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The ubiquity of the power law relationship between dQ=dt and Q for recession periods (�dQ=dt ¼ kQa
;Q

being discharge at the basin outlet at time t) clearly hints at the existence of a dominant recession flow
process that is common to all real basins. It is commonly assumed that a basin, during recession events,
functions as a single phreatic aquifer resting on a impermeable horizontal bed or the Dupuit–Boussinesq
(DB) aquifer, and with time different aquifer geometric conditions arise that give different values of a and
k. The recently proposed alternative model, geomorphological recession flow model, however, suggests
that recession flows are controlled primarily by the dynamics of the active drainage network (ADN). In
this study we use data for several basins and compare the above two contrasting recession flow models
in order to understand which of the above two factors dominates during recession periods in steep
basins. Particularly, we do the comparison by selecting three key recession flow properties: (1) power
law exponent a, (2) dynamic dQ=dt–Q relationship (characterized by k) and (3) recession timescale (time
period for which a recession event lasts). Our observations suggest that neither drainage from phreatic
aquifers nor evapotranspiration significantly controls recession flows. Results show that the value of a
and recession timescale are not modeled well by DB aquifer model. However, the above mentioned three
recession curve properties can be captured satisfactorily by considering the dynamics of the ADN as
described by geomorphological recession flow model, possibly indicating that the ADN represents not
just phreatic aquifers but the organization of various sub-surface storage systems within the basin.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction [33,39,55]. So for a proper understanding of the hydrological
Infinitely heterogeneous earth surface and subsurface give rise
to complex hydrological flow pathways that can evolve in both
space and time, making it difficult to model flow variables using
the known laws on water movement, such as Darcy’s law. Thus,
many of the flow phenomena in natural basins are not yet fully
understood, e.g., the old water paradox (e.g., [31]), the scaling of
flood peaks (e.g., [23]) and the time of concentration (e.g., [22]).
Nevertheless, process understanding is necessary to model more
accurately not only streamflows but also many of the environmen-
tal parameters such as solute concentration in river channels (e.g.,
[1,49,50,59,73,74]). Interestingly, despite their complexity, key
features of the response of natural basins can be satisfactorily
captured by simple conceptual models [3,56]. The simplicity of
some general characters of the hydrological response points to
the existence of dominant hydrological processes at the basins
scale arising from the integration of micro-scale processes
processes, the signatures contained in the hydrological response
at basin scale need to be decoded by using suitable analytical or
numerical tools. In this regard, appreciable amount of work has
been carried out, particularly with respect to flood response (e.g.,
[30,47,48,50]). Here we focus on the modeling of recession flow
curves, which has got relatively less attention.

Though scientific investigation on recession flows dates back as
early as Boussinesq [11], a systematic recession flow analysis, to
our knowledge, began with the work by Brutsaert and Nieber
[16], who expressed �dQ=dt as a function of Q (discharge observed
at the basin outlet at time t):

� dQ
dt
¼ f ðQÞ ð1Þ

This method essentially eliminates the need of identifying a refer-
ence time for a recession event, thereby setting a novel framework
for quantifying recession curve characteristics objectively. Brutsaert
and Nieber [16] found that �dQ=dt vs. Q curves of a basin typically
follow a power law relationship:

� dQ
dt
¼ kQa ð2Þ
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Since then many studies have confirmed the presence of the above
power law relationship (Eq. (2)) in basins with different sizes and
shapes situated across geographical boundaries and climatic zones
[4,10,17,18,25,28,29,32,35–38,40,44,53,61,64,66,65]. The question
arises thereupon is what causes the seemingly different natural
basins to display the same type of power law relationship (Eq.
(2)). Is there a distinct dominating flow process common to real
basins that operates during recession periods? Brutsaert and Nieber
[16] provided an explanation by studying the outflow from a
phreatic (unconfined) aquifer resting on a horizontal impermeable
bed, i.e., the Dupuit–Boussinesq (DB) aquifer, under different
geometric conditions. Another explanation discussed in this study
was given by Biswal and Marani [4], who argued that the temporal
evolution of saturated channel network gives rise to the power
relationship between �dQ=dt and Q. Both the models can, however,
be explained through a general mathematical framework [4].
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Fig. 1. A graphical illustration of Dupuit–Boussinesq (DB) aquifer (a rectangular
unconfined aquifer resting on a horizontal impermeable bed) draining into a fully
penetrating stream. There is no recharge into the aquifer, and drainage from the
aquifer is expected to reflect recession flows in natural basins.
1.1. A common framework for recession flow curve analysis

Rain water stored in the subsurface zones of a hillslope can
adopt many possible flow mechanisms to reach surface water
bodies. Broadly, ground water flow systems are classified into
three categories: local, intermediate and regional [62]. In local flow
system water flows to a nearby stream. In regional flow system
water particles follow longer (subsurface) flow paths to reach high-
er order streams. If ground water flow paths are intercepted by one
or more topographic highs or lows, it is called an intermediate flow
system. Topography and distribution of hydraulic conductivity will
decide which flow system dominates in a basin (e.g., [2,14,59]).
Furthermore, streams themselves can play a major role during
recession events by storing water in their banks and under their
beds and releasing it later due to hydraulic gradient (e.g.,
[24,34,67,69]). Moreover, to make the analysis even more complex,
flow paths may undergo changes in both space and time (e.g.,
[42,75]).

The complex and dynamic nature of flow processes calls for a
meaningful conceptualization based on realistic assumptions. At
any point of time t;Q can be expressed as a product of flow gener-
ation per unit length (qðtÞ) and total length of the channel network
contributing flow (GðtÞ) [4]:

QðtÞ ¼ qðtÞ � GðtÞ ð3Þ

Differentiating both sides of Eq. (3) with respect to t one finds:

dQðtÞ
dt
¼ dqðtÞ

dt
� GðtÞ þ qðtÞ � dGðtÞ

dt
ð4Þ

The term dqðtÞ=dt � GðtÞ signifies dQ=dt due to aquifer depletion and
qðtÞ � dGðtÞ=dt due to gradual shrinking of the part of the stream net-
work that is actively draining water at time t or the active drainage
network (ADN). In order to examine the relative contributions of
the two factors, one can consider two extreme scenarios: (i) where
the aquifer dynamics solely controls recession flow and (ii) where
the ADN dynamics solely controls recession flow.

1.1.1. DB aquifer model
This model assumes that rectangular shaped phreatic aquifers

only generate streamflow in a basin during recession events. Also,
it is assumed that the phreatic aquifers in the basin rest on hori-
zontal impermeable beds and are identical everywhere. The phre-
atic aquifers drain into their nearby stream channels or they follow
local flow system. q in this system will be spatially constant, i.e.,
the role of ADN dynamics can be neglected or dGðlÞ=dt � 0. The
expression for QðtÞ then becomes

QðtÞ ¼ qðtÞ � G0 ð5Þ
where G0 is the total length of the channel network. In effect, this
model treats a basin as a ’single’ phreatic aquifer resting on a hori-
zontal impermeable bed (DB aquifer). According to Eq. (4)

dQðtÞ
dt
¼ dqðtÞ

dt
� G0 ð6Þ

qðtÞ is then modeled by solving the one dimensional Boussinesq’s
equation under the fully penetrating stream condition and under
the assumption that the rate of aquifer recharge is zero (e.g.,
[16]), also see Fig. 1):

f
@h
@t
¼ w

@

@x
h
@h
@x

� �
ð7Þ

where h is the height of water table at distance x and time t; f is the
average drainable porosity and w is the average saturated hydraulic
conductivity of the aquifer. It is assumed that different geometric
conditions arise during a recession event, producing �dQ=dt vs. Q
curves (Eq. (2)) with different values of a [16,17,38,40,44,68]. Gen-
erally three types of geometric conditions are adopted, which have
been summarized by Brutsaert and Nieber [16], who also calculated
the values of a and k for all the three cases.

The first type of geometric condition applies when the width of
the phreatic aquifer (X) is infinite. This condition is assumed to
arise in the beginning of a recession event and it lasts for a rela-
tively short period of time. Polubarinova–Kochina [45] found the
value of a for this phase to be 3 and

k ¼ 1:1334
1

wfH3
0G2

0

ð8Þ

where H0 is H (water table height at x ¼ X, see Fig. 1) at t ¼ 0. The
second type of geometric condition appears when the water table
profile can be assumed to be an inverse incomplete beta function.
Boussinesq [13] found the value of a for this recession phase to
be 1:5 and

k ¼ 4:8038
w0:5G0

f A1:5 ð9Þ

where A is area of the basin. This solution is applicable for late
recession periods. The third type of geometric condition is charac-
terized by relatively little change in the height of water table
(hðx; tÞ, see Fig. 1) in the direction of flow, in which case the
Boussinesq’s equation (Eq. (7)) can be linearlized [15]. The solution
for the linearized Boussinesq’s equation was first provided by
Boussinesq [12]: a ¼ 1 and

k ¼ p2 wpH0G2
0

f A2 ð10Þ
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Fig. 2. (a) A hypothetical channel network undergoing desaturation during a
recession event. The network is completely saturated in the beginning and with
time it desaturates following the constant q and constant c assumption. The arrow
marks indicate the direction of channel desaturation, and the dotted lines are the
desaturation contours at different times. (b) The NðlÞ vs. GðlÞ (modeled) curve for
Indian basin. The drainage network for the basin was obtained by imposing a flow
accumulation threshold of 100 pixels. The NðlÞ vs. GðlÞ curve exhibits two scaling
regimes (AB and BC). The regime AB has slope (a) nearly equal to 2 (red line). For
comparison, the blue lines represents slopes predicted by DB aquifer model. The
upper blue line has slope equal to 3 and the lower has 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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This condition appears when discharge is further reduced so that
flow from other storage spaces (e.g., local ponds) dominates [44].
Thus the third recession phase can be considered to appear after
the second recession phase though there is no such clear guideline
given by any study; i.e., either a ¼ 1:5 or a ¼ 1 can be adopted for
late recession periods (e.g., [40]). Note that the power law coeffi-
cient k characterizes the time varying relationship between
�dQ=dt and Q. Most of the past studies intended to obtain a single
k value for a basin (e.g., [16,17,31,40,58,61,64,68]), even though DB
aquifer model suggests that k varies across recession events (see the
dependency of k on H0 in Eqs. (8) and (10); also see, for e.g., [60]).
The assumption of the existence of a single valued k for a basin
essentially implies a unique relationship between discharge and
water stored within the basin.

1.1.2. Geomorphological recession flow model
During a recession period a stream channel will drain water

from the aquifers within its adjoining hillslopes as well as from
the aquifers within its bank and under its bed. As the stream chan-
nel will receive flow from its upstream stream channel, it will not
dry as long as its immediate upstream stream channel is draining
water into it. This implies that a stream network during recession
events will desaturate progressively in the downstream direction.
Biswal and Marani [4] exploited this property of progressive desat-
uration of the ADN to model recession flows at the basin outlet by
assuming that dqðtÞ=dt � 0 (also see Fig. 2a), i.e., they considered
only the effect of ADN dynamics in recession analysis. Eq. (4) there-
fore turns into

dQðtÞ
dt
¼ q � dGðtÞ

dt
ð11Þ

They also assumed that the speed at which sources of the ADN con-
figuration move downstream, c (¼ dl=dt, where l is the distance of a
source in the ADN configuration at time t from its farthest channel
head in the channel network), is constant both spatially and tempo-
rally (see Fig. 2a). This assumption of constant c allows us to inter-
change t and l whenever necessary. Therefore, Eq. (11) can be
transformed into

dQðtÞ
dt
¼ q

dl
dt
� dGðlÞ

dl
¼ q � c � �NðlÞ ð12Þ

where NðlÞ is the number of channel links at a distance l in the chan-
nel network or the number of sources in the ADN configuration at
time t.

By using the expressions for Q (Eq. (3)) and dQ=dt (Eq. (12)) in
Eq. (2) we get the expression for recession curve in terms of geo-
morphological parameters:

NðlÞ ¼ kqa�1

c
GðlÞa ð13Þ

or

NðlÞ ¼ qGðlÞa ð14Þ

where

k ¼ qcq1�a ð15Þ

Eq. (13) relates the morphological properties of a basin with its
recession flow curve characteristics. The major difference between
DB aquifer model and geomorphological recession flow model is
that while the former takes only storage in the phreatic aquifers
into account the latter considers storage in all forms that govern
ADN dynamics. In this study we use data of daily average stream-
flow, water table depth and potential transpiration and compare
results obtained from the above two recession flow models to find
out whether ADN dynamics is more important or drainage from
phreatic aquifers is more important during recession flow events
in steep basins. Particularly, we select three key recession flow
characteristics: (i) value of a, (ii) event dependent relationship
between �dQ=dt and Q and (iii) recession timescale.
2. Observed recession curves: how well the models predict?

We used available daily average discharge data for 34 USGS
basins (see Fig. 3) for the analysis here (data available at: http://
waterwatch.usgs.gov/). Daily average ground water table data for
9 of the basins (see Table 1) were used (each basin has one well)
to investigate storage-discharge relationships. For 22 of the basins
we used potential evapotranspiration data from MOPEX dataset
(available at: http://www.nws.noaa.gov/oh/mopex/mo_datasets.
htm) to analyze the effect of evapotranspiration on recession flow
curve characteristics. We also used 10 min average discharge data
for Shale Hills experimental watershed and 10 min average water
table data for 3 wells situated within the watershed (data obtained
from: http://www.czo.psu.edu/) (see Fig. 3). All the selected basins
are situated in moderately steep to steep regions and free from sig-
nificant human interventions. To extract geomorphic parameters

http://www.waterwatch.usgs.gov/
http://www.waterwatch.usgs.gov/
http://www.nws.noaa.gov/oh/mopex/mo_datasets.htm
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http://www.czo.psu.edu/
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Fig. 4. (a) Five �dQ=dt vs. Q curves selected from Blue basin displaying shifts from
one another, indicating that�dQ=dt–Q relationship for a basin is not unique. (b) The
inset shows an individual recession curve exhibiting three distinct scaling phases:
phase I accounts for high flows; phase II, which lasts for an appreciable amount of
time, exhibits a distinct power law scaling feature (R2 is 0.98); phase III, which
account for very low flow values, is dominated by observational errors (R2 for phase
III is 0.58, less than that of phase II).
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Fig. 3. Locations of the 35 study basins (closed circles) within a map of the US (a).
Three of the basins are nested (blue is the basin and Whiskey Run and West Fork are
its sub-basins) and situated in Illinois (b). Shale Hills watershed has three water
table monitoring wells (open circle) within its boundary (c). Note that the drainage
networks shown in (b) and (c) are not up to the scale. Other information about the
watershed studied are given in Tables 1 and 2.
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for the study basins we used 30 m USGS digital elevation model
(DEM) data for the USGS basins and 3 m USGS DEM data for Shale
Hills watershed (obtained from: http://nationalmap.gov/viewer.
html). We imposed suitable flow accumulation thresholds to
extract drainage networks of the basins and computed their ag

(or geomorphic a, see Eq. (13)) values [43]. (Note that as the value
of ag is not very sensitive to the chosen flow accumulation thresh-
old [4], the flow accumulation thresholds for the basins were arbi-
trarily chosen.) We define a recession curve as a continuously
decreasing streamflow time series lasting at least five days and
whose peak is greater than the average flow at the basin outlet.
Following Brutsaert and Nieber [16] we computed �dQ=dt and Q
as: �dQ=dtðt þ Dt=2Þ ¼ ðQðtÞ � Qðt þ DtÞÞ=Dt and Qðt þ Dt=2Þ ¼
ðQðtÞ þ Qðt þ DtÞÞ=2, where Dt ¼ 1 day (for Shale Hills watershed
the data was averaged to daily time step before computing
�dQ=dt and Q). In this section we discuss three major recession
curve characteristics and how the two models capture them.

2.1. The value of a

The observations by Biswal and Marani [4] show that a reces-
sion curve typically exhibits three distinct phases, which can be
distinguished from one another based on its �dQ=dt vs. Q profile
Table 1
Key geomorphological and observational recession flow parameters and the relationship b
⁄⁄⁄ corresponds to Shale Hills watershed which does not belong to USGS database. 1–3 a

Name of the basin USGS id Area (sq km) ag No. of recession events

Shale Hill ⁄⁄⁄ 0.08 1.5 28

North Sylamore 07060710 150.43 2.06 37
Cranberry 03187500 217.56 1.97 412
Little 03497300 276.54 2.11 406
Towanda 01532000 556.85 2.18 233
Dunkard 03072000 593.34 2.15 220
Indian 07188885 619.67 2.05 58
Pomme de Terre 06921070 714.13 1.95 268
Wheeling 03112000 727.79 2.07 311
Muscatatuck 03366500 758.87 2.05 321
(see also the inset Fig. 4a). Typically, a after the peak of a recession
event increases with time for a short time interval (phase I), and
this phase is likely to be significantly influenced by surface flows.
Then in the second phase (phase II), which lasts for a appreciably
long period of time, a remains fairly constant. The next phase
(phase III) accounts for very low flows that are typically dominated
by observational errors (see, for e.g., the marked decrease in corre-
lation (R2) from phase II (0.98) to phase III (0.58) in Fig. 4a) or
which cannot be observed due to short time intervals between
consecutive storms. In our observation, a in phase I is almost al-
ways less than that of phase II (sometimes even negative, see the
inset of Fig. 4a, where phase I gives a ¼ �0:43), and a in phase III
can either be more or less than that in phase II. Ideally, one should
consider phase II only in an analysis, as a in this phase best repre-
sents recession flows in a basin. Biswal and Marani [4] found that
while a remains fairly constant for a basin, k varies greatly across
recession events, which implies that �dQ=dt and Q relationship
is dynamic or it changes across events (see Fig. 4b). Therefore, they
computed a for phase II of recession curves individually for a basin
etween k and water table.
re three wells within the Shale Hills watershed.

ao dp8 R2
p8

c5 R2
5

Well no. hwt R2
wt

1 0.64 0.12
1.6 0.04 0.03 0.39 0.19 2 0.98 0.13

3 0.82 0.09
1.93 0.13 0.18 0.98 0.76 355927092122401 9.20 0.15
1.85 0.27 0.19 0.97 0.66 382008080292801 4.81 0.24
2.29 0.53 0.45 1.11 0.62 353922083345600 1.19 0.03
1.96 0.19 0.11 0.43 0.18 414330076280501 0.60 0.21
1.94 0.32 0.24 1.02 0.78 394655080014301 1.44 0.11
2.31 0.52 0.55 1.01 0.70 364313094121101 1.46 0.01
2.08 0.41 0.40 1.15 0.85 373701093151601 3.78 0.21
1.98 0.50 0.43 1.06 0.81 400233080261301 15.31 0.15
2.06 0.38 0.38 1.20 0.89 384949085251901 2.52 0.42

http://www.nationalmap.gov/viewer.html
http://www.nationalmap.gov/viewer.html
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and considered the median of the distribution as its representative
a (ao). Biswal [5], however, found that almost the same ao is ob-
tained by discarding only the peaks of the recession curves (sup-
posed to eliminate phase I of the recession curves). We followed
this scheme to compute ao in this study.

Biswal and Marani [4] computed ao for a large number of natu-
ral basins and found that the median of the distribution to be close
to 2 (with a standard deviation of 0.18). The median of ao values
obtained for the 35 basins here is 1.95 (with a standard deviation
of 0.21). ao being close to 2 was also observed by Shaw and Riha
[54]. These observations suggests that the generally accepted value
of a by DB aquifer model based studies (1.5) is quite different from
2, the value obtained from real observations. Again, the temporal a
profile as produced by DB aquifer model under different geometric
conditions arising during different phases of a recession event (a
being 3, 1.5 and 1 in phase I, phase II and phase III, respectively)
does not reflect the real recession curve behavior. Technically, DB
aquifer based studies do not provide an objective method to iden-
tify how and when different geometric conditions arise. Recession
characteristics are generally obtained by fitting power law curves
with different a values onto (�dQ=dt;Q) data clouds (e.g.,
[16,17,40,44,68]). Furthermore, the geometric conditions assumed
by DB aquifer model so far, to our knowledge, have no experimen-
tal basis.

We did not find any appreciable correlation between a and
either potential evapotranspiration (Pet) or water table depth (D,
see Fig. 1) for any of the basins considered in this study (linear cor-
relation in the all cases is less than 0.1). Furthermore, Biswal [5]
found that the value of ao is independent of basin size and average
streamflow (an indicator of climatic conditions). These observa-
tions indicate that a is only a shape parameter chiefly dependent
on the structural properties of the basin. Geomorphological reces-
sion flow model gives the value of a for a basin that is entirely
dependent on its channel network structure - an observable entity.
Due to this reason, a direct comparison can be performed between
ag (modeled a, see Eq. (13)) and ao (observed a). Two distinct scal-
ing regimes can be identified in the NðlÞ vs. GðlÞ curve of a basin: AB
representing early recession flows and BC representing late reces-
sion flows ([4], also see Fig. 2b). As late recession flows are gener-
ally not observed, only regime AB can be considered for an
evaluation. Like Biswal and Marani [4], we found that ag (of AB re-
gime) is nearly equal to ao of the basin in most cases. The median
Table 2
Key geomorphological and observational recession flow parameters and the relationship b

Name of the basin USGS id Area (sq km) ag No. of rece

Council 07163000 80.29 2.03 258
Haldey 05502040 188.29 2.04 391
North Branch Potamac 01595000 189.07 2.07 606
Las Gatos 11224500 248.12 1.94 324
Williams 03186500 331.52 2.08 1005
Cadron 07261000 437.71 2.04 363
Dunning 01560000 445.48 2.35 720
Owego 01514000 479.15 2.17 528
Little Coal 03199000 696.71 1.95 575
Sisquoc 11138500 727.79 2.16 403
Dry Fork 03065000 903.91 2.13 1094
South Umpqua 14308000 1162.91 2.13 747
Cowpasture 02016000 1193.99 2.14 1109
Strawberry 07074000 1225.07 2.46 617
Tug Fork 03213000 1300.18 2.18 705
Pine 01548500 1564.36 1.97 1117
Smith 11532500 1590.26 2.26 564
Sinnemahoning 01543500 1774.15 2.15 1199
South Fork Kentucky 03281500 1869.98 2.05 1135
Buffalo 07056000 2147.11 2.45 1046
Coeur 12413000 2318.05 2.09 1028
North Bosque 08095000 2507.12 2.11 832
of ag of the 35 study basins is 2.08, quite close to the median of the
ao values, 1.98 (with a standard deviation of error equal to 0.22). In
the following sections we carry out further analysis by considering
that ag ¼ ao ¼ a.
2.2. Dynamic properties of recession curves

DB aquifer model based studies consider a basin to behave as a
single phreatic aquifer as they assume flow generation to be spa-
tially constant. It suggests that for a ¼ 3 and 1; k is free to vary
across events, but its value is constant for a ¼ 1:5. However, it is
observed that, for a > 1 and large n, k is a function of the character-
istic discharge Qn (average discharge at the basin outlet in the nth
day after the peak), denoted by a power law:

kðQ nÞ / Q�kn
n ð16Þ

and kn ¼ a� 1 [8]. Note that k for a recession event is computed by
fixing a at ao of the basin. The above power law relationship (Eq.
(16)) is robust for all the study basins here (see the values of kn

and R2
n for n ¼ 5 for the basins here in Tables 1 and 2) and it implies

that k becomes independent of Qn (a parameter that is dependent
on dynamic factors like rainfall and evapo-transpiration) i.e., k be-
comes constant for a basin when a is nearly equal to 1, not when
a ¼ 1:5. Eq. (16) suggests that kðQnÞ / Q�0:5

n and kðQnÞ / Q�2
n ,

respectively for a ¼ 1:5 and a ¼ 3. This demonstrates the limitation
of DB aquifer model in capturing the dynamic �dQ=dt–Q relation-
ship of a basin. Geomorphological recession flow model needs both
the parameters to remain constant throughout a particular reces-
sion event but they are free to vary across recession events, thus
allowing the dQ=dt–Q relationship to change from one recession
event to another. Eq. (15) implies that k is a function of both q
and c. Though we are not aware of any experimental study on
how c varies across events, it is quite intuitive that flow generation
(represented by q) will increase with subsurface storage. Thus if we
assume c to be constant across recession events, Eq. (15) gives
k / q�ða�1Þ, a relationship analogous to Eq. (16). The argument that
k mainly depends on subsurface storage is also supported by other
studies (e.g., [6,8,35]).

Using observed discharge data and water table data Rupp et al.
[52] showed that Q vs. D curves for different time periods with
minimal rainfall display significant shifts from one another. We
etween k and potential evapotranspiration.

ssion events ao dP8 R2
P8

k5 R2
5

cET R2
ET

1.82 0.39 0.26 1.11 0.95 0.193 0.02
1.99 0.35 0.33 1.02 0.87 0.029 0.00
2.23 0.42 0.26 1.13 0.63 0.63 0.19
1.65 0.82 0.65 0.70 0.81 0.27 0.03
1.85 0.29 0.24 0.90 0.62 0.38 0.19
1.91 0.32 0.29 0.77 0.59 0.39 0.20
1.86 0.25 0.25 0.66 0.46 0.41 0.12
2.31 0.75 0.64 1.03 0.88 0.22 0.08
1.98 0.47 0.38 1.05 0.70 0.27 0.07
1.91 0.81 0.79 0.97 0.87 0.15 0.01
1.95 0.66 0.60 0.86 0.85 0.39 0.17
2.22 0.52 0.33 0.96 0.56 0.23 0.07
2.57 0.38 0.35 0.44 0.42 0.39 0.08
2.55 0.53 0.42 1.25 0.83 0.60 0.13
2.61 1.17 0.76 1.41 0.9 0.12 0.01
1.99 0.70 0.65 0.79 0.82 0.24 0.07
2.43 0.42 0.39 0.72 0.46 0.58 0.13
1.97 0.78 0.69 0.86 0.86 0.33 0.12
1.92 0.67 0.62 0.86 0.87 0.35 0.14
2.07 0.58 0.63 0.73 0.78 0.11 0.05
2.81 0.57 0.61 0.60 0.62 0.01 0.00
2.09 0.77 0.6 1.02 0.85 0.55 0.03
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observed similar behavior while plotting Q vs. D curves for individ-
ual recession events and found that Q decreases as D increases, of-
ten when observations after 1 day of the peak are considered
(Fig. 5). We used water table data to investigate the role of phreatic
aquifers during recession periods using DB aquifer model. We as-
sume that the observed depth of water table measured at a well
in a basin is Y � H (which is equal to D, where Y is the maximum
height of the aquifer), and it represents the subsurface storage
within the phreatic aquifers of the basin. To investigate whether
Eqs. (8) and (10) reflect the dynamic dQ=dt–Q relationship for a ba-
sin, we analyzed the relationship between k (obtained from the ob-
served �dQ=dt vs. Q curve of the basin by fixing a at ao, see the
previous subsection) and D0 (Y � H0, i.e., initial water table depth
for the event at x ¼ X). We then fitted (k;D0) data points from a ba-
sin onto a power law equation (k / Dhwt

0 , see Fig. 6) using the linear
regression method as suggested by DB aquifer model. Interestingly,
we observed that hwt is positive for all the basins considered, which
implies that discharge at any given time increases with initial
water table height, H0 (as discharge increases with decrease in k,
see Eq. (16)). However, we observed the power law correlation
(R2

wt) between k and D0 (an indicator of H0) to be weak (see Table 1),
which further strengthens the argument that phreatic aquifers
may not have significant control over recession flow curves.

Another factor influencing k is evapotranspiration (e.g.,
[16,19,54]). Weiseman [72] computed k by fitting discharge values
of a recession event onto Q ¼ Q 0e�kt curve and found that k is
dependent on Pet . However, he did not quantify the relationship
between k and Pet . Similarly, Shaw and Riha [54] noted that k
exhibits seasonal variation, though he did not give a quantitative
picture of it. In this study, we tried to quantify the effect of Pet

on k by fitting (Pet ; k) data points from a basin onto the power
law equation: k / Pcet

et (see Fig. 7). We found the power law expo-
nent cet to be positive in all cases, implying that Q decreases as
PET increases. But the correlation (R2

et) was found to be weak (less
than 0.2 in all cases, see Table 2), which indicates that evapotrans-
piration does not affect recession flow characteristics significantly.
It should be noted here that DB aquifer model does not take the ef-
fect of evapotranspiration into account as it considers flow from
phreatic aquifers only. On the other hand, geomorphological reces-
sion flow model takes the effect of evapotranspiration into account
as the parameter q actually represents the net flow generation per
unit length, i.e., the flow generation per unit length by ground
water storage units minus the loss of flow per unit length due to
evapotranspiration.

The results here indicate that neither phreatic aquifer nor
evapotranspiration has significant control over k. According to geo-
morphological recession flow model the system of connected sub-
surface storage elements within a basin is represented by its ADN.
The strong correlation between k and Q n (16) suggests that k is
dependent on q, controlled by various subsurface storage systems
(not by phreatic aquifers only). This hypothesis is further sup-
ported by the observational evidence that a fairly good power
law relationship exits between k and the past average discharge
(a proxy for past storage) from 10 to 2 days before the recession
peak (Qp8): k / Q�dp8

p8 ([6], see also Tables 1 and 2). The positive va-
lue of dp8 in all cases implies that Q increases with (past) subsur-
face storage in various subsurface storage systems. In fact, it is
already acknowledged that recession flow is a result of interaction
between both saturated and unsaturated subsurface storage
elements (e.g., [26,41,53,63]) that undergo spatial and temporal
evolution [1,27,57]. Now coming back to the observation by Shaw
and Riha [54], it is very likely that the seasonal variation of k is
actually caused by the seasonal variation of storage. k can also be
sensitive to many other factors like temporal rainfall variation
[10], spatial rainfall variation [6] human interventions [4,70,71],
and observational and numerical errors [35,66].
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2.3. Recession timescale

Another key property of a recession flow curve is timescale, the
period of time the recession event lasts. DB aquifer generates
recession flow profiles with timescales independent of basin size.
However, it is well known that in real basins lower order streams
dry before higher order streams, i.e., ADNs during recession periods
contract in downstream direction (e.g., [9,20,21]). Recession flow
in a basin will last as long as its longest stream or main stream
does not dry completely. Geomorphological recession flow model
assumes a constant speed of stream desaturation. Thus, recession
flow in a basin will last for a time period, TR, equal to L=c, where
L is the length of the main stream. According to Hack’s law L is re-
lated to basin area as L / Ah, where h is Hack’s exponent. The reces-
sion timescale TR, if c remains constant, is then related to basin
area as
TR / Ah ð17Þ

It is not possible for us to check if natural basins are strictly fol-
lowing Eq. (17) due to lack of data in hand. Typically recession
events do not last longer than characteristic recession timescales.
However, our analysis on the three nested basins (one main basin
and other two are its sub-basins) situated in Illinois (see Fig. 3;
streamflow observation considered from the year 1986) gives
some interesting results. Particularly, we investigated how the size
of a basin affects the number of dry or no-flow days it witnesses,
which indicates how quickly the basin dries. It is remarkable that
while Blue basin does not have a single no-flow day, its sub-basins
West Fork and Whiskey Run have 175 and 438 number of no-flow
days, respectively. This implies that bigger basins are likely to sus-
tain flow for longer time periods, and vice versa, although whether
real basins follow Eq. (17) or not needs to be investigated.
3. Concluding remarks

Natural basins are highly heterogeneous and structurally com-
plex. As a result, it is very challenging to apply traditional flow
equations for the prediction of basin-scale responses. An alterna-
tive avenue is thus to identify the signatures contained in a reces-
sion curve and find its links with the catchment scale physical
properties. Brutsaert and Nieber [16] provided a robust analytical
framework to study recession flow curve properties by expressing
negative time derivative of Q (�dQ=dt) as a function of Q itself,
which presently serves as the foundation for recession flow analy-
sis. �dQ=dt vs. Q curves, across recession events and across basins,
generally follow a power law equation of the following type:
�dQ=dt ¼ kQa. The physical origin of the power law relationship
can be explained by using two existing recession flow models:
(1) DB aquifer model that considers drainage from phreatic aqui-
fers only and (2) geomorphological recession flow model that con-
siders dynamics of ADN only. It should be noted that there are
other modeling frameworks mentioned in the hydrologic literature
that deal with recession flows. However, the main motivation be-
hind the selection of the above mentioned two models was to
understand the relative importance of aquifer depletion and ADN
dynamics.

Our observations do not support the hypothesis by DB aquifer
model that a takes different values (3, 1.5 and 1) during a recession
event. For most of the basins considered in this study the value of a
is nearly equal to 2, which is captured well by geomorphological
recession flow model. We found the correlation between water
table depth and k to be weak in all the cases, which strongly indi-
cates that phreatic aquifers in a basin do not significantly control
its recession flow characteristics as suggested by DB aquifer model.
Again we found that evapotranspiration does not significantly
control the value of k, though DB aquifer model does not take this
factor into account. Geomorphological recession flow model seems
to incorporate the dynamic behavior of k correctly by linking it
with q and c. DB aquifer model generates recession curves with
timescales independent of basin size. In reality, recession events
in a bigger basin are expected to last for longer time-spans. This
is supported by the indirect observation here that smaller basins
witness more no-flow days.

Results here suggest that DB aquifer model does not capture
well the recession flow characteristics of the study basins. How-
ever, they should be interpreted in a proper context. The selected
basins are steep/mountainous, which may only be suggesting that
DB aquifer model is not suitable for such heterogeneous regions
where homogeneous phreatic aquifers cannot be expected to exist.
That means, DB aquifer model may be relevant for homogeneous
regions where its assumptions are valid. May be non-phreatic stor-
age elements, such as hyporheic zones (e.g., [24]) and unsaturated
zones [26], play an important role during recession events in steep
and heterogeneous regions. Thus DB aquifer model, which consid-
ers a basin as a monolithic phreatic aquifer that follows only local
flow system, may not be suitable to model recession flows result-
ing from interaction between various subsurface storage elements
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connected to one another through different flow systems. The
observations here suggest that recession flow composed of drain-
age from various subsurface storage systems is linked to active
drainage network dynamics. Further investigation along this line
(e.g., [7,46]) may help in modeling recession flows more reliably.

Finally, we draw a parallel between geomorphological recession
flow model and geomorphological instantaneous unit hydrograph
model [50], in the sense that both of them exploit properties of
channel network to predict hydrological response directly at basin
scale. The purpose is to support the notion that channel networks
best represent natural basins, in the way they organize themselves
as well as in the way they respond to rainfall inputs [51].
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