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Diversity sustains an evolving network
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We study an evolutionary model of a complex system that evolves under catalytic dynamics
and Darwinian selection and exhibits spontaneous growth, stasis and then a collapse of its
structure. We find that the typical lifetime of the system increases sharply with the diversity
of its components or species. We also find that the prime reason for crashes is a naturally
occurring internal fragility of the system. This fragility is captured in the network
organizational character and is related to a reduced multiplicity of pathways or feedback
loops between its components. These results apply to several generalizations of the model as
well. This work suggests new parameters for understanding the robustness of evolving
molecular networks, ecosystems, societies and markets.

Keywords: complex networks; evolution; catalytic dynamics; crashes; robustness;
signatures of fragility
1. INTRODUCTION

Several systems involving complex networks of inter-
acting components exhibit dramatic crashes during the
course of their evolution. Examples include mass
extinctions in the biosphere as evidenced in the
palaeontological record (Sepkowski 1984; Raup 1991;
Erwin 2006), collapses of ecosystems (Paine 1969;
May 1973; Pimm 1991; Solé & Bascompte 2006) and
civilizations (Tainter 1990; Diamond 2006) and crashes
of economic systems (Schumpeter 1939; Sornette 2004).
While some of these catastrophic events are caused by
large external perturbations such as meteorite impacts
(Raup 1991; Hallam & Wignall 1997), earthquakes
(Nur & Burgess 2008), famines, wars and infections
(Diamond 2005), for the vast majority of them no single
dramatic cause can be traced. An alternative reason for
crashes, explored in this paper, is a fragility in the
internal organization of these systems that naturally
develops in the course of their evolution, making them
vulnerable to small perturbations.

Empirical data characterizing the ‘internal fragility’
or ‘robustness’ of evolving complex systems are scarce.
One of the chief problems in collecting data is a lack
of clarity about what to look for; we do not know
what system parameters can characterize its poisedness
for a crash. Hence, a key step in identifying possible
signatures of fragility is to construct theoretical and
mathematical models of systems that exhibit repeated
catastrophes in the course of their time evolution, whose
analysis can reveal structural and dynamical features
that make them vulnerable to such events. An important
address for correspondence: Department of Physics
ysics, University of Delhi, Delhi 110007, India
s.du.ac.in).
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aspect of a complex system’s organizational structure is
the underlying interaction network of its components
(Watts & Strogatz 1998; Bhalla & Iyengar 1999; Albert &
Barabasi 2002; Dorogovtsev & Mendes 2003), hence
we need in particular to study examples of evolving
networks that exhibit crashes and recoveries.

Our model system (Jain & Krishna 1998, 2001,
2002a,b) exhibits crashes and recoveries for an evolving
network of interacting populations, with Darwinian
selection and dynamic feedback loops playing an
important role in system evolution. In this paper, we
discuss how the average system lifetime between
crashes depends upon the diversity of system com-
ponents, which has not been explored earlier. This is
made possible by going to much larger system sizes
(higher diversity) than considered earlier. We also
explore for the first time in this model the dependence
of the average number of feedback loops in the network
on diversity, and find that this number is strongly
correlated with average system lifetime. This shows
that the number of feedback loops is a network
structural signature that is relevant for crashes.
2. THE MODEL

The system consists of s nodes, whose network of
interactions is specified completely by its adjacency
matrix Ch(cij), i, jZ1,., s. A node may represent a
molecular species in a ‘prebiotic pond’. The model is
motivated by the origin of life problem (Dyson 1985;
Bagley et al. 1991; Kauffman 1993), but may be more
generally valid. The element cijZ1 if species j ‘catalyses’
the growth of species i and zero otherwise. Also, ciiZ0
for all i, corresponding to the exclusion of self-catalysing
species. Relaxing the above restrictions by allowing links
J. R. Soc. Interface
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with different weights and negative signs does not
change the qualitative behaviour of the model.

Using the adjacency matrix, we write an equation for
the population dynamics of the species given by

_yi Z
Xs

jZ1

cijyjKfyi: ð2:1Þ

Here, _yi is the rate of change of the population of species i.
The first term on the right takes into account the
positive effect of all the species that catalyse species i,
each one having an effect proportional to its population.
The second term is a constant mortality term.

The rate of growth of the relative populations, xi , can
be computed from equation (2.1). Applying that
equation to the numerator and denominator of
xiZyi=

Ps
jZ1 yj one gets an equation independent of f:

_xi Z
Xs

jZ1

cijxjK xi
Xs

k; jZ1

ckjxj : ð2:2Þ

For any given graph C, the dynamics described by
equation (2.2) flows to a steady state (a fixed point
of equation (2.2)) in which all xi become time indepen-
dent constants.

Initially, the matrix C is sparse and random with on
average m links per node, with m!1 (i.e. each off-
diagonal entry of C is independently chosen to be unity
with a probability pZm/(sK1), and zero with prob-
ability 1Kp). To introduce evolution into the model, we
note that the pond can be washed by nearby tides,
floods or storms that can flush out some of the contents
of the pond. We introduce ‘selection’ by imposing that
the species with the lowest relative population in the
steady state gets removed from the system (Bak &
Sneppen 1993); we eliminate the corresponding node
and all its links from the graph. (If there is more than
one such species, we choose one at random.) Further-
more, such a fluctuation can bring new species into the
pond; we assume for simplicity that a single new node
gets added to the graph whose links with the existing
ones are made randomly with the same average
connectivity m. After each such fluctuation, the
populations evolve according to equation (2.2) with a
fixed C to reach a new fixed point, whereafter the above
update sequence is repeated.

The model implicitly assumes the existence of two
time scales in the evolutionary process. One is a short
time scale characterizing the population dynamics of
the species in which the network remains constant. The
second time scale, on which the graph is updated,
characterizes the evolution of the network (arrival and
death of species) and is taken to be longer than the time
in which populations reach their attractor. The sharp
sequential separation between these two kinds of
processes is a model artefact for mathematical simpli-
city. Nevertheless, these two processes—internal
system dynamics and evolution of the network—do
often occur on different time scales in several complex
systems. Note that, since one node is eliminated and
introduced at each time step in the model, the average
lifetime of a node is s update time steps. Thus,
evolutionary time, in units of the typical lifetime of a
species, is marked in the model by n/s, where n is the
J. R. Soc. Interface
number of graph updates. In this paper, our main
concern is another, much longer time scale that
corresponds to the lifetime of the system as a whole.
Unlike the two smaller time scales mentioned earlier,
this new time scale is not put in by hand in the model
but arises dynamically. It corresponds to the time scale
over which system level fragilities build up spon-
taneously in the network of interacting species and
cause large crashes.

As an example of a complex system that is far
removed from the prebiotic chemical network, but to
which the above model might still apply, we mention
ecology of firms and other agents in an economic
system. Here, a non-zero value of cij would represent a
catalytic link from the economic output of firm j to that
of firm i. For example, firm jmay provide sustenance to
firm i by means of finance, raw materials or inputs used
in goods manufactured by i, trained manpower,
services, etc. The ‘population’ variable yi would in
this context represent a variable describing the well
being or economic performance of firm i, e.g. its profit,
assets, turnover, etc. The first term in equation (2.1)
captures the fact that a catalyst j can only contribute to
i’s well being if it is performing well itself (in proportion
to its own performance yj to leading order). The second
term would denote a drain on i’s resources in terms of
interest payments on finance, raw material costs,
wages, other expenses, etc. that would be in proportion
to its own profits, assets, turnover, etc. The graph
update rules would signify the removal of under-
performing firms in a competitive scenario and the
birth of new firms with new relationships to the existing
firms. The present model, albeit highly stylized, thus
captures the evolution of an economic network of
interacting firms, in a manner different from other
models of economic and financial systems (Palmer et al.
1994; Bouchaud & Cont 1998; Farmer 2002; Marsili
et al. 2004; Challet et al. 2005).
3. RESULTS

3.1. Lifetime of the system

At each graph update the system suffers a structural
perturbation that modifies C. The perturbation is small
in that only one species is updated, affecting the links of
onlywmwO(1) number of species. Since the update ofC
depends on populations, the long-time dynamics of the
populations is highly nonlinear in spite of the simplicity
of equations (2.1) and (2.2). The typical dynamics is
shown in figure 1 where the number, s1, of populated
species (whose steady state xiO0) is plotted against time
(n/s) for three values of sZ100, 300, 500 and fixed
mZ0.25. Initially, the graph is sparse and the number s1
is small. After a certain time, s1 begins to grow and soon
reaches its maximum value s. Thereafter, the system
exhibits a stasis for a certain time in which s1 fluctuates
between s and sK1. In this latter state that we call the
‘organized state’, all species except possibly the one
being picked for replacement have xiO0. Thereafter, the
system experiences a collapse in which s1 drops to a
fraction of s. This is followed by a recovery and a
repetition of the same kind of dynamics.

http://rsif.royalsocietypublishing.org/
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Figure 2. Organized state lifetime as a function of s on a semi-
log plot for hZ0.75 and various values of m denoted by
squares, mZ0.15; circles, mZ0.25; triangles, mZ0.35. The
straight lines are least square fits whose slopes give a(m).
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Figure 1. Number of populated species s1 as a function of time.
The total number of species sZ(a) 100, (b) 300, and (c) 500,
while mZ0.25 for each. The number of crashes decreases
markedly with increasing s.
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In this paper, we focus on crashes whereby, in a
single update step, the number of populated species s1
goes from s or sK1 to a fraction less than or equal to h of s.
We present results for hZ0.50 and 0.75. While the
absolute number of crashes depends upon h, the
qualitative results are not very sensitive to its value. As
shown in figure 1, for fixed m, the frequency of crashes
comes markedly down with increasing s. Similarly, if we
increase m for fixed s, the number of crashes again
decreases markedly.

For given values ofm and s, there is a typical lifetime
before the network collapses. We define this time t as
the number of update steps spent in the organized state
in a given run (typically 106 steps long), divided by the
number of crashes observed during that run. Each run
is parametrized by s andm and crashes are defined with
respect to the parameter h. Hence t depends upon s, m
and h. The dependence of t on s and m is shown in
figure 2, for hZ0.75 (again we present the rescaled
lifetime t/s). For fixed m, t/s grows exponenti-
ally with s. This behaviour is consistent with the
empirical relation

t

s
ZAðm; hÞeaðm;hÞs: ð3:1Þ
J. R. Soc. Interface
The coefficient a(m,h) is an increasing function of m
(and a weak function of h) whose quantitative
behaviour is discussed later.

These results show that the system is more stable
against crashes as its diversity, s, increases for fixed
connectivity, m, and also as its connectivity, m,
increases for a fixed diversity. We emphasize that
even for low connectivity the system can be stabilized
against collapse by increasing its diversity. It turns out
that in the organized state, the average connectivity of
the species is close tow1Cm; hence, for the values ofm
given above the average connectivity is only slightly
above one. Even such sparsely connected systems
are stabilized in this model by a sufficient amount
of diversity.
3.2. The number of feedback loops in the network
is correlated with system lifetime

We now attempt to understand this behaviour in terms
of the structure of the graph near and far from a crash.
The organized state has the structure of an autocata-
lytic set (ACS). An ACS is a subgraph, each of whose
nodes has at least one incoming link from a node
belonging to the same subgraph (Kauffman 1993). In
the organized state, all the species except possibly the
one being picked for replacement are part of the ACS
(Jain & Krishna 1998). The ACS consists of a core and
a periphery. The core comprises the set of nodes (along
with their mutual links) from which there is a directed
path to every other node in the ACS. All other nodes
and links in the ACS constitute the periphery.
Examples of the graph (ACS with core and periphery)
observed in the organized state are shown in figure 3.
By definition, there is no directed path from a periphery
node to any core node. The core, by virtue of closed
paths inside it, is a ‘self-sustaining’ structure in the
sense that all the core nodes would be populated even if
the only links present in the graph are those in the core.
By contrast, the periphery nodes would become
depopulated if the links from the core to the periphery
were to be removed. In this sense, the periphery nodes
are ‘parasites’ that are sustained by the core.

While there is always by definition at least one path
from every core node to every other core node, the
number of such paths is significantly different between
a normal organized state and a state poised for a crash.
In the typical organized state, there are several paths
from each core node to another (figures 3a,c). In such
configurations, no single node addition or deletion can
cause a crash. However, the number of paths between
core nodes drops to a much lower value just before a
crash (figures 3b,d ). Then, a single node change can
disrupt the core and cause most species in the network
to be depopulated.

We computed the number of distinct, non-intersect-
ing closed paths of all lengths in the core of the graph at
different time steps using a standard graph theoretic
algorithm (see the review by Deo (1974) and references
therein). In figure 4, we plot the frequency distribution
of the number of these paths in the organized state
(filled circles). The distribution shows a peak whose
position, Np, is dependent upon s and m. A plot of

http://rsif.royalsocietypublishing.org/
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Figure 3. Examples of network configurations for mZ0.25, (a,b) sZ100 and (c,d ) sZ300: (a,c) in the normal organized state
(far away from a crash) and (b,d ) in the organized state just before a crash. Core nodes are shown in black, periphery in white.
For sZ300, periphery nodes are not shown to avoid clutter. The following should be noted. (i) The core is large and has multiple
directed pathways between any pair of its nodes in the normal organized state (a,c). Just before a crash, it becomes smaller and
does not possess multiplicity of pathways (b,d ). (ii) As one increases s from 100 to 300, the number of multiple pathways in the
core in the normal organized state increases dramatically (compare a and c), while in the state poised for a crash it is more or less
the same and quite small (compare b and d ).
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ln(Np) against s for various values of m is shown in
figure 5. This is consistent with the empirical formula

Np ZBðmÞebðmÞs: ð3:2Þ

We note that loops in other graph ensembles have also
been counted (Bianconi & Marsili 2005).

In figure 4, the open symbols show the distribution of
closed paths in the core just before crashes. Its peak
occurs at a much smaller value than Np (note that the
x -axis scale is logarithmic). This is also evident from
figure 3 (the cores in (b) and (d ) have much fewer closed
paths than in (a) and (c)).

We find a strong correlation between the coefficients
a(m) and b(m). This is shown in figure 6 where a(m,h)
for two values of h and b(m) are plotted against m. It is
seen that the dependence of a on h is weak, as
mentioned before, and that a and b have a similar
dependence upon m. Thus Np and t/s have a similar
dependence on m and s. This close correspondence
between a structural property such as the number of
loops in the graph in the organized phase and a
dynamical property such as the lifetime of that phase
is one of the surprising results we have found.

This suggests an explanation of why a higher
diversity and density of links enhances stability against
J. R. Soc. Interface
crashes in this model. Diversity increases the number of
closed paths in the core and thus provides a buffer
against crashes by ensuring alternative routes of
sustenance in the event of loss of core nodes. Crashes
occur typically when the core has thinned out, and such
fragile states take longer to be realized when there is a
larger number of paths in the core to begin with.

We remark that unlike the models considered by
May (1972, 1973), in the present model crashes are not
due to the instability of the population dynamics with
respect to fluctuations of xi about its fixed point. For
any graph, the attractor of equation (2.2), denotedX, is
an eigenvector of C corresponding to its largest
eigenvalue. For a generic non-negative matrix C that
arises in the organized state, the largest eigenvalue is
non-degenerate and the corresponding eigenvector X is
therefore a unique, global attractor (independent of
initial conditions), stable against perturbations of the xi
(all eigenvalues of the appropriate Jacobian arising
from equation (2.2), evaluated at xZX, are negative).
Crashes occur because the graph changes structurally
in a graph update, and sometimes (especially where the
core has thinned out) a small change in the graph at just
one node can cause the population attractor of the new
graph to be quite different from the old one, with many

http://rsif.royalsocietypublishing.org/
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Figure 5. ln(Np) versus s for various values of m denoted by
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straight lines are least square fits whose slopes give b(m).

0

0.1

0.2

0.3

2 22 24 26 28 210 212 214 216

no
rm

al
iz

ed
 f

re
qu

en
cy

no. of closed paths

Figure 4. Normalized frequency distribution of closed paths in
the core across the sample of all time steps in the organized
state, with logarithmic (base 2) binning, for mZ0.25 and
sZ500 (filled circles solid line). Similar distribution but across
the smaller sample of time steps just preceding crashes
(unfilled circles dashed line). The curves are least square fits
to the data using a normal distribution.
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b(m) as functions of m. Squares, a(m) for hZ0.50; triangles,
a(m) for hZ0.75; circles, b(m).
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of the species populated in the former attractor
unpopulated in the new one. To make this explicit, let
n be a graph update time step at which a crash occurs in
the organized state, i.e. s1(nK1) equals s or sK1, and
s1(n)%hs. The graphs at the two consecutive time steps
are denoted C(nK1) and C(n), and the corresponding
attractors of equation (2.2) (steady state relative
population vectors) as X(nK1) and X(n). Before the
graph update at n, the populations are in the
configuration X(nK1) that is a stable fixed point of
equation (2.2) with CZC(nK1) (the appropriate
Jacobian has all eigenvalues negative, independent of
parameter values s and m). After the graph update
X(nK1) is no longer the attractor of equation (2.2)
since C has changed from C(nK1) to C(n). The
populations move to the configuration X(n) that is a
stable fixed point of equation (2.2) with CZC(n). The
crash occurs because a small structural change in C
(note that the matrices C(nK1) and C(n) differ in just
O(1) number of entries in the row and column
corresponding to the replaced node) has caused a
large change in the attractor of equation (2.2) (the
J. R. Soc. Interface
number of non-zero components of X(nK1) is s or sK1
and ofX(n) is%hs). Our results imply that as diversity
and hence the number of feedback loops increases,
structural changes that arise in the course of evolution
are less likely to cause such serious changes in the
population attractors.
4. DISCUSSION

As in real evolutionary systems, the model generates
several dynamical time scales. The model has only two
parameters: system size or diversity, s, and the average
connectivity of a new node,m (the latter being typically
O(1)). In spite of its extreme simplicity, the time scales
that dynamically appear have a wide range of
dependence on s, including logarithmic, power law
and exponential. The time scale for the appearance of
an ACS is independent of s and the time scale of its
growth is wln s (Jain & Krishna 1998, 2001; at
constant m, in scaled units of time as used in figure 1).
Once a crash sets in it occurs fast—on a time scalew1/s
in the present version of the model. The fast collapse
with a relatively slower recovery seen in the model is an
observed feature in the fossil record as well as stock
markets. The lifetime of the system between its growth
and collapse has turned out to be the time scale that is
the most sensitive to its diversity, namely, weas, as
shown here. Such a dependence means that there is a
threshold scale of diversity set by 1/a, such that if
diversity is well above this scale, the system is robust to
crashes, but if it is close to or lower it is vulnerable.

The dynamics of growth and collapse in our model is
different from other existing models, including various
models of extinction studied in the literature (see the
review by Newman & Palmer (2003) and references
therein). The seed for the growth of complexity in this
model is a small feedback loop (usually a two-cycle)
that arises in the network by chance. The cooperativity
implicit in this autocatalytic structure causes its nodes
to have much higher populations than other nodes.
Under a selection dynamics that preferentially pre-
serves nodes with higher population, such a structure is
stable and grows in complexity until it spans the whole
system. Then, the same selection dynamics causes
its components, erstwhile cooperators, to become
competitors. This happens because the eliminated

http://rsif.royalsocietypublishing.org/
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node now belongs to the ACS, whereas before spanning
it was outside the ACS. This leads to internal
organizational restructuring of the ACS, and, on a
certain time scale, when its internal feedback loops
become sparse, to fragility. Thus, we have here an
example of how the very success and domination of a
certain organizational structure changes the effective
rules of the game leading to the collapse of the structure
(for another such example see the model of Cohen et al.
(2001)). This is reminiscent of how certain civilizations
and organizations collapse (Tainter 1990; Diamond
2006). The role of feedback loops in a network structure
that evolves under both selection and stochastic forces is
also characteristic of several real evolutionary systems.

It is significant that in several generalizations of this
model introduced earlier (Jain & Krishna 2002b;
Krishna 2004), we find that the lifetime of the
evolutionary network increases exponentially with the
diversity. This includes models where the network
allows self loops, both positive and negative links (that
inhibit species production), and links with varying
strengths. This also includes a model in which the
number of species s is itself a dynamical variable. Here,
instead of eliminating the least populated node, all
species whose relative population falls below a specified
threshold are eliminated at every graph update time
step, and only one new node is brought into the
network. Our main result that system lifetime grows
exponentially with s and that fragility to crashes arises
when the density of feedback pathways thins out holds
for all these models. Details will be presented elsewhere
(Mehrotra et al. in preparation).

It would be interesting to consider more general
classes of network models showing crashes and recov-
eries (including those that capture the dynamics of
organisms, ecosystems, societies, etc. more realistically)
and to explore the extent to which they share the
behaviour of our simple idealized model. The linear
terms in equation (2.1), motivated by catalytic chemical
production, would need to be replaced by more complex
functional responses used in population dynamics. The
construction and analysis of such models showing non-
trivial crashes and recoveries of network structure
remains as an important open problem.

Mathematical models of ecosystems suggest that
several factors determine ecosystem stability under
various types of perturbations (see the reviews of
McCann (2000), McKane & Drossel (2006), Montoya
et al. (2006), Pascual et al. (2006) and references
therein). The suggested importance of the multiplicity
of sustenance pathways of species (MacArthur 1955) is
analogous to the result we have found above. Note that
as in the core of our graphs, so in ecosystems at the most
basic level there exists several feedback loops between
plants and microbial communities that feed on detritus
and restore soil nutrients and other components of the
atmosphere that are recycled in nature. Disruption of
these feedback pathways would, beyond a certain point,
be catastrophic for the ecosystem as a whole. Most
ecosystem models concerned with stability typically
take into account only the plants and higher trophic
levels, and exclude microbes (see, however, the work of
Neutel et al. (2007)), detritus and inorganic molecules
J. R. Soc. Interface
that provide essential feedback loops. Our work
suggests that newer and perhaps clearer patterns may
emerge when models and field data are considered that
include these components along with other trophic
levels. It may also be of interest to explore connections
with networks of mutualistic interactions among
species that contain nested feedback loops and are
regarded as being important for biodiversity and
evolution of ecosystems (Bascompte et al. 2003;
Thompson 2005).

To summarize, we have considered the effect of
structural perturbations of species (node/link) removal
and introduction that arise in the natural course of
evolution in a highly self-organized network. This work
shows how an increase in diversity and link density can
contribute to long-term system stability against crashes
caused by such perturbations by increasing the
cooperative routes of sustenance in the network.

We thank Sandeep Krishna for collaboration during the initial
phase of this work and Areejit Samal for help with graph
visualization. S.J. acknowledges support from the Robustness
programme of the Santa Fe Institute and a grant from the
Department of Biotechnology, Government of India.
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