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Abstract 

The recent discovery of non-saturating giant positive magnetoresistance in Td-WTe2 has aroused 

great interest in this material. We have studied the structural, electronic and vibrational 

properties of bulk and few-layer Td-WTe2 experimentally and theoretically. Spin-orbit coupling 

is found to govern the semi-metallic character of Td-WTe2. Its structural link with the metallic 

1T form provides an understanding of its structural stability. We observe a metal to insulator 

transition and a change in the sign of the Seebeck coefficient around 373 K. Lattice vibrations in 

Td-WTe2 have been analyzed by first principle calculations. Out of the 33 possible zone-center 

Raman active modes, five distinct Raman bands are observed around 112, 118, 134, 165 and 212 

cm
-1

 in bulk Td-WTe2. Based on symmetry analysis and the calculated Raman tensors, we assign 

the intense bands at 165 cm
-1

 and 212 cm
-1

 to the 𝐴1
′  and 𝐴1

′′  modes respectively. We have 

examined the effect of temperature and the number of layers on the Raman spectrum. Most of 

the bands of Td-WTe2 stiffen, and the ratio of the integrated intensities of the 𝐴1
′′  to 𝐴1

′  bands 

decreases in the few-layer sample, while all the bands soften in both bulk and few-layer samples 

with increasing temperature. 
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Introduction 

Layered transition metal dichalcogenides (TMDCs) are inorganic analogues of graphene, with a 

wide range of electronic, optical, chemical, thermal and catalytic properties of fundamental and 

technological importance [1-4]. Among group VI dichalcogenides, the ditellurides exhibit 

eccentricity with respect to structure and properties and are relatively less studied to date. The 

early electronic structure calculations by Dawson and Bullet [5] revealed that unlike Group VI 

disulfides and diselenides, the ditellurides deviate from a simple band model predicting a 

semiconducting behavior due to trigonal prismatic crystal-field splitting. Tungsten ditelluride 

(WTe2) crystallizes in a distorted variant of CdI2-type structure with an octahedral coordination 

around the metal, referred to as Td-polytype [6]. The structure of Td-WTe2 constitutes triple-

layers of covalently bonded Te-W-Te atomic planes, stacked along c-axis through weak van der 

Waals interactions. The WTe6 octahedra are strongly distorted due to off-centering of W atoms 

as the latter move towards each other to form slightly buckled W-W zigzag chains running along 

a-axis. Consequently, WTe2 exhibits metallic bonding with a W-W bond distance of 2.849 Ǻ - 

only about 0.13 Ǻ longer than that in tungsten metal [7]. The reduced Madelung energy as 

compared to the hypothetical 2H-WTe2 favors this configuration leading to a semimetallic 

ground state [5, 8]. The exact origin for the preference of the Td-structure instead of the 2H-

polytype remains unclear. Earlier experiments on WTe2 single crystals have revealed a metal-

like behavior in the electrical resistivity below ~ 400 K beyond which the resistivity decreases 

slightly with temperature. The above together with temperature-dependent hall-coefficient and 

thermo-power measurements were earlier interpreted by Kabashima using a three-carrier 

semimetallic band model [9]. There is however no clear identification of these three bands owing 

to complex band structure with many interwoven bands as revealed by a study of Augustin et al  

based on angle resolved photoemission spectroscopy (ARPES) and density functional based 

augmented spherical wave calculations [8]. An extremely large unidirectional (along a-axis) 

positive magnetoresistance (MR) has been reported recently in single crystals of Td-WTe2 [10]. 

MR in WTe2 does not saturate even at very high applied magnetic fields and this is considered to 

be due to a perfect balanced electron-hole resonance in semimetallic WTe2, as later 

complemented with high resolution ARPES study of low energy electronic structure [11]. The 
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pronounced anisotropy in MR is ascribed to the uniaxial character of the Fermi surface and the 

proximity of balanced electron and hole Fermi pockets aligned along W-W chain direction in the 

k-space. 

We have experimentally studied the electronic and phonon properties of bulk Td-WTe2 as 

a function of temperature. One of the interesting properties of electronic transport is the metal-

insulator switch-over in the electronic conductivity and a concomitant change in the sign of 

Seebeck coefficient from n-type to p-type at ~ 373 K. We have investigated the phonon 

properties of Td-WTe2 using Raman spectroscopy and examined the effect of temperature and 

layer-thickness on the spectra. In order to understand the origin for stabilization of Td-polytype 

in WTe2 and the experimentally observed features of electronic transport and phonon spectra, we 

have carried out first principle calculations, based on density functional theory. 

 

Experimental  

Synthesis and characterization: Polycrystalline WTe2 was synthesized by annealing finely 

ground stochiometric amounts of W and Te elements (total weight of 4g) in an evacuated quartz 

tube at 650
0
C for 12.5 hr and further at 1200

0
C for 15 hr followed by cooling slowly to the 

ambient temperature. Powder X-ray diffraction patterns were recorded at various temperatures 

using Bruker D8 Advance diffractometer with Cu Kα radiation. Single crystals of Td-WTe2 are 

synthesized by chemical vapor transport using the polycrytsalline WTe2 powder. 

Transport measurements: To study the temperature dependence of the transport properties, finely 

ground polycrystalline WTe2 was compacted into bar and disc shaped samples under 30 MPa 

pressure. The samples were sintered at 500
0
C for 10 hr in an evacuated quartz tube (10

-5
 torr). 

The density of samples was determined by Archimedes method to be ~ 8.6 g/cm
3
 i.e, about 92% 

of the expected theoretical density. Electrical conductivity (σ) and Seebeck coefficient (S) for the 

bar shaped sample were concurrently measured between room temperature (RT) and 673 K in 

Helium atmosphere by a four-probe method using ULVAC-RIKO ZEM3 instrument. Electrical 

resistivity with and without applied magnetic field were measured along the length of the bar 

from 300 K down to 3 K by a four-probe method using PPMS instrument. The applied magnetic 

field was perpendicular to the current direction in the bar. Magnetoresistance measurements were 
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similarly carried out on single crystals of WTe2. The thermal diffusivity (D) for the disc was 

measured between room temperature and 673 K using laser flash diffusivity method in Netzsch 

LFA-457 instrument and the total thermal conductivity (κ) was calculated using the formula κ = 

Cp.D.ρ where ρ is the density of sample. The lattice contribution to the total thermal conductivity 

(KL) was obtained using the relation, κ = κele +κlat where the electronic contribution κe can be 

estimated by Wiedemann-Franz law: κele = σLT where L is the Lorentz number. L is obtained 

from the reduced chemical potential (η) which is estimated by fitting Seebeck coefficient (S) as 

explained in the earlier reports [12, 13].  

Atomic force microscopy (AFM): AFM of mechanically exfoliated few-layer WTe2 flakes, 

deposited onto Si/SiO2 (300 nm) substrates was carried out on using Bruker Innova Microscope 

instrument in tapping mode using antimony doped silicon tip with 10 nm resolution. 

Raman spectroscopy: Raman spectroscopy was performed on few-layer WTe2 flakes deposited 

on Si/SiO2 and the disc-shaped compacted pellets in a temperature window ranging from 123 K 

to 400 K using LabRam HR microscope using Ar-laser (514.5 nm) excitation in back-scattering 

configuration. The laser power was adjusted to 2 mW by using a neutral density filter. Liquid N2 

cryostat was used for low-temperature measurements. N2 gas was continuously purged 

throughout the measurement to prevent the condensation of moisture at low temperatures and 

possible oxidation at high temperatures. 

Computational details: 

Our first-principles calculations are based on density functional theory (DFT) as implemented in 

Quantum ESPRESSO package [14], in which the ionic and core-valence electron interactions are 

modeled with ultrasoft pseudopotentials [15]. The exchange-correlation energy of electrons is 

treated within a Generalized Gradient Approximation (GGA) with the functional parameterized 

by Perdew, Burke and Ernzerhof [16]. We use an energy cutoff of 35 Ry to truncate the plane 

wave basis used in representing Kohn-Sham wave functions, and energy cutoff of 280 Ry for the 

basis set to represent charge density. Structures are relaxed to minimize energy till the Hellman-

Feynman forces on each atom are less than 0.02 eV/A. We use a periodic supercell to simulate a 

2D sheet, including vacuum of 15 Å to separate the adjacent periodic images of the sheet. In self-

consistent Kohn-Sham (KS) calculations of configurations of WTe2 with monolayered form and 
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bulk Td-structure unit cell, the Brilluoin zone (BZ) integrations are sampled over uniform 

meshes of 20x11x1 and 20x11x5 k-points respectively. Electronic structure is determined by 

including the spin-orbit interaction (SOI) through use of relativistic pseudopotentials using a 

second variational procedure [17]. Dynamical matrices and phonons at wave vectors on a 3x3x1 

mesh in the BZ were determined using DFT linear response (Quantum ESPRESSO 

implementation [14] based on Green's function method). From these, dynamical matrices and 

phonons at arbitrary wave vectors in the BZ are obtained using Fourier interpolation.  

 

Results and Discussion 

A schematic of an orthorhombic unit cell of WTe2 in figure 1(a) shows the vertical 

stacking of covalently bonded Te-W-Te triple layers along the c-axis via weak van der Waals 

interactions. A schematic of the structure viewed down the c-axis in figure 1(b) reveals the off-

centering of W-atoms from their ‘ideal’ octahedral sites to form slightly buckled zigzag W-W 

chains running along the a-axis. Each W atom is surrounded by eight neighbors: six Te atoms 

and two W atoms. As seen from figure 1(a), the successive sandwich layers are sequentially 

rotated by 180
0
. The powder X-ray diffraction pattern of the as-synthesized polycrystalline WTe2 

confirms the formation of pure orthorhombic Td-WTe2 phase with space group Pnmn21 and the 

lattice parameters of a = 3.4770 Å, b = 6.2490 Å and c = 14.0180 Å.  

We first note that the bulk Td structure of WTe2 is (a) layered and (b) closely related to 

centrosymmetric 1T form (c1T) shown in figure 6(a)) [18]. We assess the structural stability of 

c1T monolayer and Td (bulk and monolayer) forms of WTe2 through determination of their 

phonon spectra (figure 2). If a phonon spectrum exhibits phonon modes with imaginary 

frequencies (ω
2
 < 0), the structure is locally unstable (i.e., it is not a local minimum, but a saddle 

point in the energy landscape); otherwise it is stable. The eigen displacements of the unstable 

modes precisely give the structural distortions that lower energy often lowering the symmetry. 

Our results for phonons of the stable structural forms are relevant and useful in Raman and infra-

red (IR) characterization of these structures. Experimentally, bulk WTe2 is known to adopt the 

Td structure and our calculated phonon spectrum of bulk WTe2 exhibits no unstable modes, 

confirming its stability in the Td structure (figure 2(a)). 
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Group VI dichalcogenides with two non-bonding d-electrons usually adopt the trigonal 

prismatic coordination with filled dz
2
 orbitals resulting in a semiconducting band gap. As 

mentioned above, Td-WTe2 adopts an octahedral coordination around metal atoms. In the case of 

regular octahedral coordination (1T-structure), the t2g metal orbitals would be partially filled 

leading to metallic character. However, owing to the off-centering of W-atoms, the non-bonding 

t2g derived orbitals would experience some σ-bonding and split into bonding and antibonding 

orbitals to leave the density of states (DOS) minimum at the Fermi level resulting in a semimetal 

[8]. It is observed that the degree of distortion is commensurate with the splitting of the 

otherwise degenerate t2g derived orbitals [19]. ReS2, a VII dichalcogenide, with three non-

bonding d-electrons, is expected to be metallic both in trigonal prismatic (2H) and regular 

octahedral (1T) structures. However, ReS2 exists in the 1T-structure with a semiconducting band 

gap of about 1.55 eV due to severe distortion of ReS6 octahedra [20]. The distortion in Td-WTe2 

is lesser compared to 1T-ReS2 rendering the former semimetallic. 

 

Our analysis of the vibrational spectrum of the c1T polymorph reveals that WTe2 is 

structurally unstable, exhibiting structural instabilities with imaginary frequencies of about 100i 

cm
-1

 (figure 2b) at K and M points. The unstable mode at the high symmetry K-point of the BZ is 

doubly degenerate, while it is singly degenerate at the M-point of the BZ. We focus on the M-

point instability and its consequences to the structure of the 1T form [18]. On distorting the c1T 

structure (figure. 6(a)) with eigen-displacements of its unstable mode at M-point, we get a √3x1 

superstructure (see figure 6(c)) with zigzag chains of metal atoms. This distorted structure 

involving dimerization of metal atoms (where the M-M bonds are significantly contracted by 0.8 

Å) is semimetallic (figure 6(d)). This distorted √3x1 superstructure is similar to monolayer of Td 

structure though the b/a ratio of experimental lattice parameters is 1.80 (as opposed to 1.73 here) 

due to coupling with strain. It is evident from phonon spectrum, that monolayered Td structure is 

locally stable. Weak instabilities near Г point along the Г-X and Г-M directions involve long 

wavelength rippling of the 2-D planar structure (figure 2c), which is common to other 2-D 

materials [21, 22]. 
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Bulk Td-WTe2 has a periodic unit cell containing 12 atoms and belongs to the point 

group C2v and the space group Pmn21. There are 33 optically active modes at the Brillion zone 

center (at Γ-point) whose irreducible representations are:  

Γbulk → 11A1 +6A2 +5B1 + 11B2 (1)  

All the modes are Raman active because of the low crystal symmetry. According to the group 

theory, optical modes of A1, B1 and B2 symmetry are Raman as well as IR active while the 

modes of A2 symmetry are Raman active but IR inactive. The Raman spectrum of bulk Td-WTe2 

excited with a 514.4 nm laser shows five bands around 112, 118, 134, 165 and 212 cm
-1

 (figure 

3). 
 
The two prominent peaks are centered at 165 cm

-1
 and 212 cm

-1
. To assign the irreducible 

representations to calculated phonons at Г, we obtained overlap (inner product) of a basis vector 

of an irreducible representation and eigen vectors of phonon modes (obtained using density 

functional perturbation theory). There are many modes with frequencies (tabulated in Table 1) 

close to those of the experimentally observed Raman bands, which make the assignment of the 

observed peaks nontrivial. For example, modes with frequencies of 162 cm
-1

, 164 cm
-1

 and 168 

cm
-1

 make the assignment of the observed intense peak at 165 cm
-1

 subtle, i.e., it can be A1 or A2 

or B1 mode. Similarly, modes with frequencies of 211 cm
-1

 and 213 cm
-1

 are close to the 

observed intense peak at 212 cm
-1

 which therefore can be assigned to either B2 or A1 irreducible 

representation. The Raman tensor of these possible modes can facilitate the differentiation 

between these modes. The Raman tensor is calculated as a slope of the linear changes in 

electronic dielectric constant (the second derivative of the electronic density matrix with respect 

to a uniform electric field [23] with normal mode displacements. As bulk WTe2 is semimetallic 

in nature (figure 5), its response to macroscopic electrical field is not finite or well defined and it 

is not straight forward to determine the Raman tensor directly. To this end, we have estimated 

the Raman tensor by constraining the occupation numbers of electrons so as to treat Td-WTe2 as 

an insulator (i.e. number of occupied bands = number of electrons/2). We identify the modes 

around 168 cm
-1 

and 207 cm
-1

 as the ones with the largest Raman tensor, both belonging to A1 

symmetry. The observed intense Raman bands around 165 cm
-1

 and 212 cm
-1 

are in agreement 

with the theoretical estimates and hence labeled as the 𝐴1
′  and 𝐴1

′′  modes respectively. 

We have studied the effect of temperature on lattice vibrations in bulk polycrystalline Td-

WTe2. Figure 4(a) shows the Raman spectra of bulk Td-WTe2 recorded at different temperatures. 

All the phonon modes are observed to soften with increasing temperature. Figure 4(b) shows the 
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temperature-dependence of the intense bands at ~ 212 cm
-1

 and ~ 165 cm
-1

 obtained by fitting the 

bands with a lorentzian line shape. The data points were fitted using a Gruneisen model: 

ω (T) = ω0 + α T 

where ω0  is the peak position at 0 K and α, the first order temperature coefficient obtained from 

the slope of the fit. The temperature coefficients (α) for the intense peaks at ~ 212 cm
-1

 and ~ 165 

cm
-1

 are -0.0081 and -0.0060 respectively. The observed phonon softening with increasing 

temperature is ascribed to the anharmonicity and decreased interlayer coupling at higher 

temperatures [24]. The higher value of α for the ~ 212 cm
-1

 vibration relative to the ~ 165 cm
-1

 

vibration reflects higher sensitivity of the former to temperature and therefore, to the interlayer 

coupling.  

Our calculations reveal that bulk and monolayer of Td-WTe2 exhibit rather similar band 

structures (figure 5), both being semimetallic in nature. This behavior is in contrast to other 

TMDCs, in which a strong dependence of their electronic structure on the number of layers is 

seen [3]. From the partial density of states (DoS), we see that both the valence and conduction 

bands near Fermi energy levels (EF) are composed of W-5d and Te-5p states indicating the 

covalency in W-Te bonding (figure 6(b,d)). Secondly, the spin-orbit coupling (SOC) included in 

calculations of electronic structure crucially influences even its qualitative features for example, 

the spin-split bands. It is clear from the crystal structure that dimerized chain of W atoms along 

a-axis (figure 1(b)), gives a semimetallic electronic structure along Г -X direction in the BZ. 

Along M- Г path, we find an indirect band gap close to Г-point (see the zoomed picture in Figure 

5). This indirect band gap increases from the bulk to monolayer by 0.1 eV.  

Figure 7(a) shows the electrical conductivity (σ) of compacted polycrystalline WTe2 

measured between 3 K and 673 K. σ decreases from 1040 S/cm at ~ 3 K to 740 S/cm at ~ 373 K, 

exhibiting metallic behavior. Beyond 373 K, σ increases with temperature reaching 900 S/cm at 

~ 673 K with semiconductor-like behavior [9, 10]. Figure 7(b) shows the temperature-

dependence of Seebeck coefficient (S) measured between 300 K and 673 K. Interestingly, S 

varies from -9 μVK
-1

 at 300 K to 35 μVK
-1

 at 673 K with a change in its sign from negative (n-

type) to positive (p-type) around the metal to insulator switch-over temperature of ~373 K. The 

metallic conductivity is due to the semimetallic nature of Td-WTe2. The increase in conductivity 
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above 373 K could arise from thermal excitation of carriers from the lower to the upper d-

orbitals. As seen from figure 5(a), the distorted Td-WTe2 structure has a narrow indirect band 

gap of around 0.05 eV near Г point in the band structure seen along M-Г path which allows 

thermal excitation of carriers leading to the observed increase in the electrical conductivity of 

Td-WTe2 beyond 373 K.  The change in the sign of S is consistent with the semimetallic nature 

[25-28]. The Fermi surface in Td-WTe2 is experimentally observed to change drastically with 

temperature - the relative sizes of electron and hole pockets vary with temperature [11].  

Figure 8 shows the total thermal conductivity (κ) measured between 300 K and 623 K as 

well as the extracted phonon (κlat) and electronic (κele) contributions to the total κ (see 

experimental section). κ is nearly independent of temperature, ranging from 0.96 W/mK at RT to 

1.06 W/mK at 623 K. The extracted values of κele and κlat trend oppositely with the former 

increasing and the latter decreasing with temperature. Near 300 K, κlat dominates κele and vice 

versa at higher temperatures. Preliminary magnetoresistance (MR) measurements showed a 

much smaller value of MR in the pellets of polycrystalline bulk sample relative to the single 

crystalline flakes of Td-WTe2 due to the anisotropic nature of MR i.e, strong dependence of MR 

on the crystal-orientation [10]. 

Atomically thin layers of TMDCs, constituting a new class of graphene analogous 2D 

electronic materials, are promising next-generation functional materials featuring electronic, 

optical and mechanical properties of fundamental and practical interest and the applications 

ranging from spin- and valley-tronics to photocatalysis to flexible electronics [1-4]. Raman 

spectroscopy has been a powerful analytical tool for determining thickness and stacking of 2D 

layered materials [29], to study their thermal [24, 30] and mechanical properties [31] and to 

directly probe and monitor the charge-doping [32]. To understand the effect of layer-thickness on 

the lattice vibrations in Td-WTe2, few-layer WTe2 flakes were mechanically exfoliated (using a 

scotch tape) from bulk WTe2 single crystals and deposited onto silicon substrates coated with 

300 nm thick SiO2 layer. The few-layer WTe2 flakes were first identified using optical 

microscopy and the thicknesses of the flakes were precisely determined through atomic force 

microscopy (AFM). Figure 9 shows the optical images of exfoliated WTe2 flakes deposited on 

Si/SiO2 substrates and the corresponding AFM height profiles. A monolayer-thickness of ~ 0.7 

nm was used for estimating the number of layers. 
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Figure 10(a) shows transmission electron microscope (TEM) image of mechanically 

exfoliated few-layer WTe2 flake deposited on a carbon-coated copper grid. The high resolution 

TEM (HRTEM) image of a flake  in figure 10(b) reveals an interlayer spacing of ~0.7 nm 

corresponding to the d-spacing of (002) planes. The HRTEM image of a flake with layers 

perpendicular to the electron beam is shown in figure 10(c). The fast Fourier transform (FFT) 

image of the region indicated in figure 10(c) projects a view down the [-1 0 1] zone axis with 

(111), (101) and (212) reflections (figure 10(d)).  

Raman spectrum of 3-layer WTe2 under 514.5 nm laser excitation reveals the six peaks 

centered at  ~108, ~120, ~135, ~164, ~216 cm
-1

. Figure 11(a) shows the Raman spectra recorded 

on exfoliated flakes of different thicknesses (3, 4, 5, 6, 10 and 25 layers) using 514.4 nm laser 

excitation. The intensity of all the Raman peaks increase with decreasing thickness. The shifts in 

various Raman peaks are plotted as a function of thickness (figure 11(b)). All the peaks are 

observed to soften with thickness except the one at ~165 cm
-1

 which is nearly independent of 

thickness and the one at ~ 112 cm
-1

 which stiffens with thickness. In 2H-MoS2 and the related 

TMDCs, the out-of-plane A1g mode softens with decreasing thickness which is justified as being 

a consequence of decreasing interlayer van der Waals interactions and hence the effective 

restoring forces on atoms with decreasing thickness; the observed stiffening of the in-plane E2g 

mode with decreasing thickness is related to the influence of stacking on the intralayer bonding 

[33-36]. In our experiments, we find that the intense band at 212 cm
-1

 is most sensitive to the 

number of layers, exhibiting an up-shift of about 4 cm
-1

 in a 3-layer flake relative to bulk Td-

WTe2 whereas the intense band at 168 cm
-1

 does not change with the number of layers though 

both belong to the same A1 symmetry. To understand such dependence on thickness, we examine 

the displacements of W and Te in the eigenvectors of these modes (figure S2). Firstly, it can be 

seen that (i) the 𝐴1
′  mode involves out-of-plane (z-direction) displacements of Te atoms and in-

plane displacements of W atoms and (ii) the 𝐴1
′′  mode involves out-of-plane displacements of W 

atoms and in-plane displacements of Te atoms. Such mixing of in-plane and out-of-plane 

components of atomic displacements is a consequence of low crystal-symmetry in Td-WTe2 and 

has been reported for a similar strongly distorted structure of 1T-ReS2 [20].  Secondly, the Te 

atoms of the same plane vibrate in-phase (figure S2(a, b)) in the 𝐴1
′  mode of vibration, while 

their motion is out-of-phase in the 𝐴1
′′  mode of vibration (figure S2(c, d)). Thus the 𝐴1

′  mode 

seems to be more localized to a layer of WTe2 and exhibits weaker or no dependence on the 
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number of layers. To confirm the observed changes in Raman bands as a function of thickness, 

we compare the vibrational spectrum of monolayer Td-WTe2 with that of the bulk Td-WTe2. We 

find hardening of the 𝐴1
′′  mode by ~ 3 cm

-1
 and softening of the 𝐴1

′  mode by ~ 3 cm
-1

 in the 

monolayer with respect to the bulk. While this is consistent with the observed trend in the 𝐴1
′′  

mode, it suggests an additional compensating mechanism that governs the thickness-dependence 

of the 𝐴1
′  vibrational mode, which needs further investigation. Furthermore, the ratio of the 

observed integrated intensities of 𝐴1
′′  to 𝐴1

′  bands decreases from about 1.9 in bulk to about 1.1 in 

3-layer flake reflecting the thickness-dependence of relative oscillator strengths of these modes. 

Figure 12(a) shows the Raman spectra of 3-layer Td-WTe2 recorded at different 

temperatures. All the Raman peaks are observed to soften with increasing temperature. Figure 

12(b) shows the temperature-dependence of the observed intense peaks at ~164 cm
-1 

and ~216 

cm
-1

 obtained by fitting the peaks with a lorentzian line shape. The temperature coefficients (α) 

are -0.0098 and -0.0068 respectively for the intense peaks at 216 cm
-1

 and 165 cm
-1

 the former 

being higher than that in bulk WTe2 and the latter being similar to that in bulk WTe2.  

 

Conclusions 

We have presented the electronic structure and vibrational properties of Td-WTe2 in the 

monolayered and bulk forms, based on first-principles calculations. We bring out the connection 

of the Td structure with the 1T form of layered metal dichalcogenides and explain its stability in 

terms of the electronic and vibrational properties of the 1T form. From the electrical transport 

measurements, Td-WTe2 is found to exhibit a metal to insulator switch-over in the electrical 

conductivity around 373 K, along with a change in the sign of the Seebeck coefficient from 

negative (n-type) to positive (p-type). The increase in conductivity beyond 373 K could arise 

from the thermal excitation of carriers across the indirect narrow band gap near the Г point (seen 

along the M-Г path). The Raman spectrum of bulk Td-WTe2 shows five distinct bands around 

112, 118, 134, 165 and 212 cm
-1

. Based on symmetry analysis and calculated Raman tensors, we 

assign the intense bands at 165 cm
-1

 and 212 cm
-1

 to the 𝐴1
′  and 𝐴1

′′  modes respectively. We have 

examined the effect of temperature and the number of layers on the Raman spectrum. A majority 

of the bands stiffen, and the ratio of integrated intensities of the 𝐴1
′′  to 𝐴1

′  bands decreases with 



12 
 

the decreasing number of layers while all the bands soften in both bulk and 3-layer samples with 

increasing temperature. 
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Figures and captions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Orthorhombic unit cell of Td-WTe2 and (b) polyhedral representation of monolayer 

Td-WTe2 showing W-W chains along a-axis. 
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Figure 2. Phonon dispersion of (a) bulk Td-WTe2 and monolayer WTe2 with (b) c1T and (c) Td 

structures. Note that c1T- WTe2 exhibits doubly degenerate and singly degenerate instabilities at 

K and M points respectively. 
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Figure 3.  Raman spectrum of bulk polycrystalline Td-WTe2 under 514.4 nm laser excitation  
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Figure 4. (a) Raman spectra of bulk polycrystalline Td-WTe2 recorded at various temperatures 

using 514.4 nm laser excitation and (b) peak positions of the two most intense peaks as a 

function of temperature.  
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Figure 5. Electronic structure of Td-WTe2 in bulk (a) and monolayer (b) forms. The region of 

band structures highlighted in green box is magnified on the right. Note that indirect band gap 

close to Г point (along M-Г path) in monolayer Td-WTe2 is higher by 0.10 eV than that in bulk 

Td-WTe2.  
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Figure 6. Crystal (top-view) and electronic structures of monolayer WTe2: (a,b) c1T and (c,d) Td  

forms of WTe2. c1T and Td structures of WTe2 are metallic and semimetallic respectively. Note 

that spin-orbit coupling included in these calculations is crucial even for these qualitative 

properties of the electronic structure. W and Te atoms are shown in cyan and yellow spheres 

respectively. 
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Figure 7. Temperature dependent (a) electrical conductivity (σ) and (b) Seebeck coefficient (S) 

of bulk polycrystalline Td-WTe2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Total thermal conductivity (κ) along with individual electronic (κele) and lattice 

contributions (κlat) of bulk polycrystalline Td-WTe2.  
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Figure 9. optical microscope images of few-layer Td-WTe2 flake deposited on Si/SiO2 substrates 

(left) and the corresponding AFM image (middle) and height profiles (right).  
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Figure 10. (a) TEM image of few-layer Td-WTe2, (b) HRTEM image of region indicated by an 

arrow, revealing (002) planes with a d-spacing of ~ 0.7 nm, (c) HRTEM image of boxed region 

in (a) and (d) FFT image of the boxed region in (c).  
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Figure 11. (a) Raman spectra of mechanically exfoliated Td-WTe2 flakes as a function of no. of 

layers recorded using 514.4 nm laser excitation and (b) peak positions of various Raman peaks as 

a function of no. of layers. The dotted lines are guides to the eye. 
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Figure 12. (a) Raman spectra of 3-layer Td-WTe2 flake recorded at various temperatures using 

514.4 nm laser excitation and (b) peak positions of the two most intense peaks as a function of 

temperature.  
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Table 1: Calculated phonon frequencies of Raman active modes of Td-WTe2
.
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) Frequency (cm
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42 38 92 41 

80 93 119 94 

120 116 129 121 

134 125 153 133 

138 155 164 136 

140 162  142 

168   159 

183   180 
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