s ,"" co"w‘e'm
ELSEVIER Theoretical Computer Science 143 (1995) 2349

Nondeterministic, probabilistic and alternating
computations on cellular array models*

Kamala Krithivasan®, Meena Mahajan®*-!

* Department of Computer Science and Engineering, Indian Institute of Technology, Madras 600036, India
Y The Institute of Mathematical Sciences, CIT Campus, Madras 600 113, India

Received April 1993; revised May 1994
Communicated by M. Nivat

Abstract

A new mechanism for introducing nondeterminism on the cellular automaton model is
introduced. It is shown that this form of nondeterminism corresponds to the traditional notion
in the unbounded-time case, but there appear to be differences when real-time or linear-time
cellular automata are considered. The notion is then generalised to include probabilistic and
alternating computations. Restricted nondeterminism classes are also defined and studied, in an
attempt to refine the power of nondeterminism.

1. Introduction

Cellular automata (CA) are a simple model for parallel recognition of languages,
and have been the object of study for several years [3,6,12,15,20,21]. A CA consists
of an array of identical finite-state machines (FSM), one for each letter of the input.
The FSMs are called cells. Let c(i,f) denote the state of the ith cell at time t. The CA is
initialised by setting c(i,0) to a;, where the input is a,a;...a,. Subsequently the
operation of the CA is autonomous. At discrete time steps t = 1,2,..., all cells
synchronously update their states, with c(i,# + 1) expressed as a function of c(i — 1,1),
c(i,t) and c(i + 1,1). (If a neighbouring cell is missing, i.c. at the boundaries of the array,
a special state # is taken to be the missing argument). The leftmost cell of the array is
the accepting cell, and the input is accepted if this cell ever enters an accepting state.

* Corresponding author. Email: meena@imscemet.in.

*The financial support of the Department of Science and Technology, Government of India, is gratefully
acknowledged.

YThis work was done when the second author was at the Departmemt of Computer Science and
Engineering, Indian Institute of Technology. Madras 600 036, India.

0304-3975/95/$09.50 © 1995—Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)60096-2

24 K. Krithivasan, M. Mahajun | Theoretical Computer Science 143 {1995} 23-49

Note that for nontrival language recognitior. acceptance requires at least n time steps
on an input of length n. See Fig. 1.
Formally, a CA is defined as follows.

Definition 1.1. A celiular automaton is a 4-tuple C = (Q, #, 6, A), where
(i) O is a finite set of states,

(ii) # €Q is the boundary state,

(iii) :0x @ x Q- Q is the local transition function satisfying

é(a,b,c) = # if and only if b = #,
(iv) A = Q is the set of accepting states,

Throughout this paper we consider anly CA which are space-bounded; on an input
of length n the CA has exactly n cells. We denote by L(C) the language accepted by the
CAC.

The operation of the CA is frequently represented using a time-space diagram. This
is an array where the topmost row has the input configuration, and successive
configurations appear in successive rows beneath it. Thus the ith row gives the
configuration of the CA after i time steps, and the jth column gives the sequence of
states entered by the jth cell of the CA. Such diagrams give a visual representation of
the CA computation and make it more easily comprehensible. Signals travelling
across the array of FSMs are shown in such diagrams by lines of varying slopes,
depending on the speed at which the signal is travelling.

A CA Cissaid tc operate in T(n) time if for each n, for each string w of length n, if
w is accepted then it is accepted within T(n) time steps. In other words, if
¢(1,0)¢(2,0)... ¢(n,0) = w and we L(C), then 3t < T(n) such that c(1,t)e A. Here T(n)
could be any function 7:N* — N*. Of special interest are the cases when T(n) = n,
giving “real-time” CA (rCA), and T(n) = cn for some constant c, giving “linear-time”
CA (CA).

A restricted version of a CA is the one-way CA (OCA), where (i, + 1) is a function
of c(i — 1,7) and c(i, 1) only, i.e. a cell’s right neighbour does not affect it. Thus J is now
a function from Q x @ to Q. For OCA, the rightmost cell is the accepting cell, where
acceptance is as defined earlier.

The definitions of CA and OCA can be generalised to the nondeterministic case,
Now & will map @ x @ x @ (or @ x @, for OCA) to subsets of 0, and the input will be
accepted if for some computation of the CA satisfying 4, the accepting cell enters

accepting node

Fig 1. A cellular automaton.

K. Krithivasan, M. Mahajart | Theoretical Computer Science 143 (1995 23-49 25

a state from A. Nondeterministic CA (NCA and NOCA) have also bern studied in
some detail in the past; some of the results can be found in [13,21]. For a nondeter-
ministic CA, for the same input there can be several time-space diagrams, correspond-
ing to different nondeterministic choices.

The results currently known about the language classes defined by these models can
be summarised as follows,

(1) A T(n)y-time CA can be simulated by a DSPACE(n) Turing machine in O(n T(n))
time: This simulation is done in a straightforward fashion ~ for one step of the CA,
where n cells update their states in parallel, the Turing machine sweeps down the array
and updates each tape cell sequentially.

(2) NOCA = NCA = NSPACE (n), the class of context-sensitive languages: The
NCA to NSPACE(n) simulation is as described above, with the Turing machine being
nondeterministic to simulate the nondeterministic moves of the CA, An NCA can easily
simulate an NSPACE (n) machine, by letting most cells idle most of the time. Only the
cell representing the tape square where the tape head is positioned, and its neighbouring
cells, change state at each step. For an NOCA to simulate an NCA, each cell has to
guess its right neighbour’s state, and special signals have to travel across the array
verifying that the guesses were correct. The technique is described in detail in [9].

(3)NSPACE (ﬁ) € OCA < CA = DSPACE(n) = NSPACE(n): The first contain-
ment is shown in [5, 11] by first showing that any language accepted by a linear-time
alternating Turing machine can also be accepted by a restricted deterministic Turing
machine equivalent to an OCA. The remaining containments are obvious.

(4) For CA and OCA, T(n) + ¢ time can be speeded up to 7(n) time: This has been
independently proved in [3,6,14,15), as also the foliowing result.

(5) For CA and OCA, linear time can be speeded up to cn time for any ¢ > 1.

6)tOCAc1CA = I0CA < ICA € OCA < CA: The proper containment was shown
in [6] by using a pumping lemma kind of argument for rOCA. The rCA = 10CA
equality has been shown in [3] by a direct construction, and the ICA < OCA contain-
ment was shown in [$5,11] using the restricted Turing machine characterisations of
OCAs and another parallel recognition device, the one-way iterative array.

It is also known that INOCA contains an NP-complete problem [13], ICA is
contained in P (follows from (1) above), and OCA contains a PSPACE-complete
problem.

The following problems posed variously in [3, 12,217 are still open.

(a) Are lincar-time CA more powerful than real-time CA?

(b) Are nonlinear-time CA more powerful than linear-time CA?

{c) Are nonlinear-time CA more powerful than real-time CA?

(d) Are CA more powerful than OCA? i.e. are there languages accepted by CA which
are provably not accepted by OCA?

{e) Are real-time CA closed under reversal? In [12] it has been shown that this is the
case if and only if the answer to (a} is No.

In this paper, we consider a new model of nondeterminism based on the structure of
time-varying automata, and, imposing this model upon CA and OCA, investigate the

26 K. Krithivasan. M. Mahajan | Theoretical Computer Science 143 (1995} 23~49

power of the resulting classes. The notion of a time-varying CA (TVCA) was introduc-
ed in [18], and in [17] TVCA were interpreted as relativised CA ie. CA which
compute with some help from an oracle. In this paper we further generalise this

“notion, and interpret the computation of a TVCA as a nondeterministic CA, a prob-
abilistic CA, and an alternating CA. The description and definitions of TVCA are
presented “in Section 2. In Section 3, we consider -nondeterministic TVCA and
compare them with the traditionally defined NCA. In Section 4, probabilistic TVCA
are considered, especially vis-a-vis NTVCA. Section 5 considers alternating computa-
tions on TVCA. In Section 6, some restricted forms of nondeterministic and probabil-
istic TVCA are studied, with the intention of trying 1o ideniify how much nondeter-
minism is required, if at all, to enhance the power of a particular class. Section
7 considers some closure properties of these TVCA classes.

2. Preliminaries and Definitions

In a TVCA, the transition function te be applied to each cell depends not only on
the states of cells in the neighbourhood but also on the number of time steps elapsed
since the CA operation began. The dependence on time is expressed in the following
way: a set of transition functions §,,4,, ... ,J, is associated with the CA, and 4, the
effective transition function of the CA, agrees with one of é,,6,, ... ,d; depending on
the time. In other words,

6(0, b,cqi’ = af(ﬂ(a’ b,C),

where a,b,ceQ,ieN, and d,;, is the transition function used at time ¢ = i. The manner
in which fis chosen thus crucially affects the overall computation. Such a TVCA with
k transition functions is called a &-TVCA.

In the above description, the function f:N* — {1,...,k} can be viewed as an oracle
which guides the computation of the TVCA; for more on such “relativised” CA see
[17,18]. As pointed out in [18], any language over a unary alphabet can be accepted
by a 2-TVCA in real time, even if the language is undecidable. Thus, for meaningful
results, we are interested only in situations where the function f'is computable within
some specific resource bound. (CA-based resource bounds on fare considered in [17].)

One important fact to note about TVCA is that speed-up does not necessarily hold.
Neither (4) nor (5) from Section 1 can be shown to trivially apply to TVCA. Since we
are essentially interested in the dependence of running time on input length, we will
still contin®: to ignore additive constants, and treat (7(n) + ¢) time as equivalent to
T(n) time. However, for multiplicative constants, there is a trade-off. To be more
precise, consider speeding up the operation of a k-TVCA by a factor of 2. Even
assuming that an initiai phase achieves the required packing of the input, to be able to
simulate two steps of the TVCA in one step calls for the ability to simulate k2 different
combinations of the form §0;. So the simulating TVCA will need k* different
transition functions. Thus speed-up is achieved at the cost of the number of functions

K. Krithivasan, M. Mahajan | Theoretical Computer Science 143 (1995) 23-49 n

required. Conversely, the number of functions can be reduced at the expense of
slowing down the computation - a k-TVCA operating in T{n) time can be simulated
by a 2-TVCA operating in (log; k) T(n) time [18]. Since the slowing down is only by
a constant factor, for (linear-time) TVCA it is sufficient to consider 2-TVCA, But for
real-time computation, it appears that k is a crucial parameter; whether & + 1
functions are better than k for real-time TVCA is an open problem posed in [18].

In[17], 2-TVCA have been interpreted as relativised CA. A tally language L < 0% is
the oracle, and § is now expressed as follows:

o 51(“,11,(.‘) if O‘EL,
8(a,b,c,i) = {Jz(a, b,c) otherwise.

Note that for a 2-TVCA operating in time T(n), there are 27 possible computation
paths, and the structure of L determines which of these paths is chosen. In [17], we
have examined how varying the complexity of the oracle L affects the computational
power of the TVCA,

In this paper we relax the notion of a single computation path being checked for
acceptance. First we define the characteristic bit sirings of a language and of a TVCA
computation path as follows,

Definition 2.1. The characteristic bit string of a language L < Z* is a bit string
aga3a; ... where each a;&{0, 1}, and for the standard epumeration of Z*,q; = 0if and
only if the ith word of Z*, w, is in L.

Thus for a tally language L, a; = 0 if and only 0’cL.

For a 2-TVCA, on input w of length n, a T(n)-time computation path is a sequence
{w =)wg, wy, ..., wp, Where for each i, jw;] = [wol, weQ* for i >>0,and fori >0, w;
can be obtained from w;_, by applying either 4, or §,. It is an accepting computation
if wr, is an accepting configuration, i.e. the leftmost state is an accepting state.

Definition 2.2. The characteristic bit string of a T(njtime computation path is
a T(n)-length bit string b, b, ... by, where b; = 0 if w; can be obtained from w;_, by
applying 8,, and b, = 1 otherwise.

Note that this definition assigns a unique bit string as the characteristic bit string
for a given computation. However, more than one bit string may still determine the
same computation. This could happen, for instance, if, from a particular configura-
tion, both &, and J, lead to the same next configuration. The unique characteristic bit
string of a given computation is the lexicographically smallest of the bit strings
determining the computation.

Consider Fig. 2, a binary tree. The root node holds w,. The left (right) child of
a node holding ¢ holds the configuration obtained by applying 8, (9;) to c. Such
a binary tree, of height 7{n), gives all possible computations of a T{n)-time 2-TVCA on
input we. A bit string of length T{n) picks out a particular path in this tree. In

3 K. Krithicasan, M. Makajan ; Theoretical Computer Science 143 (1993) 23-49

000 001 010 01l 100 101 110 198

Fig 2. Binary tree of possible computations and characteristic bit strings.

a relativised CA operation, the unique computation path whose characteristic bit
string is a prefix of the characteristic bit string of the oracle is picked, and the input is
accepted if and only if this computation path ends in an accepting configuration.
Instead, we can check whether at all there exists an accepting computation, thus
giving a nondeterministic interpretation to the TVCA. Or, we can check whether more
than half of the computation paths are accepting computations, thus interpreting the
TVCA operation as a probabilistic computation. Additionally, if the states of the
TVCA are partitioned into universal, existential, accepting and rejecting states, then
the NTVCA can be generalised to an alternating CA, an ACA. These types of
TVCA are formalised and studied in the following sections. For probabilistic TVCA,
when we count the number of accepting computations, we want to have a binary tree,
of computations, which is pruned at a particular height. So we impose the condition

that the TVCA’s running time, 7(n), be CA-time-constructible, a notion defined
below.

Definition 23. A function 7T{(n):N* — N* is said to be CA-time-constructible if there
is a CA which, on any input of length n, puts its accepting cell into a special state after
exactly 7(n) time steps. The function is said to be strongly CA-time-constructible if the
CA puts every cell into a special state, for the first time, after exactly T(n) steps. In
other words, after T(n) steps, all cells simultancously “fire” for the first time.

(Strong CA-time-constructibility is a generalisation of the famous firing squad
synchronisation problem, for which a tight lower bound of 2n — 2 is known [21]. This
lower bound applies when only one end of the array can initiate synchronisation
action. If both ends can do so, then synchronisation can be achieved in real time,)

K. Krithivasan, M. Mahajan | Theoretical Computer Science 143 (1995) 23-49 29

3. Nondeterministic TVCA

Definition 3.1. A nondeterministic TVCA is a construct C = (Q, #,5,,5,, A) defined
asa 2-TVCA. A string w is accepted by C in time T(n) if 3xe{0,1}7%*" such that the
computation path of C beginning with w and with characteristic bit string « is an
accepling computation,

Thus the crucial difference between NCA and NTVCA is that in NCA, each cell
independently makes a nondeterministic choice about the next state, whereas in
NTVCA, a global nondeterministic choice is made about whether to use transition
function &, or &,, and then all cells use this chosen transition function.

First we consider the unbounded-time classes of NTVCA.

Lemma 3.2. NTVCA & NSPACE(n); a T(n)-time NTVCA can be simulated by an
NSPACE(n) machine in O(nT(n)) time.

Proof. A T(n)}time NTVCA can be simulated by an NSPACE(n) machine which
simulates one step of the NTVCA as follows. It first decides, nondeterministically,
whether to use 4, or 4, and then moves down the entire array, deterministically
updating the state of each cell accordingly. O

Lemima 33. NOCA € NTVOCA; an NTVOCA can simulate a T(n)-time NOCA in
O(nT(n)) time.

Proof. Let C = (0, #,0, A) be an NOCA, where é maps Q x 0 to subset of 0. Let k be
the size of the largest subset of Q in the range of 5. We will construct a (k + 1)-
NTVOCA C’ accepting the same language as C. Then, as described in Section 2, an
equivalent 2-function NTVOCA can be constructed.

Each cell of C can independently choose one of upto k options when making
a transition according to 4. But in C', at a single time step, all celis must use the same
option. So to simulate the n independent choices made by C in one step on an n length
input, C’, needs n steps, where at each step exactly one cell of C’ makes a transition and
all other cells merely maintain their state. Now the first k distinct transition functions
of C' can implement the k options provided by 4. The leftmost cell of C’ sends a pulse
right at unit speed. As this pulse passes through a cell, that cell makes a state
transition. When the pulse reaches the right end, all cells have updated their states and
one step of C has been simulated. One row in the time-space unrolling of C appears as
a diagonal in the time-space unrolling of C'. See Fig. 3.

The problem which now arises is that the leftmost cell does not know when to send
out the next pulse. Pulses should be at least n time steps apart, but, in the absence of
two-way communication, counting upto n is not possible. What happens if we allow
arbitrary spacing of pulses? The leftmost cell sends a pulse whenever 8, is used. If
the pulses are more than n steps apart, then in between there will be some idle steps,

30 K. Krithivason, M. Mahaion | Theoretical Computer Scietive 143 (1995 23-49

Sr43

. simulating 1* step
" of NOCA; n steps

6&_'1 whABP B e DA -

- simulating 2 step
}m idle steps, until
Sea Sk41 is used
LT == simulating 2'¢ step

—~+ simulating 4'* step

Fig 3. An NTVOCA simulating an NOCA.

when €' does nothing. If the puises overlap, then some cells have to make related
choices. But these choices could have been made even if all cells were acting indepen-
dently. The crucial observation is that with arbitrary spacing allowed, properly spaced
pulses also occur along some computation paths of C', guaranteeing the checking of
all possible paths of C. The other paths, with overlapping pulses, are already
simulated on some of these paths and are thus redundant, but not wreng.

For a T{n}-time computation path of C, there will be a computation path of ¢’
where the pulses are exactly n steps apart; this computation path will be of length
(n + 1)T(n). So if C has an accepting path of length 7(n), then €’ certainly has at least
one accepting path of length (n 4 1) T(n). Further, if C has no accepting path, neither
does C'.

With this construction, T{n) steps of the NOCA are simulated in O(nT(n)) steps by
the NTVOCA. This NTVOCA can be converted to one having only two transition

functions, with a slowing down only by a constant factor. This is the required
NTVOCA. O

From these two lemmas and (2) in Section 1, we can now conclude the following
theorem.

Theorem 34. NTVOCA = NTVOCA = NSPACE(n).

K. Krithivasan, M. Mahajan | Theoretical Computer Science 143 (19957 23-49 n

The following lemma further strengthens the statement NTVCA < NCA: it claims
that a real-time simulation is possible.

Lemma 35, An NTVCA can be simulated by an NCA with no loss of time. If the
NTVCA uses only one-way communication, so does the simulating NCA.

Proof. In an NTVCA, all cells must use the same transition function, at any given
time instant, This condition can be ¢nforced in an NCA as follows; Each cell of the
NCA nondeterministically uses &, or &, at any time instant. Additionally, each cell
also records, in its state, which tzansition function was used. From time step ¢ = 2
onwards, ¢ach cell also checks that the cells in its neighbourhood nsed the same
transition function as itself at the previous step. If this is not the case, 4 reject signal is
generated and sent to the accepting cell. Thus if the NCA accepts its input, it must be
via a computation where all cells had used the same iransition function at each time

instant; i.e. it must be via a computation corresponding to a computation path of the
NIVCA. O

We now look at the time-bounded NTVCA classes. The next result highlights the
difficulty of determining membership for real-time NTVOCA languages. It was
known that the membership problem for real-time NOCA is NP-complete [13]. We
show that this continues to hold even if we consider NTVOCA rather than NOCA.

Theorem 3.6, The class of real-time NTVOCA languages comtains a language which is
NP-complete.

Proof. Consider the language of satisfiable Boolean formulas in 3-clause conjunctive
normal form 3-CNFSAT. Let the formulas be coded as follows:

#4038 ... 403 F1 AF3 A ... A Fyx,

where

® * is a special end-marker,

e 1,c{0,1}*,

® |v;] = lvj} for each i, j,

o v;#u;fori#j and

@ cach F; is of the form w v x v y, where w, x and y are of the form O or 12F for
some 1.

Thus the input has a list of variables, coded as equal length bit strings separated by ¢s,

followed by a 8, followed by a set of clauses separated by A’s, where each clause has

three terms separated by v s, and each term is either 0o®, representing the variable v,

ot 1v®, representing the negation of the variable v, for some variable o. Here v* denotes

the string obtained by reversing the characters in v. We store the variable descriptions

in different orders in the initial part and in the formula part to facilitate cross-
checking.

2 K. Rrithivasan, M. Makajan | Theoretical Computer Science 143 (1995} 23-49

This language is well known to be NP.complete [1, 10]. Consider the following
NTVOCA accepting it. _

At the first time step, a signal Assign_.and_Evaluate starts moving right from the
§ cell. This signal does two things. Firstly, as it passes over each cell holdinga v or
a A, that cell nondeterministically chooses a value 0 or 1. This value is considered to
be the value of the variable preceding it in the formula. Secondly, it collects these
chosen values as it travels right, and evaluates the formula; at each v or A and at the
last », the partial value of the formula to its left is stored,

If the value that reaches the fast « is 0, then the input is not accepted. Ifit is 1, then
we must check that different occurrences of the same variable in the formula are
assigned values at the nondeterministic steps in a consistent way. To do this check, the
entire input stream moves right at unit speed, while each cell also retains a copy of its
original input symbol. Now the variables in the left part (i.e. before the $) encounter
those in the right pant afier the Assign_and..Evaluate signal has gone over them.
Consider a situation when variable v; is moving over a substring v Owv. The first v
indicates that comparison should begin after the next bit. The first position of the
moving stream records that the variable is not negated. So the Boolean value in the
moving stream (this value is set when the first instance of v} is found) should match
that in the last v if w® = u;. But checking whether a substring is of the form w v Ow® is
in rOCA by standard techniques; see [6-8). So the moving stream can check if the
same variable is represented under it, and, if so, check that the value is consistently
assigned. The v after this variable allows the moving stream to “reset” itself, to be
ready to check the next variable.

Ifany consistency check fails, it is recorded in the cell where the failure is discovered.

In this fashion, when the left end-marker » reaches the right one, it can find whether
any inconsistency has been recorded. If this is not the case, then the input is accepted.

Clearly, this process takes exactly as much time as the length of the input. See
Fig.4.

We next look at the relationship IOCA = rCA (refer to (6) in Section 1) in
the context of nondeterminism. For the traditionally defined nondeterministic
classes, the equality rCA = I0CA continues to hold, since the speed-up of IOCA to
2n time and the simulation of an rCA by a 2n-time IOCA and vice versa are not
affected by nondeterminism in the transition function. This is not the case for

NTVCA. In fact, an equivalent result does ot scem to hold, but we have a restricted
version.

Theorem 3.7. The class of NTVOCA C running in time 2n and satisfying the condition

VxeZ*, xelL(C)e>3 a computation path aceepting X, whose characteristic bit
SIring ayq; ... a5, has @y, == ay; for i = 1 to |x)

Is exactly equivalent to the class of real-time NTVCA.

K. Krithivasan, M. Muhajun | Theoretical Computer Science 143 (1995) 23-49 i3

s 15 4 oo 4V SOPRVIBYOIA - AlRVILivoule

.....
..........

..... Assign-and-Evaluate ¢igna)

.~ Nondeterministic step
o =2 It v, assigned consistently?

.....
.....

Fig. 4. An INTVOCA accepting SAT.

Proof. Though 2x steps are allowed for the computation of the NTVOCA, effectively
only n steps are aliowed for the nondeterministic choice. Under such conditions, the
equivalence of 2n-time NTVOCA and real-time NTVCA can be shown in a manner
identical to the proof that rCA =10CA [3]. O

As for the containment ICA = OCA from (6), Section 1, we show that even
linear-time NTVCA are no more powerful than deterministic OCA. We do not know
whether a similar result holds for INCA. We do know, however, that the containment
holds if both classes are made nondeterministic using the traditional notion, i.e. that
INCA are contained in NGOTA, because NOCA and NCA have the same power.

Theorem 3.8. Linear-time NTVCA <= OCA.

Proof. We resort to the sequential machine characterisation of OCA to prove this
result. It has been shown [5, 11, 15] that OCA are equivalent to a restricted form of an
on-line single-tape Turing machine, called a sweeping automaton (SA). An SA consists
of a semi-infinite worktape (bounded at the lzft by a special boundary marker ¢) and
a finite-state control with an input terminal at which it receives the serial input

a\d; ... a,. The symbol $ is used as end-marker. The SA operates in left-to-right
sweeps as fcllows,

4 K. Krithivasan, M. Mahajar; | Theoretical Computer Science 143 (1995) 23-49

Initially, all cells of the worktape to the right of ¢ contain the blank symbol /.
A sweep begins with the read-write-head (RWH) scanning ¢ and the machine in
a distinguished state g,. In the ith sweep, the machine reads a; and moves right of ¢
into a non-g, state. It continues moving right, rewriting non-4 symbols by non-A
symbols and changing states except into g,. When the RWH reads a 4, it rewrites it by
anon-2symbol and resets to the leftmost cell in state g 10 begin the next sweep. When
$ is first read, the machine completes the (n + 1)th sweep, writes a $ on the (n +)th
tape cell, and resets to 4 in state . Subsequent sweeps are performed between ¢ and
$ without expanding the workspace. $ is assumed to be always available for reading
after the input is exhausted. The input is accepted if the machine eventually enters an
accepting state at the end of a sweep.

Several techniques for programming an SA have been described in [5]. We use
some of these technigues in the following; for a full description of how the techniques
are implemented on an SA, the reader is referred to [5].

Given a linear-time NTVCA, we will construct a sweeping automaton SA accepting
exactly the same language.

Let € be an NTVCA running in cn time. A valid computation path thus has a cn
lengih characteristic bit string. We design the SA to generate all cn length strings in
lexicographic order, and, for each string, to trace out the corresponding computation
path. The SA will accept its input if it cver finds an accepting compatation in this process.

As the SA reads its input, it shifts and packs symbols on the tape. When the entire
input has been read, the worktape will be partitioned into three areas as shown in
Fig. 5.

The first area is a counter of length cn, and holds the string « reversed, i.e. with its
least significant bit first. The second area is also of length ¢n, for holding the bit string
B currently being tested. Initially both « and g are set to 0°*, Further, the first 0 of 8 has
a special marker under it. The marker indicates which step of the bit string currently
being tested is to be simulated next; it moves left to right. The purpose of the counter
a is to indicate when the next string f may be considered; any counter which resets
more than cn steps apart will do. Such a counter is required because the SA cannot
carry information from right to left; based on the f marker alone, it cannot know
when to generate the next B.

The third area is of length cn and has two tracks. The first track has a permanent
copy of the input x in its leftmost # celis, and is blank efsewhere. The second track is
initially a copy of the first track, and is to be used for tracing out the computation

al-noan

()

Fig. 5. Worktape of an SA accepting an INTVCA language.

K. Krithivasan, M. Mahajan | Theoretical Computer Science 143 (1995) 23-49 35

corresponding to the string in the second area, This requires en space and not n space
because the SA can only move from left to right, while the NTVCA has two-way
communication. So in simulating each step of the NTVCA, the SA shifts the config-
uration one cefl right,

While reading $, i.¢. after all the input has been read, « is incremented in each sweep,
This can be done in a left to right scan, because « is stored in reversed order.
Simultaneously, the marker moves right, one ceil per sweep, under the string g. If the
marker is on a 0(1, respectively), then the NTVCA configuration y, which is stored on
the second track of the third area, is updated as per §; (5,, respectively}. When the
marker reaches the end of the second area, a full computation path has been traced.
The marker is now erased, and the third area is reset to its initial status. It remains
unchanged in subsequent sweeps until « overflows, When this happens (every 2
sweeps), the next bit string is generated in the second area (§ is incremented; again, in
aleft-to-right scan). The marker is placed again on its leftmost bit, and the tracing out
of the corresponding computation path begins in the third area. Thus all computation
paths are traced, and an accepting computation, if any, can be found by the SA. O

4. Probabilistic TVCA

In this section we look at some of the classes obtained by viewing the operation of
a TVCA as a probabilistic computation, i.e. a computation which is deemed to be
accepting if more than half of the subcomputations are accepting. For such probabilis-
tic TVCA (PTVCA), we impose the condition that T(n) be CA-time-constructible.
PTVCA are formally defined as follows.

Definition4.1. Let T(n) be a CA-time-constructible function. A T{n)-time probabilistic
TVCA (PTVCA)isa construct C = (Q, #, §;,8,, A)defined as a 2-TVCA. Acceptance
is defined as follows: A string w is accepted by C if more than half of the T(Jw|)-time
computations of C on w are aceepting computations.

Henceforth, for PTVCA, when we taik of a T(n)-time computation we implicitly
assume that T(n) is CA-time-constructible.
The following result is easily shown.

Theorem 4.2. T(n)-time NTVCA < T(n)-time PTVCA.

Proof. Let C be a T(n)time NTVCA. On any input w of length n, it has 27®
computation paths. If even one of these is an accepting path, then C accepts w. This
condition can be easily incorporated into a probabilistic computation of C' as follows:
at the first step, &; takes C' into a special dummy configuration from which every
ensuing computation is accepting. &, takes C’ into the start configuration of C. If this

36 K. Krithivasan, M. Mahajan | Theoretical Computer Science 143 (1995) 23-49

has an accepting computation, then the PTVCA C’ so defined has strictly more than
half accepting computations and so accepts its input.

The problem with this method is that it requires T(n) + 1 time steps because of the
initial dummy step. To recover this time step, the simulation of the NTVCA has to be
speeded up by one step. Let C, and C; be the configurations resulting from applying
6y and 8,, respectively, to the start configuration of C. In the PTVCA, after the first
step when 8, is applied, C’ goes into a configuration with two channels, holding C,
and C,. At subsequent steps. each channel is updated according to the transition
function in use at that step. Thus each computation of C’ with characteristic bit string
1z holds the results of two computations of C - namely, the computations with
characteristic bit strings 12 and 0z - in its two channels, C’ is programmed to accept
its input if either of the two channels holds an accepting configuration. Clearly, C’
accepts the same language as C probabilistically, and does so in T(n) time. O

Corollary 4.3.
Real-time NTVCA < real-time PTVCA.
Linear-time NTVCA < linear-time PTVCA.

By a construction similar to that in the proof of Theorem 3.8, we can also show that
lincar-time PTVCA are no more powerful than deterministic OCA.

Theorem 4.4. Linear-time PTVCA = OCA.

Proof. Given any linear-time PTVCA, we will construct an SA (sweeping automaton)
accepting the same language as the PTVCA. This will prove the theorem. Most of the
details of the construction of the SA are as in the proof of Theorem 3.8; here we will
only describe the additional details.

While simulating the NTVCA, the SA traced out the different computation paths of
the NTVCA in lexicographic order, and accepted the input if any accepting computa-
tion path was found. For a PTVCA simulation, the SA must check all computation
paths, and count how many of them are accepting computations. For this, a fourth
area is created on the worktape, beyond the three areas described earlier. This area
has cn cells, and is used as a counter 7 initialised to zero. y is incremented whenever an
accepting computation is found. When ail computation paths have been checked, the
SA checks whether ; contains a number greater than 271, If this is the case, the SA
moves right in an accepting state; otherwise it moves right in a rejecting state. Thus
the probabilistic acceptance condition is checked. O

5. Alternating computations on CA

Further generalising the concept of nondeterministic and probabilistic TVCA, we
now introduce alternation in the CA model of computation. This follows the notion of

K. Krithivasan, M. Mahafan | Theoretical Computer Science 143 (1995 23-49 37

alternation in Turing machines, introduced in [4]. While nondeterminism aliows
a computation to proceed locally along any of two paths, and is said to be accepting if
either of these two paths lezds to acceptance, alternation also allows the computation
to accept if and only if both resulting paths end in acceptance. Thus an aiternating
computation could have deterministic moves, nondeterministic moves, and universal
moves. A proof is now not just a single path in the computation tree but a subtree
which keeps track of all universal moves. The results in [4] show that this generalisa-
tion moves up the class of accepted languages by one step, in the hierarchy logspace,
polynomial time, polynomial space, ... Thus ALOGSPACE coincides with PTIME,
and APTIME coincides with PSPACE. We do not expect such a dramatic shift when
alternation is introduced in CA, because the CA are already space-bounded. We
investigate the precise extent to which alternation affects CA. We follow the notation
from [4).

An alternating CA (ACA) is a CA which, at each time step, may globally (i.e. at all
cells) use either of two transition functions 8, and 8. The states of Q are partitioned
into four classes ~ accepting states, rejecting states, universal states and existential
states. Whether a particular configuration is a universal or an existential configura-
tion is determined by the state of the leftmost cell. The computation tree of an ACA on
input w is a binary tree where the root node holds w. The left (right) child of a node
holding ¢ holds the configuration obtained by applying 8, (§,) to c. The input w is said
to be accepted if this binary tree has a subtree satisfying the following properties:

The root node of the subtree is the root node of the overall computation tree.

At each node, if the leftmost state in the configuration represented at that node is
universal, then both children of the node are present in the subtree.

At each node, if the leftmost state in the configuration represented at that node is
existential, then exactly one child of the node is present in the subtree.

At each node, if the leftmost state in the configuration represented at that node is
accepting, then the node is a leaf of the subtree.

No leaf of the subtree has a rejecting state as the lefimost state in its configuration.
Such a subtree represents an accepting computation of the ACA.

Investigating the power of such ACA necessarily begins with examining the rela-
tionship DSPACE(n) = CA. We shall first show that the corresponding equality for
alternating computations also holds. Without loss of generality we assume that the
Turing machines considered have a single tape.

Lemma 5.1. ASPACE(n) < ACA.

Proof. This follows from a slight modification of the proof for DSPACE(n) &« CA
[21]. The state of the alternating Turing machine (ATM) at each time step indicates
whether the ATM is in a universal or an existential state. So, in the simulating ACA,
this state must always be represented at the leftmost cell. The ACA holds tape
configurations of the ATM in its array in a folded fashion in two tracks, so that the
tape square over which the ATM head is positioned is always represented at the

k' K. Krithivasan. M. Mahajan | Theoretical Compurer Science 143 (1995) 23-49

leftmost ceil. When the tape head moves, the ACA correspondingly shifts the contents
of the two tracks. The changes in the leftmost cell are made at once, and they
gradually propagate away to the right. For details of such a construction, see the
proof of Theorem 3.8 in [21]. (This proof claims a real-time simulation, but then it
uses the input’ packed two symbols per cell.) This construction requires one data
movement step after each real simulation step; thus the ACA takes twice as much time
as the ATM and finally performs the same computation, O

Lenma 5.2. ACA = ASPACE(n).

Proof. Given an ACA, the ASPACE(n) machine construction is akin to constructing
an NSPACE (n) machine simulating an NTVCA (Lemma 3.2). The state of the ATM at
the beginning of each sweep reflects the state - universal or existential - of the ACA,
while the operation within a sweep is deterministic. [J

From the above two lemmas Theorem 5.3 now follows,
Theorem 5.3. ACA = ASPACE(n).

The time-bounded ACA classes correspond to time-bounded ASPACE (1) compu-
tations. We use ASPTI(s(n),t(n)) to denote computations of aternating Turing ma-
chines which use s(n) space and run in t{n} time, and ACA(t(n) to denote ACA running
in #(n) time. The next two lemmas are quite easy to see; they follow from the
constructions outlined in Lemmas 5.1 and 5.2,

Lemma 54. ASPTI(n, t(m) & ACAQ2t{n)).

Consequently, the DTIME(n) < ICA containment carries over to alternating com-
putations too.

Carollary 55. ATIME(n) = IACA.
Lemma 58 ACA(t(n) < ASPTI(n, O(nt(n))).

Thus, if poly denotes the class of polynomial-valued functions, then the following
corollary holds.

Corollary 8.7. ACA(poly) = ASPTI(n, poly) &= PSPACE.

Itis also quite easy to see, by a process similar to that outlined in Theorem 3.6, that
the language of fully quantified Boolean formulas evaluating to True, QBF, is in

IACA. Since QBF is PSPACE-complete [1], the membership problem for IACA is
also PSPACE-complete.

K. Krithivasan. M. Mahajan | Thearctical Computer Science 143 (1995) 2349 39

NSPACE(+/ii) ATIME(n) OCA
CA
[iaca) DSPACE(n)
MéA NgA
ASPACE(n) NSPACE(n)

IATIME(»’)I

Fig & Inclusions among CA and ATM classes.

Since it is known that NSPACE(s(n)) is contained in ATIME(s%(n)) [2, 10], we thus
have the overall setup shown in Fig. 6.

6. Restricted nondeterminism

For a T(n)}-time computation, an NTVCA as defined in Section 3 looks at all the
2T®™ computation paths. We can define restricted versions, where only certain compu-
tation paths, whose characteristic bit strings possess some special properties, are of
interest. This takes us closer to relativised CA, where exactly one computation path is
of interest. Two such restrictions are defined below.

Definition 6.1. A 1-turn (1-kink) NTVCA is a TVCA C which accepts input w if and

only if there is an accepting computation of C on w, with a characteristic bit string of
the form 0*1* (0*(z + 10*)).

A 1-turn NTVCA uses only , for some time and then switches over to using only
0,. The nondeterminism is in deciding when to switch from &, to 8,. So for a T(n)-time
1-turn NTVCA, there are T(n) + | computation paths of interest. A 1-kink NTVCA
can use 3, at most once; again, for a T(n)}-time 1-kink NTVCA, there are T(n) + 1
computation paths f interest. These paths are shown in Fig. 7.

We can also define restricted versions of PTVCA in a similar fashion.

Definition 6.2. A 1-turn (1-kink) PTVCA is a TVCA C which accepts input w if and
only if more than half of the computation paths determined by bit strings of the form
0*1* (0*(c + 10*)) are accepting computations.

These classes are important in that they help us identify the amount of non-
determinism needed to enhance the power of other classes. To make this clearer, note

40 K. Krithivasan, M. Mahajan | Theoretical Computer Science M43 (1995} 23-4%

0000 000X 0011 o111 nt

1-turn paths

0000 } 0050 | 1000
0001 0100

1-kink paths

Fig. 7. Restricted nondaterminism computation paths: (a) 1-turn paths: (b} 1-kink paths.

that a T(a}time NTVCA has 27" computation paths. Picking any one of these
involves choosing T(n) bits, corresponding to the characteristic bit string of the chosen
computation path. A T(n)-time 1-turn NTVCA, on the other hand, has only T(n) + 1
“computation paths of interest. Picking any one of these involves picking one of the
T(n) positions in the charcreristic bit string where the TVICA switches over from using

K. Krithicasan, M. Mahajan | Theoretical Computer Science 143 (1995 23-49 41

9y to using d,. Since making a choice from T(n) positions would involve setting
log(T(n)) bits, the “amount” of choice, due to nondeterminism, available to an
NTVCA and to a I-turn NTVCA differ by an exponential factor. As is to be expected,
we will show that the 1-turn classes are quite weak compared to the other NTVCA
classes. First we show that 1-turn and 1-kink are equivalent notions; an NTVCA or

PTVCA of one type can be simulated by an NTVCA or PTVCA of the other. Before
this, we prove an intermediate technical result,

Lemma 6.3. Let r be a regular expression denoting a subset R of {0,1}*. Given any
NTVCA C, we can produce a modified NTVCA C' which performs the same computa-
tion as C, but additionally, along each computation path, also indicates whether the bit
string determining the computation path belongs to R.

Proof. Let C be an NTVCA, and let M be a deterministic finite-state machine (FSM)
accepting R. We construct the required NTVCA ' to function as follows: The states
of C’ are 2-tuples. The first component of each cell, put together, gives the configura-
tion of C. In the second component, the state of M while processing the bit string
corresponding to the current computation path is recorded. Thus, along any compu-
tation path, at any given time step, the second component of the state of each czll
holds the same value. The bit string determining the computation path is in R if and
only if this value is a final state of M. [J

This is in fact a weak result in that each cell is able to recognise R by acting as an
FSM in isolation. By collectively using all cells in the array, some nonregular subsets

of bit strings can also be recognised at the leftmost cell; however, for our purposes
now, regular sets suffice,

Theorem 6.4,
T(n)-time 1-turn NTVCA = T(n)-time 1-kink NTVCA.
T(n)-time 1-turn PTVCA = T(n)-time 1-kink PTVCA.

Proof. Consider simulating a 1-turn NTVCA by a 1-kink NTVCA. Let the 1-turn
NTVCA be C = (Q, #,0,,0,,4). We define a 1-kink NTVCA, with transition func-
tions hy and h,, and with one unmarked state and one marked state corresponding to
each state in Q. h; on unmarked states acts as §,. hy on unmarked states acts as &, and
also marks the resulting states. Subsequently, all operation is on the marked version of
the states. h, on marked states acts as 6. (If h; encounters marked states, then the
result is immaterial, since this does not correspond to a 1-kink path.) Thus the 1-turn
path 01 using 8, and 8, is simulated by the 1-kink path 0110/~ ! using h, and h;.
The other inclusions can be similarly shown. O

42 K. Krithicasan, M. Makajan | Theoretical Compurer Science 143 (1995} 23-49

Since 1-turn and 1-kink nondeterminism allow less choice, it is to be expected that
. the classes they define are contained in the unrestricted nondeterminism classes. This
is shown in the proof of the following theorem.

~Theorem 6.5. (a) T(n)-time 1-turn NTVCA < T(n)-time NTVCA.
{b): T(n)-time 1-turn PYVCA = Tin)-.ime PTVCA.

Proof. (a) A I-turn NTVCA must have an accepting computation with a character-
istic bit string U177 10 accept its input. We cant design an NTVCA which uses the
transition functions of the given f-turn NTVCA, and also checks the regular expres-
sion 0*1* along its computation paths, as described in Lemma 6.3, A state is an
accepting state if and only if its first component is an accepting state for the 1-turn
NTVCA and its second compornent is an accepting state for an FSM accepting 0% 1%,
Thaus if the NTVCA hias an accepting computation, then it must be along a {-turn
path. Hence ti:ie NTVCA accepts exactly the same language as the 1-turn NTVCA,
and within the same time.

{b) A 1-turn PTVCA has T(n) + | computation paths of interest. A PTVCA, on
the other hand, has to considar 27™ computation paths, In a simulation of a I-turn
PTVCA, 27 . T(n} — 1 of these carry no information; they correspond to invalid
paths. To prevent these computation paths from alfecting the overall outcome,
we must ensure that exactly half of these are accepting computations. Consider
the following method of division of these paths into accepting and rejecting
paths:

Invalid paths (ie. of the form 3* 10X*): 2T — T(n) — 1.

i. Paths beginning with 0 (i.e. of the form 0% 1*0* £*): 2T® -1 . T(n) paths.

2. Paths beginning with 1 (ie. of the form 170" 2*): 2T"~1 _ | paths.

(@) Paths of the form 170* : T(n) — 1 paths.

(i) Paths with odd number of I's (i.c. of the form 1*0/, where 0 < k,j < T(n)and kis
odd): [T(n)/27] paths.

(i)} Paths with even number of 1's (i.e. of the form 1*0/, where 0 < k,j < T(n) and
k is even): [T(n)/2] ~ 1 paths.

(b) Other paths (ie. of the form 1*0*12%): 2T™~! __ T(n) paths.

Make all paths in 1 and 2(a)(i) accepting, and all paths in 2(a)(ii) and 2(b) rejecting.

The accept cell can determine the type of the path currently being followed using
the procedure described in Lemmaz 6.3.

Let A and R denote the number of invalid accepting and rejecting paths, respect-
ively. Then A =2T""1 — T(m) +[T(n)/27] and R = 271 . T(n) 4 [T(m)/27] ~ 1.
Clearly, if T(n) is odd, then 4 = R, as desired. If T(n) is even, then 4 = R + 1. But in
this case, the number of valid paths is itself odd (7(n) + 1), and so the 1-turn PTVCA
cannot have a tie between the number of accepting and rejecting paths, So this
distribution of invalid paths does not introduce error. Thus, in either case, the PTVCA
accepts its input if and only if the number of valid accept paths exceeds the number of
valid reject paths; ie. if and only if the 1-turn PTVCA accepts its input. [

K. Krithivasan, M. Mahajan | Theoretical Computer Science 143 (1995) 23-49 43

For these restricted choice classes also, we show below that an NTVCA class is
contained in the corresponding PTVCA class,

Theorem 6.6, T(n)-time 1-turn NTVCA < T(n)-time 1-turn PTVCA.

Proof. A T(n)time 1-turn NTVCA has T(n) + 1 computation paths of interest, i.c.
valid computation paths, If any of these is an accepting computation, then the input is
to be accepted. To achieve the same effect in a probabilistic computation within the
same time, we must construct a T'(n)-time PTVCA where half of the valid computation
paths are accepting paths and each of the remaining valid computation paths
simulates two distinct computation paths of the NTVCA.

This construction differs from that outlined in the proof of Theorem 4.2 in only one
aspect; we now want to consider only 1-turn paths and partition them into equal-sized
sets. But Lemma 6.3 allows us to do such identifying and partitioning easily. The
details are left to the reader. (0

Corcflary 6.7.
Real-time 1-turn NTVCA < real-time 1-turn PTVCA.
Linear-time 1-turn NTVCA < linear«time 1-turn PTVCA.

Finally, we observe that even linear-time 1-turn PTVCA are contained in P. This
merely points out that the weakness of 1-iturn computations is not overcome by going
from nondeterministic to probabilistic computations,

Lemma 68. Linear-time 1-turn PTVCA & P.

Proof. A linear-time TVCA, whether nondeterministic or probabilistic, has only

polynomially many valid computation paths. So a deterministic Turing machine can
check them all sequentially. O

Clearly, this argument holds even if the PTVCA requires p(n) time for some
polynomial p.

This last result shows the limitations of 1-turn nondeterminism. However, we
believe that even this much nondeterminism can increase the power of a class. As
a specific example, consider any language L and define IMID(L) as follows:

IMID(L) = {xyzeZ*||x| == |z|, y&L}.

For any L in rCA, we can show that 3 MID(L) can be accepted by a real-time {-turn
NTVCA. We do not know whether, for L in rCA, IMID(L) can always be accepted by
an rCA. Similarly, if we define 3PRE(L) as follows,

IPRE(L) = {xyeZ*|xeL},

44 K. Krithicasan, M. Mahajan | Theoretical Computer Sclence 143 (1995) 23-49

then we can show that for any L inICA, 3PRE(L)is in linear-time 1-turn NTVCA. We
do not know of any ICA construction to accept 3PRE(L). (However, if L is an rCA
language, then IPRE(L) can also be shown to be an rCA language.) These and other
such closure properties are studied in [16,19),

The idea behind examining 1-tum NTVCA is essentially to see how many distinct
computation paths need to be checked for acceptance. The coricept can be generalised
to k-turn-for some constant k, and to finite-turn, A k-turn NTVCA is an NTVCA
where an accepting path, if one exists, alternates between using 5, and §, at mos;
k times. Similarly, we can:consider k-turn PTVCA. Clearly, k-turn is contained in
(k + 1)-turn for NTVCA. The nontrival question is whether the containment is strict,
It is easy to see that k-turn paths and k-kink paths (8, is used at most & times) also
have characteristic bit strings representable by regular expressions; thus Theorems 6.4
and 6.5 hold for k-turn (k-kink) NTVCA too. Lemma 6.8 also holds for linear-time
k-turn NTVCA and k-turn PTVCA, because it is easy to see that the number of
distinct computation paths of interest in a k-turn NTVCA is O(T(n)*).

For PTVCA, showing thai A-turn is contained in (k + 1)-turn is not as easy as for
NTVCA. As in the proof of Theorem 6.5, we need to show that the paths which are
(k + I)}-turm but not k-turn can be divided equally between accepting and rejecting
computations, so that they do not affect the overall outcome. It is straightforward, but
tedious, to outline such a division, using Lemma 6.3. For details, see [6]. Thus, we
have the following result.

Theorem 69. Vk > 0, k-turn T(n)}-time PTVCA < (k + 1)-turn T(n)-time PTVCA.

The other results in this section can be similarly generalised.

7. Closure properties

In this section we examine some closure properties of the language classes defined
in the preceding sections.

Theorem 7.1. If L, and L, can be accepted by NTVCA in T(n) time, then Ly L; can
be accepted by an NTVCA in T(nj time.

Proof. Let C; and C, be the NTVCA accepting L, and L,, respectively. We can

construct an NTVCA C which simulates C; and C, in two separate channels and thus
accepts Lyu L,. O

Theovem 72 If L, and L, can be accepted by NTVCA in time Ty(n) and T,(n),
respectively, then L, ~ L, can be accepted by an NTVCA in T,(n) + T,(n) time.

K. Krithivasan, M. Muhajan | Theoretical Computer Science 143 (1995) 23-49 45

Proof. A construction similar to that outlined in the above proof will niot work in this
case, because even if x belongs to both L, and L,, the accepting computations of C,
and C; need not have the same characteristic bit string. So an NTVCA accepting
Ly ~ L; must run through all combinations of a computation of C, and a computa-
tion of C,.

To achieve the claimed time-bound, we interleave the computations of C, and C,.
Two channels are created in the array of cells. One channel is updated at odd time
steps as per C,, the other at even steps as per C;,. This ensures that each computation
can proceed with an independent characteristic bit string. If the computation in any
channel reaches an accepting state, thenceforth that channel stays in an accepting
state. The new CA accepts if and only if both its channels are in aceepting states.
Clearly, if the input is in L, r L, then this happens within 73(n) + Tp(n) time. O

Corollary 7.3. Linear-time NTVCA are closed under union and intersection.
Since NTVCA = NSPACE(n), Theorem 7.4 follows.

Theorem 7.4, NTVCA are closed under complementation.

However, it does not seem likely, especially in the light of Theorem 3.6, that
real-time or linear-time NTVCAs are closed under complementation.

Note that Theorem 7.1 goes through even if we consider k-turn NTVCA. Theorem
7.2 does not, because interleaving the computations of Cy and C; can introduce many
more turns. In this case, therefore, we go through the computations of the two CAs
sequentially, giving the following result.

Theorem 1.5, Let Ly and L, be accepted by k-turn and m-turn NTVCA in Ty{n} and
T3(n) time, respectively. Then
@) Ly L, can be accepted by a max(k, m)-turn NTVCA in max(Ty(n), T»(n)) time.
(b} L; Ly can be accepted by a j-turn NTYVCA in T (n) + In + Ty(n) time, where

. Jk+m+1 i kis odd,
I Vk+m otherwise.

(¢} If Ty(n) is strongly time-constructible, then L, ~ L, can be accepted by a j-turn
NTVCA in Ty(n) + T,(n) time, where j is as in (b).

Proof. (a) is straightforward. To show (b} and (c), the technique of Theorem 7.2 will
not work directly, as explained above. Instead, consider the following method. Let C,
and C, be the NTVCAs accepting L, and L, respectively. The NTVCA C accepting
Ly n L, begins simulating C, along all paths. If the input x belongs to L, then
acceptance will be detected within T, (n) steps. When this happens, C initiates a firing
squad synchronisation algorithm, This requires 2n steps. When the cells synchronise,

L] K. Krithicasan. M. Makajar | Theovetical Compurer Science 143 (1995} 23-49

they start simulating C,. If x belongs to L as well, this will be detected within another
T2 (n) steps. Thus, if x is in Ly n Ly, C will accept x within Ty(n) 4 2n + T(n) steps.

It T3{n) is strongly time-constructible, then the synchronisation stage can be
avoided. C simply begins simulating C,, while simultaneously computing T, (n). After
T, (n) steps, the whole array of cells switches over to simulating C,. The leftrmost cell
accepts its input if and only if both parts of the simulation end in accepting states.

The number of turms is explained as follows. An accepting path has at most k turns
from the simulation of Cy, plus at most m turns from the simulation of C,, plus
possibly one more turn in changing over from the simulation of C, to that of C;, and
is thus a (k + m + 1)-tum path. The additional turn is not needed if k is even, because
then the path of C, with maximum number of turns ends with 3, in use. See
Fig.8. O

Lastly, we consider the closure of PTVCA language classes under some simple
operations. Closure under union or intersection does not scem to hold; the proofs of
Theorems 7.1 and 7.2 do not casty over, since we now need to count the number of
accepting computations of C; and C,. On the other hand, for PTVCA, closure under
complementation is relatively easy to show,

Theorem 7.6. If L can be accepted by a PTVCA in T(n) time, then L can be accepted by
a PTVCA in T(n) + 1 time.

Proof. Merely exchanging the accepting and the nonaccepting states of the FTVCA
accepting L fails in case there are an equal number of accepting and rejecting
computations. However, using one extra time step, this difficulty can be overcome.
One extra step gererates T(n) additional computation paths. These can be divided, by
using Lemma 6.3, between dummy accepting and rejecting paths in such a way that
ties are correctly handled. The details are straightforward and are omitted. [

Gy

(3) I-turn folksred by 1-turn (b) 2-turn followed by 1-tumn
gives 3-turn paths gives 3-turn paths

Fig. 8. Intersection of finite-twn NTVCA languages: (a) 1-tumn followed by l-turn giv's 3-tum paths;
{b) 2-turn followed by 1-turn gives 3-turn paths.

K. Krlihivasan, M. Mahafan | Theoretical Computer Science 143 (19957 23-49 47

8. Conclusion

In this paper, we have presented a new mechanism for introducing nondeterminis-
tic, probabilistic and alternating computations in the cellular automaton model, We
have compared our notion of nondetetininism with the traditional notion. We have
also defined restricted versions of nondeterministic computations and have explored
the power of the resulting automata. The relations between such language classes are
depicted in Figs. 6 and 9. In Fig, 9, known {i.¢. existing) classes are shown in ovals and
the newly defined classes are shown in boxes. The containments depicted between
ovals are known results; the other containments have been shown in this paper. All
this investigation essentially aims at refining the open problems in the containments

rOCAcrCA =10CA < ICA = OCA = CA = DSPACE(n) = NSPACE(n)

and thus providing an alternative approach to solving the problems. A lot more
investigation still remains to be done. A relatively unexplored area is the use of
traditionally defined nondeterminism in time-bounded CA classes, i.e. studying classes
like tNCA and INCA, We feel that some questions concerning the power of these
classes can be answered independent of the long-standing open questions regarding
rCA, ICA and CA.

The alternating CA classes are useful in considering closures of rCA and ICA
languages under vatious operations. If ICA are not kncwn to be closed under some

rOCA + (IOWLO('A
rCA icAa —{CA
1-turn)
*NTVCA] TVCA N
K 1-turn
rPTVCA| UPTVCA

TNTVCA} JIN rv:c-;;a};; {NTVCA]
L irPT g ; {IPTVCA)
A

[rNTVOEAl—————JINTVOC e[NTVOCA

TNOC A ~(INOCA)- (NOCA

1\:5:9/4%11\%?~

NC'A

arrow : inclusion
crossed arrow : proper inclusion
double-sided arrow : equality

Fig. 9. Deterministic, nondeterministic and probabilistic CA classes.

48 K. Krithivasan, M. Makajan | Theoretical Computer Science 143 (1995} 23-49

operation, we would like to identify the smallest CA class containing this closure;
this gives us some idea of the complexity of the operation considered. Alternating
CA classes help in this respect. Some such closure results have been studied in
{191, which deals with the closure of CA classes under a wide variety of language
operations,

Acknowledgement

We would like to thank an anonymous referee for pointing out that firing squad
synchronisation can be avoided in checking intersections, This allowed us to present
a stronger version of Theorem 7.2,

We also thask Dr. Bruno Durand for pointing out how Theorem 3.6 goes through
for YNTVOCA. Our carlier version only proved it for INTVCA. He also weit over
our entire paper in great detail, and his comments helped us to rewrite the paper in
a much more readable fashion. In particular, the proofs of Lemma 3.3, Theorem 3.8,

and Theorem 4.2 are significantly more comprehensible now than they were in an
earlier version.

References

{13 LL. Bakirzar, J. Diaz and J. Gabard, Structural Complexity I, EATCS Monograph Series, Vol,
1 (Springer, Berlin, 1988).

{21 J.L. Balcizar, J. Disz and J. Gabarrd, Structural Complexity 11, EATCS Monograph Series Vol. 22
(Springer, Berlin, 1920).

{33 W. Bucher and K. Culik I, On real-time and linear-time cellular automata, RAIRO Inform. Theor. 18
(1984) 307-325.

[4] AK. Chandra, D.C. Kozen and L.J. Stockmeyer, Alternation, J. ACM 28 (1981) 114~133.

[5] JH.Chang, O.H. Ibarra and A. Vergis, On the power of one-way communication, J. ACM 35 (1988)
697-726.

[63 C. Choffrut and K. Culik I, On real-time cellular automata and trellis automata, Acta Inform. 21
(1984) 393-409.

{71 K. Culik It, J. Gruska and A. Salomaa, Systolic trelis automata Part I, Internat, J. Comput. Math. 15
(1984) 195-212.

[81 K. Culik i, 3. Gruska ard A. Salomaa, Systolic trellis automata Part I, Internar. J. Compur. Math. 16
(1984) 3-22.
3] C. Dyer, One-way bounded cellular automata, Inform. and Comrol 44 (1980) 261-281.
[10] LE. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation
{Addison-Wesley, Reading, MA, 1979).
[11] OH. Ibarra and T. Jiang, On one-way cellular arrays, STAM J. Comput. 16 {1987) 1135-1154,
[12] OH. fbarra and T. Jiang, Relating the power of cellular arrays 1o their closure properties, Theoret,
Compur. Sci. ST {1988) 225-238.
{13] OH. Ibara and SM. Kim, Charactesizations and computational complexity of systofic trellis
awtomata, Theoret. Comput. Sci. 29 (1984) 123-153.
[14] OH. Ibarra, SM. Kim and 8. Moran, Sequential machine charactesizations of trellis and cellular
automata and applications, SIAM J. Comput. 14 (1985) 426-447,
[15] OH. tharca, M. Palis and SM. Kim, Sonie results concerning linear iterafive {systolic) arrays,
J. Paraiiel Distributed Comput. 2 {1985) 182-218.

K. Krithicasan, M. Mahajan | Theoretical Corsputer Science 143 (1995} 23-49 49

[16] M. Mishajan, Studies in language classes defined by different types of time-varying cellular automata,
Ph.D. Thesis, Indian Institute of Technology, Madras, India, 1993.

{17} M. Mahajan and K. Krithivasan, Relativised cellular automata and complexity classes, in: Proc. Ith
Internat, FST&TCS Conf. New Delhi (1991).172-185; Lecture Notes in Computer Science, Vol. 560,

(18] M. Mahajan and K. Krithivasan, Some resulis on time-varying and relativised cellular automata,
Internat. J. Comput. Mark. 43 (1992) 21-38,

{193 M. Mahajan and K. Krithivasan, Language operations on cellular automata ciasses, J. Math. Phys,
Sci. 27 (1994).

{20] A.R. Smith 11l, Celiular automata complexity trade-offs, Inform. and Control 18 (1971) 466-482.

{213 A.R. Smith Il Real-time language recognition by one-dimensional cellular automata, J. Comput.
System Sci, 6 (1972) 233-253.

