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a b s t r a c t

In the k-means problem, we are given a finite set S of points in ℜ
m, and integer k ≥ 1, and

we want to find k points (centers) so as to minimize the sum of the square of the Euclidean
distance of each point in S to its nearest center. We show that this well-known problem is
NP-hard even for instances in the plane, answering an open question posed by Dasgupta
(2007) [7].
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1. Introduction

In the k-means problem, we are given a finite set S of points in ℜ
m, and integer k ≥ 1, and we want to find k points

(centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. This is a
well-known and popular clustering problem that has also received a lot of attention from the algorithms community.

Lloyd [17] proposed a very simple and elegant local search algorithm that computes a certain local (and not necessarily
global) optimum for this problem. Har-Peled and Sadri [11] and Arthur and Vassilvitskii [5,4] examine the question of how
quickly this algorithm and its variants converge to a local optimum. Lloyd’s algorithm also does not provide any significant
guarantee about howwell the solution that it computes approximates the optimal solution. Ostrovsky et al. [20] and Arthur
and Vassilvitskii [6] show that randomized variants of Lloyd’s algorithm can provide reasonable approximation guarantees.

The k-means problem has also been studied directly from the point of view of approximation algorithms. There are
polynomial time algorithms that compute a constant factor approximation to the optimal solution; see for instance the
local search algorithm analyzed by Kanungo et al. [13]. If k, the number of centers, is a fixed constant, then the problem
admits polynomial time approximation schemes [8,14]. If both k and the dimension m of the input are fixed, the problem
can be solved exactly in polynomial time [12].

Drineas et al. [9], Aloise et al. [2], and Dasgupta [7] show that the k-means problem is NP-hard when the dimension m
is part of the input even for k = 2. However, to the best of our knowledge, there is no known NP-hardness result when the
dimensionm is fixed and k, the number of clusters, is part of the input. Dasgupta [7] raises the question of whether k-means
is hard in the plane.

In this paper, we establish the NP-hardness of the k-means problem in the plane. Thus the main result of the paper is the
following:
Theorem 1. Given a finite set S = {pi, p2, . . . , pn} of points with rational coordinates in ℜ

2, an integer k ≥ 1, and a bound
R ∈ ℜ which is a rational number, it is NP-hard to determine if there exist k centers {c1, . . . , ck} anywhere in ℜ

2 such that
n

i=1


min
1≤j≤k

[d(pi, cj)]2


≤ R.
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Our proof uses a reduction from the planar 3SAT problem [16] and is inspired by a construction used by Megiddo and
Supowit [19] in the context of showing the NP-hardness of the k-center and the k-median problem. Given an instance I of
planar 3SAT, we construct a planar graph from I, embed it in an integer grid using the technique of [1], and construct the
k-means instance from this grid embedding. (See Fig. 4.)

While clustering problems generally tend to be NP-hard even in the plane, there are surprising exceptions — the problem
of covering a set of points by k balls so as to minimize the sum of the radii of the balls admits a polynomial time algorithm
if we use L1 balls, and a (1 + ε)-approximation algorithm that runs in time polynomial in the input size and log 1

ε
for the

usual Euclidean balls [10].
The rest of this article is organized as follows. In Section 2, we define the problem formally and state some useful

properties of the optimal clustering. In Section 3, we describe our reduction from planar 3SAT to the k-means in the plane.

2. Preliminaries

The problem of k-means clustering is defined as follows:

Definition 2. Given a set of n points S = {p1, . . . , pn} in Rm, find a set of k points B = {b1, b2, . . . , bk} ⊂ Rm such that
n

i=1

[d(pi, B)]2

is minimized. This minimum value is denoted Opt(S, k).
Here d(pi, B) is the Euclidean distance from pi to the nearest point in B; d(pi, B) = min1≤j≤k d(pi, bj).

We consider the problem form = 2, and refer to it as planar k-means.
Choosing the set B of k centers fixes a clustering C of the points in S, with each point going to its nearest center (breaking

ties arbitrarily). On the other hand, if a set C ⊆ S is known to form a cluster, then the center of the cluster is uniquely
determined as the centroid of the points in C . Thus we can talk of the cost of a cluster C = {p1, . . . , pm} and a clustering
C = {C1, . . . , Ck}:

Opt(C, 1) = Cost(C) = min
b

m
i=1

[d(pi, b)]2

Cost(C) =

k
j=1

Cost(Cj).

Thus Opt(S, k) is the minimum, over all clusterings C of S into k clusters, of Cost(C).
We show the NP-hardness of planar k-means by a reduction from planar 3-SAT [16].

Definition 3 ([16]). Let F be a 3-CNF formula with variables {v1, . . . , vn} and clauses {c1, . . . , cm}. We call G(F) = (V , E)
the graph of F , where

V = {vi|1 ≤ i ≤ n} ∪ {cj|1 ≤ j ≤ m}

E = E1 ∪ E2 where
E1 = {(vi, cj)|vi ∈ cj or v̄i ∈ cj}
E2 = {(vj, vj+1)|1 ≤ j < n} ∪ {(vn, v1)}.

If G(F) is a planar graph, F is called a planar 3-CNF formula. The planar 3-SAT problem is to determine whether a given planar
3-CNF formula F is satisfiable.

We note that our reduction, in fact, requires only the graph (V , E1) to be planar. (Some of the literature in fact refers to
this sub-graph as the graph of F , but we follow the convention from [16].)

Henceforth throughout this note, we use the term distance to mean square of Euclidean distance. That is, dist(p, q) =

[d(p, q)]2. We will be explicit when deviating from this convention.
We use the following well-known or easily verifiable facts about the k-means problem [12,9].

Proposition 4. 1. The cost of a cluster of points is half the average sum of distances from a point to the other points in the cluster:

Cost(S) =
1

2|S|


p∈S


q∈S;q≠p

dist(p, q).

In other words, if S = {p1, p2, . . . , pn}, then

Cost(S) =
1
|S|

n
i=1

n
j=i+1

dist(pi, pj).

In the following, we will use this form as the definition for the cost of a cluster.
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2. If, in an instance of the k-means problem, the given points form a multiset, then we say that a clustering is multiset respecting
if it puts all points at the same location into the same cluster.

Every instance of the k-means problem has a multiset-respecting optimal clustering.
3. Let S be a multiset instance of the k-means problem, and let S ′ be the instance obtained by adding a point p to S. Then ∀k,

Opt(S, k) ≤ Opt(S ′, k).
4. In particular, adding a point to a cluster cannot decrease the cost of that cluster; Cost(S) ≤ Cost(S ∪ {p}).
5. If clustering C ′ refines clustering C (that is, every cluster in C is the union of some clusters in C ′), then Cost(C ′) ≤ Cost(C).

3. Reduction from planar 3SAT to k-means

Let F be the given planar 3SAT instance with n variables and m clauses. We construct an instance I of planar k-means
corresponding to F . We list the required properties of this instance in Section 3.1. In Section 3.3, we describe a layout which
indeed satisfies these properties, and also prove the correctness of the reduction. The reduction may introduce irrational
coordinates in the resulting k-means instance. Rounding these irrational coordinates to sufficiently close rational points is
described in Section 3.4.

3.1. Properties of the layout

The corresponding k-means instance I we construct will satisfy the following:

1. Corresponding to each variable xi, there is a simple circuit si in the plane, with an even number of vertices marked on it.
At each vertex on such a circuit,M copies of a point are placed. The circuits for different variables do not intersect.

For each circuit, its vertices can be partitioned into pairs of adjacent vertices in two ways. We associate one of them
(chosen arbitrarily) with the assignment xi = 1 and the other with xi = 0. We call the first pairing the ‘true matching’
and the other pairing the ‘false matching’.

2. Let u, v be any two distinct vertices taken from any of the circuits (not necessarily the same circuit). If u and v are adjacent
on some circuit, then the distance between them is β . Otherwise, the distance between them is at least 2β .

3. There is a point pj corresponding to every clause Cj. If xi ∈ Cj (x̄i ∈ Cj) then there is a unique nearest edge (u, v) on the
true (respectively false) matching of the circuit si such that pj is equidistant from u and v. It is at distance α from the
midpoint of uv, and hence at a distance α +

β

4 from u and v. All vertices other than the endpoints of these nearest edges
(two per literal in the clause, so at most six) are at a distance at least α +

5β
4 from pj.

Clause points pj and pl, for l ≠ j, are at distance at least θ from each other.
4. The instance I consists of all the clause points, and M copies of a point at each vertex on each circuit si. The parameters

satisfy

M ≥
6αm
β

θ ≥ 2(M + 1)αm.

5. The value of k is given by

k =

n
i=1

|si|
2

.

We ensure that the optimal k-means clustering puts the points in each circuit si into
|si|
2 clusters by dividing them into

either true pairs or false pairs. (Thus these clusters contain 2M points.) Every clause point pj has at most three pairs of
point locations at distance α from itself. It is clustered with one of these pairs if that pair forms a cluster in the circuit si.
Otherwise, the optimal clustering puts pj along with some pair of point locations that forms a cluster in the circuit it appears
in. In particular, if xi is assigned a value 1, then in the corresponding k-means clustering, points of si are clustered according
to the true matching, otherwise they are clustered according to the false matching. Similarly, if the assignment to a variable
xi satisfies a clause cj, then the clause point pj is at distance α+

β

4 from the vertices of a cluster in si, otherwise it is at distance
strictly greater than α +

β

4 from at least one vertex in every cluster in si.
We need to show that

1. A layout satisfying the above properties gives a correct reduction from planar 3SAT to planar k-means. This is done in
Section 3.2.

2. The layout is indeed possible for some choice of α, β, θ,M , and can be obtained in polynomial time. This is done in two
stages: a layout with irrational coordinates is described in Section 3.3, and in Section 3.4 we describe how to eliminate
the irrational coordinates.
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3.2. Correctness of the reduction

Consider clustering of only circuit points into k non-empty clusters.

Lemma 1. 1. Clustering the circuit points into consecutive pairs (i.e. into the true or the false matching for each variable) has
cost kMβ

2 .
2. Any other multiset-respecting clustering of circuit points has cost at least kMβ

2 +
Mβ

3 .

Proof. Let A be any matching based k-means clustering of the circuit points. Then using Proposition 4(1) we can see that
Cost(A) =

kMβ

2 .
Let B be some multiset-respecting clustering that does not correspond to a matching on the circuits. By the size of a

cluster, we mean the number of distinct vertices (and hence allM points at that vertex) in it.
If the largest cluster in B has 2 vertices, then every cluster is a pair, and at least one pair is not consecutive on any circuit.

Hence

Cost(B) ≥
(k − 1)Mβ

2
+

M2(2β)

2M
=

kMβ

2
+

Mβ

2

satisfying the claimed bound.
So now assume that B has some larger clusters too. Let B contain p clusters of sizes l1, . . . , lp more than 3 each, q clusters

of size 3 each, r clusters of size 2 each, and s clusters of size 1 each. Then we have the following:

p + q + r + s = k (1)
p

i=1

li + 3q + 2r + s = 2k. (2)

Subtracting twice the first equation from the second, and using p =
p

i=1 1, we get

s =

p
i=1

(li − 2) + q. (3)

For a cluster C of size l ≥ 4, the best possible situation is that l pairs within the cluster are edges on some circuit. Thus
the cost of such a cluster is at least

Cost(C) ≥
1
lM


lM2β +


l
2


− l


M22β


= (l − 2)Mβ.

Similarly, in a cluster of size 3, at most two pairs can be edges on a circuit (the circuits are of even length), so the cost is
at least 4Mβ/3.

The cost of the (p, q, r, s) clustering B thus satisfies:

Cost(B) ≥ Mβ


p

i=1

(li − 2) +
4q
3

+
r
2



=
Mβ

2


s + r + q +

2q
3

+

p
i=1

(li − 2)


from (Eq. (3))

≥
Mβ

2


s + r + q + p +

2q
3

+ p


∵ li − 2 ≥ 2

=
Mβ

2


k + p +

2q
3


from (Eq. (1))

≥
kMβ

2
+

(p + q)Mβ

3

≥
kMβ

2
+

Mβ

3
∵ p + q ≥ 1.

Thus any multiset-respecting clustering of circuit points that is not a matching based clustering has a cost larger than the
matching based clusterings, and the difference is at least Mβ

3 . �

Lemma 2. The formula is satisfiable if and only if there is a clustering of value at most kMβ

2 +
2M

2M+1αm.
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Proof. (⇒:) Consider one of the satisfying assignments of the formula. A clustering can be constructed from it as follows:
If xi = 1 (respectively xi = 0), cluster the points of si according to the true (false) matching. As every clause Cj is satisfied,

fix one of the variables xi that satisfies it. Put the clause point pj with the nearest pair of si. If xi = 1, then points of si are
clustered into truematching pairs. Further, xi appears in Cj in non-negated form, and so, by our construction, pj is at a distance
α from the midpoint of one of the true matching pairs. Thus pj can be clustered with this pair. The cost of this cluster is

Cost(cluster) =
1

2M + 1


M2β + 2M


α +

β

4


=

2M
2M + 1

α +
Mβ

2
.

The case xi = 0 is analogous. Clustering all clause points in this way gives a clustering where m clusters contribute
Mβ

2 +
2M

2M+1α each, and the remaining contribute Mβ

2 each, giving an overall value of kMβ

2 +
2M

2M+1αm.
(⇐:) Suppose there is a clustering of value at most kMβ

2 +
2M

2M+1αm. By Proposition 4(2), we can assume that there is
a multiset-respecting clustering C with this value. Let C ′ denote the restriction of C to circuit points. By Proposition 4(4),
adding the clause points cannot decrease the cost of the clustering; thus Cost(C ′) ≤ Cost(C). Now we prove a series of
claims:

1. The restriction of C to circuit points, C ′, has exactly k non-empty clusters.
If C ′ has fewer clusters, then there is a cluster with more than 2 points. Refine the clustering by removing one point

from such a cluster and putting it in a cluster by itself. Repeat until there are exactly k clusters, to get clustering C ′′ of
circuit points. By Proposition 4(5), Cost(C ′′) ≤ Cost(C ′). C ′′ is not matching based (since we created singleton clusters),
so by Lemma 1, it contributes a value of at least kMβ

2 +
Mβ

3 . Since

kMβ

2
+

Mβ

3
≤ Cost(C ′′) ≤ Cost(C ′) ≤ Cost(C),

we have

Cost(C) −


kMβ

2
+

2M
2M + 1

αm


≥
Mβ

3
−

2M
2M + 1

αm ≥
Mβ

6
> 0,

where the second inequality follows by our choice of M . We have reached a contradiction to our assumption about
Cost(C).

2. C ′ is a matching based clustering. That is, in C, all circuit points are clustered into a matching based clustering.
If not, then by the argument used above for C ′′, we obtain a contradiction to our assumption about Cost(C).

3. No cluster in C has more than one clause point.
If some cluster C has two or more clause points, then let u, v be the vertices of the matching in C , and let p, q be two

distinct clause points in it. By Proposition 4(4), the cost of the cluster C is at least the cost of the cluster containing just
u, v, p, q. Thus using Proposition 4(1), we have

Cost(C) ≥
1

2M + 2


M2β + 4M


α +

β

4


+ θ


=

Mβ

2
+

4Mα + θ

2(M + 1)
.

All other clusters have a cost of at leastMβ/2 each, so the overall cost is at least

Cost(C) ≥ (k − 1)
Mβ

2
+

Mβ

2
+

4Mα + θ

2(M + 1)

≥
kMβ

2
+

4Mα + 2(M + 1)αm
2(M + 1)

by our choice of θ

>
kMβ

2
+

2M
2M + 1

αm a contradiction.

4. Each clause point is clusteredwith the nearest pair of circuit points, which should also be amatching pair in thematching
based clustering.

Every cluster containing a clause point has cost Mβ

2 +
2Mα
2M+1 if the circuit edge in the cluster is nearest the clause point,

and has cost at least Mβ

2 +
2M

2M+1α +
Mβ

2M+1 otherwise.

Thus a satisfying assignment can be constructed from this clustering. �

3.3. The details of the layout

We now describe the layout obtained from the planar 3SAT formula F that gives us the desired instance I of the k-means
problem. Let G = (V , E) be the associated planar clause-variable incidence matrix. (From Definition 3, G = (V , E1). Since
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Fig. 1. Creating circuits for variables.

Fig. 2. Repositioning clause points.

Fig. 3. Adjusting the parity of circuits relative to clause points.

G(F) is planar, so is G.) Note that the vertex set V of G can be partitioned into two sets: X corresponding to variable vertices,
and Y corresponding to clause vertices, and G is bipartite with E ⊂ X × Y . All vertices in Y have degree at most 3, and all
vertices in X have degree at mostm.

1. Let E be a planar combinatorial embedding of G; such an embedding can be obtained in polynomial time, and even in
log space. (See for instance [1].) E corresponds to some plane drawing of G and specifies, for each vertex v, the cyclic
ordering of the edges incident on v in this drawing.

2. Construct a related bounded-degree planar graphH and an embedding E ′ as follows: replace each vertex v ∈ X by a cycle
Cv on m vertices, v1, v2, . . . , vm. Reroute the d(v) edges incident on v in G to the first d(v) of these vertices, in the same
order as dictated by E . It is straightforward to see that H is planar, and its embedding E ′ can be easily obtained from E .
The maximum degree of any vertex in H is 3. The vertex set of H is the disjoint union of X ′ and Y , where X ′

= X × [m].
3. Consider a plane drawing of H where vertices are embedded at points on an integer grid, and edges are embedded as

rectilinear paths. Such a drawing can be obtained in polynomial time [15,21], and even in logarithmic space [1].
4. Inflate the grid by a factor of b ≥ 14.

This ensures, in particular, that every vertex or bend point u is at the center of a big box Bu of size b × b, and a small
box Su of size 6 × 6. The big boxes for different grid points have disjoint interiors, and thus contain no other vertex or
bend point even on their boundaries.

Consider an edge connecting vertex [x, k] ∈ X ′ with vertex y ∈ Y . Replace it by a pair of parallel rectilinear paths
separated by two grid squares. At the y end, join up these paths along the boundary of Sy. At the [x, k] end, splice them
alongwith the edges to [x, k−1] and [x, k+1] to form a continuous path. See Fig. 1. Note that some additional rectilinear
bends might be required at the [x, k] end, (see, for example, (x, 4) in Fig. 1).

For each vertex x ∈ X (and hence for each variable in F ), this process distorts the cycle Cx in H into a circuit t . Let ti
denote the circuit corresponding to variable xi. Since ti is a rectilinear circuit on a grid, it is of even length.

5. Each clause point yj is now moved to the center of one of the grid squares touching it, the one that is to the North-West.
Extend the three circuits ‘‘incident’’ to the clause point, if necessary, so that all incident circuits are at a Euclidean distance
of precisely 5

2 times the grid length from the moved clause point. See the layout and the modification in Fig. 2.
6. For each circuit ti, arbitrarily fix one of its perfect matchings as the true matching, and the other as the false matching.

Let clause Cj contain variable xi positively (negatively, respectively). If in the layout so far, yj is nearest a true (false,
resp.) edge of ti, then nothing needs to be done. If, however, the edge of ti nearest yj is a false (true, resp.) edge, further
deform ti in the area within Byj but outside Syj . Replace a sub-path of length two (on each parallel path) by a path of
length three, with the vertices laid out on a regular semi-hexagon and hence at distance one from their neighbours on
the circuit. Change the true/false matchings within Byj to be consistent with the labelling outside. This makes the edge
nearest yj a true edge if it was false earlier, and vice versa. The overall length of the circuit remains even. See Fig. 3.
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Fig. 4. The layout for F = (a ∨ b ∨ c) ∧ (b ∨ c).

Fig. 5. The distances α, β shown inside Bu for a clause point u.

Since the grid was inflated sufficiently, these distortions do not affect other vertices/bends.
After doing this distortion wherever needed, the resulting circuit for a variable is the required circuit si.

Fig. 4 gives the complete layout for a small planar 3SAT instance.
Let the squared unit length of the grid be β . Then α = ( 5

2 )
2β = 6.25β . Any two clause points are separated either

vertically or horizontally by b grid lengths, so the distance between them is at least θ = b2β .
Fig. 5 shows the box Bu for a clause point u, and within this box the smallest distances are demonstrated. The nearest

vertices are A3 and A4 (and the corresponding vertices on the other two circuits as well). The distances satisfy the following:

point pair distance point pair distance

u, A2 α + 6β + β/4
Ai, Ai+1 β u, A3 α + β/4
A1, A3 3β u, A α
A2, A4 2β u, A4 α + β/4
A3, A5 4β u, A5 α + 2β + β/4

It is straightforward to see that withM = 38m, b = 28m, all the required conditions on the parameters are satisfied.

3.4. Dealing with the irrational coordinates

In the last step of the layout, where we replace certain sub-paths of length 2 by sub-paths of length 3, the numerators
of the point coordinates become irrational. Essentially, we introduce multiples of

√
3 in the numerator. However, there is a

gap in Lemma 2 between the k-means clustering costs corresponding to satisfiable and unsatisfiable instances. So we may
‘‘round’’ these irrational points to sufficiently close rational points.

Lemma 2 shows that the optimal k-means clustering cost is at most µ =
kMβ

2 +
2M

2M+1αm in the case where the original
planar 3-CNF formula is satisfiable; a quick glance at the proof shows that if the original formula is not satisfiable, the
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optimal k-means clustering cost is at least µ + λ, where

λ = min

Mβ

6
,

2Mα

M + 1
,

Mβ

2M + 1


.

Let ε =
λ/2
µ+λ

<
λ/2
µ

.

Let dmin denote the smallest Euclidean distance between two different locations in the layout. We consider a simplistic
rounding: for a locationwith coordinates (x, y)where, say, x is irrational (only one coordinate is irrational in the construction
so far), move the location to (x′, y) so that x′ is rational, and |x′

− x| <
εdmin

8 . Observe that it is possible to find such an x′

in polynomial time ([18], Theorem 1.4.7). Now if p and q denote two points in the original layout, and p′ and q′ denote the
corresponding points in the rounded layout, then

d(p′, q′) < d(p, q) +
εdmin

4
≤ d(p, q)


1 +

ε

4


(recall, d(u, v) is the Euclidean distance between u and v) and so

dist(p′, q′) < dist(p, q)

1 +

ε

2
+

ε2

8


≤ dist(p, q) [1 + ε] .

Similarly, we can see that dist(p′, q′) > dist(p, q) [1 − ε]. Thus,

(1 − ε)dist(p, q) < dist(p′, q′) < (1 + ε)dist(p, q).

Now, Proposition 4 (1) implies that for any clustering of the points, the ratio of the cost in the rounded layout to the cost
in the original layout is strictly greater than (1 − ε) and strictly less than (1 + ε).

Thus, the optimal k-means clustering cost in the rounded layout is strictly less than (1+ ε)µ ≤ µ+ λ/2 when the input
formula is satisfiable, and is strictly greater than (1 − ε)(µ + λ) ≥ µ + λ/2 when the input formula is not satisfiable.

4. Discussion

We have shown that the k-means clustering problem remains NP-complete even in two dimensions, when the number
of centers k is part of the input. The NP-hardness of this problem has been independently observed by Andrea Vattani [22].

There are still someunsettled issues regarding this hardness. An obvious question iswhether there are natural parameters
associatedwith planar k-means instances such thatwhen these parameters are restricted in someway, the problembecomes
tractable.

• One possible choice of the parameter is k, the number of centers itself. It is known that for planar k-means with constant
values of k, there is a polynomial time algorithm due to [12]. Our reduction places no bounds on the value of k; it is
unrestricted (and in particular, can be as large as θ(n)). A natural question to ask is where is the hardness threshold; at
what values of k does the planar k-means problem become NP-hard. For instance, for k ∈ O(log n), the algorithm by [12]
runs in quasi-polynomial time, and thus is unlikely to be NP-hard. Our reduction shows hardness for a particular choice
of ϵ. Is it hard for k = nϵ for every choice of ϵ ∈ (0, 1)? It has been pointed out by Vattani [22] that this is indeed the
case.

• Another possible parameter to examine is the ratio of the maximum distance between points to the minimum distance.
In an instance generated in our reduction, this ratio is infinity, as there are points with distance 0. A small perturbation
of the points will make this ratio finite, but still unbounded. (On the other hand, it will be polynomial in n.) If the ratio is
known a priori to be, say, linear in n, does it make the problem easier?

However, if we consider only different locations, then the ratio even in our reduction is bounded by a polynomial in
n, as the grid itself is of size polynomial in n. It is not clear if linear ratio is possible preserving hardness.

Regarding approximability also, the picture concerning planar k-means is far from clear. The algorithm of [6] (a variant of
Lloyd’s algorithm), while providing approximation guarantees for general k-means, does not provide any better guarantees
on planar instances. (Although the lower bound example constructed in [6] is for high dimensions, analogous planar
instances can also be constructed.) However, its behaviour on planar instances is not fully understood. In particular, it
is entirely possible that for any planar instance of k-means, the algorithm of [6] gives an O(1)-approximation with high
probability. Even if this is not true, it may still hold for most planar instances. Settling this either way would be of some
interest.

The most important open question is to determine whether there is a PTAS for the planar k-means problem. Note that
for a very similar problem, the planar k-median problem, a PTAS is known to exist [3]. This is despite the fact that unlike the
1-mean, the 1-median does not have a closed form solution.
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