
Journal of Computer and System Sciences 74 (2008) 884–897

www.elsevier.com/locate/jcss

Simultaneous matchings: Hardness and approximation ✩

Martin Kutz a,1, Khaled Elbassioni a, Irit Katriel b,2, Meena Mahajan c,∗,2

a Max-Plank-Institut für Informatik, Saarbrücken, Germany
b Brown University, Providence, RI, USA

c The Institute of Mathematical Sciences, Chennai 600 113, India

Received 24 August 2006; received in revised form 27 January 2008

Available online 8 February 2008

Abstract

Given a bipartite graph G = (X ∪̇D,E ⊆ X ×D), an X-perfect matching is a matching in G that covers every node in X. In this
paper we study the following generalisation of the X-perfect matching problem, which has applications in constraint programming:
Given a bipartite graph as above and a collection F ⊆ 2X of k subsets of X, find a subset M ⊆ E of the edges such that for each
C ∈F , the edge set M ∩ (C ×D) is a C-perfect matching in G (or report that no such set exists). We show that the decision problem
is NP-complete and that the corresponding optimisation problem is in APX when k = O(1) and even APX-complete already for
k = 2. On the positive side, we show that a 2/(k + 1)-approximation can be found in poly(k, |X ∪ D|) time. We show also that
such an approximation M can be found in time (k + (k

2
)
2k−2)poly(|X ∪ D|), with the further restriction that each vertex in D has

degree at most 2 in M .
© 2008 Elsevier Inc. All rights reserved.

Keywords: Matchings; Perfect matchings; Constraint programming; NP-completeness; Optimisation; Hardness of approximation

1. Introduction

Matching is one of the most fundamental problems in algorithmic graph theory. The all-important notion of charac-
terising feasibility efficiency as polynomial-time computation came about in the context of the first efficient matching
algorithm due to Edmonds [4]. Since then, an immense amount of research effort has been directed at understanding
the various nuances and variants of this problem and at attacking special cases. For an overview of developments in
matching theory and some recent algorithmic progress, see for instance [7,12].

In this paper we consider a generalisation of the bipartite matching problem. Suppose we are given a bipartite graph
G = (V ,E) where the vertex set partition is V = X ∪̇D (so E ⊆ X ×D) and a collection F ⊆ 2X of k constraint sets.
A solution to the problem is a subset M ⊆ E of the edges such that M is simultaneously a perfect matching for each

✩ A preliminary version appeared in the Proceedings of ISAAC 2005, in: Lecture Notes in Comput. Sci., vol. 3827, pp. 106–115.
* Corresponding author.

E-mail addresses: elbassio@mpi-sb.mpg.de (K. Elbassioni), irit@cs.brown.edu (I. Katriel), meena@imsc.res.in (M. Mahajan).
1 Our friend and colleague Martin Kutz died in tragic circumstances while this manuscript was under review.
2 This work was done while Irit Katriel was at the Max-Plank-Institut für Informatik, Saarbrücken, Germany, and while Meena Mahajan was

visiting there.
0022-0000/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2008.02.001

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 885
constraint set in F . More precisely, for each C ∈ F , the edge set M ∩ (C × D) has to be a C-perfect matching, i.e.,
a subgraph of G in which every vertex has degree at most 1 and every vertex of C has degree exactly 1. Also, analogous
to maximum-weight matchings, we may relax the perfect matching condition and ask for a maximum-weight set M

such that for each C ∈ F , the edge set M ∩ (C × D) is a matching in G.
Why consider this generalisation of matching? Apart from purely theoretical considerations suggesting that any

variant of matching is worth exploring, there is a concrete important application in constraint programming where
precisely this question arises. A constraint program consists of a set X of variables and a set D of values. Each
variable x ∈ X has a domain D(x) ⊆ D, i.e., a set of values it can take. In addition, there is a set of constraints that
specify which combinations of assignments of values to variables are permitted.

An extensively studied constraint is the AllDifferent constraint (AllDiff) which specifies for a given set of variables
that the values assigned to them must be pairwise distinct ([16], see also, e.g., [10,11,13,15,17]). An AllDiff constraint
can be viewed as an X-perfect matching problem in the bipartite graph that has the set X of variables on one side,
the set D of values on the other side, and an edge between each variable and each value in its domain. Typically,
a constraint program contains several AllDiff constraints, defined over possibly overlapping variable sets. This setting
corresponds to the generalisation we propose.

Formally, we consider the following problems:

SIM-W-MATCH (SIMULTANEOUS WEIGHTED MATCHINGS):

Input: a bipartite graph G = (V ,E) with V = X ∪̇ D and E ⊆ X × D, a weight w(e) associated with each edge e

in E, and a collection of constraint sets F ⊆ 2X .
Feasible Solution: a set M ⊆ E satisfying ∀C ∈ F : M ∩ (C × D) is a matching. The weight of this solution is∑

e∈M w(e).
Output: (The weight of) a maximum-weight feasible solution.

SIM-W-PERF-MATCH (SIMULTANEOUS WEIGHTED PERFECT MATCHINGS):

Input: as above
Feasible Solution: as above but only saturating (perfect) matchings allowed, i.e., a set M ⊆ E satisfying ∀C ∈ F :

“M ∩ (C × D) is a C-perfect matching.”
Output: (The weight of) a maximum-weight feasible solution or a flag indicating the absence of any feasible solution.

These are the optimisation search versions3; in the decision versions, an additional weight W is given as input and
the answer is ‘yes’ if there is a feasible solution of weight at least W . When all edge weights are 1, the corresponding
problems are denoted by SIM-MATCH and SIM-P-MATCH respectively. In this case, the decision version of SIM-P-MATCH

does not need any additional parameter W .
We use the following notation: n = |X|, d = |D|, m = |E|, k = |F |, t = max{|C|: C ∈ F}. We also assume,

without loss of generality, that X = ⋃
C∈F C.

At first sight these problems do not appear much more difficult than bipartite matching, at least when the number
of constraint sets is a constant. It seems quite plausible that a modification of the Hungarian method [9] should solve
this problem. However, we show in Section 2 that this is not the case; even when k = 2, SIM-P-MATCH is NP-hard. We
also show that it remains NP-hard even if the graph is complete bipartite (i.e., E = X × D) and d and t are constants;
of course, in this case, k must be unbounded. Furthermore, SIM-MATCH is APX-hard, even for k = 2. On the positive
side, SIM-W-MATCH is in APX for every constant k. These results are shown in Section 3. Finally, in Section 4 we
examine the SIM-P-MATCH polytope and observe that it can have vertices that are not even half-integral.

2. NP-completeness of SIM-P-MATCHSIM-P-MATCHSIM-P-MATCH for k ��� 2

The main result of this section is the following.

3 Note that due to the weights, an optimal solution to the former might not saturate all sets even if such a perfect assignment exists. Thus
SIM-W-PERF-MATCH is not a special case of SIM-W-MATCH.

886 M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897
Fig. 1. The basic gadget for the reduction.

Theorem 1. Determining feasibility of an instance of SIM-P-MATCH with k constraint sets is NP-complete for every
single parameter k � 2.

Proof. Membership in NP is straightforward. We establish NP-hardness of SIM-P-MATCH for k = 2 (it then follows
trivially for each k > 2). The proof is by reduction from SET-PACKING.

SET-PACKING:

Instance: A universe U ; a collection C = {S1, S2, . . . , Sp} of subsets of U .
Decision problem: Given an integer � � p, is there a collection C′ ⊆ C of at least � pairwise disjoint sets?
Optimisation problem: Find a collection C′ ⊆ C of pairwise disjoint subsets such that |C′|, the number of chosen

subsets, is maximised.
k-SET-PACKING: The restriction where every set in C contains at most k elements.
SET-PACKING(r): The restriction where every element of U appears in at most r sets from C.

It is known that SET-PACKING is NP-hard, and so is 3-SET-PACKING(2), the special case where the size of each set is
bounded by 3 and each element occurs in at most 2 sets. See, for instance, [2].

We present the reduction from SET-PACKING to SIM-P-MATCH (with k = 2) in detail here because it will later serve
for an APX result, too.

View SIM-P-MATCH as a question of assigning values (from D) to variables in X (as in the constraint programming
application described in Section 1). Formally, there is a distinct node (value) uS in D for each set S ∈ C, and there
is also a distinct value va in D for each element a ∈ U . In X, we place � variables x1, . . . , x�, which belong to both
constraint sets X1 and X2. These variables are connected to all the set values, but not to any of the element values.
Since they are contained in X1 and X2, any simultaneous perfect matching must match these variables to exactly
� distinct set values. This corresponds to picking � of the p sets, and we must now ensure that these chosen � sets
are indeed disjoint. We do this by placing, between the value nodes of the form uS and va , gadgets that encode the
composition of the sets.

Consider the trivial situation with only singleton sets in C. Then we could simply identify the set node with the
corresponding element node. This results in each xi being connected to each value that occurs as such a singleton.
Then a “packing” of � singleton sets in U would obviously give an assignment of � values to the xi ’s in this complete
bipartite graph, and vice versa.

The difficult part is to build gadgets that force disjointness even when the sets are larger. Choosing a non-singleton
set corresponds to a single variable occupying more than one value from U . Consider the case when the set u has
two elements, v and w. We construct the configuration in Fig. 1. We have five values on the upper side and four
variables on the lower, marked with letters ‘R’ (red) and ‘G’ (green) to indicate that they belong to the constraint sets
X1 and X2, respectively (red–green colour indicating membership in both sets). The leftmost value u is the set value
described before; the rightmost two values v,w are the element values also described before. The middle two values,
and all four variables, are new and are added solely to encode this set. If the set value is grabbed by an xi variable
(or any other red–green variable) outside the figure, then the two left new variables will be forced to claim the two
values to their right. In turn, the remaining two variables will have to pick the values marked v and w. In other words,
if a red–green variable claims the input value u on the left, it effectively occupies the two output values v and w, too.
Conversely, if the value u is not required elsewhere, the four variables can all make their left-slanted connections and
leave v and w untouched.

We can concatenate several such 4-variable gadgets to obtain a larger amplification. If we identify an output value
v of one gadget with the input u′ of another one, as shown in Fig. 2, we get the effect that occupying only the input u

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 887
Fig. 2. Merging two 1 : 2-gadgets into one 1 : 3-gadget.

Fig. 3. The SIM-P-MATCH instance obtained from the unsolvable 3-SET-PACKING(2) instance S1 = {x, y}, S2 = {y, z} and � = 2.

from outside this configuration, forces the gadget variables to claim the three output values w, v′, and w′ that could
otherwise stay untouched. (Indeed, we only get three such values and not four because the connecting value v counts
no longer as an output.)

For a q-element set S = {v1, . . . , vq} ∈ C, we concatenate q − 1 gadgets and make v1, . . . , vq ∈ U their resulting
output values.

The resulting configuration obviously has the desired behaviour. We can assign values to all variables without
violating the red and green constraints if and only if we can pack � sets from C into U . �

A complete example for the NP-hardness reduction is shown in Fig. 3.

2.1. Complete bipartite graphs with d = 3, t = 2

Theorem 1 states that it is NP-hard to solve instances of SIM-P-MATCH with two constraint sets X1 and X2. However,
if the graph is a complete bipartite graph, it is straightforward to determine whether a solution exists and to find it if
so: First match the vertices of X1 with any set of distinct vertices in D. Then it remains to match X2 \X1 with vertices
that were not matched with X1 ∩ X2. Since the graph is complete bipartite, the existence of a solution is determined
solely by the sizes of X1, X2, X1 ∩ X2 and D.

It is therefore natural to ask whether it is always possible to solve SIM-P-MATCH on a complete bipartite graph. With
a little bit of thought and inspection, one can come up with similar feasibility conditions for k = 3,4. What about
arbitrary k? It turns out that the problem is NP-hard if the number of constraint sets is not bounded, even if each
constraint set has cardinality 2 and d = |D| = 3. The proof is by a reduction from 3-VERTEX-COLORING, which is
known to be NP-complete (see for instance [5]).

3-VERTEX-COLORING:

Instance: An undirected graph G = (V ,E).
Decision problem: Is there a way of colouring the vertices of G, using at most 3 distinct colours, such that no two

adjacent vertices get the same colour?

888 M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897
Proposition 1. SIM-P-MATCH is NP-hard even when d = 3, t = 2, and the underlying graph is complete bipartite.

Proof. Let G = (V ,A) be an instance of 3-VERTEX-COLORING. We construct a corresponding instance of SIM-P-

MATCH as follows: let X = V , D = {1,2,3}, E = X × D, and F = A. It is straightforward to see that any feasible
solution to this instance of SIM-P-MATCH is a 3-colouring of V with no monochromatic edge, and vice versa. �
3. APX-completeness

We now examine the approximability of SIM-W-MATCH.

3.1. Membership in APX for constant k

APX is the class of optimisation problems which have polynomial-time constant-factor approximation algorithms.
That is, a maximisation problem Π is in APX if there is a constant 0 < α � 1 and a polynomial-time algorithm A

such that for every instance x of Π we have α · Opt(Π,x) � A(x) � Opt(Π,x), where A(x) is the value of the output
of the algorithm on input x, and Opt(Π,x) is the value of the optimum solution. Clearly, the larger the approximation
factor α, the better the quality of approximation. For more details, see any text on approximation algorithms, such
as [6,18].

Consider the following naive polynomial-time approximation algorithm for SIM-W-MATCH: Find a maximum weight
matching for each constraint set C ∈ F independently and return the heaviest matching found. Clearly, an optimal
solution is at most k times larger, which gives an approximation ratio of 1/k. Hence we have:

Proposition 2. An instance of SIM-W-MATCH with k constraint sets can be approximated in polynomial time within a
factor of 1/k.

Corollary 1. For any constant k, SIM-W-MATCH with k constraint sets is in APX.

3.2. An improved approximation factor

We can slightly improve the 1/k factor by considering more than one set Xi ∈ F at a time. Fix a maximum-
weight feasible solution M with weight Opt. For any set S ⊆ X, let f (S) denote the weight of the maximum weight
simultaneous matching in the graph induced by S ∪ D, and let g(S) be the weight of the edges in M ∩ (S × D).
Clearly, for each S we have f (S) � g(S) and further, each feasible solution on S ∪ D is also a solution on G, so that
Opt � f (S).

First consider the case with two constraint sets X1,X2. We can compute f (X1) and f (X2) independently, each
as an ordinary maximum-matching problem, and we can also evaluate the symmetric difference f (X1 ⊕ X2) :=
f (X1 \ X2) + f (X2 \ X1) as the union of two independent maximum-matching problems. Altogether we get

f (X1) + f (X2) + f (X1 ⊕ X2) � g(X1) + g(X2) + g(X1 ⊕ X2) = 2g(X1 ∪ X2) = 2 Opt.

By averaging, the largest of the three terms on the left is at least 2/3 · Opt.
For k > 2, we can generalise the above method as follows. Define X̂i := Xi \ ⋃

h
=i Xh, then X1 ⊕ · · · ⊕ Xk =⋃k
i=1 X̂i . Then we can efficiently compute f (X1 ⊕ · · · ⊕ Xk) = ∑k

i=1 f (X̂i) as the union of k independent maxi-
mum matching problems. Thus our approximation in this case will be the maximum among the individual values of
f (X1), . . . , f (Xk) and the value of f (X1 ⊕ · · · ⊕ Xk). The quality of this approximation can be bounded as follows.

max
{
f (X1), . . . , f (Xk), f (X1 ⊕ · · · ⊕ Xk)

}
� 1

k + 1

(
k∑

i=1

f (Xi) + f (X1 ⊕ · · · ⊕ Xk)

)

� 1

k + 1

(
k∑

i=1

g(Xi) + g(X1 ⊕ · · · ⊕ Xk)

)

� 2
g(X) = 2

Opt,

k + 1 k + 1

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 889
where the last inequality follows from the fact that each element in X is counted at least twice in the sets
X1, . . . ,Xk,X1 ⊕ · · · ⊕ Xk . Thus we obtain the following general result:

Theorem 2. SIM-W-MATCH can be approximated within a factor of 2/(k + 1) by an algorithm that runs in
kpoly(n,m,d) time.

Looking more carefully at the argument above, it may seem that the selection of the family of sets X1, . . . ,Xk,X1 ⊕
· · · ⊕ Xk was completely arbitrary. In fact, for any family F ′ ⊆ 2X of subsets of X, we can similarly define the
following general approximation procedure:

Procedure SIM-W-MATCH-APPROX(G,F ,F ′):

Input: a bipartite graph G = (V ,E) with V = X ∪̇ D and E ⊆ X × D, a weight w(e) associated with each edge in
E, a collection of constraint sets F ⊆ 2X , and family F ′ ⊆ 2X of subsets of X.

Output: a set M ⊆ E satisfying ∀C ∈ F : M ∩ (C × D) is a matching.
Computation: Return max{f (S): S ∈F ′}.

Clearly, in order to be able to implement this procedure, we require that the family F ′ is selected such that f (S)

can be computed in polynomial time for each S ∈ F ′. A sufficient condition (which is also necessary in view of
Theorem 1, assuming P
= NP) for this is that, for every S ∈F ′:

(∗) there exists an � ∈ [k], a set of distinct indices p1, . . . , p� ∈ [k], and an onto mapping φ :S �→ {p1, . . . , p�}, such
that

(C1) ∀x ∈ S: x ∈ Xφ(x),

(C2) ∀x, y, i: x, y ∈ S ∩ Xi ⇒ φ(x) = φ(y).

For instance, if k = 3 and we take S = (X1 \X2)∪(X2 \(X1 ∪X3)), then (∗) is satisfied for S, by taking � = 2, φ(x) =
1 for x ∈ S ∩X1, and φ(x) = 2 for x ∈ S ∩X2. However, for S = (X1 \X2)∪ (X2 \ (X1 ∪X3))∪ (X1 ∩X2 ∩X3), no
such mapping exists, for if we take x ∈ S ∩ (X1 \X2), y ∈ S ∩ (X2 \ (X1 ∪X3)) and z ∈ S ∩ (X1 ∩X2 ∩X3), then (C1)
implies that φ(x) = 1, φ(y) = 2 and φ(z) ∈ {1,2,3}, while (C2) implies that φ(x) = φ(z) = φ(y), a contradiction.

If condition (∗) is satisfied for S ∈ F ′, then a maximum weight simultaneous matching on S can be evaluated as
the disjoint union of maximum weight matchings on the sets S ∩ Xpi

, computed independently for each i ∈ [�]:

f (S) =
�∑

i=1

f (S ∩ Xpi
). (1)

(To see (1), let MS be a maximum weight matching on S. Note that by (C1) and (C2), the sets S ∩ Xpi
are pairwise

disjoint, and thus S = ⋃̇
i∈[�](S ∩ Xpi

) and w(MS) = ∑
i∈[�] w(MS ∩ (Xpi

× D)) �
∑

i∈[�] f (S ∩ Xpi
). On the other

hand, if Mi is a matching on S ∩ Xpi
then the union

⋃̇
i∈[�]Mi is a simultaneous matching on S, for otherwise there

exist two variables x, y ∈ Xi for some i ∈ [k], such that x, y are matched, respectively by Mφ(x) and Mφ(y), to the
same value in D. But then (C2) would imply that φ(x) = φ(y), in contradiction with the fact that x and y are matched
to the same value.)

We shall call any subset of X satisfying (∗) a feasible set. For instance, in the proof of Theorem 2, the set F ′ =
{X1, . . . ,Xk,X1 ⊕ · · · ⊕ Xk} forms such a feasible family.

Now it becomes natural to ask the following question: Is it possible to choose a family of feasible subsets of X,
different from the one chosen in Theorem 2, for which the application of the above approximation procedure gives a
better approximation factor than 2/(k + 1)? Let us first consider an example.

890 M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897
Example 1. For i = 1, . . . , k, let X̂i be as defined above and consider the pairs Sij = X̂i ∪ (Xj \ Xi), for i
= j . Then
the family F ′ = {Xi : i ∈ [k]} ∪ {Sij : 1 � i < j � k} is feasible. A careful choice of coefficients yields∑

i

f (Xi) + 1

2(k − 1)

∑
i
=j

f (Sij) �
∑

i

g(Xi) + 1

2(k − 1)

∑
i
=j

g(Sij) � 2g(X) = 2 Opt

and again by averaging, at least one of the f (Xi) or f (Sij) is at least 4/(3k) · Opt.

The fact that the approximation factor obtained in Example 1 is less than 2/(k + 1), for k > 2, does not come as a
coincidence. Perhaps surprisingly, we shall show below that no matter what feasible family of sets we pick, even if we
allow exponentially large families, the maximum approximation ratio achievable by procedure SIM-W-MATCH-APPROX

is 2/(k + 1).

Theorem 3. For every k � 2, and every feasible family F ′ ⊆ 2X , there exists an infinite family of instances (G,F) of
SIM-W-MATCH on which the approximation ratio achieved by procedure SIM-W-MATCH-APPROX(G,F ,F ′) is arbitrarily
close to 2/(k + 1).

Let F ′ be a family of feasible sets (i.e. those satisfying (∗)). Then, for every choice of non-negative weights ξS ,
S ∈F ′, we have∑

S∈F ′
ξSf (S) �

∑
S∈F ′

ξSg(S) � Fξ · Opt

where Fξ = minx∈X

∑
S: x∈S ξS ; the last inequality holds because each edge (x, d) of the optimal solution M is

counted with a total weight of
∑

S: x∈S ξS . By averaging, the largest term f (S) is at least Fξ ·Opt/Tξ , where Tξ = ∑
ξS

is the total weight. (In proving Proposition 2, the chosen S’s were precisely the Xi ’s, with weight 1 each, so Fξ = 1
and Tξ = k. In Example 1, the chosen S’s were the Xi ’s and the Sij ’s, so Fξ = 2 and Tξ = 3k/2.)

Clearly, we lose nothing by considering only maximal subsets S for which (∗) is satisfied. (The sets Sij in Exam-
ple 1 were maximal in this sense, while the sets X̂i ∪ X̂j are not.) Below, we consider only maximal subsets. To prove
Theorem 3, we identify the family of all maximal feasible subsets of X and show that under the best possible selection
of weights ξS , the approximation ratio Fξ/Tξ is 2/(k + 1).

Let R denote the collection of all possible maximal feasible sets, and C denote the family of maximal sub-
sets of elements of X, that have the same classification with respect to containment in either of each Xi or
X \ Xi , for i = 1, . . . , k. That is, every C ∈ C is identified with a vector (v1, v2, . . . , vk) ∈ {0,1}k \ 0k , such that
C = ⋂

i: vi=1 Xi \ ⋃
i: vi=0 Xi. Clearly, β = |C| = 2k − 1. Below, we shall characterise the sets in R and observe that

α = |R| is O((2k)k). Also, we note that, due to maximality, for each R ∈ R and each C ∈ C, C is either contained in
or disjoint from R. Note that we consider maximality under the “general position” assumption:

(A) for any (v1, v2, . . . , vk) ∈ {0,1}k \ 0k , the set C = ⋂
i: vi=1 Xi \ ⋃

i: vi=0 Xi is non-empty.

(Clearly, making such an assumption only makes the problem harder.) We now wish to compute, for each R ∈ R, a
weight ξR � 0 such that the corresponding ratio Fξ/Tξ is maximised. Define an α × β 0-1 matrix A = (aR,C)R,C

where aR,C = 1 iff C ⊆ R. Consider the following pair of primal-dual linear programs:

λ∗
P (k) = maxλ, λ∗

D(k) = minλ,

s.t. AT ξ � λeβ, s.t. Az � λeα,

eT
α ξ = 1, eT

β z = 1,

ξ � 0, z � 0, (2)

over ξ ∈ R
α and z ∈ R

β , where eα and eβ are the vectors of all ones of dimensions α and β respectively. A feasible
solution ξ to the primal assigns weights (normalised so that Tξ = 1) to each R ∈R achieving an approximation factor
given by the value of the corresponding objective function. We show that both the primal and the dual have feasible
solutions with objective value 2/(k + 1).

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 891
Theorem 4. For any integer k � 1, we have λ∗
P (k) = λ∗

D(k) = 2
k+1 .

We shall strengthen Theorem 2 as follows. For any positive integer δ, let us call a simultaneous matching M

δ-bounded if every value v ∈ D has degree at most δ in M . Our proof of Theorem 4 will also imply the following.

Theorem 5. A 2-bounded simultaneous matching within a factor of 2/(k + 1) of the optimal simultaneous matching
can be found by SIM-W-MATCH-APPROX in deterministic time (k + (

k
2

)
2k−2)poly(n,m,d).

3.3. Characterising maximal feasible sets and the proof of Theorems 3, 4 and 5

Let S ⊆ X be a maximal feasible set. Then by (∗), S is completely determined by the selection of �, the set of
indices P = {p1, . . . , p�}, and the onto mapping φ :S �→ P . Furthermore, conditions (C1) and (C2) of (∗), together
with the maximality of S, imply that (a) all the elements of S in a single set Xi will be mapped to the same index
in P , i.e. we can think of φ as mapping the sets rather than the elements, and (b) all the elements in S ∩ Xpi

\
(
⋃

j
=i Xpj
) are mapped to pi , for i = 1, . . . , �. In particular, the family of maximal feasible subsets of X is in one-to-

one correspondence with the set R = R(k) of all possible sequences obtained from the elements of the set [k] in the
following way:

(i) Select a subset P = {p1, . . . , p�} ⊆ [k] of size �, where � ∈ [k]. The elements of P are called the parent elements
(and correspond to the sets Xp1, . . . ,Xp�

). For a given �, the number of ways to do this is
(
k
�

)
.

(ii) Assign each of the remaining k − � elements of [k] to exactly one parent from P (this corresponds to assigning
the elements of each of the remaining sets Xi , i /∈ P , to one of the sets Xpj

, j ∈ P); the number of ways to do
this is �k−�.

Thus,

∣∣R(k)
∣∣ =

k∑
�=1

(
k

�

)
�k−�.

Note that every element R ∈ R(k) can be identified with a 2�-tuple (p1, . . . , p�, B1, . . . ,B�) where � ∈ [k] and
{p1, . . . , p�},B1, . . . ,B� ⊆ [k], such that PR = {{p1}∪B1, . . . , {p�}∪B�} forms a partition of [k] into � parts (blocks).
For example, if k = 3 and S = (X1 \X2)∪ (X2 \ (X1 ∪X3)) (which is a maximal feasible set), then the corresponding
R ∈ R(k) is R = (1,2, {3},∅).

Let C = C(k) = 2[k] \ {∅} be the set of all possible non-empty subsets of [k]. We construct a matrix A(k) =
(aR,C)R,C ∈ {0,1}R(k)×C(k) whose rows and columns are indexed by the elements of R(k) and C(k), respectively.
For R = (p1, . . . , p�,B1, . . . ,B�) ∈ R(k) and C ∈ C(k), we let aR,C = 1 if and only if the set C is contained in a
single part of the partition defined by R, i.e. {pj } ⊆ C ⊆ {pj } ∪Bj , for some j ∈ [�]. Denote by α = |R|, β = |C| and
A = A(k), and consider the pair of primal-dual linear programs given by (2) over ξ ∈ R

α and z ∈ R
β .

Lemma 1. For k � 2, let ξ∗
1 , . . . , ξ∗

α be an optimal solution for the primal linear program (2), with objective value
λ∗

P (k). Then procedure SIM-W-MATCH-APPROX(G,F ,F ′), where F ′ = {R ∈R(k): ξ∗
R > 0}, is a λ∗

P (k)-approximation
algorithm for SIM-W-MATCH.

Proof. Given an instance (X,D,E,F ,w) of SIM-W-MATCH, we construct for each R ∈ R(k) with ξ∗
R > 0, a cor-

responding family F(R) as follows. Assume as before that F = {X1, . . . ,Xk}. For each set Xpi
∈ F such that

pi ∈ [k] is a parent in R, the corresponding set Xpi
(R) ∈ F(R) consists of exactly those elements of Xpi

that
do not belong to any set X′ which is another parent or is assigned to another parent pj
= pi . More precisely, if
R = (p1, . . . , p�,B1, . . . ,B�), then

Xpi
(R) = Xpi

∖(⋃
Xj

)
,

j∈[k]\({pi }∪Bi)

892 M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897
and we let F(R) = {Xpi
(R): i = 1, . . . , �}. For example, if k = 8, F = {X1, . . . ,X8}, and R = (1,2,3, {4,5}, {6},

{7,8}), then X1(R) = X1 \ (X2 ∪ X3 ∪ X6 ∪ X7 ∪ X8), X2(R) = X2 \ (X1 ∪ X3 ∪ X4 ∪ X5 ∪ X7 ∪ X8), and X3(R) =
X3 \ (X1 ∪ X2 ∪ X4 ∪ X5 ∪ X6).

Let
⋃

B∈F(R) B be denoted XR . The instance (XR,D,ER,F(R),w) where ER = E ∩ (XR × D) is easy to solve
optimally since the sets in F(R) are all feasible (for each B ∈ F(R), obtain a maximum matching in (B ∪ D,ER),
and simply put these maximum matchings together). Let the total weight of this optimal solution be f (R). Note that
this solution is also a feasible solution for the original instance, though not necessarily optimal since it does not match
anything outside XR .

Now any solution to the input instance, and in particular an optimal solution, is partitioned by the k sets of F into at
most 2k −1 parts. These parts are in one-to-one correspondence with the elements of C(k). Fix an optimal solution M .
For any R ∈ R, let g(R) denote the total weight of edges of M in XR ×D (i.e. the total weight of variables in XR that
are assigned values in M). Then for every R, we have g(R) � f (R) � Opt. Moreover, g(R) = ∑

C∈C(k) aR,Cg(C) by
linearity of g(·), where we denote by g(C), for C ∈ C(k), the weight of edges incident to

⋂
i∈C Xi \ ⋃

i /∈C Xi in the
optimal solution M . Lemma 1 then follows from the following claim.

Claim 1. maxR∈R(k) f (R) � λ∗
P (k)Opt.

Indeed, if for every R ∈ R we have f (R) < λ∗
P (k)Opt, then∑

R

ξ∗
Rg(R) �

∑
R

ξ∗
Rf (R) <

∑
R

ξ∗
Rλ∗

P (k)Opt = λ∗
P (k)Opt

(
because eT

α ξ∗ = 1
)
.

On the other hand,∑
R

ξ∗
Rg(R) =

∑
R

ξ∗
R

∑
C

aR,Cg(C) =
∑
C

g(C)
∑
R

ξ∗
RaR,C �

∑
C

g(C)λ∗
P (k)

(
because AT ξ∗ � λ∗

P (k)eβ

)
= λ∗

P (k)Opt,

a contradiction. �
Proof of Theorem 3. Let z∗ = (z∗

1, . . . , z
∗
β) be a rational optimal solution for the dual linear program (2), and let

L be an arbitrary integer such that z′ = Lz∗ ∈ Z
β
+ is an integral vector. The instance is given by a set X of size∑

C∈C z′
C + |{C ∈ C: zC = 0}|, and a set D of size

∑
C∈C z′

C + 1. The family F = {X1, . . . ,Xk} will be defined by
constructing the set of variables in the different parts corresponding to the sets C ∈ C. Specifically, for every C ∈ C,
we include z′

C variables in the set
⋂

i∈C Xi \ ⋃
i /∈C Xi if z′

C > 0, while we include only one variable if z′
C = 0. All

the variables corresponding to z′
C = 0 are connected to the same value v0 in D; all the other variables are connected

to distinct values, different from v0, so that they form a perfect matching with these values. Note that the optimum
solution to the simultaneous matching problem has value at least |D| = ∑

C∈C z′
C + 1 = L + 1. On the other hand, if

we let, as before, R denote the family of all maximal feasible sets, then the solution returned by the approximation
procedure is at most

max

{ ∑
C∈C

aR,Cz′
C : R ∈R

}
+ k = L · max

{ ∑
C∈C

aR,Cz∗
C : R ∈ R

}
+ k

= L · max
{
ξT Az∗: eT

α ξ = 1, ξ � 0
} + k � L · λ∗

P (k) + k,

where the last inequality follows from the feasibility condition Az∗ � λ∗
D(k)eα , which implies ξT Az∗ � λ∗

D(k)ξT eα =
λ∗

P (k), for any ξ such that eT
α ξ = 1 and ξ � 0. The ratio of the approximation to the optimal solution is thus at most

Lλ∗
P (k)+k

L+1 . This ratio tends to λ∗
P (k) for L � k, and hence, Theorem 3 follows as a consequence of Theorem 4. �

To prove Theorem 4, it is enough to establish a primal-dual pair of solutions for (2) which achieve the same
objective value of 2/(k + 1). It is not difficult to see that, for R = (p1, . . . , p�,B1, . . . ,B�) ∈ R(k), the setting

ξR =
{

1
k+1 if � ∈ {1, k},

0 otherwise

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 893
is a such feasible primal solution, with objective function value λ = 2
k+1 . In fact, this is the primal solution corre-

sponding to the family of feasible sets used in the proof of Theorem 2. So Theorem 4 will follow from Lemma 3
below. However, in order to establish the claim of Theorem 5, we need to show that there exists a primal solution with
ξR = 0 for all � > 2. This is essentially the content of Lemma 2 below.

Proof of Theorems 4 and 5. For positive integers u,v ∈ Z+ denote by p(u, v) the number of ways to partition u

into v non-negative numbers, i.e. the number of unordered v-tuples (r1, . . . , rv) ∈ Z
v+ such that

∑v
i=1 ri = u. For each

such tuple (r1, . . . , rv), let χ(r1, . . . , rv) denote the number of all possible distinct ordered sequences of length v,
formed by considering each ri as a symbol. For example, if u = 4 and v = 3, we have p(u, v) = 4 partitions, namely
(4,0,0), (3,1,0), (2,2,0) and (2,1,1). The corresponding numbers of sequences are χ(4,0,0) = 3, χ(3,1,0) = 6,
χ(2,2,0) = 3 and χ(2,1,1) = 3. Note that, for a pair of integers (r1, r2), χ(r1, r2) = 1 if r1 = r2 and χ(r1, r2) = 2
otherwise. Also, for k ∈ Z+, we have p(k,2) = �k/2� + 1. Thus

� k
2 �−1∑
r=0

χ(r, k − r − 2) = k − 1. (3)

By N(�, r1, . . . , r�) we denote the number of elements R = (p1, . . . , p�,B1, . . . ,B�) of R(k) such that |Bi | = ri for
i = 1, . . . , �. Thus

N(�, r1, . . . , r�) =
(

k

�

)(
k − �

r1, . . . , r�

)
=

(
k

�, r1, . . . , r�

)
.

Theorems 4 and 5 follow from the next Lemmas 2 and 3 below.

Lemma 2. For R = (p1, . . . , p�,B1, . . . ,B�) ∈ R(k), the setting

ξR =

⎧⎪⎨
⎪⎩

2
k(k+1)

if � = 1,

1
(k+1)N(2,|B1|,|B2|) if � = 2,

0 if � > 2

is a feasible solution to the dual LP (2), with objective function value λ = 2
k+1 .

Proof. First we verify that
∑

R∈R(k) ξR = 1. For this we note that

∑
R∈R(k)

ξR =
∑

(p1,B1)∈R(k)

2

k(k + 1)
+

∑
(p1,p2,B1,B2)∈R(k)

1

(k + 1)N(2, |B1|, |B2|)

= 2N(1, k − 1)

k(k + 1)
+

� k
2 �−1∑
r=0

|{(p1,p2,B1,B2) ∈ R(k): |B1| = r or |B2| = r}|
(k + 1)N(2, r, k − r − 2)

= 1

k + 1

(
2 +

� k
2 �−1∑
r=0

χ(r, k − r − 2)

)
= 1,

where the last equality follows from (3). Now it remains to show that∑
R∈R(k)

aR,CξR � λ = 2

k + 1
, for all C ∈ C(k). (4)

For an element R = (p1, . . . , p�,B1, . . . ,B�) ∈ R(k) with |Bi | = ri for i = 1, . . . , �, it is easy to see that the
number of subsets C of size |C| = i for which aR,C = 1 is

N ′(i, �, r1, . . . , r�) =
�∑(

rj

i − 1

)
.

j=1

894 M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897
Fix integers i, �, r1, . . . , r�. Let R′ = R′(�, r1, . . . , r�) ⊆ R(k) be a subset of the rows of A(k), such that for each
R ∈ R′ the number of parents in R is � and the distribution of the remaining k − � elements among these par-
ents is r1, . . . , r� (i.e. if R = (p1, . . . , p�,B1, . . . ,B�) ∈ R′, then the sequence (|B1|, . . . , |B�|) is a permutation of
(r1, . . . , r�)). Clearly, not every subset C ∈ C(k) of size |C| = i is covered the same number of times by a certain row
R ∈ R′, i.e. there exist subsets C,C′ ∈ C(k) such that |C| = |C′| = i and yet aR,C
= aR,C′ . However, if we consider
all rows in R′, then it follows by symmetry that every subset C ∈ C(k) of size |C| = i is covered the same number of
times by these rows. In other words, there is a single number N ′′ = N ′′(i, �, r1, . . . , r�) such that

∑
R∈R′ aR,C = N ′′

for all C ∈ C(k) such that |C| = i. Since the total number of elements of C(k) of size i is
(
k
i

)
it follows that(

k

i

)
N ′′(i, �, r1, . . . , r�) =

∑
C∈C(k): |C′|=i

∑
R∈R′

aR,C′ =
∑

R∈R′

∑
C∈C(k): |C′|=i

aR,C′ = |R′|N ′(i, �, r1, . . . , r�)

= χ(r1, . . . , r�)N(�, r1, . . . , r�)N
′(i, �, r1, . . . , r�),

from which

N ′′(i, �, r1, . . . , r�) = χ(r1, . . . , r�)N(�, r1, . . . , r�)N
′(i, �, r1, . . . , r�)(

k
i

) (5)

follows. Now to show (4), fix a C ∈ C(k) of size |C| = i. Then∑
R∈R(k)

aR,CξR =
∑

R=(p1,B1)∈R(k)

2aR,C

k(k + 1)
+

∑
R=(p1,p2,B1,B2)∈R(k)

aR,C

(k + 1)N(2, |B1|, |B2|) . (6)

The first part of right-hand side of (6) is equal to

S1 = 2

k(k + 1)
N ′′(i,1, k − 1) = 2

(
k−1
i−1

)
(k + 1)

(
k
i

) . (7)

The second part is equal to

S2 =
� k

2 �−1∑
r=0

∑
R∈R′(2,r,k−r−2)

aR,C

(k + 1)N(2, r, k − r − 2)
=

� k
2 �−1∑
r=0

1

(k + 1)N(2, r, k − r − 2)

∑
R∈R′(2,r,k−r−2)

aR,C

=
� k

2 �−1∑
r=0

N ′′(i,2, r, k − r − 2)

(k + 1)N(2, r, k − r − 2)
=

� k
2 �−1∑
r=0

χ(r, k − r − 2)N ′(i,2, r, k − r − 2)

(k + 1)
(
k
i

)

=
� k

2 �−1∑
r=0

χ(r, k − r − 2)

(
r

i−1

) + (
k−r−2

i−1

)
(k + 1)

(
k
i

) = 2
∑k−2

r=0

(
r

i−1

)
(k + 1)

(
k
i

) . (8)

Now summing (7) and (8) gives

∑
R∈R(k)

aR,CξR = S1 + S2 = 2

k + 1
·
∑k−1

r=0

(
r

i−1

)
(
k
i

) = 2

k + 1
,

using a well-known combinatorial identity [8]. This shows (4). �
Lemma 3. For C ∈ C(k), the setting

zC =
{

1
(k+1

2)
if |C| � 2,

0 if |C| > 2

is a feasible solution to the dual LP (2), with objective function value λ = 2 .

k+1

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 895
Proof. Clearly, z � 0 and

∑
C∈C(k)

zC = 1(
k+1

2

)[(
k

1

)
+

(
k

2

)]
= 1,

so all what we need to check is that∑
C∈C(k)

aR,CzC � λ = 2

k + 1
, for all R ∈ R(k). (9)

Again we show that (9) holds with equality. Fix R = (p1, . . . , p�,B1, . . . ,B�) ∈ R(k) with |Bi | = ri for i = 1, . . . , �.
Then

∑
C∈C(k)

aR,CzC = 1(
k+1

2

) ∑
C∈C(k): |C|=1

aR,C + 1(
k+1

2

) ∑
C∈C(k): |C|=2

aR,C

= 1(
k+1

2

)N ′(1, �, r1, . . . , r�) + 1(
k+1

2

)N ′(2, �, r1, . . . , r�)

= 2

k(k + 1)
� + 2

k(k + 1)

�∑
j=1

(
rj

1

)
= 2�

k(k + 1)
+ 2(k − �)

k(k + 1)
= 2

k + 1
. �

3.4. APX-hardness for k � 2

Recall that completeness within APX is defined through L reductions, see for instance [18]. So an approximation
scheme for an APX-complete problem translates into such a scheme for any problem in APX.

Theorem 6. For each k � 2, SIM-MATCH with k constraint sets is APX-hard.

Proof. We only have to modify our reduction from the proof of Theorem 1 slightly to account for the new setting.
Instead of testing for a given number � of variables xi , we let � = p, the cardinality of C. So a perfect solution would
have to pack all sets into U . In order to get an approximation-preserving reduction, we need to make sure that a
certain fraction of the sets can always be packed. This is achieved by restricting to 3-SET-PACKING(2), which is already
APX-hard [2].

In this situation, the overall number of variables is at most 9p since there are p choice variables, and each gadget
contributes at most 8 variables. Let M denote the number of gadget variables; then M � 8p. Since each element of
U appears in at most 2 sets and since each set is of size at most 3, we can always find at least p/4 disjoint sets. (Just
construct any maximal collection of disjoint sets. Including any one set in the collection rules out inclusion of at most
3 other sets.) Thus, if the optimal set packing has kopt sets then kopt � p/4.

Let sopt denote the value of an optimal solution to the SIM-MATCH instance constructed. Note that sopt counts
variables, while kopt counts sets. We claim that sopt = kopt + M . The relation “�” follows simply from assigning the
kopt input values of the gadgets that correspond to an optimal packing to some xi . Then all gadget variables can be
assigned values without conflict. To see “�,” notice that any assignment can be transformed into one in which all
gadget variables receive values, without decreasing the total number of satisfied variables. It is then easy to see that
we can find a set packing with as many sets as we have xi assigned with values. This shows the claim.

Suppose now that SIM-MATCH can be approximated within a factor of α. That is, we can find in polynomial time a
feasible assignment on s variables, where s is at least αsopt. Then s = k′ + M � α(kopt + M), so k′ � αkopt − M(1 −
α) � αkopt − 8p(1 − α) � αkopt − 8(4kopt)(1 − α) = kopt(33α − 32). Thus, an α-approximation for SIM-MATCH gives
a (33α − 32)-approximation for 3-SET-PACKING(2). This gives the desired L reduction. �

Plugging in the current best-known inapproximability bound of 99/100 for 3-SET-PACKING(2) from [3] into the
above reduction, we learn that SIM-MATCH cannot be approximated to within a factor of 1 − 1/3300 unless P = NP.

896 M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897
Fig. 4. A vertex of PL that is not half-integral.

4. The SIMULTANEOUS MATCHINGSSIMULTANEOUS MATCHINGSSIMULTANEOUS MATCHINGS polytope

Consider again instances of SIM-P-MATCH, on complete bipartite graphs, with k = 2. As remarked in Section 2,
checking feasibility in such a setting is trivial. In [1], a somewhat different aspect of this setting is considered. Assume
that the set D is labelled by the set of integers 0,1, . . . , d − 1, and X = {x1, x2, . . . , xn}. Then every feasible solution
becomes an integer vector in the n-dimensional space {0,1, . . . , d − 1}n. Now what is the structure of the polytope
defined by the convex hull of integer vectors corresponding to feasible solutions? The authors of [1] establish the
dimension of this polytope and also obtain classes of facet-defining inequalities.

We consider the variant where dimensions variables are associated with each edge of the graph, rather than each
vertex in X. Viewed as a purely graph-theoretic decision optimisation problem, this makes eminent sense as it directly
generalises the well-studied matching polytope (see for instance [12]): we wish to assign 0,1 values to each edge
variable (a value of 1 for an edge corresponds to putting this edge into the solution M , 0 corresponds to omitting this
edge) such that all vertices of X (or as many as possible) have an incident edge in M , and M is a feasible solution.
This is easy to write as an integer program:

Choose xe for each edge e so as to

maximise
∑
e∈E

wexe (for SIM-W-MATCH),

s.t. ∀x ∈ X:
∑

e=(x,z): z∈D

xe � 1, ∀z ∈ D:
∑

e=(x,z): x∈X1

xe � 1,

∀z ∈ D:
∑

e=(x,z): x∈X2

xe � 1, ∀e: xe ∈ {0,1}.

The corresponding linear program replaces the last condition above by ∀e: xe ∈ [0,1]. Let PI denote the convex
hull of integer solutions to the integer program, and let PL denote the convex hull of feasible solutions to the linear
program. PI and PL are polytopes in R

n, with PI ⊆ PL.
The special case of the above where there is just one constraint set (either X1 or X2 is empty) is the bipartite

matching polytope. For this polytope, it is known that every vertex is integral; i.e. PI = PL. For non-bipartite graphs,
this polytope is not necessarily integral, but it is known that all vertices there are half-integral (i.e. at any extremal
point of the polytope, all edge weights are from the set {0,1/2,1}). Unfortunately, these nice properties break down
even for two constraint sets. We illustrate this with an example in Fig. 4. The underlying graph is the complete bipartite
graph. Assign weights of 1/3 to the edges shown by dotted lines, 2/3 to those shown with solid lines, and 0 to all
other edges. This gives a feasible solution and hence a point in PL, and it can be verified4 that it is in fact a vertex of
PL and is outside PI .

Acknowledgments

We thank Mahmoud Fouz and David Steurer for pointing out the simple feasible family used in the proof of
Theorem 2 and for helpful discussions.

4 The software PORTA [14] was used to find this vertex.

M. Kutz et al. / Journal of Computer and System Sciences 74 (2008) 884–897 897
References

[1] G. Appa, D. Magos, I. Mourtos, On the system of two all_different predicates, Inform. Process. Lett. 94 (3) (2005) 99–105.
[2] P. Berman, T. Fujito, Approximating independent sets in degree 3 graphs, in: WADS, 1995, in: Lecture Notes in Comput. Sci., vol. 955, 1995,

pp. 449–460.
[3] M. Chlebík, J. Chlebíková, Inapproximability results for bounded variants of optimization problems, in: FCT, 2003, in: Lecture Notes in

Comput. Sci., vol. 2751, 2003, pp. 27–38.
[4] J. Edmonds, Path, trees and flowers, Canad. J. Math. (1965) 233–240.
[5] M. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, Freeman, 1979.
[6] D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems, Brooks/Cole Pub. Co., 1996.
[7] M. Karpinski, W. Rytter, Fast Parallel Algorithms for Graph Matching Problems, Oxford Lecture Ser. Math. Appl., vol. 9, 1998.
[8] D.E. Knuth, Fundamental Algorithms, vol. 1 of The Art of Computer Programming, Section 1.2, pp. 10–119, second ed., Addison–Wesley,

Reading, MA, 1973.
[9] H.W. Kuhn, The Hungarian Method for the assignment problem, Naval Res. Logist. Quart. 2 (1955) 83–97.

[10] M. Leconte, A bounds-based reduction scheme for constraints of difference, in: Proceedings of the Constraint-96 Workshop, 1996, pp. 19–28.
[11] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, P. van Beek, A fast and simple algorithm for bounds consistency of the AllDifferent constraint,

in: IJCAI, 2003.
[12] L. Lovasz, M. Plummer, Matching Theory, Ann. Discrete Math., vol. 29, North-Holland, 1986.
[13] K. Mehlhorn, S. Thiel, Faster algorithms for bound-consistency of the sortedness and the AllDifferent constraint, in: CP, 2000.
[14] PORTA, http://www.zib.de/optimization/software/porta/.
[15] J.-F. Puget, A fast algorithm for the bound consistency of AllDiff constraints, in: AAAI, 1998.
[16] Jean-Charles Régin, A filtering algorithm for constraints of difference in CSPs, in: AAAI, 1994, pp. 362–367.
[17] W.J. van Hoeve, The AllDifferent constraint: A survey, in: Proceedings of the Sixth Annual Workshop of the ERCIM Working Group on

Constraints, 2001.
[18] V. Vazirani, Approximation Algorithms, Springer, 2001.

