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Abstract: We demonstrate a lower bound technique for linear decision lists, which are
decision lists where the queries are arbitrary linear threshold functions. We use this technique
to prove an explicit lower bound by showing that any linear decision list computing the
function MAJ ◦XOR requires size 20.18n. This completely answers an open question of
Turán and Vatan [19]. We also show that the spectral classes PL1,PL∞, and the polynomial
threshold function classes P̂T1,PT1, are incomparable to linear decision lists.
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1 Introduction

Decision lists are a widely studied model of computation, first introduced by Rivest [18]. A decision list L
of size ` computing a Boolean function f ∈ Bn is a sequence of `−1 instructions of the form if fi(x) = ai

then output bi and stop, followed by the instruction output ¬b`−1 and stop. Here Bn denotes the set of
all Boolean functions in n variables, each fi ∈ Bn is called a query function, and ai and bi are Boolean
constants. If the functions fi all belong to a function class S⊆ Bn, then L is said to be an S-decision list.

Krause [15] showed that there are functions with small representation as AND-decision lists, but
requiring exponential size when computed by depth-two circuits with a linear threshold gate at the top
and XOR gats at the bottom. On the other hand, Impagliazzo and Williams [14] showed that a certain
condition is sufficient to prove lower bounds against a related computation model that can be termed
rectangle-decision lists. Linear decision lists are decision lists where the query functions are linear
threshold functions. Lower bounds against linear decision lists (and even against bounded-rank linear
decision trees, a natural generalisation) for the Inner Product modulo 2 function were proved by Gröger,
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Turán and Vatan, in [10, 19]. Subsequently, Uchizawa and Takimoto [20, 21] showed lower bounds
against the class of linear decision lists and linear decision trees when the weights of the linear threshold
queries are bounded by a polynomial in the input length. In fact, the lower bounds of [20, 21] apply to
any function with large unbounded-error communication complexity.

We observe that the lower bound argument in [19] shows that functions efficiently computable by
linear decision lists (with no restrictions on the weights of the queried linear threshold functions) must
have large monochromatic rectangles. In fact, we build on their argument to establish a more general result
(Lemma 3.2). Informally, we show that if a function has no “large” weight monochromatic rectangles
under some product distribution then it cannot be expressed by “small” linear decision lists. We then
use this fact to establish a lower bound for a seemingly simple function, MAJ◦XOR (see Definition 4.1).
Our main theorem is as follows.

Theorem 1.1. Any linear decision list computing MAJn ◦XOR must have size 2Ω(n).

It is not hard to see that MAJ ◦XOR can be simulated by MAJ ◦MAJ circuits with only a linear
blow-up in size. This immediately yields the following corollary, resolving an open question posed by
Turán and Vatan in [19].

Corollary 1.2. There exists a function that can be computed by polynomial sized MAJ◦MAJ circuits,
but any linear decision list computing it requires exponential size.

Impagliazzo and Williams [14] demonstrated a function, implicitly computable by polynomial sized
MAJ◦MAJ circuits, which cannot be computed by polynomial sized rectangle-decision lists. We observe
that our lower bound technique against linear decision lists (Lemma 3.2) coincides with the sufficient
condition considered in [14] to prove lower bounds against rectangle-decision lists. Thus, their function
also separates linear decision lists from MAJ ◦MAJ. However, we obtain a 2Ω(n) lower bound on
the length of linear decision lists in Theorem 1.1, improving upon the bound implicit in the work of
Impagliazzo and Williams, which is worse in the exponent by at least a quadratic factor. Very recently,
Chattopadhyay, Mande and Sherif [5] showed several properties of the function SINK◦XOR. We observe
that as a consequence, our lower bound technique against linear decision lists (Lemma 3.2) also applies
to this function. We elaborate more on these remarks in Section 5.

2 Preliminaries

Definition 2.1 (Sign function). The function sign : R→{0,1} is defined as follows.

sign(x) =
{

1 if x > 0
0 if x≤ 0

Definition 2.2 (Linear Threshold Functions). A function f : {0,1}n → {0,1} is said to be a linear

threshold function (LTF) if there exist real numbers w0,w1, . . . ,wn such that f (x) = sign

(
w0 +

n
∑

i=1
wixi

)
.

For strings x,y ∈Rn, we denote their inner product by 〈x,y〉, ∑i xiyi. With this notation, f is an LTF
if for some w0 ∈ R, w̃ ∈ Rn, f (x) = sign(w0 + 〈w̃,x〉).
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Definition 2.3 (Majority). The function MAJn : {0,1}n→{0,1} is the linear threshold function defined
by MAJn(x) = sign(x1 + x2 + · · ·+ xn−n/2).

Definition 2.4 (Function composition). For functions f : {0,1}n→{0,1} and g : {0,1}m→{0,1}, the
function f ◦g : {0,1}nm→{0,1} is defined as follows:

f ◦g(x11, . . . ,x1m, . . . ,xn1, . . . ,xnm) = f (g(x11, . . . ,x1m), · · · ,g(xn1, . . . ,xnm)).

We now formally define the model of computation that is of interest in this paper.

Definition 2.5 (Linear Decision Lists). A linear decision list (LDL) of size k is a sequence
(L1,a1),(L2,a2), . . . ,(Lk,ak), where each ai ∈ {0,1}, and each Li is an LTF with Lk being the constant
function 1. The decision list computes a function f : {0,1}n→ {0,1} as follows : If L1(x) = 1, then
f (x) = a1; elseif L2(x) = 1, then f (x) = a2; elseif . . . , elseif Lk(x) = 1, then f (x) = ak. That is,

f (x) =
k∨

i=1

(
ai∧Li(x)∧

∧
j<i

¬L j(x)

)
.

Definition 2.6 (Communication matrix). For a function F : {0,1}n×{0,1}n→{0,1}, its communication
matrix MF is the 2n×2n matrix with entries MF [x,y] := F(x,y).

Definition 2.7 (Monochromatic rectangles/squares). Let F : {0,1}n×{0,1}n→{0,1} be any function.
For b ∈ {0,1}, a monochromatic b-rectangle is a tuple (X ,Y ), where X ,Y ⊆ {0,1}n and F(x,y) = b for
every (x,y) ∈ X ×Y . We say that (X ,Y ) is a monochromatic square of size s if it is a monochromatic
0-rectangle or 1-rectangle and, furthermore, |X |= |Y |= s.

Definition 2.8 (Product distributions and weights). A probability distribution η over {0,1}n×{0,1}n is
said to be a product distribution if there are probability distributions µ , ν over {0,1}n such that for every
(x,y) ∈ {0,1}n×{0,1}n, η(x,y) = µ(x)×ν(y). We say that η is the product distribution µ×ν .

Given a probability distribution µ over {0,1}n and X ⊆ {0,1}n, µ(X) is defined to be the sum
∑x∈X µ(x). For a rectangle (X ,Y ), its weight under a product distribution µ ×ν is (µ ×ν)(X ×Y ) =
µ(X)×ν(Y ).

We will denote the number of 1’s in a string x ∈ {0,1}n by |x|.

Definition 2.9 (Hamming distance). The (Hamming) distance between any two strings x,y ∈ {0,1}n,
denoted d(x,y), is defined as d(x,y) , |{i : xi 6= yi}|. The Hamming distance between any two sets
A,B⊆ {0,1}n, denoted d(A,B), is the minimum pairwise distance; d(A,B) = minx∈A,y∈B d(x,y).

Definition 2.10 (Hamming balls). Let c ∈ {0,1}n and k ∈ {1, . . . ,n}. A set A ⊆ {0,1}n is called a
Hamming ball with centre c and radius k if

{s ∈ {0,1}n | d(s,c)≤ k−1} ⊂ A⊆ {s ∈ {0,1}n | d(s,c)≤ k}.

A singleton set A = {c} is a Hamming ball with centre c and radius 0.
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For a set A⊆ {0,1}n, the boundary of A is the set {s ∈ {0,1}n | d(s,A) = 1}. In [13], Harper proved
an isoperimetry result: among all sets of a given cardinality, Hamming balls have the smallest boundary
set size. A simplified proof was given by Frankl and Füredi [8], who also stated the theorem in the
equivalent form we mention below. (See also the presentation in [1]).

Theorem 2.11 (Harper’s Theorem). Let A,B⊆ {0,1}n be non-empty sets. Then, there exists a Hamming
ball A0 with centre 0n and a Hamming ball B0 with centre 1n such that |A0| = |A|, |B0| = B, and
d(A0,B0)≥ d(A,B).

Definition 2.12 (Binary Entropy). The binary entropy function H : [0,1]→ [0,1] is defined as follows:
H(p) =−p log p− (1− p) log(1− p).

Fact 2.13. H(1/4)< 0.82.

3 Linear decision lists contain large monochromatic rectangles

The argument of Turán and Vatan from [19] implicitly showed that any function f : {0,1}n×{0,1}n→
{0,1} with no large monochromatic squares cannot be computed by small linear decision lists. Their
argument was presented specific to the Inner Product function (Theorem 1 in [19]). However, it is not
too hard to see that their proof in fact works for any function as long as it has no large monochromatic
squares. In this section, we generalize their argument to show that all functions computable by small size
linear decision lists must contain, under any product distribution, a monochromatic rectangle of large
weight with respect to that distribution.

We first establish a technical lemma that can be seen as a generalization of Lemma 2 in [19].

Lemma 3.1. Let f be an LTF over the input variables x1, . . . ,xn,y1, . . . ,yn. Let µ,ν be distributions over
{0,1}n, and X ,Y ⊆ {0,1}n. Define m := min{µ(X),ν(Y )}, and let t ∈ (0,m]. Then, one of the following
is true.

1. There exists a monochromatic 1-rectangle (X ′,Y ′) within X×Y (i.e., X ′ ⊆ X and Y ′ ⊆Y ) such that
µ(X ′)≥ t and ν(Y ′)≥ t.

2. There exists a monochromatic 0-rectangle (X ′,Y ′) within X ×Y such that µ(X ′) > m− t and
ν(Y ′)> m− t.

Proof. Let M be the submatrix of M f restricted to X ×Y . Let the LTF f be given by sign(a+ 〈α · x〉+
〈β ·y〉). Reorder the rows and columns of M in decreasing order of a+ 〈α ·x〉 and 〈β ·y〉 to get the matrix
B = R×C. Let i denote the least index of a row in B such that µ({R1, . . .Ri}) ≥ t, and j denote the
least index of a column in B such that µ({C1, . . .C j})≥ t. Note that these indices are well-defined since
t ∈ (0,m]. If the [i, j]’th entry of B is 1, then the top-left submatrix of B satisfies item (1) in the lemma. If
the [i, j]’th entry of B is 0, then the bottom-right submatrix of B satisfies item (2) in the lemma.

We now prove the main lemma.

Lemma 3.2. Let µ,ν be distributions on {0,1}n. Let f : {0,1}n×{0,1}n→{0,1} be any function with
no monochromatic rectangle of weight greater than w under the distribution µ×ν . Then, any linear
decision list computing f must have size at least 1/

√
w.
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Proof. Towards a contradiction, let (L1,a1),(L2,a2), . . . ,(Lk,ak) be an LDL of size k computing f , where
k < 1/

√
w. Pick any t ∈ (

√
w,1/k]. We construct, for each i ∈ [k−1], a rectangle Si = Xi×Yi which is a

0-rectangle for all L j with j ≤ i, and furthermore µ(Xi),ν(Yi)≥ 1− i · t. We proceed by induction on i.
For the base case i = 1, let S0 = (X0,Y0) be the entire 2n× 2n matrix. Suppose S0 has a rectangle

(X ′,Y ′) that is a 1-rectangle of L1 and moreover, µ(X ′)≥ t, ν(Y ′)≥ t. Then everywhere in this rectangle,
f will be a1. But f has no monochromatic rectangle of weight as large as t2 > w. So S0 has no rectangle
(X ′,Y ′) with µ(X ′) ≥ t, ν(Y ′) ≥ t that is a 1-rectangle of L1. By Lemma 3.1, S0 must then contain a
0-rectangle (X1,Y1) of L1 such that both µ(X1) and ν(Y1) are at least 1− t. This establishes the base case.

For the inductive step, we have a rectangle Si−1 =(Xi−1,Yi−1) which is a 0-rectangle for L1,L2, . . . ,Li−1
and, moreover, min{µ(Xi−1),ν(Yi−1)} ≥ 1− (i−1)t. Within this rectangle, suppose Li has a 1-rectangle
(X ′,Y ′) such that µ(X ′) ≥ t and ν(Y ′) ≥ t. Then f = ai in this rectangle, giving a monochromatic
rectangle of f of weight greater than w. But we know that such rectangles do not exist. Since kt ≤ 1 and
i < k, we have t ≤ 1− (i−1)t and hence Lemma 3.1 is applicable. Hence we conclude that Si−1 must
contain a 0-rectangle (Xi,Yi) of Li with min{µ(Xi),ν(Yi)} ≥ 1− (i−1)t− t = 1− it. Since this rectangle,
say Si, is contained in Si−1, it is a 0-rectangle for all L j with j ≤ i.

Thus, we have a rectangle Sk−1 = (Xk−1,Yk−1) on which L1,L2, . . . ,Lk−1 are 0, and Lk = 1 because
Lk is the constant function 1. Furthermore, µ(Xk−1) and ν(Yk−1) ≥ 1− (k− 1)t. Everywhere on this
rectangle, f evaluates to ak. So Sk−1 is a monochromatic rectangle for f . Hence it cannot have weight
more than w. Thus 1− (k−1)t ≤

√
w < t; that is, 1 < kt, contradicting our choice of t.

4 MAJ◦XOR has no large monochromatic squares

In this section, we show an upper bound and a matching tight lower bound on the size of a largest
monochromatic square in the communication matrix of the MAJ◦XOR function.

Definition 4.1 (XOR functions). For a function f : {0,1}n → {0,1}, let f ◦XOR denote the function
defined by f ◦XOR(x1, . . . ,xn,y1, . . .yn) = f (x1⊕ y1, . . . ,xn⊕ yn).

Lemma 4.2. Let F : {0,1}n×{0,1}n→ {0,1} be the function MAJn ◦XOR. Then, for any b ∈ {0,1},

MF has a monochromatic b-square of size at least
bn/4c

∑
i=0

(n
i

)
.

Proof. Define the sets X ,Y,Z as follows:

X = Y = {x ∈ {0,1}n : |x| ≤ bn/4c}.
Z = {x ∈ {0,1}n : |x| ≥ n−bn/4c}.

Note that F(x,y) = 0 for all x ∈ X ,y ∈ Y , and F(x,z) = 1 for all x ∈ X , z ∈ Z. Thus (X ,Y ) and (X ,Z) are

a monochromatic 0-square and 1-square, respectively, each of size
bn/4c

∑
i=0

(n
i

)
.

Remark 4.3. We remark that when n ≡ 3 (mod 4) the above construction can be improved if we
consider monochromatic rectangles. That is, for any b ∈ {0,1}, MF has a monochromatic b-rectangle
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(X1,X2) such that |X1| =
dn/4e

∑
i=0

(n
i

)
and |X2| =

bn/4c
∑

i=0

(n
i

)
. Indeed, let X = {x ∈ {0,1}n : |x| ≤ dn/4e},

Y = {x ∈ {0,1}n : |x| ≤ bn/4c} and Z = {x ∈ {0,1}n : |x| ≥ n−bn/4c}. Then, it is easily seen that (X ,Z)
(resp., (X ,Y )) is a monochromatic 1-rectangle (resp., 0-rectangle) of the claimed size.

We now show that this bound is tight.

Theorem 4.4. Let F : {0,1}n×{0,1}n→ {0,1} be the function MAJn ◦XOR. For any n, MF has no

monochromatic squares of size greater than
dn/4e

∑
i=0

(n
i

)
.

Proof. Suppose, to the contrary, that there are sets A,B ⊆ {0,1}n such that |A| = |B| >
dn/4e

∑
i=0

(n
i

)
and

A×B is a monochromatic 1-square in MF . By the definition of F , this implies d(A,B) > bn/2c. By
Theorem 2.11, there exist Hamming balls A0 around 0n, and B0 around 1n such that |A0|= |A|, |B0|= |B|
and d(A0,B0) ≥ d(A,B). The size lower bound enforces that the radius of A0 and B0 must be greater
than dn/4e, and since they are centered on 0n and 1n, it follows that d(A0,B0) ≤ bn/2c. But then
d(A,B) is also at most bn/2c. Hence, there exist x ∈ A,y ∈ B such that d(x,y) ≤ bn/2c, which means
F(x,y) = MAJn ◦XOR(x,y) = 0, which contradicts our assumption. Therefore, any monochromatic

1-square in MF has size at most
dn/4e

∑
i=0

(n
i

)
.

A similar argument shows the same upper bound on the size of monochromatic 0-squares.

Now we can put things together to prove our main theorem.

Proof of Theorem 1.1. Let sn be the minimum size of an LDL computing MAJn ◦XOR. Further let µ and
ν be uniform distributions over {0,1}n. Then, by Lemma 3.2 and Theorem 4.4, for all n sufficiently large,

sn ≥
2n

∑
dn/4e
i=0

(n
i

)
≥ 2n

2n·H(1/4) using Stirling’s approximation

≥ 20.18n. using Fact 2.13

5 LDLs and the threshold circuit hierarchy

In this section, we see how the class of functions computable by polynomial sized LDLs fits into the
low depth threshold circuit hierarchy. The reader is referred to Razborov’s survey [17] for a detailed
exposition on the low depth threshold circuits hierarchy.
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5.1 Definitions

Definition 5.1 (MAJ). Define MAJ to be the class of all functions computable by polynomial sized MAJ
gates. Each input to the MAJ gate may be a constant 0 or 1, or a variable xi, or its negation ¬xi.

Definition 5.2 (LTF). We denote the class of all linear threshold functions by LTF.

(We note that this is an overload of notation. LTF can now denote a single linear threshold function
as well as the class of linear threshold functions. However, we remark that resolving this ambiguity will
be clear from the context.)

Definition 5.3 (LDL). Define LDL to be the class of all functions computable by polynomial sized linear
decision lists.

Definition 5.4 (L̂DL). Define L̂DL to be the class of all functions computable by polynomial sized linear
decision lists where, furthermore, weights of the linear threshold queries are integers with values bounded
by a polynomial in the number of variables.

Definition 5.5 (Depth-2 classes). For classes of functions C,D, define C◦D to be the class of functions
computable by polynomial-sized depth-2 circuits, where the top gate computes a function from the class
C, and the bottom layer contains gates computing functions in D.

Definition 5.6 (P̂T1). The class P̂T1 consists of all functions f : {0,1}n→ {0,1} which can be repre-
sented by polynomial sized MAJ◦PARITY circuits.

Definition 5.7 (PT1). The class PT1 consists of all functions f : {0,1}n→ {0,1} which can be repre-
sented by polynomial sized LTF◦PARITY circuits.

(These are precisely the classes of polynomial threshold functions [2]; it is more convenient for us
here to use the equivalent formulation as depth-2 circuits.)

In order to define classes given by the spectral representation of functions, we first recall a few
preliminaries from Boolean function analysis.

Consider the real vector space of functions from {0,1}n→ R, equipped with the following inner
product.

〈 f ,g〉= 1
2n ∑

x∈{0,1}n

f (x)g(x) = Ex∈{0,1}n [ f (x)g(x)].

For each S ⊆ [n], define χS : {0,1}n → {−1,1} by χS(x) = (−1)∑i∈S xi . It is not hard to verify that
{χS : S⊆ [n]} forms an orthonormal basis for this vector space. Thus, every f : {0,1}n→R has a unique
representation as f = ∑

S⊆[n]
f̂ (S)χS, where

f̂ (S) = 〈 f ,χS〉= Ex∈{0,1}n [ f (x)χS(x)].

Definition 5.8 (PL1). The class PL1 consists of all functions f : {0,1}n→{0,1} for which ∑
S⊆[n]
| f̂ (S)| ≤

poly(n).
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PL1

P̂T1

PT1

PL∞

MAJ

LTF

MAJ◦MAJ

LTF◦MAJ

LTF◦LTF

LDL

L̂DL

Figure 1: Low depth threshold circuit hierarchy

Definition 5.9 (PL∞). The class PL∞ consists of all functions f : {0,1}n→{0,1} for which max
S⊆[n]
| f̂ (S)| ≥

1
poly(n) .

Figure 1 depicts the currently known status of low depth circuit class containments, and shows where
linear decision lists fit in this hierarchy.

A thick solid arrow from C1 to C2 denotes C1 ( C2, a thin solid arrow from C1 to C2 denotes C1 ⊆ C2
1,

and a dashed line between C1 and C2 denotes incomparability. In the figure, we only show the newly
established incomparabilities.

The leftmost column has the classes defined based on spectral representation, and the middle column
has the classes based on depth-2 circuits. Concerning these classes, the picture was already completely
clear: All containments shown among classes in these columns are known to be strict, and wherever no
arrow connects two classes, they are known to be incomparable. Essentially this part of the figure appears
in [9]; a subsequent refinement is the insertion of the class LTF◦MAJ, separated from MAJ◦MAJ in [9],
from PT1 in [2] and most recently from LTF◦LTF in [4].

The two classes L̂DL and LDL form the new column on the right. In the following subsection
we explain their position with respect to the other two columns. However here the picture is not yet
completely clear, and there are still several open questions.

1There is only one thin arrow, between L̂DL and LDL.
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5.2 New results

By definition, MAJ⊆ L̂DL and LTF⊆ LDL via lists of size 2. The parity function is known to not be in
LTF, and it has a simple LDL with 0-1 weights in the query functions. Thus both these containments are
proper, and L̂DL is not contained in LTF. We now observe that, implicit from prior work, L̂DL is not even
contained in MAJ◦MAJ.

Theorem 5.10.
L̂DL*MAJ◦MAJ.

Proof. Define the ODD-MAX-BIT function by OMB(x) = 1 iff the largest index i where xi = 1 is odd
(OMB(0n) = 0). Buhrman, Vereshchagin and de Wolf [3] showed that OMB◦AND is hard, in the sense
that it has exponentially small discrepancy. By a result of Hajnal, Maass, Pudlák, Szegedy and Turán [11],
this implies that OMB◦AND cannot be computed by polynomial sized MAJ◦MAJ circuits.

Note that OMB can be computed by a linear sized decision list by querying the variables in decreasing
order of their indices. Thus OMB◦AND can be computed by a linear sized decision list of AND’s, and
hence by a linear decision list with 0-1 weights.

On the other hand, it is easily seen that MAJn ◦XOR is in MAJ ◦MAJ, and even in P̂T1 (see for
instance [2]). Combining this with Theorem 1.1, we obtain:

Theorem 5.11.
P̂T1 * LDL.

The following strengthening of Theorem 5.11 is implicit from a recent result of Chattopadhyay,
Mande and Sherif [5].

Theorem 5.12.
PL1 6⊆ LDL.

(We defer a discussion of why Theorem 5.12 holds to Section 5.3.) Putting together these separations
with the known containments PL1 ⊆ P̂T1 ⊆MAJ◦MAJ, we obtain a slew of incomparability results.

Corollary 5.13. For any class A ∈ {L̂DL,LDL} and B ∈ {PL1,MAJ ◦MAJ}, the classes A and B are
incomparable.

In particular, the classes LDL and MAJ◦MAJ are incomparable. This completely answers the open
question posed by Turán and Vatan [19].

Impagliazzo and Williams [14, Theorem 4.8] showed that the function ORn ◦EQn (also called Block-
Equality) does not contain large monochromatic rectangles (in fact they showed that it does not contain
large monochromatic rectangles under any product distribution). Thus, by Lemma 3.2, any linear decision
list computing ORn ◦EQn must be of size at least 2Ω(n). We now observe that OR◦EQ ∈MAJ◦MAJ.
Consequently, OR◦EQ also witnesses MAJ◦MAJ* LDL. However, in contrast to Theorem 1.1, note
that the lower bound is subexponential since OR◦EQ is defined on 2n2 variables. Moreover, OR◦EQ
seems to incur a significant polynomial blow up in size when simulated by MAJ◦MAJ circuits, whereas
MAJn ◦XOR has linear sized MAJ◦MAJ circuits.
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Theorem 5.14.
OR◦EQ ∈MAJ◦MAJ.

Proof. First observe that OR◦EQ can be computed by a MAJ◦EQ circuit by suitably padding constants to
the input. Next, note that EQ is an exact threshold function, that is there exist reals a1, . . . ,an,b1, . . . ,bn,c
such that EQ(x,y) = 1 iff ∑

n
i=1 aixi +biyi = c. Hansen and Podolskii [12] showed that such functions can

be efficiently simulated by MAJ◦LTF circuits. However, we do not need the full strength of their result,
so we give a direct construction below.

For an equality on 2n bits, say x1, . . . ,xn,y1, . . . ,yn, note that

EQn(x1, . . . ,xn,y1, . . . ,yn) = 1 ⇐⇒
n

∑
i=1

2i(xi− yi) = 0.

Consider the following linear threshold functions.

g1(x,y) = sign

(
n

∑
i=1

2i(xi− yi)+1/2)

)
and

g2(x,y) = sign

(
n

∑
i=1

2i(xi− yi)−1/2)

)
.

Observe that g1(x,y)−g2(x,y) = EQn(x,y).
Let g(i)1 and g(i)2 denote these LTFs for the ith block on which we test equality. The function ORn ◦EQn

is just
ORn ◦EQn = sign

(
(g(1)1 −g(1)2 )+(g(2)1 −g(2)2 )+ . . .+(g(n)1 −g(n)2 )

)
;

this formulation puts it in MAJ◦LTF.
Finally, Goldmann, Håstad and Razborov [9] showed that MAJ◦LTF=MAJ◦MAJ. Thus, OR◦EQ∈

MAJ◦MAJ.

Theorem 5.15.
L̂DL* PL∞.

Proof. It is easy to see that any symmetric function (a function that only depends on the Hamming weight
of the input) can be computed by linear sized linear decision lists where query functions are majority: the
linear threshold queries can be used to determine the Hamming weight of the input, and the decision list
outputs the appropriate answer at each decision.

Bruck [2] showed that the Complete Quadratic function, which is a symmetric function, is not in
PL∞. This function yields the required separation.

Combining Corollary 5.13 and Theorem 5.15 yields more incomparability results.

Corollary 5.16. For any class A ∈ {L̂DL,LDL} and B ∈ {PL1,PL∞}, the classes A and B are incom-
parable. In other words, all spectral classes in the first column (see Figure 1) are incomparable to all
classes in the third column.

Finally, as noted in [19], LDL is contained in LTF ◦LTF. The same argument shows that L̂DL is
contained in LTF◦MAJ. Corollary 5.13 implies that these containments are strict.
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5.3 Proving Theorem 5.12

As mentioned earlier, it is implicit from a recent result of Chattopadhyay et al. [5] that PL1 * LDL. We
first define the function used to achieve the separation and introduce some background required.

Definition 5.17 (SINK, [5]). Consider a complete undirected graph on n vertices with variables xi, j for
i < j ∈ [n]. The variable xi, j assigns a direction to the edge between vi and v j in the following way:
xi, j = 0 implies the edge points towards vi, and xi, j = 1 implies the edge points towards v j. The function
SINK computes whether or not there is a sink in the graph. In other words,

SINK(x) = 1 ⇐⇒ ∃i ∈ [n] such that all edges adjacent to i are incoming.

We now define the notion of projections of strings to certain subsets of coordinates. Let X ∈ {0,1}(
n
2).

For any vertex vi, let Evi be the set of n−1 coordinates corresponding to the n−1 edges adjacent to vi.
Let Xvi denote the (n−1)-bit string obtained by projecting X to the coordinates in Evi .

Definition 5.18 (Entropy). Let X be a discrete random variable. The entropy H(X) is defined as

H(X) = ∑
s∈supp(X)

Pr[X = s] log
1

Pr[X = s]
.

Fact 5.19. [7, Theorem 2.6.4] supp(X) = k =⇒ H(X)≤ logk, with equality if and only if X is uniform.

Lemma 5.20 (Shearer’s Lemma [6] (see also [16])). Let X = (X1, . . . ,Xt) be a random variable. If S is a
set of projections such that for each i ∈ [t], i appears in at least k projections, then ∑P∈S[HXP ]≥ kH(X).

Chattopadhyay et al. [5] introduced and used the function SINK◦XOR to refute the long-standing Log-
Approximate-Rank Conjecture, along with several other conjectures. They observe that SINK◦XOR ∈
PL1 [5, Theorem 1.9].

Lemma 5.21 (Part 1 of Theorem 1.9 in [5]).

SINK◦XOR ∈ PL1.

It is also implicit from their work that SINK◦XOR does not contain large monochromatic rectangles
under the uniform distribution. More precisely, plugging the value ε = 0 in [5, Claim 6.4] implies that
any monochromatic rectangle in the communication matrix of SINK◦XOR on 2

(n
2

)
variables must have

weight at most 22(n
2)−Ω(n). However, we do not require the full power of their proof for our purpose, and

therefore produce a self-contained proof below.

Theorem 5.22. Any monochromatic rectangle R = A×B in the communication matrix of SINK◦XOR
must satisfy |R| ≤ 22(n

2)−n+logn+1.

Proof. It is easy to verify that the probability of a 1-input under the uniform distribution equals n/2n−1.
Hence if R is a 1-monochromatic rectangle, then |R| ≤ 22(n

2)×n/2n−1, as claimed in the theorem.
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Let R = A×B be a 0-monochromatic rectangle. Consider the random variable XY (X concatenated
with Y ) over 2

(n
2

)
coordinates, when X and Y are sampled uniformly from A and B, respectively. From

Fact 5.19 we have H(XY ) = log |R|.
Let S be the set of projections S := {Evi | 1≤ i≤ n}. Then each coordinate appears in exactly two

projections. Hence by Lemma 5.20,

2H(XY )≤ ∑
P∈S

H((XY )P) = ∑
i∈[n]

H((XY )vi).

We now bound the entropy in XY restricted to each of the projections. Let Avi and Bvi be the projections
of A and B on Evi , respectively. Since there is no input in R which is a sink, we have |supp(Avi)|+
|supp(Bvi)| ≤ 2n−1. (Each string in Avi rules out one string from Bvi and vice versa.) By the AM-GM
inequality, |supp(Avi)| · |supp(Bvi)| ≤ 22n−4. Hence Fact 5.19 implies that H((XY )vi)≤ 2n−4.

Returning to our use of Lemma 5.20, we obtain

2H(XY )≤ ∑
P∈S

H((XY )P)≤ n(2n−4)

=⇒ H(XY )≤ 2
(

n
2

)
−n

=⇒ |R| ≤ 22(n
2)−n.

Along with Lemma 3.2, Theorem 5.22 shows that any linear decision list computing the function
SINK◦XOR on 2

(n
2

)
variables (which is in PL1) must have size at least 2n/2. This completes the proof of

Theorem 5.12.
Clearly, SINK◦XOR also witnesses MAJ◦MAJ 6⊆ LDL. However, the lower bound against LDL is

again only subexponential.

6 Conclusions

We show that MAJ◦XOR cannot be computed by polynomial sized linear decision lists, resolving an open
question of Turán and Vatan [19]. We also show that several spectral classes and polynomial threshold
function classes are incomparable to linear decision lists. Figure 1 depicts where the class LDL, and its
small-weight version L̂DL, fit in the low depth threshold circuit hierarchy.

A subset of the authors [4] showed that a decision list of exact threshold functions cannot be computed
by LTF◦MAJ. A natural question that arises is whether LDL is incomparable with LTF◦MAJ. (Note
that the function from [4] separating LTF◦LTF from LTF◦MAJ does not settle this question as it is also
not in LDL – it contains the function OR◦EQ as a subfunction.)

Another natural question is whether L̂DL is strictly contained in LDL; that is, whether weights matter
in linear decision lists.
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