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Abstract

We clarify the computational complexity of planarity testing, by showing that planarity testing is hard for
L, and lies in SL. This nearly settles the question, since it is widely conjectured that L = SL. The upper bound
of SL matches the lower bound of L in the context of (non-uniform) circuit complexity, since L/poly is equal to
SL/poly. Similarly, we show that a planar embedding, when one exists, can be found in FLSL. Previously, these
problems were known to reside in the complexity class AC1, via the O(log n) time CRCW-PRAM algorithm
of Ramachandran and Reif, although planarity checking for degree-three graphs had been shown to be in
SL [Chicago J. Theoret. Comput. Sci. (1995); J. ACM 31(2) (1984) 401].
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PACS: 3D15; 68Q15; 68Q17; 68R10; 05C85; 05C10

Keywords: Planar graphs; Symmetric logspace

1. Introduction

The problem of determining if a graph is planar has been studied from several perspectives of
algorithmic research. From most perspectives, optimal algorithms are already known. Linear-time
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sequential algorithms were presented by Hopcroft and Tarjan [14] and (via another approach) by
combining the results of [5,9,21]. In the context of parallel computation, a logarithmic-time CRCW-
PRAM algorithm was presented by Ramachandran and Reif [28] that performs almost linear work.

From the perspective of computational complexity theory, however, the situation has been far
from clear. In this paper, we will focus on “small” subclasses of the complexity class NC. Recall
that (see [20])

L ⊆ SL ⊆ NL ⊆ AC1

SL ⊆ ⊕L,

where L (respectively SL, NL) denotes deterministic (respectively symmetric, non-deterministic)
logarithmic space, and AC1 denotes problems solvable by polynomial size AND-OR circuits of
logarithmic depth, where the gates are allowed to have any number of inputs. The class ⊕L consists
of problems solvable by determining if a non-deterministic logspace machine has an odd or even
number of accepting paths. Although it is not known if NL is contained in ⊕L, it is known that NL
is contained in ⊕L/poly [13].

The best upper bound on the complexity of planarity testing that has been published so far is the
bound of AC1 that follows from the logarithmic-time CRCW-PRAM algorithm of Ramachandran
and Reif [28]. In a recent survey of problems in the complexity class SL [1], the planarity testing
problem for graphs of bounded degree is listed as belonging to SL, but this is based on the claim
in [27] that checking planarity for bounded degree graphs is in the “Symmetric Complementation
Hierarchy,” and on the fact that SL is closed under complement [25] (and thus this hierarchy col-
lapses to SL). However, the algorithm presented in [27] actually works only for graphs of degree
3, and no straightforward generalization to graphs of larger degree is known. (This is implicitly
acknowledged in [28, pp. 518–519].) Interestingly, Mario Szegedy has pointed out to us (personal
communication) that an algebraic structure proposed by Tutte [32], when combined with more
recent results about span programs and counting classes [20], gives a ⊕L algorithm for planarity
testing. It is listed as an open question by Ja’Ja’ and Simon [18] if planarity testing is in NL, although
the subsequent discovery that NL is closed under complementation [15,31] allows one to verify that
one of the algorithms of [17,18] can in fact be implemented in NL. It remains an open question
if their algorithm can be implemented in SL, but in this paper we establish that the algorithm of
Ramachandran and Reif can be implemented in SL.

We also show that the planarity testing problem is hard for L under projection reducibility.
This essentially solves the question of planarity testing from the complexity-theoretic point of

view. To see this, it is sufficient to recall that it is widely conjectured that SL = L. This conjecture
is based on the following considerations:
• The standard complete problem for SL is the graph accessibility problem for undirected graphs

(UGAP). Upper bounds on the space complexity of UGAP have been dropping, from log2 n [30],
through log1.5 n [24], to log4/3 n [4]. It is plausible that this trend will continue to eventually reach
log n.

• UGAP can be solved in randomized logspace [2]. Recent developments in derandomization tech-
niques have led many researchers to conjecture that randomized logspace is equal to L [29].
In the context of non-uniform complexity theory (for example, as explored in [8,19]), the cor-

responding non-uniform complexity classes L/poly and SL/poly are equal. (That is, a universal
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traversal sequence [2] can be used as an “advice string” to enable a logspace-bounded machine to
solve UGAP.) Hence in this setting, the computational complexity of planarity testing is resolved;
it is complete for L/poly under projections.

One consequence of our result is that counting the number of perfect matchings in a planar graph
is reducible to the determinant, when the graph is presented as an adjacency matrix. More precisely,
it follows from this paper and from [23] that there is a (non-uniform) projection that takes as input
the adjacency matrix of a graph G, and produces as output a matrix M with the property that if
G is planar then the absolute value of det(M) is the number of perfect matchings in G. (Sketch:
Given the proper advice strings, a GapL algorithm can take as input the matrix M , compute its
planar embedding (since this is in L/poly), then compute its “normal form embedding” along a
unique computation path (since NL ⊆ UL/poly [26]), and then use the algorithm in [23] to compute
a number whose absolute value is the number of perfect matchings in M . Since the determinant is
complete for GapL under projections, the result follows.)

The paper is organized as follows. In Section 2, we present our hardness result for planarity
testing. In Section 3, we briefly recapitulate the notation and definitions used in the subsequent
algorithms, and show that some general-purpose algorithms for operating on graphs and trees can
be performed in SL. In Section 4, we show that the algorithms of [22] for finding an open ear
decomposition of a biconnected graph and computing an st-numbering, essential preprocessing
procedures for the planarity testing algorithm of [28], can be implemented in SL. In Section 5 we
show that the algorithm of [28] can be implemented in SL. These sections, Sections 4 and 5, are
written so as to be read as companions to [22] and [28], respectively.

2. Hardness of planarity testing

In this section we prove that planarity testing is hard for L, even for graphs of maximum
degree 3.

The following problems are known to be complete for L under uniform projections:

Definition 1 Undirected forest accessibility (UFA). Given an undirected forest G and vertices u, v,
decide if u and v are in the same tree.

Definition 2 Iterated permutation precedence (ΠSn). Given a sequence of n permutations
�1, . . . ,�n ∈ Sn as a ternary relation R(i, j, k) (meaning that the kth permutation takes element i
to element j), and given an element u, decide if the product

∏
�i takes element 1 to an element v � u.

Definition 3 Path ordering (ORD). Given a directed path L, specified by giving for each vertex w its
successor s(w) along the path, and given vertices u, v, decide if u precedes v in L. (This representation
of a directed path is called a directed line graph or a successor graph in [10].)

The hardness of the UFA problem for L was shown in [6], where only an NC1 reduction is claimed.
However, it is easy to see that the hardness is under uniform projections as well; see, for instance
[10] (Lemma 4.3).

The hardness of �Sn for L under uniform projections was shown in [6,10].
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The hardness of ORD for L under uniform projections is established in [10] by a reduction from
�Sn.

The UFA problem suffices to establish hardness of planarity testing for L. Let G′ be the complete
graph on five vertices, minus any one edge (p , q). The graph H is obtained by identifying vertices u
and v of G (from the UFA instance) with vertices p and q of G′. Clearly, H is planar if and only if
(G, u, v) is not in UFA.

By constructing a reduction from �Sn, we can prove something stronger—planarity testing is
hard for L even when restricted to graphs of maximum degree 3. The reduction to a large extent
mimics the reduction of [10] from �Sn to ORD. Etessami’s construction produces a line graph (a
directed path) where the relative ordering of s and t depends on whether

∏
�i[1] � u. A modification

of this construction gives the disjoint union of a line graph and a directed cycle, with two special
vertices that lie in the two different components if

∏
�i[1] � u, and lie in the same component

otherwise. By suitably attaching a copy of K3,3 − e (the graph K3,3 with any one edge deleted) to
this graph, we have planarity iff

∏
�i[1] � u. The complete construction is described in the proof

of the following theorem.

Theorem 4. Planarity testing is hard for L under projections, even when restricted to graphs with
maximum degree 3.

Proof. We reduce �Sn to planarity testing. Recall the reduction from �Sn to ORD, from [10]. Giv-
en the sequence of n permutations �1, . . . ,�n ∈ Sn, the directed graph G = (V ,E) is constructed as
follows:

V = {〈a, b, c〉 | a ∈ {1, . . . , n+ 1}, b ∈ {1, . . . , n}, c ∈ {f , r}}.
Vertices with third component f have edges tracing the permutations �1, . . . ,�n ∈ Sn; the first

component describes which permutation is being traced out. Thus E includes edges

〈a, b, f 〉 −→ 〈a+ 1,�a(b), f 〉 for 1 � a � n.

Vertices with third component r have edges tracing the permutations �1, . . . ,�n ∈ Sn in reverse;
again, the first component describes which permutation is being traced out. Thus E includes
edges

〈a+ 1,�a(b), r〉 −→ 〈a, b, r〉 for 1 � a � n.

At one end (a = 1), the two copies are connected matched. At the other end (a = n+ 1), they are
connected matched with a cyclic shift, except at u. Thus E includes the following edges:

〈1, b, r〉 −→ 〈1, b, f 〉,
〈n+ 1, b, f 〉 −→ 〈n+ 1, b+ 1, r〉 for b /= n, b /= u− 1,

〈n+ 1, n, f 〉 −→ 〈n+ 1, 1, r〉.
Let � denote the product permutation

∏
�i . The graph G is a line graph with source 〈n+ 1, u, r〉

and sink 〈n+ 1, u− 1, f 〉. It traces out vertices as follows:



E. Allender, M. Mahajan / Information and Computation 189 (2004) 117–134 121

〈n+ 1, u, r〉 〈1, �−1(u), r〉 −→ 〈1, �−1(u), f 〉 〈n+ 1, u, f 〉 −→
〈n+ 1, u+ 1, r〉 . . . 〈n+ 1, u+ 1, f 〉 −→

...
...

〈n+ 1, n, r〉 〈1, �−1(n), r〉 −→ 〈1, �−1(n), f 〉 〈n+ 1, n, f 〉 −→

〈n+ 1, 1, r〉 . . . 〈n+ 1, 1, f 〉 −→
〈n+ 1, 2, r〉 . . .

...
...

〈n+ 1, u− 1, r〉 〈1, �−1(u− 1), r〉 −→ 〈1, �−1(u− 1), f 〉 〈n+ 1, u− 1, f 〉

.

Consider vertices of the form 〈1, b, r〉. These vertices appear in the second column above, and can
precede 〈n+ 1, n, f 〉 if and only if �(b) � u. Thus the input is an instance of�Sn iff (G, 〈1, 1, r〉, 〈n+
1, n, f 〉) is an instance of ORD.

Now consider the graphG1, that is essentially the same asG, except that edge 〈1, 1, r〉 −→ 〈1, 1, f 〉
is replaced by edge 〈1, 1, r〉 −→ 〈n+ 1, u, r〉. This disconnects the graph into two pieces: a cycle con-
taining 〈1, 1, r〉 and a line graph. The vertex 〈n+ 1, n, f 〉 is on the cycle iff it precedes 〈1, 1, r〉 in G, i.e.,
iff the input instance is not in �Sn. Note that the maximum degree in G1 is 2.

Let G2 be the graph K3,3, minus any one edge (p , q).
The graph H is obtained by connecting vertices 〈n+ 1, n, f 〉 and 〈1, 1, r〉 of G1 to vertices p and q,

respectively, ofG2 via single edges. Clearly,H is planar iff the input instance is in�Sn. Furthermore,
the maximum degree of any vertex in H is 3. �

We remark that a similar proof shows that planar instances of UGAP are reducible to planarity
testing.

3. Definitions and basic graph operations

3.1. Notation and definitions

For formal definitions of most graph-theoretic terms used below, see any standard text e.g.
[11,12,33]. We give a few definitions here for completeness.

A graph is planar if it can be drawn on the plane so that the edges intersect only at end ver-
tices. Such a drawing is a planar embedding. A combinatorial embedding � is a cyclic ordering of
the edges around each vertex. Replace each edge (u, v) by directed arcs 〈u, v〉 and 〈v, u〉. Then � is
a cyclic ordering of the arcs leaving each vertex. Let R map each arc to its inverse. Then � is a

planar combinatorial embedding iff the number of orbits f in �∗ 	= � ◦ R satisfies Euler’s formu-
la n+ f = m+ 1 + c. (Here, n, m, c are the number of vertices, undirected edges, and connected
components, respectively.) For more background, see [35, Section 6–6].
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The connected components of a graph induce a partition on the vertex set. A cut vertex (or sepa-
ration vertex) is a vertex with the property that G − {v} has more connected components than G. A
graph G is said to be biconnected if it has no cut-vertex. A 2-component (also called a biconnected
component or a non-separable component) of a graph G is a maximal subgraph that is connected
and that remains connected if any one vertex is deleted. 2-components can share vertices, but the
edges of 2-components form a partition of the edge set of G.

Given a spanning tree T of a connected graph G, each edge e /∈ T completes a cycle in G.
Such cycles, with exactly one non-tree edge, are called the fundamental cycles of G with respect
to T .

Given a connected graph, a cycle C induces a partition of the edges not on C , where two edg-
es are in the same class if one can be reached from the other without using any vertices of C
except at the endpoints. The classes of this partition are called the bridges of C . The vertices of
a bridge that lie on C are called attachment points. Two bridges B1 and B2 relative to C are said
to conflict, or overlap, or interlace, if either they share three attachment points, or for some
u, v,w, x occurring in that order on C , u,w are attachment points of B1 and v, x are attachment
points of B2.

A tree is said to be rooted at vertex r if all edges are oriented to form paths from r towards the
leaves. An undirected tree can be rooted at any vertex. Once the tree is rooted, the terms children,
parent, descendants, and ancestors, become well-defined in the obvious way. The root is an ancestor
of all vertices in the tree.

An Euler tour of a graph is a closed path that uses every edge of the graph exactly once. For a
rooted tree, by assuming that for each edge (u, v) the reverse edge (v, u) is also available, we get a
directed graph in which an Euler tour exists; by convention, the tour is assumed to begin and end
at r.

The least common ancestor (lca) of two vertices u, v in a rooted tree is a vertex w such that w
appears on both the r u path and the r v path, and no descendant of w has this property. If the
tree is a spanning tree of a graph, then for each edge e = (u, v), we refer to lca(u, v) as lca(e).

3.2. Elementary graph computations in SL

In this subsection, we present some general-purpose algorithms for operating on graphs and
trees. Our method of exposition is to give a statement of the subproblem to be solved, and then
in parentheses give an indication of how this subproblem can be restated in a way that makes it
clear that it can be solved using an oracle for undirected reachability, or by making use of primitive
operations that have already been discussed.

Often, the upper bounds we show are easier to understand in terms of either LSL or as NC1

circuits with oracle gates for the reachability problem in undirected graphs. As usual when defining
NC1-reducibility, an oracle gate with fan-in m is considered to have depth logm; see [7,37]. Since
SL is closed under NC1 reducibility and logspace-Turing reducibility [25], these bounds coincide
with SL.

Given a graph G, the following conditions can be checked in SL:
(1) Are u and v in the same 2-component? (Algorithm: for each vertex x, check if the removal of x

separates u and v. This can be tested using UGAP.)
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(2) Let each 2-component be labeled by the smallest two vertices in the 2-component. Is (u, v) the
“name” of a 2-component? (First check that u and v are in the same 2-component, and then
check that no x < max(u, v) with x /∈ {u, v} is in the same 2-component.)

(3) Is u a cut-vertex? (Are there vertices v,w connected in G but not in G − {u}?)
(4) Is there is a path (not necessarily simple) of odd length between vertices s and t? (Make two cop-

ies of each vertex. Replace edge (u, v) by edges (u0, v1) and (u1, v0). Check if s0, t1 are connected
in this new graph.)

(5) Is G bipartite (i.e., 2-colorable)? [1,25,27].
(6) If G is connected, 2-colorable, and vertex 1 is colored 1, is vertex i colored 2? (Test if there is a

path of odd length from 1 to i.)
(7) Is edge e in the lexicographically first spanning tree T of G (under the standard ordering of

edges)? [25].
Given a graphG and a spanning tree T , the following conditions can be checked in SL. (Actually,

items 1–7, and item 11 can be checked in L.)
(1) For e ∈ T with e = (x, y), does x −→ y occur at position i of the lexicographically first Eul-

er tour rooted at r (denoted ETr)? Does x −→ y precede y −→ x? (In deterministic logspace,
one can compute the lexicographically first Euler tour by starting at r and following the edge
r −→ x, where x is the smallest neighbor of r in T . At any stage in the tour, if the most recent edge
traversed was u −→ v, the next edge in the Euler tour is v −→ z, where z is the smallest neighbor
of v greater than u in T if such a neighbor exists, and z is the smallest neighbor of v otherwise.)

(2) Is u = parent(v) when T is rooted at r? (Equivalently, is u −→ v the first edge of ETr to touch
v? This can be checked in L.)

(3) If T is rooted at r, is u a descendant of v? (Equivalently, does the first occurrence of u in ETr lie
between the first and last occurrences of v?)

(4) Is z the least common ancestor (lca) of vertices x and y in T ? (Check that x and y are both
descendants of z, and check that this property is not shared by any descendant of z.)

(5) Is i the preorder number of vertex u? (Count the number of vertices with first occurrence before
that of u in ETr .)

(6) Is vertex u on the fundamental cycle Ce created by non-tree edge e with T ? (Let e = (p , q).
Vertex u is on Ce iff the graph T − {u} has no path from p to q.)

(7) Is edge f on Ce? (This holds iff f = e or f ∈ T and both endpoints of f are on Ce.)
(8) Are vertices u, v on the same bridge with respect to Ce? (Vertices u and v are on the same bridge

iff there is a path from u to v in G, with no internal vertices of the path belonging to Ce.)
(9) Are edges f , g on the same bridge with respect to Ce? (This holds if f , g /∈ Ce, neither f nor g

is a trivial bridge (i.e., a chord of Ce), and the endpoints of f , g that are not on Ce are on the
same bridge with respect to Ce.)

(10) Is vertex u a point of attachment of the bridge of Ce that contains edge f ? (Let f = (f1, f2). If
both f1 and f2 are on Ce, then these are the only points of attachment of the trivial bridge {f }.
Otherwise, if fi is not on Ce, then u is a point of attachment iff u ∈ Ce and u, fi are on the same
bridge with respect to Ce.)

(11) Given vertices u, v, on Ce, and given a sequence 〈w1,w2, . . .〉, is there a path from u to v along Ce
avoiding vertices 〈w1,w2, . . .〉? (This is simply the question of connectivity in Ce − {w1,w2, . . .}.)

(12) Relative to Ce, do the bridges containing edges f and g interlace? (Either there is a triple u, v,w
where all three vertices are points of attachments of both bridges, or there is a 4-tuple u, v,w, x
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where: (1) u,w are attachment points of the bridge containing f , (2) v, x are attachment points
of the bridge containing g, and (3) u, v,w, x occur in cyclic order on Ce. To check cyclic order,
use the previous test.)

4. Obtaining open ear decompositions and st-numberings in SL

An ear decomposition of a connected graph is a partition of its edge set E into simple paths
P0, P1, . . . , Pr−1, where
• P0 is a single edge.
• For each Pi, i > 0, the endpoints of Pi appear in

⋃
j<i Pj .• For each Pi, i > 0, no internal vertex of Pi appears on any ear Pj , j < i.

The ear decomposition is said to be an open ear decomposition if, for each path Pi, the endpoints
of Pi are distinct.

An st-numbering of a graph is a numbering of its n vertices from s = 1 to t = n such that every
vertex v other than s and t has adjacent vertices u,w satisfying u < v < w.

It is known that a graph has an st-numbering iff it is biconnected iff it has an open ear decom-
position [21,34].

Given an open ear decomposition D = [P0, . . . Pr−1] of a biconnected graph G, where P0 consists
of the edge (s, t), the graph Gst is the result of orienting each edge of G, so that
• Each ear is directed from one endpoint to the other.
• The edge (s, t) is oriented s −→ t.
• Every vertex lies on a path from s to t.
• The resulting graph is acyclic.

Such an orientation is always possible.
In this section, we show that the parallel algorithms of [22] for finding an open ear decomposition

and an st-numbering of a biconnected graph can be performed in SL. We briefly describe the algo-
rithms, using notation from [22], and then elaborate on each step to show that it can be performed
in SL. Again, recall that it suffices for us to show that the computation can be performed in LSL or
by NC1 circuits with oracle gates for the reachability problem in undirected graphs. For proofs of
correctness of the parallel algorithms, the reader is referred to [22].

4.1. Finding an open ear decomposition

The algorithm for finding an open ear decomposition of a biconnected graph is described briefly
in Fig. 1, and the individual steps with their SL implementation are described in more detail below.
Input: Biconnected graph G = (V ,E), where edges of E have distinct serial numbers from the

set {1, 2, . . . , |E|}; adjacent vertices s, t.
Output: For each edge e, a label ear(e) that is the number of the ear containing e.
Step 1. Compute the lexicographically first spanning tree T ′ of the subgraph induced on the ver-

tex set V − {t}. Add vertex t and edge (s, t) to get a spanning tree T of G. Root it at t.
Consider the partition of E into special edge (s, t), tree edges TE = ET ′ , and non-tree edges
NTE = E − ET .
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Fig. 1. Finding an open ear decomposition.

Step 2. For each vertex v, compute F(v) = father of v in T , and level(v) = number of edges in the
unique t v path in T .
For each edge e = (u, v) ∈ NTE, find lca(u, v).
For each edge e = (u, v) ∈ NTE, define Number(e)= (level(lca(u, v)), serial(e)). (The read-
er will note that Number(e) is actually a pair of numbers.)

Step 3. For each edge e = (u, v) ∈ TE, let Fe be the set of edges f in NTE for which e ∈ Cf ; i.e., e
is in the fundamental cycle created by f and T . Define master(e) to be that edge g ∈ Fe
with the lexicographically smallest Number.
The remaining edges (i.e.,, the special edge (s, t), and NTE) are their own masters.
The partition of E according to master, with blocks of the partition ordered according
to the Number assigned to the master edge in that part, is an ear decomposition (not
necessarily open) of G.

Step 4. For each vertex x consider the bipartite undirected graph Hx = (Vx,Ex), where
Vx = {[u, v] | (u, v) ∈ NTE and lca(u, v) = x} ∪ {[u, F(u)] | F(u) = x},
Ex =

{
([u, v], [w, x])

∣∣∣∣ (u, v) ∈ NTE, u is not an ancestor of v, (w, x) ∈ TE,
(x,w) is the first edge in the unique x u path of T

}
.

Note that the collection of vertices of all the Hx partitions E.
Step 5. Compute connected components and spanning forests of each Hx .
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Step 6. For each spanning tree in the forest so obtained, find a [w, x], where F(w) = x such that
level(lca(master(w, x))) < level(x).
Root the tree at [w, x].
Preorder the vertices of the tree. When this is done for each tree, all edges of G get a
preorder number.
For each e = (u, v) ∈ NTE, define Newnumber(e) to be (level(lca(u, v)), preorder(e)).

Step 7. Repeat Step 3 with Newnumber instead of Number. That is, for each edge e ∈ TE, define
master(e) to be that edge g ∈ Fe with the lexicographically smallest Newnumber.
The partition of E according to master, with blocks of the partition ordered according to
the Newnumber assigned to the master edge in each part, is an open ear decomposition.

End
All the steps above involve one or more of the basic operations described in the previous section,

and can thus be performed in SL.

4.2. Constructing the st-numbering and the directed st-graph Gst

In [22], it is shown how, given an open ear decomposition of a graph G, the st-numbering of
G as well as the directed graph Gst can be constructed. The steps of their algorithm are briefly
described in Fig. 2 below, after which we elaborate on each of these steps to show that all of these
are implementable in SL. (The procedure for st-numbering as described in the preliminary version
of this paper [3] is erroneous.)

The algorithm of [22] for st-numbering assumes that the open ear decomposition D is presented
by giving, for each edge e = (u, v),
(a) the number of the ear, say Pi, containing it. Define the ear number ear(u) of a vertex u to be

the smallest number i such that u appears on ear Pi . Let the end points of Pi have ear numbers
j and k , respectively, where i > j � k � 0. The endpoints of Pi on Pj and Pk are referred to as
L(Pi) and R(Pi), respectively. (If j = k , choose the lexicographically first endpoint as L(Pi).)

Fig. 2. Orienting ears and finding an st-numbering.
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(b) a pointer to the next edge along Pi leading to L(Pi) (if there is such an edge), and
(c) a pointer to the next edge along Pi leading to R(Pi) (if there is such an edge).

The open ear decomposition algorithm described in the preceding subsection computes only the
labeling of (a); however, it is straightforward to verify that given (a), (b), and (c) can be computed
in L. Another labeling that is often required is an ear number for each vertex v other than s, t; ear(v)
is the number of the ear on which v is an internal vertex. Given an open ear decomposition by an
ear labeling of the edges, the ear labeling of the vertices can be computed in L.

While elaborating on the steps of the algorithm, we need some more definitions. For each ear Pi,
the vertex L(Pi) is called its anchor. The vertex of ear Pi that is adjacent to L(Pi) (respectively R(Pi))
is called LS(Pi) (respectively RS(Pi)). Again, it is straightforward to verify that given an open ear
decomposition, the vertices L(P), LS(P), RS(P), and R(P) can be found for each ear P in L.
Step 1 a) The ear tree ET is defined as follows:

VT = {Pi | Pi is an ear},
ET = {Pi −→ Pj | i � 1, ear(L(Pi)) = j}. (In [22] ET is said to be the set of edges {Pi −→
Pj | i � 1,L(Pi) is an internal vertex of Pj}, but it is easy to see that this more general con-
dition is really needed.)

Step 1 b) We find below the hinge and the type of each ear. The hinge of an ear is another ear, and
the type of an ear is “same” or “opposite.”

Case 1 The vertices L(Pi) and R(Pi) have the same ear number, say j. Then hinge(Pi) =
Pj . Furthermore, if on Pj the relative ordering is L(Pj),L(Pi),R(Pi),R(Pj), then the
type of Pi is “same.” Otherwise, on Pj the relative ordering is L(Pj), R(Pi), L(Pi),
R(Pj), and then Pi has type “opposite.” (Here and elsewhere, note that some of these
vertices may coincide. For instance, it is possible that L(Pj) = L(Pi) and/or R(Pi) =
R(Pj).)

Case 2 The vertices L(Pi) and R(Pi) belong to ears Pj and Pk , respectively, j /= k . In ET ,
lca(Pj , Pk) = P�. Note that j � k by definition of L(P).

Case 2.1 P� /= Pj , P� /= Pk . Let vj (respectively vk ) be the “anchor ancestor” of Pj (respec-
tively Pk ) in P�. (See [22] for a definition of anchor ancestor of an ear P in P ′.
Informally, it can be understood as follows: If P is a descendant of P ′′ that is a
child of P ′, then L(P ′′) is the anchor ancestor of P in P ′.)

Case 2.1.1 vj /= vk . Set hinge(Pi) to be P�. Furthermore, Pi has type “same” iff on the hinge
the relative ordering is L(P�), vj , vk ,R(P�).

Case 2.1.2 vj = vk . Let (P�, Pj′) be the first edge on the path in ET from P� to Pj . The
corresponding edge in G, ej , has vj as an endpoint. Similarly define Pk ′ and ek ;
ek is also adjacent to v. If ej precedes ek in the adjacency list of v, then hinge(Pi)
is Pj′ and Pi is of type “opposite,” otherwise hinge(Pi) is Pk ′ and Pi is of type
“same.”

Case 2.2 P� = Pk . Let v be the anchor ancestor of Pi on Pk .
Case 2.2.1 v /= R(Pi). Then hinge(Pi) is P�, and Pi is of type “same” iff the relative ordering

on P� is L(P�), v,R(Pi),R(P�).
Case 2.2.2 v = R(Pi). Let Pj′ be the first ear on the path in T from P� to Pj . Then hinge(Pi)

is Pj′ and Pi is of type “opposite.”
Step 1 c) The graph HT is defined as follows:

VHT = {Pi | Pi is an ear},
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EHT = {Pi −→ Pm | Pm is the hinge of Pi}. This graph turns out to be a tree, and is referred
to as the hinge tree.

Step 2 The hinge and the type of each ear determine its orientation: an ear Pi is oriented from
L(Pi) to R(Pi) iff either its type is “same” and its hinge ear is oriented L(.) to R(.), or its
type is “opposite” and its hinge ear is oriented R(.) to L(.). We explicitly compute the
orientations as follows.
Orient the ear P0 from s to t. For ear Pi where i � 1, consider the Pi P0 path in the hinge
tree. Count the number of ears on this path with type “opposite.” If this number is even,
then orient Pi from L(Pi) to R(Pi) to get an outgoing ear of L(Pi); otherwise orient it from
R(Pi) to L(Pi) to get an incoming ear of L(Pi).

Step 3 The numbering tree NT (an undirected tree) has two adjacent vertices vin and vout for
each vertex v of G. Additional edges of NT are of the following forms:
Let edge (u, v) be in ear Pi and suppose that when Pi is traversed according to its orienta-
tion, we encounter u before v. Then edge (uout , vin) is in NT.
If Pi is an incoming ear with anchor v, then edge (vin,win) is in NT, where w = RS(Pi).
If Pi is an outgoing ear with anchor v, then edge (vout ,win) is in NT, where w = LS(Pi).

Step 4 Perform a preorder traversal of NT beginning at sin. Assign preorder numbers only to
vertices of the form vout . These numbers provide the st-numbering for the corresponding
vertices of G.

End
All the above steps involving tracing ancestors in trees, determining ordering on a path and other

basic operations described in the previous section. Thus they are all implementable in SL.

5. The SL algorithm for planarity testing and embedding

Finally we come to the the algorithm of Ramachandran and Reif [28] and describe how it can be
implemented in SL. This algorithm is complex, and involves a number of fairly involved technical
definitions. While we would like to make this presentation as self-contained as possible, it is not
appropriate to reproduce the entire algorithm of [28] here. Instead, we have written this section
so that each part can be read as a companion to [28]. We succinctly describe the main steps of
the algorithm, using the same notation as in [28], and we show that each step of the corresponding
algorithm can be computed in LSL, or by NC1 circuits with oracle gates for the reachability problem
in undirected graphs. As argued earlier, it follows that the entire algorithm can be implemented in
SL. For details of the algorithm and for the technical definitions involved, the reader is referred
to [28].

5.1. An overview of the planarity testing algorithm

The planarity testing algorithm of Ramachandran and Reif [28] is outlined briefly in Fig. 3, and
works as follows: A graph is planar if and only if each of its 2-components is planar. To check if
a 2-component is planar, first obtain an open ear decomposition and construct the directed (s, t)-
numbering graph using the method from [22]. A key idea used to obtain an embedding (originally
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Fig. 3. Planarity testing algorithm.

from the Hopcroft–Tarjan sequential planarity testing algorithm [14]), is the following: consider
any simple cycle C of a biconnected graph G embedded in the plane. The remaining edges of G
are now partitioned into bridges. If two of these bridges interlace, then any embedding of G in the
plane must place these bridges on opposite sides of C . If we were to proceed sequentially, we first
embed P0 and P1 in any way we wish. These two paths together contain a closed cycle, so interlacing
bridges of this cycle are now constrained to be on opposite sides. Subsequent paths of the open ear
decomposition are embedded sequentially, while maintaining a list of constraints. Whole sections
of the embedding may be flipped over, around a previously embedded path, if it turns out that
some constraint cannot be met with the current embedding. Careful bookkeeping (of the partially
constructed embedding and the constraints so far) allows for an efficient sequential algorithm.

Of course, things need substantial modification if efficient parallel testing is desired. In addi-
tion to the open ear decomposition and the directed (s, t)-numbering graph Gst of the biconnected
graph G, we also construct the local replacement graph Gl (which is planar iff G is planar). To-
gether, Gst and Gl uniquely specify a special spanning tree Tst . Now find all the fundamental cycles
with respect to Tst . For each cycle, find approximations to all its bridges. (The bridges can be
found exactly in SL, but the approximations allow for efficient testing.) These approximations are
the bunches and bunch collections. Conflicts among interlacing bridges give rise to an interlacing
parity graph on the bunches. A few additional constraints on the bunches give the constraint
graph G∗.

If G∗ is not bipartite, then G is not planar. Why? Intuitively, the constraints specify how a bridge
(or approximation) can be embedded with respect to a previously embedded path. An edge between
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two bridges inG∗ means that they must be on opposite sides of the concerned cycle. So an odd cycle
implies that a bridge must simultaneously be inside and outside a cycle, an impossible situation.

If G∗ is bipartite, it is still not clear that G is planar, since we used bunches instead of bridges.
However, a 2-coloring of the vertices ofG∗ specifies, for each bunch, on which side of the fundamen-
tal cycle it should be embedded. This gives a combinatorial embedding of Gl, and this embedding
is shown to be planar if Gl is planar.

The last steps are to recover an embedding of G from that of Gl, and to put together the embed-
dings of the 2-components.

For the complete algorithm and definitions of the terms used above, see [28].
The emphasis in [28] is to find a fast parallel algorithm that performs almost optimal work.

However, for our purpose, any procedure that can be implemented in SL will do. Step 1 can be
accomplished by determining, for each (u, v), if u and v are in the same 2-component; see Section
3.2. Steps 2.1 and 2.2 have been addressed in detail in Section 4. Step 2.4 has been discussed in Section
3.2. The remaining steps are discussed in the following subsections.

5.2. Constructing the local replacement graph Gl

In Gl, each vertex v is replaced by a rooted tree Tv with d(v)− 1 vertices, one for each ear con-
taining v. The construction exploits the fact that in the directed graph Gst , deleting the last edge of
each path Pi for i > 0 gives a spanning tree Tst . The construction introduces new vertices, and maps
each Pi to a path P ′

i that is essentially the same as Pi, but has an extra edge involving a new vertex
at each end.

The construction of Gl proceeds in three phases. In the first/second phase, the first/last edge of
each ear is rerouted to a possibly new endpoint via one of the new vertices. In the last phase, some
of the new edges are further rerouted to account for parallel ears.

The entire construction uses only the elementary operations described in Section 3.2, and so can
be implemented in FLSL. The implementation immediately yields the new directed graph G′

st , and a
listing of the new left and right endpoints L(P ′

i ) and R(P ′
i ) of each path.

5.3. Bunch collections and hooks

In the spanning tree T ′
st of the graphG′

st , each path P ′
i has a unique non-tree edge, which forms the

fundamental cycle C ′
i with respect to T ′

st . In [28], each bridge of C ′
i is classified as spanning, anchor

or non-anchor depending on how the attachment points of C ′
i are placed with respect to P ′

i . Since
bridges can be computed in FLSL (see Section 3.2), this classification is also in SL.

In the nomenclature of [28], bunches are approximations to bridges: bunches contain only the
attachment edges of bridges. A bridge is represented by at least one and possibly more than one
bunch, subject to certain conditions. The conditions are: (1) A non-anchor bunch must be the entire
bridge. (2) A spanning bunch must contain all attachment points of the corresponding bridge on
internal vertices of P ′

i and at least one edge attaching on L(P ′
i ). (3) Edges within a bunch must be

connected in Gl without using vertices from C ′
i or from the other bunches. (4) The bunch collection

for each P ′
i must contain all attachments of bridges on its internal vertices and some attachment

edges incident on L(P ′
i ). Bunch collections are computed using operations described in Section 3.2.
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A representative edge for each anchor bunch B is the hook H(B), which also is used to determine
a planar embedding if G turns out to be planar. H(B) is usually an attachment on C ′

i − P ′
i of the

bridge of C ′
i that contains B. The exception is when L(P ′

i ) is the lca of the non-tree edge of P ′
i , in

which caseH(B)may be the incoming tree edge to L(P ′
i ). Again, the entire procedure for computing

hooks uses operations shown to be in SL in Section 3.2, so H(B) can be computed in FLSL.

5.4. Bunch graphs and interlacing parity graphs

Once the bunch collections are formed, the bunch graphs are constructed as follows: extend each
path P ′

i to a pathQi by introducing a new edge between L(P ′
i ) and a new vertexU(P ′

i ). Collapse each
bunch B of P ′

i to a single node vB (which now has edges to some vertices of P ′
i ); thus B becomes a

“star” SB with center vB. (A star is a graph with vertices V = V ′ ∪ {c}, where V ′ is an independent
set and the center c is adjacent to each element of V ′.) Further, if B is an anchor bunch, include edge
(U(P ′

i ), vB), and if B is a spanning bunch, include edge (R(P ′
i ), vB). This gives the so-called bunch

graph Ji(Qi), which can clearly be constructed in FLSL.
For each Ji(Qi), an interlacing parity graphGi,I is constructed as follows: There is a vertex vB for

each star SB, and a vertex for each triple (u, v,B)where u, v are attachment vertices of SB onQi, and u
is an extreme (leftmost/rightmost) attachment. Edges connect: (1) a bunch vertex vB to all its chords
(u, v,B), (2) bunch vertices vS , vT that share an internal (non-extreme) attachment vertex on Qi, and
(3) each chord to its left and right chords, when they exist. The left and right chords are defined
as follows: For chord (u, v,B), consider the set of chords {(u′, v′,B′) | B′ /= B, u′ < u < v′ < v}; intui-
tively, these are chords of other bunches that interlace with B. The left chord of (u, v,B) is the chord
from this set with minimum u′; ties are broken in favor of largest v′. Right chords are analogously
defined.

All the information needed to construct Gi,I can be extracted from Ji(Qi) by a logspace compu-
tation.

5.5. The constraint graph G∗

The constraint graph contains two parts. One is the union over all i of the interlacing parity
graphs Gi,I , and thus can be constructed in FLSL. The other part accounts for the fact that more
than one bunch may belong to the same bridge, and hence all such bunches must be placed consis-
tently (on the same side) with respect to a path or fundamental cycle. This part has paths of length 1
or 2, called links, between anchor bunches and related bunches. Determining for each anchor bunch
the length of the link, and its other endpoint, requires information about Gi,I and computations
described in Section 3.2, and so the constraint graph G∗ can also be constructed in FLSL.

If G∗ is not 2-colorable, then G is not planar. If G∗ is 2-colorable, then the 2-coloring yields a
combinatorial embedding of Gl. Testing whether G∗ is 2-colorable (i.e., bipartite), and obtaining a
2-coloring if one exists, is known to be in FLSL; see, for instance [1].

5.6. The combinatorial embedding of Gl and of G

Given an undirected graph, a combinatorial embedding � is a cyclic ordering of the edges around
each vertex. Replace each edge (u, v) by directed arcs 〈u, v〉 and 〈v, u〉 to give the arc set A. Then �
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is a permutation on A satisfying �(〈u, v〉) = 〈u,w〉 for some w; i.e., � cyclically permutes the arcs
leaving each vertex. Let R be the permutation mapping each arc to its inverse. The combinatorial

embedding � is planar iff the number of cycles f in �∗ 	= � ◦ R satisfies Euler’s formula n+ f =
m+ 1 + c. (Here,n,m, and c are the number of vertices, undirected edges, and connected components,
respectively.)

The 2-coloring of G∗ partitions the non-P ′
i edges with respect to P ′

i in the obvious way (those
that are to be embedded inside, and those that go outside). To further fix the cyclic ordering within
each set, the algorithm of [28] computes, for each vertex v, a set of “tufts,” which are the connected
components of a graph that is easy to compute using the operations provided in Section 3.2. Each
tuft is labeled with a pair of vertices (again, these labels are easy to compute), and then the tufts are
ordered by sorting these labels. (Sorting can be accomplished in logspace.) The cyclic ordering for
tufts is either increasing or decreasing by labels, determined by the 2-coloring. This cyclic ordering
then yields an ordering � for all the arcs in Gl via a simple calculation.

To check planarity of �, note that c = 1 (we are dealing with a 2-component), n andm are known,
so the only thing left to compute is f . This can be computed in L as follows: Count the number
of arcs a for which a = c(a), where c(a) is the lexicographically smallest arc on the cycle of �∗
containing a.

Since Gl is obtained from G by local replacements only, an embedding �′ of G can be easily
extracted from the embedding � of Gl: just collapse vertices of Tv back into v.

5.7. Merging embeddings of 2-components

It is well-known that a graph is planar iff its 2-components are planar; see, for instance [34]. To
constructively obtain a planar combinatorial embedding of G from planar combinatorial embed-
dings of its 2-components, note that the ordering of edges around each vertex that is not a cut-vertex
is fixed within the corresponding 2-component. At cut-vertices, adopt the following strategy: Let w
be a cut-vertex present in d different 2-components (u1, v1), (u2, v2), . . . , (ud , vd ). The edges of w in
each of these components are ordered according to �1, . . . ,�d . Let xi be the smallest neighbor of w
in the 2-component (ui, vi). The orderings can be pasted together in FLSL as follows:

�(w, z) = �j(w, z) if z is in the 2-component (uj , vj) and z /= xj ,

�(w, xj) = �j+1(w, xj+1) for 1 � j < d ,

�(w, xd ) = �1(w, x1).

Since the incidence of 2-components and cut-vertices in a connected graph gives rise to a tree,
this strategy correctly embeds a connected graph. The planar combinatorial embedding of different
connected components can be constructed independent of each other.

6. Open problems

• Given the complexity of the SL algorithm presented in this paper, the first question that comes to
mind is: Is there a simpler SL algorithm for planarity? One of the main objectives in the algorithm
of [28] was to minimize the amount of work done; their algorithm performs almost linear work
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on a CRCW-PRAM with O(log n) processors. However, this low work does not immediately
translate to any factor essential for computability within SL. Thus it is entirely plausible that a
simpler SL algorithm exists. The algorithm of [17,18] is considerably simpler, but only yields an
NL implementation. A simpler SL algorithm will go a long way in explaining the true connection
between planarity testing and UGAP.

• Is planarity testing hard for SL? Is it in L? Until these classes are proved to coincide, there still
remains some room for improvement in the bounds we present in this paper. For the class of
series-parallel graphs, which forms a non-trivial subclass of planar graphs, this question has re-
cently been completely resolved [16]; it is shown that testing if a graph is a series-parallel graph
is complete for L.
There are a few other well-studied problems in SL that are not known to be in L or to be com-
plete for SL. Among the most interesting of these is the undirected connectivity problem (called
UCONN in [36]). Some other problems in this situation are listed in the Open Problems section
of [1], including the problems of recognizing interval graphs and permutation graphs.

• Can any of the techniques used here be extended to construct embeddings of small genus graphs?
For instance, what is the parallel complexity of checking if a graph has genus 1, and if so,
constructing a toroidal embedding?
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