
The~-~cal 
 sc ,nce 

ELSEVIER Thcorelit~l Computer Science 14311995) 23-49 

Nondeterministic, probabilistic and alternating 
computations on cellular array models* 

Kamala Krithivasan'o Meena Mahajan T M  

" Department of Computer Science and F~glnecrlng, Indian Iny6tute of Technology. Madras 600036, India 
~ The Institute of Mathematical Sciences. CIT Campus. Madras 600113. InoTa 

Received April 1993. revised May i994 
Communicated by M. Nivat 

Almmct 

A new mechanism for introducing nondeterminism on the cellular automaton model is 
introduced. It is shown that this form of nondeterminism corresponds to the traditional notion 
in the unbounded-time case, but there appear to he differences when real.time or linear.time 
cellular automata are considered. The notion is then 8eneralised to include prohabilistic and 
alternating computations. Restricted nondeterminism classes are also defined and studied, in an 
attempt to refine the power of nondeterminism. 

l .  Introduction 

Cellular automata  (CA) are a simple model  for parallel recognition of  languages, 
and have been the object of  study for several yeats  [3,6,12,15,20,21]. A CA consists 
of  an array of identical finite-state machines (FSM), one for each letter o f  the input. 
The  FSMs are called cells. Let c(i,t) denote the state of  the ith cell a t  t ime t. The CA is 
initialised by setting c(i,O) to ai, where the input is a ta2 . . . a , .  Subsequently the 
operation of the CA is autonomous. At discrete time steps t = 1,2, . . . .  all cells 
synchronously update their states, with c(i, t + 1) expressed as a function of c(i - l , tk 
c(i, 0 and c(i + 1, t). (If a neighbouring cell is missing, i.e. at  the boundaries of  the array, 
a special state # is taken to be the missing argument). The leftmost cell of  the array is 
the accepting cell, and the input is accepted if this cell ever enters an accepting state. 
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Note that for nontrival language recognitioe, acceptance requires at least n time steps 
on an input of length n. See Fig. 1. 

Formally, a CAis  d e f i ~  as follows. 

~ l J ,  A cellular automaton is a 4-tuple C : (Q, #,6,A), where 
(i) ~ is a finite set of states, 
(ii) # ¢ Q i s  tbe b o u ~ r y  state, 

(iii) 6:Q x Q x Q--, Q is the local transition function satisfying 

6(a,b,c)-- # ifand only i fb--  # ,  

(iv) A __ Q is the set of accepting states. 

Throughout this paper we consider only CA which are space-bounded; on an input 
of length n the CA has exactly n cells. We denote by L(C) the language accepted by the 
CA C. 

The operation of the CA is frequently represented using a time-space diagram. This 
is an array where the topmost row has the input configuration, and successive 
configurations appear in successive rows beneath it. Thus the ith row gives the 
configuration of the CA after f time steps, and the jth column gives the sequence of 
states entered by thejth cell oftbe CA. Such diagrams give a visual representation of 
the CA computation and make it more easily comprehensible. Signals travelling 
across the array of FSMs arc shown in such diagrams by lines of varying slopes, 
depending on the speed at which the signal is travelling. 

A CA C is said tc operate in T(n) time if for each n, for each string w of length n, if 
w is accepted then it is accepted within T(n) time steps. In other words, if 
c(t,O)c(2,0)...c(n,O) = w and weL(Cg  then 3t ~ T(n) such that c( l , t ) eA .  Here T(n) 
could be any function T: IM ÷ - ,  Pd +. Of special interest are the cases when T(n) = n, 
giving "real-time" CA (rCA), and T(n) = cn for some constant c, giving "linear-time" 
CA (ICAL 

A restricted version of a CA is the one-way CA (OCA), where c(i, t + 1) is a function 
of c0 - 1,0 and cO, 0 only, i.e. a cell's right neighbour does not affect it. Thus ~ is now 
a function from Q × Q to Q. For OCA, the rightmost cell is the accepting cell, where 
acceptance is as defined earlier. 

The definitions of CA and OCA can be generalised to the nondeterministic case. 
Now ~ will map Q x Q × Q (or Q × Q, for OCA) to subsets of Q, and the input will be 
accepted if for some computation of the CA satisfying & the accepting cell enters 

accepting node 

Fig. !. A cellular automaton. 
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a state from A. Nondeterministie CA (NCA and NOCA) have also ber~ studied in 
some detail in the past; some of the results can be found in [13.21]. For a nondeter- 
ministic CA, for the same input there can be several time-space diagrams, correspond, 
ing to different nb~ete~inistic choices. 

The results currently known about the language classes defined by these models can 
be  summarised as follows. 

(t) A T(a)-time CA can be simulated by a DSPACE(n)Turing machine in OCn TCn)) 
time: This simulation is done in a straightforward fashion - for one step of the CA, 
where n cells update their states in parallel, the Turing machine sweeps down the array 
and updates each tape cell sequentially. 

(2) NOCA == NCA --- NSPACE (n), the class of context-sensitive languages: The 
NCA to NSPACE(n) simulation is as described above, with the Turing machine being 
nondeterministic to simulate the nondeterministic moves of the CA. An NCA can easily 
simulate an NSPACE (n) machine, by letting most cells idle most of the time. Only the 
cell representing the tape square where the tape head is positioned, and its neighbouring 
cells, change state at each step. For an NOCA to simulate an NCA, each cell has to 
guess its right neighbour's state, and special signals have to travel across the array 
verifying that the guesses were correct. The technique is described in detail in [9]. 

(3) NSPACE (v/~) =_ OCA ~ CA -- DSPACE(n) ~_ NSPACECng The first contain- 
ment is shown in [5, ! 1] by first showing that any language accepted by a linear-time 
alternating Turing machine can also be accepted by a restricted deterministic Turing 
machine equivalent to an OCA. The remaining containments are obvious. 

(4) For CA and OCA, T(n) + c time can be speeded up to TCn) time: This has been 
independently proved in [3,6~ 14,15], as also the following result. 

(5) For CA and OCA+ linear time can be speeded up to cn time for any c > 1. 
(6) rOCA =rCA --- IOCA _~ ICA ~_ OCA ~ CA: The proper containment was shown 

in [6] by using a pumping lemma kind of argument for rOCA. The gCA --- IOCA 
equality has been shown in [3] by a direct construction, and the ICA _ (3CA contain- 
merit was shown in [5,11] using the restricted "luring machine characterisatious of 
OCAs and another parallel recognition device, the one-way iterative array. 

It is also known that rNOCA contains an NP-complete problem [13], ICA is 
contained in P (follows from (1) above), and OCA contains a PSPACE-complete 
problem. 

The following problems posed variously in [3,12,21] are still open. 
Ca) Are linear-time CA more powerful than real-time CA? 
(b) Are nonlinear-time CA more powerful than linear-time CA? 
(c) Are nonlinear-time CA more powerful than real-time CA? 
(d) Are CA more powerful than OCA? i.e. are there languages accepted by CA which 

are provably not accepted by OCA? 
(e) Are real-time CA dosed under reversal? In [12] it has been shown that this is the 

case if and only if the answer to Ca) is No. 
In this paper, we consider a new model of nondeterminism based on the structure of 

time-varying automata, and, imposing this model upon CA and OCA, investigate the 
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power of the resulting classes. The notion of a time-varying CA (TVCA) was introduc- 
[ ~ C A  ~ i n t o n e d  r e l a t iv~  CA i,e. CA which 

notio~ and interpm t ~  com~tation ofa TVCAas a nondete~inistic CA, a pr0b- 
a~l~i~ C ~  a ~  an alternating CA; The 
presented in Section 2. in Section 3, we consider nondeterministic TVCA and 
compare them with the traditionally defined NCA. in Section 4, wobabilistic TVCA 
a ~  considered, especially ~s-;i-vis N'I~CA. Section 5 considers alternating computa- 
tions on TVCA. in Section 6, some restricted forms of nondeterministie and probabil- 
istic TVCA are studied, with the intention of trying to identify how much nondeter- 
minism is required, if at all, to enhance the power of a particular class. Section 
7 considers some closure properties of these "INCA classes. 

2. ~ d e s  sad Defmitiem 

In a TVCA, the transition function to be applied to each cell depends not only on 
the states of ceils in the neighbourhood but also on the number of time steps elapsed 
since the CA operation began. The dependence on time is expressed in the following 
way: a set of transition functions 6t,6z,...,6~ is associated with the CA, and 6, the 
effective transition function of the CA, agrees with one of 6t,62,... ,&l depending on 
the time. In other words, 

6(a,b,c,O -.-- ~,~(a,b,c), 

where a, b, ceQ, ie~i, and 6jrm is the transition function used at time t -- L The manner 
in whichfis chosen thus crucially affects the overall computation. Such a "INCA with 
k transition functions is called a k-TVCA. 

In the above description, the functiunf: I~1 + --, { 1 . . . . .  k} can be viewed as an oracle 
which guides the computation of the TVCA; for more on such "relativised" CA see 
[17,18]. As pointed out in [18], any language over a unary alphabet can he accepted 
by a 2-TVCA in real time, even if the language is undecidable. Thus, for meaningful 
results, we are interested only in situations where the functionfis computable within 
some specific resource bound. (CA-based resource bounds on f are considered in [ 17].) 

One important fact to note about TVCA is that speed-up does not necessarily hold. 
Neither (4) nor (5) from Section I can he shown to trivially apply to TVCA. Since we 
are essentially interested in the dependence of running time on input length, we will 
still contiw~ to ignore additive constants, and treat (T(n) + c) time as equivalent to 
T(n) time. However, for multiplicative constants, there is a trade-off. To be more 
precise, consider speeding up the operation of a k-TVCA by a factor of 2. Even 
assuming that an initial phase achieves the required packing of the input, to be able to 
simulate two ste~ of the TVCA in one step calls for the ability to simulate k 2 different 
combinations of the form 6~6 s. So the simulating TVCA will need k 2 different 
transition functions. Thus speed-up is achieved at the cost of the number of functions 
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required. Conversely, the number of fanctions can be reduced at the expense of 
slowing d0wn the ~mputatio n - a k.TVCA o ~ a t i n g  in T(n)time can be simulated 
by a 2-TVCAo~at ingin(Iogzk)  T(n)time [18]~ Sin~ the sl0wing do~h is 0nly by 
a constant factor, for (linear-time) TVCA it is sufficient to consider 2-TVCA. But for 
real4ime computation, it a p ~ r s  that k is a crucial ~rameter, wh~h~ k +  I 
functions are better than k for real-time "INCA is an open problem posed in [18]. 

In [17], 2-TVCA ha'~'~ been interpreted as relativised CA. A tally language L ~_ 0* is 
the oracle, and 6 is now expressed as follows: 

~6t(a,b,c) if 01eL, 
6(a,b,c,i) -- [62(a,b,c) otherwise. 

Note that for a 2-TVCA operating in time T(n), there are 2 rc'j possible computation 
paths, and the structure of i. oetermines which of these paths is chosen. In [17], we 
have examined how varying the complexity of the oracle L affects the computational 
power of the "INCA. 

In this paper we relax the notion of a single computation path being checked for 
acceptance. First we define the characteristic bit strings of a language and ofa TVCA 
computation path as follows. 

Definition 7,1. The characteristic bit string of a language L c_ £* is a bit string 
aoata2 ... where each ale{0,1}, and for the standard enumeration of Z;*,ai - 0 if and 
only if the ith word of Z'*, w~, is in L. 

Thus for a tally language L, at = 0 if and only 0~¢L. 
For a 2-TVCA, on input w of length n, a T(nFtime computation path is a sequence 

(w = ) Wo, wl . . . . .  wren) where for each i, I w, i = Iwol, w,¢Q* for i > O, and for i > 0, wi 
can be obtained from w~_ t by applying either 6t or 62. It is an accepting computation 
if w~-(aj is an accepting configuration, i.e. the leftmost state is an accepting state. 

Definition 2,2. The characteristic bit string of a T(nFtime computation path is 
a T(n)-length bit string btbz ... b~tN~ where bl = 0 ifwi can be obtained from wi-t by 
applying 6t, and bi -~ t otherwise. 

Note that this definition assigns a unique bit string as the chamcteristie bit string 
for a given computation. However, more than one bit string may still determine the 
same computation. This could happen, for instance, if, from a particular configura- 
tion, both 6t and 62 lead to the same next configuration. The unique characteristic bit 
string of a given computation is the lexicographically smallest of the bit strings 
determining the computation. 

Consider Fig. 2, a binary tree. The root node holds We. The left (rigbt) child of 
a node holding c holds the configuration obtained by applying 6t (62) to c. Such 
a binary tree, of height T(n), gives all possible computations era T(n)-time 2-TVCA on 
input We. A bit string of length T(n) picks out a particular path in this tree. In 
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6 

000 001 010 011 100 101 110 111 

Fig.. 2. Binary tree c~ possible computations and characteristic bit strings. 

a relativised CA operation, the unique computation path whose characteristic bit 
string is a prefix oftbe characteristic bit string of the oracle is picked, and the input is 
accepted if and only if this computation path ends in an accepting configuration. 
Instead, we can check whether at all there exists an accepting computation, thus 
giving a nondetenninistic interpretation to the TVCA. Or, we can check whether more 
than half of the computation paths are accepting computations, thus interpreting the 
TVCA operation as a probab~tistic computation. Additionally, if the states of the 
TVCA are partitioned into universal, existential, accepting and rejecting states, then 
the NTVCA can be generalised to an alternating CA, an ACA. These types of 
TVCA are formalised and studied in the following sections. For probabilistic TVCA, 
when we count the number of accepting computations, we want to have a binary tree, 
of computations, which is pruned at a particular height. So we impose the condition 
that the TVCA's running time, T(nk be CA-time-constructible, a notion defined 
below. 

~ e a  2,3. A function T(n): IM ÷ -~ IM + is said to be CA-time-constructible if there 
is a CA which, on any input of length n, puts its accepting cell into a spedal state after 
exactly T(n) lime steps. The function is said to be strongly CA-time-eonstructible if the 
CA puts every cell into a special state, for the first time, after exactly T(n) steps. In 
other words, after T(n) steps, all cells simultaneously "fire" for the first time. 

(Strong CA-time-constructibility is a generalisation of the famous firing squad 
synchronisation problem, for which a tight lower bound of 2n - 2 is known [21 ]. This 
lower bound applies when only one end of the array can initiate synchronisation 
action. If both ends can do so, then synchronisation can be achieved in real time.) 
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3. Nen4etefministie TVCA 

~ i t i e n  3,1. A nondeterministic TVCA is a construct C : (Q, #,6t ,6z,  A) defined 
as a 2-TVCA! A string w is a ~ t e d  by C in time T(n) if 3 ~e {0,1 } T,iwj)such that the 
computation path of C beginning with w and with characteristic bit string x is an 
accepting computation. 

Thus the crucial difference between NCA and NTVCA is that in NCA, each cell 
independently makes a nondeterministic choice about the next state, whereas in 
NTVCA, a global nondeterministic choice is made about whether to use transition 
function 6t or 62, and then all cells use this chosen transition function. 

First we consider the unbounded-time classes of NTVCA. 

[,emma 3,2. NTVCA =_ NSPACE(n); a T(n)-time NTVCA can be simulated by an 
NSPACE(n) machine in O(n T{n)) time. 

Proof. A T(nFtime NTVCA can be simulated by an NSPACE(n) machine which 
simulates one step of the NTVCA as follows. It first decides, nondeterministically, 
whether to use 6t or 6z, and then moves down the entire array, deterministically 
updating the state of each cell accordingly. [] 

[,emma 3.3. NOCA ~_ NTVOCA; an NTVOCA can simulate a T(n)-time NOCA in 
O(n T(n)) time. 

Proof. Let C = (Q, # ,  ~, A) be an NOCA, where 6 maps Q x Q to subset of Q. Let k be 
the size of the largest subset of Q in the range of ~. We will construct a (k + 1)- 
NTVOCA C' accepting the same language as C. Then, as described in Section 2, an 
equivalent 2-function NTVOCA can be constructed. 

Each cell of C can independently choose one of upto k options when making 
a transition according to 6. But in C', at a single time step, all cells must use the same 
option. So to simulate the n independent choices made by C in one step on an n length 
input, C', needs n steps, where at each step exactly one cell of C" makes a transition and 
all other cells merely maintain their state. Now the first k distinct transition functions 
of C' can implement the k options provided by 6. The leftmost cell of C' sends a pulse 
right at unit speed. As this pulse passes through a cell, that cell makes a state 
transition. When the pulse reaches the right end, all cells have updated their states and 
one step of C has been simulated. One row in the time-space unrolling of C appears as 
a diagonal in the time-space unrolling of (7'. See Fig. 3. 

The problem which now arises is that the leftmost cell does not know when to send 
out the next pulse. Pulses should be at least n time steps apart, but, in the absence of 
two-way communication, counting upton is not possible. What haplgns if we allow 
arbitrary spacing of pulses? The leftmost cell sends a pulse whenever 6k+ t is used. If 
the pulses are more than n steps apart, then in between there will be some idle steps, 
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6k+; 

~t+l 

simulating 1 .t step 
= o f N O O A ;  n steps 

--* simulating 2 ~ step 

} . .~  idle steps, until 
6t+1 is used 

} ~"~ s imulat ing ~rd s tep  

/ '---~ s imulat ing 4 °` s t ep  

Fig. 3, An NTVOCA simulating an NOCA. 

when C does nothing. If the pulses overlap, then some cells have to make related 
choices. But these choices could have been made even if all cells were acting indepen- 
dently. The crucial observation is that with arbitrary spacing allowed, properly spaced 
pulses also occur along some computation paths of C', gu~ranteeirJg the checking of 
all possible paths of C. The other paths, with ovedapping pulses, are already 
simulated on some of these paths and are thus redundant, but not wrung. 

For a T(nJ-time computation path of C, there will be a computation path of ¢' 
where the pulses are exactly n steps apart; this computation path will be of length 
(n + l)T(n). So ifC has an accepting path of length T(n), then C' certainly has at least 
one accepting path of length (n + 1) T(n). Further, if C has no accepting path, neither 
does C. 

With this construction, T(n) steps of the NOCA are simulated in O(n T(n)) steps by 
the NTVOCA. This NTVOCA can be converted to one having only two transition 
functions, with a slowing down only by a constant factor. This is the required 
N l ~ A ~  O 

From these two lemmas and (2) in Section 1, we can now conclude the following 
theoren~ 

T'~'~m~ 3.4. NTVOCA -- NTVOCA -- NSPACE(n). 
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The following lemma further strengthens the statement NTVCA ~ NCA; it claims 
that a real.time simulation is possible. 

~ 3.~ An NTVCA can be simulated by an NCA with no loss of time. I f  the 
NTVCA uses only one-way communication, so does the simulating NCA. 

Proof, In an NTVCA, all cells must use the same transition function, at any given 
time instant, This condition can be ¢.nforced in an NCA as follows: Each cell of the 
NCA nondeterministically uses 6t ,Jr 6z at any time instant. Additionally, each cell 
also records, in its state, which t~ansition function was used. From time step t = 2 
onwards~ each cell also checks that the celb in its neighbourhood used the same 
transition function as itself at the previous step. If this is not the case, a reject signal is 
generated and sent to the accepting cell. Thus if the NCA accepts its '~nput, it must be 
via a computation where all cells had used the same transition function at each time 
instant; i.e. it must be via a computation corresponding to a computation path of the 
NTVCA. E3 

We now look at the time-bounded NTVCA classe~. The next result highlights the 
difficulty of determining membership for real-time NTVOCA languages. It was 
known that the membership problem for real-time NOCA is NP-complcte [13]. We 
show that this continues to hold even if we consider NTVOCA rather than NOCA. 

Theol~n 3.6, The class of  real-time NTVOCA languages contains a language which is 
NP-complete. 

ProoL Consider the language of satisfiable Boolean formulas in 3-clause conjunctive 
normal form 3-CNFSAT. Let the formulas be coded as follows: 

*Vt~V2~ ... ~vmg F t A 1:2 ̂  ,.. ^ Fk*, 

where 
e * is a special end-marker, 
® v,e{O,1}*, 
e Jvd = !vjt for each i,A 
e v i ~ v j f o r i ~ A a n d  
e each Fi is of the form w v x v y, where w, x and y are of the form O~ or I ~ for 

some t. 
Thus the input has a list of variables, coded as equal length bit strings separated by 4s, 
followed by a $, followed by a set of clauses separated by ^*s, where each clause has 
three terms separated by v s, and each term is either Ov a, representing the variable v. 
or iv ~, representing the negation of the variable v, for some variable v. Here ~ denotes 
the string obtained by reversing the characters in v. We store the variable descriptions 
in different orders in the initial part and in the formula part to facilitate cross° 
checking. 
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This langnaipe is well known to be NP-complete [I, 10]. Consider the following 
N T t r O C A : ~ i n g  it. 

A~:t~ t im time aep,  a s i ~  :Assign-and_Evaluate siam:moving righ', from the 
$ cell This signal does two things. Fimly, as it passes over each-eeil holding a v or 
a ^ ,  that cell n ~ i n i s t i c a l l y  chooses a value 0 or L This value is considered to 
be the value of the variable preceding it in the formula. Secondly, it collects these 
chosen values as it travels right, and evaluates the formula: at each v or ^ and at the 
last , ,  the partial value of.the formula to its left is stored. 

lfthe value that reaches the last • is 0, then the input is not accepted, lfit is I, then 
we must cheek that different occurrences of the same variable in the formula are 
a~igned values at the nondemministic steIu in a consistent way. To do this check, the 
entire input stream moves right at unit speed, while each cell also reta!ns a copy of its 
original input symbol. Now the variables in the left part (i.e. before the $) encounter 
those in the right part after the Assign_and.Evaluate signal has gone over them. 
Consider a situation when variable v~ is moving over a substring v 0w v.  The first v 
indicates that comparison should begin after the next bit. The first position of the 
moving stream records that the variable is not negated. So the Boolean value in the 
moving stream (this value is set when :he first instance of ~ is found) should match 
that in the last v if w ~ -- v~. But checking whether a substring is of the form w v 0w ~ is 
in K)CA by standard techniqnes; see [6-8]. So the moving stream can check if the 
same variable is represented under it, and, if so, cheek that the value is consistently 
assigned. The v after this variable allows the moving stream to "reset" itself, to be 
ready to check the next variable. 

If any consistency check fails, it is recorded in the cell where the failure is discovered. 
In this fashion, when the left end-marker • reaches the right one, it can find whether 

any inconsistency has been recorded. If this is not the case, then the input is accepted. 
Clearly, this process takes exactly as much time as the length of the input. See 
Fig. 4. O 

We next look at the relationship IOCA---rCA (refer to (6) in Section 1) in 
the context of nondeterminism. For the traditionally defined nondeterministic 
classes, the equality rCA = IOCA continues to hold, since the speed-up of IOCA to 
2n time and the simulation of an t4~A by a 2n.time IOCA and vice versa are not 
affected by nondeterminism in the transition function. This is not the case for 
NTVCA. In fact, an equivalent result does not seem to hold, but we have a restricted 
version. 

Theorem 3.7. The class of NTVOCA C running in time 2n and satisfying the condition 

Vxe~*, x~L(C)~. :I a computation path accepting x, whose characteristic bit 
string alaz ...a21x~ has a2i-, = azlfor i = l to Jxi 

is exactly equivalent to the class of  real-time NTVCA. 
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Fig. 4. An rNTVrJCA accepting SAT. 

Proof. Though 2n steps are allowed for the computation of the NTVOCA, effectively 
only n steps are allowed for the nondeterministic choice. Under such conditions, the 
equivalence of 2n-time NTVOCA and real-time NTVCA can be shown in a manner 
identical to the proof that rCA = IOCA [3"1. [] 

As for the containment ICA c OCA from (6~ Section i, we show that even 
linear-time NTVCA are no more powerful than deterministic OCA. We do not know 
whett:er a similar result holds for INCA. We do know, however, that the containment 
holds if both classes are made nondeterministic using the traditional notion, i.e. that 
INCA are contained in NOCA, because NOCA and NCA have the same power. 

Theorem 3.8. Linear-time NTVCA ~ OCA. 

Proof. We resort to the sequential machine characterisation of OCA to prove this 
result. It has been shown [5, I l, 15] that OCA are equivalent to a restricted form of an 
on-line single-tape "luring machine, called a sweeping automaton ($A). An SA consists 
of a semi-infinite worktape (bounded at the left by a special boundary marker 4) and 
a finite-state control with an input terminal at which it receives the serial input 
a ta ,  ... an. The symbol $ is used as end-marker. The SA operates in left-to-right 
sweeps as follows. 
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Initially, all cells of the worktape to the right of 4 contain the blank symbol ;̀.. 
A sweep begins with the  read-write.head (RWH) scanning ~ and the machine in 
a distinguished state qo- In the ith sweep, the machine reads am and moves right of 
into a non-qo state. It continues moving right, rewriting non-;, symbols by non-). 
symbols and changing states except into qO. When the RWH reads a ,t, it rewrites it by 
a non-,;, symbol and resets to the leftmost cell in state qo to begin the next sweep. When 
S is first read, the machine completes the {n + I)th sweep, writes a $ on the (n + l)th 
tape cell, and resets to 4 in state qo. Subsequent sweeps are performed between 4 and 
$ without expanding the workspace. $ is assumed to be always available for reading 
after the input is exhausted. The input is accepted if the machine eventually enters an 
accepting state at the end of a sweep. 

Several techniques for programming an SA have been described in [5]. We use 
some of these techniques in the following; for a full description of how the techniques 
are implemented on an SA, the reader is referred to [5]. 

Given a linear-time NTVCA, we will constru~ a sweeping automaton SA accepting 
exactly the same language. 

Let C be an NTVCA running in cn time. A valid computation path thus has a cn 

length characteristic bit string. We design the SA to generate' all cn length strings in 
lexicographic order, and, for each string, to trace out the corresponding computation 
path. The SA will accept its input if it ever finds an accepting coml~tation in this process. 

As the SA reads its input, it shifts and packs symbols on the tape. When the entire 
input has been read, the worktape will be partitioned into three areas as shown in 
Fig. 5. 

The first area is a counter of length on, and holds the string • reversed, i.e. with its 
least significant bit first. The second area is also of length cn, for holding the bit string 
p currently being tested. Initially both • and ~ are set to 0 c'. Further, the first 0 of ~ has 
a special marker under it. The marker indicates which step of the bit string currently 
being tested is to be simulated next; it moves left to rightv The purpose of the counter 

is to indicate when the next string ~ may be considered; any counter which resets 
more than cn steps apart will do. Such a counter is required because the SA cannot 
carry information from right to left; based on the ~ marker alone, it cannot know 
when to generate the next ~. 

The third area is of length cn and has two tracks. The first track has a permanent 
copy of the input x in its leftmost it cel|s, and is blank elsewhere. The second track is 
initially a copy of the first track, and is to be used for tracing out the computation 

I I ,iia 1 .... 
i .... 

Fig. 5. Worktape of am SA accepting an INTVCA language. 
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corresponding to the string in the second area. This requires cn space and not n space 
because the SA can only move from left to right, while the NTVCA has two-way 
communi~tio,, So in simulating each step of the NTVCA, the SA shifts the config- 
uration one cell right. 

While reading $, i~. after all the input has been read, ~ is incremented in each sweep. 
This can be done in a left to right scan, because ~ is stored in reversed order. 
Simultaneously, the marker moves right, one cell per sweep, under the string i~. lfthe 
marker is on a 0 {1, respectively), then the NTVCA configuration y, which is stored on 
the second track of the third area~ is updated as per 6t (6z. respectively). When the 
marker reaches the end of the second area, a full computation path has been traced. 
The marker is now erased, and the third area is reset to its initial status. It remains 
unchanged in subsequent sweeps until ~ overflows. When this happens (every 2 TM 

sweeps), the next bit string is generated in the second area {~ is incremented; again, in 
a left-to.fight scan). The marker is placed again on its leftmost bit. and the tracing out 
of the corresponding computation path begins in the third area. Thus all computation 
paths are traced, and an accepting computation, if any. can be found by the SA. E3 

4. Prolmbnlstle TVCA 

In this section we look at some of the classes obtained by viewing the operation of 
a TVCA as a probabilistic computation, i.e. a computation which is deemed to be 
accepting if more than half of the subcomputations are accepting. For such probabilis- 
tic TVCA (PTVCA), we impose the condition that T(n) be CA-time-constructible. 
PTVCA are formally defined as follows. 

Dffmitien 4.1. Let T(n) be a CA-time-constructible function. A T(nFtime probabilistic 
TVCA {PTVCA) is a construct C = {Q, # ,  6t, 6z, A) defined as a 2-TVCA. Acceptance 
is defined as follows: A string w is accepted by C if more than half of the T(lwl)-time 
computations of C on w are accepting computations. 

Henceforth, for PTVCA, when we talk of a T(nFtime computation we implicid~ 
assume that T(n) is CA-time-constructible. 

The following result is easily shown. 

Theorem 4.2. T(nFtime NTVCA ~_ T(n).time IrI'VCA. 

Pm0f, Let C be a T(n)-time NTVCA. On any input w of length n, it has 2 r~'j 
computation paths. If even one of these is an accepting path. then C accepts w. This 
condition can be easily incorporated into a probabilistic computation of C' as follows: 
at the first step, 6t takes C into a special dummy configuration from which every 
ensuing cc~mputation is accepting. 6z takes C' into the start configuration of C If this 



has an accepting computation, then the PTVCA C’ so defined has strictly more than 
half accepting computations and so accepts its input. 

The problem with this method is that it requires T(n) + 1 time steps because of the 
initial dummy step. To recover this time step, the simulation of the NTVCA has to be 
speeded up by one step. Let C1 and C2 be the configurations resulting from applying 
3, and &, respectively, to the start configuration of C. In the PTVCA, after the first 
step when 5z is applied, c’ goes into a configuration with two channels, holding C, 
and Cz. At subsequent steps, each channel is updated according to the transition 
function in use at that step. Thus each computation of C’ with characteristic bit string 
1% holds the results of two computations of C - namely, the computations with 
characteristic bit strings 1~ and Or - in its two channels, c’ is programmed to accept 
its input if either of the two channels holds an accepting configuration. Clearly, C 
accepts the same language as C probabilistically, and does so in T(n) time. Cl 

Corollary 4.3. 

Real-tinre NTVCA 2 real-rime PTVCA. 

Linear-he NTVCA E linear-time PTVCA. 

By a construction similar to that in the proof of Theorem 3.8, we can also show that 
linear-time PTVCA are no more powerful than deterministic OCA. 

Theorem 4.4. Linear-time PTVCA E OCA. 

Proof. Given any linear-time PTVCA, ITIe will construct an SA (sweeping automaton) 
accepting the same language as the PTVCA. This will prove the theorem. Most of the 
details of the construction of the SA are as in the proof of Theorem 3.8: here we will 
only describe the additions1 details. 

While simulating the NTVCA, the SA traced out the different computation paths of 
the NTVCA in lexicographic order, and accepted the input if any accepting computa- 
tion path was found. For a PTVCA simulation, the SA must check all computation 
paths, and count how many of them are accepting computations. For this, a fourth 
area is created on the worktape, beyond the three areas described earlier. This area 
has CII cells, and is used as a counter p initialised to zero. 7 is incremented whenever an 
accepting computation is found. When all computation paths have been checked, the 
SA checks whether ;I contains a number greater than 2’“- l. If this is the case, the SA 
moves right in an accepting state: otherwise it moves right in a rejecting state. Thus 
the probabilistic acceptance condition is checked. 0 

5. Alternating computations on CA 

Further generalising the concept of nondeterministic and probabilistic TVCA, we 
now introduce alternation in the CA model ofcomputation. This follows the notion of 
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alternation in Turing machines, introduced in [4"1. While nondeterminism allows 
a computatio n t o proceed locally along any of two paths, and is said to ~ accepting if 
either of these two paths le~ds t0 acceptance, a l t m t i o n  a i ~  allows the computation 
to accept if an d only if both resulting paths end in acceptance. ~ u s a n  alternating 
computation could have de t~ in is t ic  moves, nondeterministic moves, and universal 
moves. A proof is now not just a single path in the computation tree but a subtree 
which keeps track of all universal moves. The results in [4] show that this generalisa- 
tion moves up the class of accepted languages by one step, in the hierarchy logspace, 
polynomial time, polynomial space, ..0 Thus ALOGSPACE coincides with PTIME, 
and APTIME coincides with PSPACE, We do not expect such a dramatic shift when 
alternation is introduced in CA, because the CA are already space-bounded. We 
investigate the precise extent to which alternation affects CA, We follow the notation 
from [4]. 

An alternating CA (ACA) is a CA which, at each lime step, may globally (i.e. at all 
cells) use either of two transition functions 6a and Be, The states of Q are partitioned 
into four classes - accepting states, rejecting states, universal states and existential 
states. Whether a particular configuration is a universal or an existential configura- 
tion is determined by the state of the leftmost cell. The computation tree of an ACA on 
input w is a binary tree where the root node holds w. The left (right) child of a node 
holding c holds the configuration obtained by applying 6t (62) to c. The input w is said 
to be accepted if this binary tree has a subtree satisfying the following properties: 

The root node of the subtree is the root node of the overall computation tree. 
At each node, if the leftmost state in the configuration represented at that node is 

universal, then both children of the node are present in the subtree. 
At each node, if the leftmost state in the configuration represented at that node is 

existential, then exactly one child of the node is present in the subtree. 
At each node, if the leftmost state in the configuration represented at that node is 

accepting, then the node is a leaf of the subtree. 
No leaf of the subtree has a rejecting state as the leftmost state in its configuration. 

Such a subtree represents an accepting computation of the ACA. 
Investigating the power of such ACA necessarily begins with examining the rela- 

tionship DSPACE(n) -- CA. We shall first show that the corresponding equality for 
alternating computations also holds. Without loss of generality we assume that the 
Turing machines considered have a single tape. 

Lemma 5.1. ASPACE(n) c: ACA. 

ProoL This follows from a slight modification of the proof for DSPACE(n) ~_ CA 
[21"1. The state of the alternating Turing machine (ATM) at each time step indicates 
whether the ATM is in a universal or an existential state. So, in the simulating ACA, 
this state must always be represented at the leftmost cell. The ACA holds tape 
configurations of the ATM in its array in a folded fashion in two tracks, so that the 
tape square over which the ATM head is positioned is always represented at the 
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ieftmost ceil When the tape head moves, the ACA correspondingly shifts the contents 
: of the two : t~s .  ~ chan~ in the I~most 
~ l l y  wopa~te  away io the dsht: For detai 
p r o o f ~ ~  3.8 in [21]. ~ i s  proof ~ m s a  ~ l - t ime  simulation, but t h ~  it 

one 

movement step a~ter each real simulation step; thus the ACA takes twice as much time 
as the ATM and finally performs the same computation, r-t 

~ m m a  S~  ACA ~_ ASPACE(n). 

Prool~ Given an ACA, the ASPACE(n) machine construction is akin to constructing 
an NSPACE(n) machine simulating an NTVCA (Lemma 3.2). The state of the ATM at 
the beginning of each sweep reflects the state - universal or existential - of the ACA, 
while the operation within a sweep is deterministic. O 

From the above two lemmas Theorem 5.3 now follows. 

Tbmgem 5,3. ACA -- ASPACE(n). 

The time-bounded ACA classes correspond to time-bounded ASPACE(n) compu. 
rations. We use ASPTi(s(n~ t(n)) to denote computations of atemating "luring ma- 
chines which use s(n) space and run in t(n) time, and ACA(t(n) to denote ACA running 
in tot) time. The next two lemmas are quite easy to see;, they follow from the 
conSLrUCtiOnS outlined in Lemmas 5.1 and 5.2. 

Lemma SAL ASPTI(n. t(n)) ~_ ACA(2t(n)). 

Consequently. the DTIME(n) ~_ ICA containment carries over to alternating com- 
putations too. 

~ ATIME(n) _c IACA, 

Lcmma 5.6. ACA(t(n)) __. ASPTI(n, O(nt(n))). 

Thus, if poly denotes the dass of polynomial-valued functions, then the following 
corollary holds. 

CoroHatT .~7, ACA(poly) -- ASPTl(n, poly) ~ PSPACE. 

It is also quite easy to see, by a process similar to that outlined in Theorem 3.6, that 
the language of fully quantified Boolean formulas evaluating to True, QBF, is in 
IACA. Since QBF is PSPACE-complete [1], the membership problem for IACA is 
also PSPACE-complete. 
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Fig. 6 Inclusions among CA and ArM classes, 

Since it is known that NSPACE(s(n)) is contained in ATIME(sZ(n)) [2,10], we thus 
have the overall setup shown in Fig. 6. 

6. Restricted nondeterm_~ 

For a T(n)-time computation, an NTVCA as defined in Section 3 looks at all the 
2 T¢"j computation paths. We can define restricted versions, where only certain compu- 
tation paths, whose characteristic bit strings possess some special properties, are of 
interest. This takes us closer to relativised CA, where exactly one computation path is 
of interest. Two such restrictions are defined below. 

Definition 6.1, A l-turn (l-kink) NTVCA is a TVCA C which accepts input w if and 
only if there is an accepting computation of C on w, with a characteristic bit string of 
the form 0"1" (0"(~ + 10")). 

A l-turn NTVCA uses only 6, for some time and then switches over to using only 
62. The nondetermi-.~sm is in deciding when to switch from 6t to 62. So for a T(n)-time 
l-turn NTVC& there are T(n) + I computation paths ofinteresL A l-kink NTVCA 
can use 62 at most once; again, for a T(n)-time l-kink NTVCA. there are T(n) + 1 
computation paths ~ interest. These paths are shown in Fig. 7. 

We can also define restricted versions of PTVCA in a similar fashion. 

Definition 6.2. A l-turn (l-kink) PTVCA is a TVCA C which accepts input w if and 
only if more than half of the computation paths determined by bit strings of the form 
0"1" (0*(e + 10')) are accepting computations. 

These classes are important in that they help us identify the amount of non- 
determinism needed to enhance the power of other classes. To make this dearer, note 
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Fig. Z Restricted nnndeterminism computation paths: (a) l-turn paths: (b) l-kink paths. 

that a T(n)-time NTVCA has 2 r~  computation paths. Picking any one of these 
involves choosing T(n) bi~, corresponding to the characteristic bit string of the chosen 
computation path. A T(n~.tirae 1-turn NTVCA, on the other hand, has only T(n) + 1 

....... computation paths of interest. Picking anyone of these invoives picking one of the 
T(n) positions in the charcteristic bit string where the TVCA switches over from using 
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6, to using 62. Since making a choice from T(n) positions would involve setting 
log(T(n)) hits, the "amount" of choice, due to nondeterminism, available to an 
NTVCA and to a l,turn N ~ C A  differ by an exponential factor. As is to be e x ~ e d ,  
we will show that the l-turn classes are quite weak compared to the other NTVCA 
dasses. First we show that I-turn and I-kink are equivalent notions: an NTVCA or 
PTVCA of one type can be simulated by an NTVCA or PTVCA of the other. Before 
this, we prove an intermediate technical result. 

Lemnm 6.3. Let r be a regular expression denoting a subset R of {0, I}*. Given any 
NTVCA C, we can produce a modified NTVCA C' which performs the same computa- 
tion as C, but additionally, along each computation path, also indicates whether the bit 
string determining the computation path belongs to R, 

Proof, Let C be an NTVCA, and let M be a deterministic finite-state machine (FSM) 
accepting R. We construct the required NTVCA C to function as follows: The states 
of C' are 2-tuples. The first component ofcach cell, put together, gives the configura- 
tion of C. In the second component, the state of M while processing the bit string 
corresponding to the current computation path is recorded. Thus, along any compu- 
tation path, at any given time step, the second component of the state of each cell 
holds the same value. The bit string determining the computation path is in g if and 
only if this value is a final state of M. El 

This is in fact a weak result in that each cell is able to recognise R by acting as an 
FSM in isolation. By collectively using all cells in the array, some nonregular subsets 
of bit strings can also be recognised at the leftmost cell; however, for our purposes 
now, regular sets suffice. 

Theorem 6,4. 

T(n)-time l-turn NTVCA = T(n)-time l-kink NTVCA. 

T(n)-time l-turn PTVCA = T(n)-time 1-kink PTVCA. 

Proof. Consider simulating a l-turn NTVCA by a 1-kink NTVCA. Let the 1-turn 
NTVCA be C = (Q, #,6t,62,A). We define a 1-kink NTVCA. with transition func- 
tions ht and h2, and with one unmarked state and one marked state corresponding to 
each state in Q. ht on unmarked states acts as 6t. h, on unmarked states acts as 62 and 
also marks the resulting states. Subsequently. all operation is on the marked version of 
the states, ht on marked states acts as 62. (If h2 encounters marked states, then the 
result is immaterial, since this does not correspond to a l-kink path.) Thus the l-turn 
path 0~1 ~ using 6t and 6z is simulated by the 1-kink path 0 q W -  t using ht and h2. 

The other inclusions can be similarly shown. 
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Since l-turn and l-kink nondetenninism allow less choice, it is to be expected that 
the d ~  t ~  d ~  are ~ n t a i ~  in the unrestricted nondeterminism classes. This 
~ shown in t ~  proof 6f t ~  f o l i o ~ g  th~rem' 

I-turn NTVCA ~ T(n).th,e NTVCA. 
(b) T(n).time l-turn PTVCA ~ Tgn).,ime PTVCA. 

Proof. (a) A I-turn HTVCA must have a~ accepting complication with a character- 
istic bit strin~ Orl r"~'~ to accept its input. We can design an NTVCA which uses the 
transition functior~ of the given l-turn NTVCA, and also checks the regular e~pres- 
sion O'l* along it~ computation paths, as described in Lemma 6,3. A state is an 
accepting state if and only if its first component is an ~ccepting state for the l-turn 
NTVCA and its second component is an accepting state for an FSM accepting 0*l*. 
Thus if the NTVCA has an ac~pting computation, then it must be along a [-gum 
path. Hence the NTVCA accepts exactly the same language as the I-turn NTVCA, 
and within the same time. 

|b) A l-turn PTVCA has T(n)+ 1 computation paths of ~nterest. A PTVCA, on 
the other hand, has to cot~ider 2 r("~ computation paths, in a simulation of a l-turn 
PTVCA. 2 TM - T(n)-- 1 of these carry no information; ~hey correspond to invalid 
paths. To prevent these computation paths from affe.~ing the overall outcome, 
we must ensure that exactly half of these are aco:pting computations. Consider 
the following method of division of these paths into accepting and rejecting 
paths: 

Invalid paths (i.e. of the form 2:* 10X*): 2 ~'¢~ - T(n) - 1. 
L Paths beginning with 0 (i.e. of the form 0 + I +0+Z*): 2 ~'c~- t _ T(n) paths, 
2. Pa t~  beginning with 1 (i.e. of the form 1+0+~*): 2 T~n~'t - l paths. 
(a) Paths of the form I ÷0 + : T(n) - i paths. 
0) Paths with odd number of Vs (i.e. of the form ll0 ~, where 0 < k,j < ?'(n) and k is 

odd): [" T(n)/2] paths. 
(ii) Paths with even number of l°s (i.e. of the form lk0 ~, where 0 < k,j < T(n) and 

k is even): rT(n)/21 - t paths. 
(b) Other paths (~. of the form 1÷0 ÷ IX*): 2 T~- t _ T(n) paths. 
Make all paths in ! and 2(a)(i) accepting, and all paths in 2(a)(il) and 2(h) rejecting. 
The accept cell can determine the type of the path currently being followed using 

the procedure described in Lemma 6.3. 
Let A and g denote the number of invalid accepting and rejecting paths, respect- 

ively. Then A = 2 r(*~- t _ T(n) + ~ T(n)/2"] and R = 21'~a~- t _ T(n) + ~ T(n)/2"] - I. 
Clearly, if T(n) is odd, then A == R. as desired. If T(n) is even, then A = R + 1. But in 
this case, the number of valid paths is itself odd (T(n) + 1), and so the l-turn PTVCA 
cannot have a tie between the number of accepting and rejecting paths. So this 
distribution of invalid paths does not introduce error. Thus, in either case, the PTVCA 
accepts its input if and only if the number of Valid accept paths exceeds the number of 
valid reject paths; Le. if and only if the l-turn PTVCA accepts its input. [:} 
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For these restricted choice classes also, we show below that an NTVCA class is 
contained in the corresponding FTVCA class. 

Theortqn 6.6. T(n)-time l.turn NTVCA _~ T(n).time 1-turn PTVCA. 

Proof, A T(n)-time I-turn NTVCA has T(n) + 1 computation paths of interest, i.e. 
valid computation paths, If any of these is an accepting computation, then the input is 
to be accepted. To achieve the same effect in a probabilistic computation within the 
same time, we must construct a T(n)-time FTVCA where halfofthe valid computation 
paths are accepting paths and each of the remaining valid computation paths 
simulate; two distinct computation paths of the NTVCA. 

This construction differs from that outlined in the proof of Theorem 4.2 in only one 
aspect; we now want to consider only l.turn paths and partition them into equal-sized 
sets. But l.emma 6.3 allows us to do such identifying and partitioning easily. The 
details are left to the reader. E3 

Cerollary 6.7. 

Real.time l.turn NTVCA ~ real-time l-turn PTVCA. 

Linear-time 1.turn NTVCA ~_ linear.time I-turn PTVCA. 

Finally, we observe that even linear-time l-turn FTVCA are contained in P. This 
merely points out that the weakness of I-turn computations is not overcome by going 
from nondeterministic to probabilistic computations. 

i .~mm 6.8. Linear-time i-turn PTVCA ~_ P, 

Proof. A iincar-time 'INCA, whether nondeterminisfic or probabilistic, has only 
polynomially many valid computation paths, So a deterministic Turing machine can 
check them all sequentially. O 

Clearly, this argument holds even if the PTVCA requires p(n) time for some 
polynomial p. 

This last result shows the limitations of l.turn nondeterminism. However, we 
believe that even this much nondeterminism can increase the power of a class. As 
a specific example, consider any language L and define 3MID(L) as follows: 

3MID(L) = {xyz¢~*llxl --- Izl, y~L}. 

For any L in rCA, we can show that ~MID(L) can be accepted by a real-time l-turn 
NTVCA. We do not know whether, for L in rCA, 3 MID(L) can always be accepted by 
an rCA. Similarly, if we define 3PRE(L) as follows, 

3PRE(L) = {xy¢2:* [xcL}, 
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then we can show that for any L in ICA, 3 PRE(L) is in linear-time I-turn NTVCA. We 
do not know of any ICA construction to accept 3PRE(L). (However, if L is an rCA 

I These and other 

ow many distinct 
an be generalised 

to k-turn for some constant k, and to finite-turn. A k-turn NTVCA is an NTVCA 
where an accgpting path, if one exists, alternates between using ~t and ~: at mos~ 
k times. Sin~lady, we can consider k-turn PTVCA. Clearly, k-turn is contained in 
(k + i}-turn for NTVCA. The nontrival question is whether the containment is strict. 
it is easy to see that k-turn paths and k-kink paths (62 is used at most k times) also 
have characteristic bit strings representable by regular expressions; thus Theorems 6.4 
and 6.5 hem for k-turn (k-kink} NTVCA too. Lemma 6.8 also holds for linear-time 
k-turn NTVCA and k-turn PTVCA, because it is easy to see that the number of 
distinct computation paths of interest in a k-turn NTVCA is O((T(n))~). 

For PTVCA, showing that k-turn is contained in (k + I)-turn is not as easy as for 
NTVCA. As in the proof of Theorem 6.5, we need to show that the paths which are 
(k + i)-tum but not g-turn can be divided equally between accepting and rejecting 
computations, so that they do not affect the overall outcome. It is straightforward, but 
tedious, to outline such a division, using Lemma 6.3. For details, see [~6]. Thus, we 
have the following result. 

Theorem 6.9. Vk > O, k-turn T(n)-time PTVCA ~_ (k + l)-turn T(n)-time PTVCA. 

The other results in this section can be similarly generalised. 

7. C'lom~ gopegties 

In this section we examine some closure properties of the language classes defined 
in the preceding sections. 

Theorem 7.1. I f  Lt and 1-.2 can be accepted by NTVCA in T(n) time, then LI u L2 can 
be accepted by an NTNCA in T(n) time. 

Proo£ Let C1 and C2 be the NTVCA accepting Lt and L2, respectively. We can 
construct an NTVCA C which simulates Ct and C2 in two separate channels and thus 
accepts Lt u L2. [] 

Theorem 7.2. I f  Lt and L, can be accepted by NTVCA in time Tl(n) and T,(n), 
respectirel~,, then Lt c~ Lz can be accepted by an NTVCA in Tl(n) + Tz(n) time. 
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Proof, A construction similar to that outlined in the above proof will not work in this 
case, because even if x belongs to both Lt and L2, the accepting computations of Ct 
and C2 need not have the same characteristic bit string. So an NTVCA accepting 
Lt¢~ Lz must run/through all combinations of a computation of Cz and a computa- 
tion ofC~. 

To achieve the claimed time-bound, we interleave the computations of Ct and Cz. 
Two channels are created in the array of cells. One channel is updated at odd time 
steps as per Ct, the other at even steps as per Cz. This ensures that each computation 
can proceed with an independent characteristic bit string. If the computation in any 
channel reaches an accepting state, thenceforth that channel stays in an accepting 
state. The new CA accepts if and only if both its channels are in accepting states. 
Clearly, if the input is in Lt ~ L2, then this happens within Tt(n) ~ T2(n) time. D 

Corollary 7.3. Linear-time NTVCA are closed under union and intersection. 

Since NTVCA = NSPACE(n), Theorem 7.4 follows. 

Theorem 7.4, NTVCA are closed under eomplementation. 

However, it does not seem likely, especially in the light of 'Theorem 3.6, that 
real-time or linear-time NTVCAs are closed under complement~'.tion. 

Note that Theorem 7.1 goes through even if we consider k-turn NTVCA. Theorem 
7.2 does not, because interleaving the computations of Ct and C2 can introduce many 
more turns. In this case, therefore, we go through the computations of the two CAs 
sequentially, giving the following result. 

l~eorem 73. Let LI and L2 be accepted by k.turn and re.turn NTVCA in Tt(n) and 
T2(n) time, respectively. Then 
(a) LI u L~ can be accepted by a max(k,m)-turn NTVCA in max(Tl(n), T2(n}) time. 
(b) LI r~ L~ can be accepted by a j-turn NTVCA in Tt(n) + 2n + T2(n) time, where 

• ~ k + m +  1 i l k  is odd, 
J = ~ k + m otherwise. 

(c) I f  1"1(n) is strongly ffme-eonstruaible, then Lt r~ L2 can be accepted by a ]-turn 
NTVCA in Tl(n) + T2(n) time, where j is as in (b). 

Proof, (a) is straightforward. To show (b) and (c), the technique of Tbeorem 7.2 will 
not work directly, as explained above. Instead, consider the following method. Let Ct 
and Cz be the NTVCAs accepting Lt and/..2, respectively. The NTVCA C accepting 
Lt r~ L2 begins simulating Ct along all paths. If the input x belongs to Lt, then 
acceptance will be detected within Tt(n) steps. When this happens. C initiates a firing 
squad synchronisation algorithm. This requires 2n steps. When the cells synchronise, 
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they start simulating C2. Ifx belongs to L2 as well, this will be detected within another 
Tdn) s ~ , T h u s ,  ifx isin Lt r~ Hz, C will ~ t  x within Tt(n) + 2n + T2(n) steps. 

if  strongly t i m e ~ n s t ~ i b l e ,  t h ~  the synehron~t ion ~tage can  be 
avoidedi C simply ~ n s  simulating C1, while simultaneously computing Tj (n). After 
Tt(n) s t ~  t ~  whole a m y  of ceUs switches over to simulating C2' The leftmost cell 
acgepts its input if and only if both parts of the simulation end in accepting states. 

The number of turns is explained as follows. An accepting path has at most k turns 
from the simulation of Ct, plus at must m turns from the simulation of C=, plus 
possibly one more turn in changing over from the simulation of Ct to that of C2, and 
is thus a (k + m + l)-tum path. The additional turn is not needed irk is even, because 
then the path of Ct with maximum number of turns ends with 6t in use. See 
Fig. 8. O 

Lastly, we consider the closure of PTVCA language classes under some simple 
operations. Closure under union or intersection does not seem to hold; the proofs of 
Theorems 7.1 and 7.2 do not carry over, sinoe we now need to count the number of 
accepting computations of Ct and C2. On the other hand, for PTVCA, closure under 
complementation is relatively easy to show. 

7.6. i l L  can be accepted by o PTVCA in T(n) time, then L can be accepted by 
a PTVCA in T(n} + t time. 

INooL Merely exchanging the accepting and the nonacccpting states of the PTVCA 
accepting L fails in case there are an equal number of accepting and rejecting 
computations. However, using one extra time step, this difficulty can be overcome. 
One ext~ step generates T(n) additional computation paths. These can be divided, by 
~ g  Lenuna 6.3, between dummy accepting and rejecting paths in such a way that 
ties a.,e correctly handled. The details are straightforward and are omitted. 

(a} l.tmu f~dlo~ved by l-turn (b) 2-turn followed by l,tum 
~ivw 3 - t ~  p t ~  gives 3 . t~  ~tl~ 

Fig, 8, Intersection of finitc~tum NTVCA languages: (al I.turn followed by l-tunl giw~ 3-turn paths; 
~b} 2-turn followed by l,,tum gives 3-turn paths. 
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& Conclusion 

In this paper, we have presented a new mechanism for introducing nondeterminis- 
tic, probabilistie and alternating computations in the cellular automaton model, We 
have compared our notion of nondetetlninism with the traditional notion. We have 
,~lso defined restricted versions of nondeterministic computations and have explored 
the power of the resulting automata. The relations between such language classes are 
depicted in Figs, 6 and 9. In Fig. 9, known (i.e. existing) clas.~e,~ are shown in ovals and 
the newly defined classes are shown in boxes. The containments +J~icted between 
ovals are known results; the other containments have been shown in this paper, All 
this investigation es~ntially aims at refining the open probtems in the containments 

rOCA ~ rCA = IOCA _~ ICA ~ OCA ~ CA = DSPACE(n) ~ NSPACE(n) 

and thus providing an alternative approach to solving the problems. A lot more 
investig3tion still remains to be done. A relatively unexplored area ;~s the use of 
traditionally defined nondeterminism in time-bounded CA classes+ i.e. studying classe~ 
like rNCA and INCA. We feel that some questions concerning the power of these 
classes can be answered independent of the long-standing open questions regarding 
rCA, ICA and CA. 

The alternating CA classes are useful in considering closures of rCA and ICA 
languages under various operations. If ICA are not known to be closed under some 

arrow : inclusion 
crossed arrow : proper induslon 

double+sided arrow : equality 

Fig. 9. Deterministic+ nondelarministlc and probabilis~i¢ CA classes. 
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operation, we wouM like to identify the smallest CA class containing this closure; 
CA ~ gives ~ ~ m e  i d ~  of the complexity of the operation considered. Alternating 

~ ~ p  in this ~ .  ~ ~-,~uch closure results ~ have ~ n  studied in 
[19], whkh deals with the closure of CA classes under a wide variety of lansuage 
operations. 

We would like to thank an anonymous referee for pointing out that firing squad 
synchronhafion can be avoided in checking intersections, This allowed us to present 
a stronger version of Theoiq~6~ 7.2. 

We also tlw~k Dr. Bruno Durand for pointing out how Theorem 3.6 goes through 
for rNTVOCA. Our earlier version only proved it for rNTVCA. He also weiit over 
our entire paper in great detail, and his comments helped us to rewrite the paper in 
a much more readable fashion. In particular~ the proofs of Lemma 3.3, Theorem 3.8, 
~nd Theorem 4,2 are significantly more comprehensible now than they were in an 
earlier venion. 
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