doak, J. W.; Wu, H.; Chi, H.; Gelbstein, Y.; Uher, C.; et al. Origin of the high performance in GeTe-based thermoelectric materials upon Bi_2Te_3 doping. J. Am. Chem. Soc. **2014**, 136, 11412–11419.

(44) Wojciechowski, K. T.; Schmidt, M. Structural and thermoelectric properties of AgSbTe₂-AgSbSe₂ pseudobinary system. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2009**, *79*, 184202.

(45) Jovovic, V.; Heremans, J. P. Measurements of the energy band gap and valence band structure of AgSbTe₂. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2008**, *77*, 245204.

(46) Wojciechowski, K.; Tobola, J.; Schmidt, M.; Zybala, R. Crystal structure, electronic and transport properties of AgSbSe₂ and AgSbTe₂. *J. Phys. Chem. Solids* **2008**, *69*, 2748–2755.

(47) Cahill, D. G.; Watson, S. K.; Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1992**, *46*, 6131–6140.

(48) Kim, S.; Lee, K. H.; Mun, H. A.; Kim, H. S.; Hwang, S. W.; Roh, J. W.; Yang, D. J.; Shin, W. H.; Li, X. S.; Lee, Y. H.; et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. *Science* **2015**, *348*, 109–113.

(49) Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. *Science* **2008**, *320*, 634–638.

(50) Peng, K.; Lu, X.; Zhan, H.; Hui, S.; Tang, X.; Wang, G.; Dai, J.; Uher, C.; Wang, G.; Zhou, X. Broad temperature plateau for high ZTs in heavily doped *p*-type SnSe single crystals. *Energy Environ. Sci.* **2016**, *9*, 454–460.

(51) Shuai, J.; Kim, H. S.; Lan, Y. C.; Chen, S.; Liu, Y.; Zhao, H. Z.; Sui, J. H.; Ren, Z. F. Study on thermoelectric performance by Na doping in nanostructured $Mg_{1x}Na_xAg_{0.97}Sb_{0.99}$. *Nano Energy* **2015**, *11*, 640–646.

(52) Wang, S.; Yang, J.; Wu, L.; Wei, P.; Yang, J.; Zhang, W.; Grin, Y. Anisotropic multicenter bonding and high thermoelectric performance in electron-poor CdSb. *Chem. Mater.* **2015**, *27*, 1071–1081.

(53) Snyder, G. J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B. B. Disordered zinc in Zn_4Sb_3 with phonon-glass and electron-crystal thermoelectric properties. *Nat. Mater.* **2004**, *3*, 458–463.

(54) Perumal, S.; Roychowdhury, S.; Negi, D. S.; Datta, R.; Biswas, K. High thermoelectric performance and enhanced mechanical stability of Pb-free *p*-type Ge_{1.x}Sb_xTe. *Chem. Mater.* **2015**, *27*, 7171–7178.

(55) Liu, H.; Shi, X.; Xu, F.; Zhang, L.; Zhang, W.; Chen, L.; Li, Q.; Uher, C.; Day, T.; Snyder, G. J. Copper ion liquid-like thermoelectrics. *Nat. Mater.* **2012**, *11*, 422–425.

(56) Lu, K.; Lu, L.; Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. *Science* **2009**, *324*, 349–352.

(57) Zandbergen, H. W.; Andersen, S. J.; Jansen, J. Structure determination of Mg_sSi_6 particles in Al by dynamic electron diffraction studies. *Science* **1997**, 277, 1221–1225.