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Abstract 

We investigate the phenomenon of depth-reduction in commu~~ive and non-commu~tive atith- 
metic circuits. We prove that in the commutative setting, unifo~ semi-unbo~ded a~thmetic 
circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree 

(and unrestricted depth); earlier proofs did not work in the uniform setting. This also provides 
a unified proof of the circuit characterizations of the class LOGCFL and its counting variant 
#LOGCFL. 

We show that AC’ has no more power than arithmetic circuits of polynomial size and degree 
~‘~“~“sR) (improving the trivial bound of plouoe”) ). Connections are drawn between TC’ and 

arithmetic circuits of polynomial size and degree. 

Then we consider non-commutative computation. We show that over the algebra (C”, max, 
concat), arithmetic circuits of polynomial size and polynomial degree can be reduced to O(log* n) 
depth (and even to O(logn) depth if unbounded-fanin gates are allowed). This establishes that 
OptLOGCFL is in AC’. This is the first depth-reduction result for arithmetic circuits over a 
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non-commutative semiring, and it complements the lower bounds of Kosaraju and Nisan showing 
that depth reduction cannot be done in the general non-commutative setting. 

We define new notions called “short-left-paths” and “short-right-paths” and we show that these 
notions provide a characterization of the classes of arithmetic circuits for which optimal depth 

reduction is possible. This class also can be characterized using the AuxPDA model. 
Finally, we characterize the languages generated by efficient circuits over the semiring (2r*, 

union, concat) in terms of simple one-way machines, and we investigate and extend earlier lower 
bounds on non-commutative circuits. @ 1998-Elsevier Science B.V. All rights reserved 

Keywords: Arithmetic circuits; Depth Complexity; Non-commutative computation; AuxPDAs; 
Skew circuits 
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1. Introduction 

One of the most striking early results of arithmetic circuit complexity is the theorem 

of Valiant et al. [46], showing that any arithmetic circuit of polynomial size and 

polynomial algebraic degree, with + and x gates defined over a commutative semiring, 

is equivalent to an arithmetic circuit of polynomial size having depth log2 n. (In fact, 

if the + gates are allowed to have unbounded fanin, the depth is logarithmic, as was 

observed in [51].) Unfortunately, the construction in [46] is not uniform. The results 

of [46] were extended in [31] by providing fast parallel algorithms for evaluating 

arithmetic circuits. However, these algorithms involve a component that is hard for 

NLOG, so no logspace uniform construction was known. 



E. Allender et ul. I Theoreticul Computer Science 209 (I 998) 47-86 49 

One of the first uniform depth reductions was shown in [48] (improving [39]) for the 

Boolean ring. Vinay [51] showed a similar result for circuits over integers, by using 

LOGCFL machines (that is, AuxPDA’s running in polynomial time and logarithmic 

space [40]) to achieve depth reduction. The proof crucially uses the fact that the given 

circuit may be simulated by a LOGCFL machine with small pushdown height. For 

further work in this direction, see [36]. 

In Section 3, we build on these techniques, to give a direct uniform depth reduction 

result over any commutative semiring, while staying within the circuit model. We show 

that any polynomial-size polynomial-degree circuit has an equivalent polynomial-size 

semi-unbounded logarithmic-depth circuit. In Section 4, we include some related results 

concerning arithmetic circuits over commutative semirings, and connections to Boolean 

complexity classes. We show what can be viewed as essentially a degree-reduction 

result: every function in AC’ can be reduced to a function computed by a polynomial- 

size arithmetic circuit of degree ,‘(“‘gl“gn) over the natural numbers, improving the 

trivial degree upper bound of ,‘(“g”). 

Miller et al. [31] also raised the question of whether analogous results could be 

proved in the presence of non-commutative multiplication. Motivated by this question, 

Kosaraju [29] and Nisan [37] showed that commutativity is crucial for the results of 

[46,31]. Namely, it was shown in [29, Theorem l] that for the particular semiring over 

2” with x denoting set concatenation and + denoting union, there is a circuit with 

linear size and degree that is not equivalent to any circuit with sublinear depth. An 

essentially equivalent example is presented in [37, Theorem 41. Although fast parallel 

algorithms were shown for certain limited sorts of non-commutative algebras (e.g., 

finite semirings) in [32], no examples were known of non-commutative semirings where 

depth reduction can be accomplished within the arithmetic circuit model. 

We show, in Section 5, that for polynomial-degree circuits, a limited sort of depth 

reduction can be carried out in the particular case of the algebra (Z*, +, x ) where 

x is concatenation and + is lexicographic maximum. We do not have an interesting 

characterization of the class of algebras to which our techniques apply. However. this 

particular algebra is of interest for two reasons. 

l Concatenation is in some sense the canonical example of a non-commutative multi- 

plication operation. 

l Natural classes of optimization problems (in particular the classes OptL [8,9] and 

OptLOGCFL [51]) can be characterized in terms of arithmetic circuits over (max, 

concat). 

It is important to note that we show only that over this algebra, arithmetic circuits of 

polynomial size and degree can be simulated by unbounded fanin circuits of logarithmic 

depth. An optimal result would do this for semi-unbounded-fanin circuits. 

We also give, in Section 6.1, an augmented set of sufficient conditions (since polyno- 

mial degree alone is not known to suffice) for depth reduction in general 

non-commutative settings. We identify two structures called short-left-paths and short- 
right-paths. We prove that if a circuit is intertwined with these structures in a reason- 

able way, depth reduction is possible in a non-commutative setting. Interestingly, we 
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use mirror reflections of circuits as a technique to handle non-commutative circuits, 

making some of the proofs very simple. These constructions syntactically characterize 

circuits with equivalent semi-unbounded logarithmic-depth circuits, whereas the con- 

struction of Section 5.2 yields only unbounded-fanin circuits. 

We introduce generalized LOGCFL machines (Section 6.2), which can perform 

computations over any specified algebra. (For instance, over (maxconcat), such ma- 

chines define precisely OptLOGCFL.) We show that restricting the pushdown height in 

such machines precisely captures the short-left-paths property; thus pushdown-height- 

bounded generalized LOGCFL machines have equivalent semi-unbounded logarithmic- 

depth arithmetic circuits. We do not know how these machines compare with those 

where the pushdown height is unrestricted. (Note that in both the commutative cases 

of the Boolean ring and of integers, restricting the pushdown height does not result in 

any weakening of the class.) 

In Section 7, we generalize some of the lower-bound results on the size of skew 

(unionconcat) circuits. Skew circuits have been used to characterize NLOG [49] as 

well as the complexity of the determinant [42]. In [37], Nisan shows lower bounds 

on the size of left-skew circuits generating certain languages. (The lower bounds are 

proved for size of algebraic branching programs; it is easy to see that these programs 

correspond exactly to left-skew circuits.) However, there is no corresponding lower 

bound on circuit size, or even on skew-circuit size. In Section 7.3, we extend this 

lower bound to skew circuits. 

In Section 7.2, we extend the first part of Nisan’s argument to show lower bounds on 

circuit size when the circuits are allowed to be more general than left-skew. In particu- 

lar, we define a regular skewness pattern called clone skewness and show clone-skew- 

circuit size lower bounds for some problems. We also establish that the generalization 

is indeed proper; there are problems provably hard for left-skew-circuits (i.e. requiring 

exponentially sized left-skew circuits) which have small clone-skew circuits. 

By way of proving these results, we establish, in Section 7.1, formal connections 

between one-way language acceptors and (union,concat) circuits. This gives us some 

intuition in choosing candidate languages to exhibit the limitations and the power of 

clone-skew circuits. 

2. Preliminaries 

A semiring is an algebra over a set 9 with two operations +, x satisfying the usual 

ring axioms, but not necessarily having additive inverses. (For more formal definitions 

see [26].) There is an additive identity denoted J_ and a multiplicative identity denoted 

1 (At times it will be more convenient to denote I by 0, and to denote 1 by 1. When 

we have an alphabet C = (0, l}, we will try to avoid confusion by using boldface 

symbols to denote elements of Z.) We will usually be interested mainly in finitely 

generated semirings (meaning that there is a finite set 9 = {gt , . . . , gm} C Y generating 



E. Allender et al. I Theoretical Computer Science 209 (1998) 47-86 51 

all of Y), although many of our results hold for circuits over semirings that are not 

finitely generated (such as the real numbers). 

An arithmetic circuit over this semiring is a circuit (directed acyclic graph) consist- 

ing of gates (nodes) labeled with the operations + and x. We will often be processing 

circuits starting at the output gate, and thus it is convenient to view edges as being 

directed from the output and toward the input. The fanin of each gate (number of 

children) may be bounded or unbounded, giving rise to three kinds of circuit classes: 

(1) bounded-fanin circuits, (2) unbounded-fanin circuits, and (3) semi-unbounded cir- 

cuits, where the + gates have unbounded fanin but the x gates have bounded fanin. 

(In what follows, unless otherwise stated, circuits are assumed to have bounded-fanin 

gates; in particular, the fanin is assumed to be exactly two.) The inputs to the x 

gates are assumed to be ordered. Thus each x gate with fanin two has a left input 

and a right input. A circuit has one output node. A circuit family is a set of circuits 

{ Cn: n = 1,2, . .}, where C,, has n input variables. 

Several different notions of algebraic circuit have been considered in the literature; 

often the most important difference between models concerns the type of inputs to the 

circuits that are considered. One popular model (for instance, the model studied in 

[46]) allows a circuit with n input variables to compute a function defined on 9”; that 

is, an input variable can be assigned the value of any element from the semiring; and 

thus a single circuit may compute a function on an infinite domain. Although this is 

an interesting model, and although many of the proofs in this paper carry over to this 

model (particularly the proofs of Theorem 3.1 and Lemmas 6.2 and 6.5) our motiva- 

tion in this paper comes primarily from machine-based complexity classes such as #L, 

#LOGCFL, OptL, and OptLOGCFL. These classes have appealing characterizations in 

terms of arithmetic circuits, where a circuit C,, with n input variables now has the 

restriction that variables can take on only values of “length” n, where there is some 

meaningful notion of the “length” of a semiring element. For the finitely generated 

semirings that we find most interesting, elements of “length” n can be efficiently con- 

structed from the generators, and thus it is no loss of generality to allow the inputs 

to a circuit to take on only values from the list of generators. (This also highlights 

the similarity between arithmetic circuits and Boolean circuits, where Boolean circuits 

take inputs only from the set (0, 1). ) 

The discussion in the preceding paragraph motivates the following aspect of the 

arithmetic circuits considered in this paper. The leaf nodes of an arithmetic circuit 

are labeled either with some element of {3,, I} U $9, or with a predicate of the form 

[x;,a,b,c], where xi is an input variable, and {a, b,c} C {A, I} U 9. (9 is the set of 

generators.) If labeled by such a predicate, the leaf evaluates to b if x, = a and to c 

otherwise. 

The convention that leaves are labeled by predicates of the form [~~,a, b, c] has not 

been used previously, and may require further justification. In particular, it might not 

be completely obvious to the reader that this convention allows the circuit to even pass 

on the value of the input xi. To see that this is possible, note that this can be computed 
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by a sub-circuit of the form 

We use this convention because it is quite essential in the special case of (C*, max, 

concat), which is of particular interest to us in characterizing OptLOGCFL. We can- 

not hope to characterize OptLOGCFL without leaf predicates of this sort; in many 

semirings, denying this sort of function at the leaves of a circuit essentially forces the 

circuit to be monotone. Circuits where the leaves evaluate only to the value of the 

input variable xi are of course a special case, as indicated above. 

The size of an arithmetic circuit is the number of gates in it, and the depth is the 

length of the longest path from the output node to an input node. We will also need 

the notion of the (algebraic) degree of a node (which should not be confused with 

the fanin of a node). The degree is defined inductively: a leaf node has degree 1, a 

+ node has degree equal to the maximum of the degrees of its inputs, and a x node 

has degree equal to the sum of the degrees of its inputs. The degree of a circuit is the 

degree of its output gate. 

We assume some standard encoding of circuits as strings in C* (for instance by 

listing, for each gate, the operation computed by the gate, and the gates to which it is 

connected). We denote the encoding of circuit C,, by (Cn). A circuit family is uniform 

if the function 1” H (Cn) is logspace-computable. (Note that uniform circuit families 

have polynomial size.) 

NC?, SACk and ACk refer to the classes of functions computed by uniform fam- 

ilies of O(logk n) depth circuits with bounded, semi-unbounded and unbounded fanin 

respectively, over the Boolean ring. #SACk and #ACk refer to analogous classes over 

natural numbers. 

A circuit is skew if each x gate has at most one non-leaf input. It is left-skew if 

the x gates have bounded fanin and the left input of each x gate is a leaf. 

By a proof tree of a circuit (see [49] for more formal definitions) we mean a 

sub-circuit represented as a tree (duplicating gates if required) such that 

l The output gate of the circuit belongs to the sub-circuit. 

l Exactly one input of each + gate in the sub-circuit is present in the sub-circuit. 

l All children of each x gate in the sub-circuit are present in the sub-circuit. 

The following related technical definition is useful in a number of our arguments. 

Definition 2.1. An exploration of gate g is a depth-first search of a sub-circuit rooted 

al 

0 

. 

. 

g, with the property that 

For each + node, a child is chosen nondeterministically to explore. 

For each x node the second child is put on the stack and the first child is explored. 

When a leaf is encountered, the stack is popped and the node on top of the stack is 

explored (unless the stack is empty, in which case the exploration stops). The leaf 

that is the last node visited is the terminal node of the exploration. 
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Let the exploration height of a node be the maximum stack height of any exploration 

of the node. 

Clearly the value of g, denoted [g], is the sum (over all explorations e of g) of 

the product of all leaves encountered on e. (This can be verified by an easy induction 

starting at the leaves.) 

LOGCFL is the class of problems logspace reducible to context-free languages. 

LOGCFL is equal to SAC’ [48]. Another equivalent characte~zation of LOGCFL is as 

the class of languages accepted by non-deterministic logspace-bounded auxiliary push- 

down automata (AuxPDAs) running in polynomial time [40]. Without loss of general- 

ity we assume that LOGCFL machines are in a normal form where they push or pop 

Oflog n) symbols (one meta-symbol) at a time. (Such a conversion can be achieved by 

letting the LOGCFL machine store up to O(logn) top-of-stack symbols on its tape.) 

In this normal form, we define “height” of the stack in terms of meta-symbols; the 

machine runs in stack height h(n) if the number of meta-symbols on the stack is at 

most h(n) (and thus the number of symbols on the stack is at most O(h(n)logn)). 

This convention is not completely standard, but it simplifies the exposition and clari- 

fies certain relationships. Essentially, we feel that this is the “right” way to view stack 

height in this model. 

A SU~$KP conjiguration is a description of the AuxPDA’s state, input tape head 

position, worktape contents, worktape head position, and top-of-stack meta-symbol. A 

pair of surface configurations (P, Q) forms a realizable pair if there is a computation 

of the AuxPDA which when started on P leads to Q, and the pushdown height at 

P and Q are identical, and the pushdown height at any intermediate step never goes 

below the pushdown height at P. For the original definitions of “surface configuration” 

and “realizable pair”, see [ 171. Further details (standard notation and definitions) about 

LOGCFL may be found in [17,48,51]. 

3. Depth reduction in commutative rings 

It is known [3 1,461 that polynomial-degree polynomial-size circuits over any com- 

mutative semiring have equivalent logarithmic-depth semi-unbounded-fanin poly- 

nomial-size circuits. However, the argument provided in [46] requires that the degree 

of each gate be known a priori. Although this can be computed quickly in parallel 

[31], it is easy to see that this is hard for NLOG, and thus cannot be assumed in the 

logspace-uniform circuit model. For the particular case of the Boolean ring, a uniform 

depth-reduction result is proved in [48], and for the integers it is proved in [Sl]. We 

present here a unifo~ depth reduction algo~thm for the case of general commutative 

semirings. 

Theorem 3.1. Let R he any commutative semiring. The class of functions computed 
hy uniform arithmetic circuits over R of’ polynomial degree is equal to the class of 
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functions computed by t&form semi-unbounded arithmetic circuits over R of depth 

O(log n). 

Proof. The first step is to convert the given circuit to the normal form guaranteed by 

the following lemma: 

Lemma 3.2. For any untform polynomial-degree circuit family there is an equivalent 
one with the property that each gate is labeled with its formal degree. 

Proof. Let C be an arithmetic circuit. Now let C’ be the circuit constructed as follows: 

for each gate g in C, build gates (g, 1 ), (g, 2), . . . , (g, nk) (where nk is an upper bound on 

the degree of C), and if g is a x gate, also build gates (g,j,i) for all i and j such that 

i 6j < i Q nk. If g is a + gate, then (g, i) is a + gate with children {(h, i): h is a child 

of g}. If g is a x gate with children hl and hz, then (g, 1) is a leaf with value 0, and 

for i>2, (g,i) is a + gate with children that are x gates (g,j,i) = (hl,j) x (hz,i -j), 

where 1 <j 6 i - 1. If h is a leaf and i > 1, then make (h, i) the root of a trivial sub- 

circuit with degree i and value 0, and make (h, 1) a leaf connected to the same input 

variable that h is connected to. The output gate of C’ is the sum of all gates (g,i), 

where g is the output gate of C. 

It is easy to prove by induction on i that each gate (h, i) in C’ has as its value the 

sum of all monomials of degree i in the formal polynomial corresponding to gate h in 

circuit C. Thus C’ is equivalent to C. 0 

Later in the argument a stronger version of Lemma 3.2 will be needed. In order to 

state this stronger version, we first need a technical definition. 

Definition 3.3. Say that g and h are +-adjacent if either 

l g is a + gate, and there is a directed path from g to h, where all intermediate nodes 

are + gates. 

l g is a x gate, and there is a directed path from g, through the second child of g, 

to h, where all intermediate nodes are + gates. 

l A path showing that g and h are +-adjacent is called a witnessing path for g and h. 

The following lemma shows that we can restrict attention to circuits for which it is 

easy to check in O(logn) space if g and h are +-adjacent. This is important for our 

subsequent uniformity arguments. 

Lemma 3.4. For any untform polynomial-degree circuit family there is an equivalent 
one with the property that each gate is labeled with its formal degree, and with the 
property that for any two gates g and h that are f-adjacent, there is exactly one 
witnessing path for g and h, and this path has length at most 3, and there is not any 
path from g to h through a x gate. 
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Proof. Let C be an arithmetic circuit. Modify C so that there are no consecutive + 

gates in C. (If necessary, insert “x 1” gates between each two consecutive + gates; 

this does not cause the degree to become non-polynomial.) Now let C’ be the cir- 

cuit constructed from this “modified’ circuit C, using the construction of Lemma 3.2. 

We claim that C’ has the desired property. 

To see this, let g and h be any two +-adjacent gates in C’. We consider separately 

the cases, depending on whether g is a + or a x gate. 

Case 1: g is a x gate. Thus g must be of the form (g’,j, i) for some x gate g’ of C. 

Furthermore, g computes (hl,j) x (hz, i - j), where hi and hz are the inputs to g’ in 

C. We need to show that the path in C’ from the i- node (Al, i - j) to h has length 

at most 2 and is unique. There are two cases to consider: either h2 is a x gate in C, 

or it is a + gate in C. 

If h2 is a x gate in C, then the + gate (hz, i - j) in C’ has inputs that are x gates. 

Since the witnessing path for g and h goes through no intermediate x gates, it follows 

that h is either (hz, i - j) itself or one of the inputs to (h2, i - ,j), which are all of the 

form (hz,j’, i - j). In either case, the path has length at most 1, and there is only one 

path from g to h. 

If h2 is a + gate in C, then the + gate (h2,i -j) in C’ has inputs {(a,i -j): a is 

a child of hz}. Each such a is a x gate in C. Thus the inputs to each such + gate 

(a, i - j) are x gates of the form (a,j’, i - j). Thus h is either (hl, i - j), (a, i - j), or 

(a,,j’, i - j) for some a and j’. In any case, the path has length at most 2, and there 

is only one path from g to h. 
Case 2: g is a + gate. Thus g must be of the form (g’,i) for some gate g’ of C. 

If $1’ is a x gate of C, then the children of g = (g’, i) are x gates, and thus h must be 

a child of g and the claim follows. Otherwise, g’ is a + gate of C, and the children 

of g are {(h’,i): h’ is a child of g’ in C}, where each such h’ is a x gate in C, and 

thus the children of each such gate (h’, i) are the gates (h’,j,i), which are x gates 

in C’. Thus the gate h that is +-adjacent to g=(g’,i) is either of the form (h’,i) or 

(h’. i,j). In any case, the path has length at most 2, and there is only one path from g 

toh. 0 

Let us now continue with the proof of Theorem 3.1. We will assume that { Cn} is a 

family of arithmetic circuits of the sort guaranteed by Lemma 3.4. Consider any circuit 

C,. Note that it is easy to re-write C so that the first child of any x gate has degree no 

more than the degree of the second child (since R is commutative). Now consider any 

exploration of a node (using the technical definition given in Definition 2.1). Note that, 

using the guarantee that the degree of the first child of a x node is no more than half 

the degree of its parent, it follows that the degree of the node being explored decreases 

by l/2 each time the stack height increases. Thus the stack height is logarithmic on 

any exploration. 

The explorations can be partitioned based on the terminal nodes. Given gate g and 

leaf 1, define [g, I] to be the sum, over all explorations e of g with terminal node 1, of 

the product of all leaves encountered on e. (To clarify: in the case that no exploration 
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of g has terminal node I, [g, I] = 0.) Thus 

M= c k&4 
I : I is a leaf 

More generally, for any two gates g and h where h is not a leaf, let [g,h] denote 

the value determined by the definition in the preceding paragraph, where gate h is 

replaced by a leaf with value 1. We will show how to build a circuit computing the 

values [g, h] for all h (leaf and non-leaf). 

If g is a leaf of C, then [g,g] is a leaf returning the value of g, and for all other h, 
[g, h] is a leaf with value 0. 

If g is a + gate of C, then [g, h] is simply the sum of all [g’, h], where g’ is a child 

of g. 

If g is a x gate of C and g and h are +-adjacent and h is a leaf, then [g, h] should 

simply return h x [gl], where gi is the first child of g. (This is because there is a 

one-to-one correspondence between explorations of g and explorations of gi, because 

of the uniqueness of the + path connecting g and h). Thus if g is a x gate and g and 

h are +-adjacent and h is a leaf, then [g, h] is h x C,:, a ,eaf [gi, Z]. 

Similarly, if g is a x gate and g and h are +-adjacent and h is not a leaf, then 

[g, h] is the sum over all leaves 1 of [gi, I]. (This is because h is treated as a leaf with 

value 1.) 

If g is a x gate and g and h are not +-adjacent, then the definitions imply that 

[g, h] is equal to 0 unless there is an exploration of g with h as a terminal node (where 

h is treated as a leaf). For each such exploration there is a unique sequence of gates 

g = go, 91,. . . , g,,, = h such that each gi is a x gate (except possibly gm = h) +-adjacent 

to gi+i. (That is, being the terminal node of an exploration is equivalent to being 

reachable via a path using only + gates and the second edges out of x gates.) In such 

a sequence there is exactly one gi such that degree(gi) > (degree(g) + degree(h))/2 > 

degree of the second child of gi. 5 The product of the leaves encountered along this 

exploration can be split into three factors: the product of the leaves encountered before 

gi, the product of the leaves encountered while exploring the first child of gi, say gi,L, 

and those encountered while exploring the second child of gi say gi,R. It follows that 

[g, h] is the sum, over all gates gi satisfying degree(gi) > (degree(g) + degree(h))/2 > 

&wek?i,R), of (kL SiI X kkd X bi,R, hl). 
Clearly the resulting circuit is of polynomial size, and is semi-unbounded. To analyze 

the depth of the circuit, observe the following. 

l It is sufficient to analyze the depth of gates of the form [g, h] where g is a x gate 

(because for any gate [g, h] where g is a + gate, any path of length z 3 from [g, h] 
encounters a gate of the form [g’, h], where g’ is a x gate). 

5 In this expression, “degree(y)” refers to the degree of 9 in circuit C, not its degree in the sub-circuit 

being explored (where h is a leaf). Similarly, “degree(h)” is the degree of h in C. 
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l The sub-circuit evaluating [g,k] when y and h are +-adjacent depends on sub- 

circuits of the form [g’,h’], where the exploration height of g’ is one less than the 

exploration height of 9. 

l If y and A are not +-adjacent, then the sub-circuit evaluating [g,h] depends on 

two kinds of sub-circuits: (1) sub-circuits [g’, h’] where degree(g’) - degree(P) is 

no more than half of degree(g) - degree(h), and (2) sub-circuit [g’] where the 

exploration height of g’ is one less than the exploration height of g. 

It follows that the depth is O(logn), since the exploration height is O(logn) and the 

degree is no(‘). q 

4. Relating arithmetic and Boolean complexity classes 

Computing the determinant of integer matrices is known to be hard for NLOG, and 

it can be done in TC’ (TC’ denotes the class of functions computable by threshold 

circuits (equivalently, MAJORITY circuits) of polynomial size and depth O(logn)). 

However, no relationship is known between SAC’ or AC’ and the determinant. In 

this section we review some known results about a~thmetic circuits that bear on these 

questions, and present some new inclusions and characterizations. 

Definition 4.1. #L is the class of functions of the form #acc~(x), where M is an 

NLOG machine. (#ace,&) counts the number of accepting computations of M on 

input x.) 

#LOGCFL is the class of functions of the form #~~c~(~), where M is a LOGCFL 

machine. 

Vinay has shown (see [5 11) that #LOGCFL is precisely the class #SAC’, and is 

also precisely the class of functions computed by uniform polynomial-degree arithmetic 

circuits over the natural numbers. (An alternate proof is provided by Theorem 3.1.) 

It is known that the complexity of the determinant is roughly determined by #L. 

More specifically, f is logspace many-one reducible to the determinant 6 iff it is the 

difference of two #L functions (see [ l&43,52]; an essentially equivalent result is also 

proved in f45, Theorem 21). Also, this class of functions is precisely the class computed 

by pol~omial-size skew a~thmetic circuits over the integers 1421. For additional related 

results, see [IO]. 

The question of the relationship between #L and #LOGCFL is thus exactly the 

question asked in [44], concerning the relationship between the determinant and circuits 

of polynomial size and degree. 

It is worth mentioning that Imme~an and Landau [23] have conjectured that TC’ is 

exactly the class of sets reducible to #SAC’ ; in fact they make the stronger conjecture 

h That is, there is a logspace-computable 9 such that f(x) = determinant(&)) 
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that computing the determinant is hard for TC’. Here, we point out that there is a 

tantalizing connection between TC’ and #SAC’. 

Theorem 4.2. A function is computed by TC’ circuits ifs it is computed by arith- 

metic circuits over the natural numbers, with depth O(logn), polynomial size, with 

unbounded-fanin + gates, and fanin two x and + gates. 

Here, + is integer division, with the remainder discarded. 

Proof of Theorem 4.2. Since unbounded-fanin +, and x and + can be computed by 

TC” circuits [38], inclusion from right-to-left is straightforward. (This is true even for 

logspace-uniformity, since it follows from [ 11,381 that division can be done in uniform 

TC’ if the number N is given, where N is the product of the first n2 primes. But N 

can be computed in TC’ .) 

To see the other direction, note that the MAJORITY of xi,. . . ,x, is equal to 

[l +(2(Cxi)+n)] t2. 

Thus O(logn) layers of MAJORITY gates can be simulated with O(log n) levels of 

arithmetic gates. 0 

We note that other (less trivial) connections between TC” and classes of arithmetic 

circuits over finite fields are also known [13,38]. (See also [2].) 

In spite of Theorem 4.2, it is not known whether TC’ or even AC’ can be reduced to 

arithmetic circuits of polynomial size and degree (#SAC’). 7 It is a trivial observation 

that AC’ can be reduced to arithmetic circuits over the integers of polynomial size 

and degree n”@sn). * The following result improves this trivial bound to n”(loglogn). 

(Note that arithmetic circuits of non-polynomial degree can produce output of more 

than polynomial length. The following proof does not make use of this capability; only 

the information in the low-order O(logn) bits is used.) 

Theorem 4.3. 9 Every language in AC’ is ejiciently reducible to a function computed 

by polynomial-size, degree n O@g”g”) arithmetic circuits over the natural numbers. 

’ In this context, when we say that a complexity class can be “reduced to” a class of functions, we mean 

that for every language A in the complexity class, there is a function f in the class of functions, and a 

logspace-bounded oracle Turing machine that, on input X, can determine if x E A by computing a query y, 

and receiving from the oracle the result f(y), and then using this information to decide whether to accept or 

reject. In fact, our results deal equally well with the setting where only one bit of f(y) is requested from the 

oracle. Note in particular that SAC’ can be reduced to #SAC’ in this way, by the same observation showing 

that NLOG is contained in probabilistic logspace (and thus the high-order bit of a #LOGCFL function can 

determine if a LOGCFL machine accepts). 

* The circuit can first be made “unambiguous” by replacing each OR of gates 91,. , gm by an OR of 

m gates testing, for each i, if the condition “gate gr = 1, but for all j < i, gj = 0” holds. Now replace each 

AND by x and each OR by t; the low-order bit of the answer is the answer we seek. The degree bound 

is easily seen to hold. 

9 This improves a theorem of [7], where a similar result for non-uniform circuits was proved. 
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Proof. First we need the following lemma, which follows directly from the results of 

[16,24]. (This improves earlier constructions in, for example, [6,27,41,47], which also 

showed how to simulate AND and OR by parity gates and ANDs of small fanin. It 

would also be possible to use constructions by [35] or [20], instead of the construction 

of [16].) 

Lemma 4.4. For each I EN, there is a family of’ constant-depth, polynomial-size, 

probabilistic circuits consisting of unbounded-fanin PARITY gates, AND gates of 
j&in O(log’ n), and O(log n) probabilistic bits, computing the OR of n bits, with 

error probability < 1 In’. 

Proof. To see why the claim is true, first observe that the construction in [ 161 gives a 

depth 5 probabilistic circuit that computes the NOR correctly with probability at least 

i and uses O(log n) random bits. More precisely, using the terminology of [16], let 

m= [lognl, let S={l,..., m}, and let 9 be the collection of subsets of S, such that 

A t 9 iff the bit string k of length m = [log nl representing the characteristic sequence 

of A corresponds to a binary number k <n such that the kth bit of the input sequence 

XI,. . . ,x, has value 1. That is, the OR of xl,. . . , x, evaluates to 1 iff F is not empty. 

The strategy of [ 161 is to use probabilistic bits to define a way of assigning a “weight” 

to each set Ak E 4 so that if 8 is not empty, then with high probability there is a 

unique element of 9 having minimum weight. The next paragraph explains how this 

is done. 

Let c = [log ml and let t = [m/cl. For any 1~ i 6 m and 0 <j < t - 1, define bi,i as 

follows: 

2’-@ 
bi,j = 

if jc<i<(j + 1)c 

0 otherwise 

(It may help the reader’s intuition to consider an m-bit sequence k = kl , . . . , k,,,. Divide 

this sequence into blocks; BlockG) has positions kjc+l, k,C+2,. . . , kcj+l),. Clearly, k, is 

in Block(k,_l). NOW, if ki $! BlockG), then bi,j = 0, else bi,j = 2’-jC, Note that i - jc 

is the position of ki within Block(j).) 

Choose t numbers r-0,. . . , r,_l in the range 1 d rj d 50 log5 n uniformly and inde- 

pendently at random (and note that this amounts to choosing O(logn) random bits). 

Finally, define wi to be equal to zJ:A b,jrj. The weight of a set A is then CiEA Wi. The 

analysis in Proposition 2 of [ 161 shows that if B is not empty, then with probability 

at least 0.99, there is a unique minimal weight set in 8. 

This paragraph explains how to implement this system as a uniform constant-depth 

circuit. Note first that for any k <n and for any fixed p 6 log’ n, there is a depth 2 

circuit of PARITY gates and small-fanin AND gates that evaluates to 1 iff the weight of 

Ak is equal to p. Here Ak is that subset of S whose characteristic sequence is the binary 

representation of k. (The only inputs to this circuit are the O(logn) probabilistic bits. 

The DNF expression for this function thus can be computed by a polynomial number 

of AND gates feeding into a PARITY gate. Since this sub-circuit depends only on 
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O(logn) bits, the fanin of each AND gate is trivially O(logla).) Taking the AND of 

this circuit with the input bit xk results in a depth three circuit that evaluates to 1 iff 

Ak E 9 and the weight of Ak is equal to p. Thus there is a polynomiaI-size depth- 

4 circuit with a PARITY gate at the root that evaluates to 1 iff there are an odd 

number of sets in 9 that have weight p. Hence there is a uniform depth-5 circuit 

with an OR at the root that evaluates to 1 iff there is some weight p such that there 

are an odd number of sets in 9 having weight p. By the remarks in the preceding 

paragraph, if the OR of ~1,. . . ,x, evaluates to 1, then with probability at least 0.99, 

our depth-5 circuit will also. (Clearly, if the OR is zero, then the depth-5 circuit also 

evaluates to zero.) If we replace the OR gate at the root with AND and negate each 

of the PARITY gates that feed into that OR gate (by adding a constant 1 input to 

each) we obtain our desired circuit for the NOR function. Let us denote this circuit by 

C(x, r). 
It remains only to reduce the error probability from 1/ 100 to l/n’, without using 

too many additional probabilistic bits. Consider a graph with vertices for each of our 

O(logn)-bit probabilistic sequences, the edge relation is given by the construction of 

an expander graph presented in [19], where each vertex has degree five. Inspection 

of 1191 shows that there is a unifo~ circuit of PARITY gates and small-fanin AND 

gates of polynomial size and constant depth that takes as input one of our original 

probabilistic sequences r as well as a new probabilistic sequence s E { 1,2,3,4,5},[ l”gn 

(for some constants c and I) and outputs the vertex r’ reached by starting in vertex r 

and following the sequence of edges indicated by s. (Since this function depends on 

only O(logn) bits, it suffices to express the DNF using PARITY and AND.) Let this 

circuit be denoted by R(r,s). 

Thus we can construct a constant-depth circuit that computes the AND for all 

i <cl log n of C(x, R(r, s[ l..i])) (where s[ 1 ..i] denotes the prefix of s of length i, where 

r and s are probabilistically chosen. By Section 2 of [24], this circuit computes the 

NOR correctly with probability 1 - l/ .‘. Adding a PARiTY gate at the root allows us 

to compute the OR, as desired. This completes the proof of the lemma. 0 

Using this claim, take an AC’ circuit, replace all AND gates by OR and PARITY 

gates (using DeMorgan’s laws), and then replace each OR gate in the resulting circuit 

with the sub-circuit guaranteed by the claim (for 1 chosen so that ni is much larger 

than the size of the original circuit), with the same O(log n) probabilistic bits re-used in 

each replacement circuit. The result is a probabilistic, polynomial-size circuit that, with 

high probability, provides the same output as the original circuit. Note that replacing 

AND gates by x and PARITY gates by +, one obtains an arithmetic circuit, the low- 

order bit of whose output is the same as the output of the original AC’ circuit with 

high probability. The degree of this circuit is 0(log7 n)of’osn) = ~~~@‘s”‘s~). 

It remains to make the circuit deterministic. First we make use of the “Toda poly- 

nomials” introduced in [41]. For example, there is an explicit construction in [12] of a 

polynomial Pk of degree 2k - 1 such that pk(y) mod 2k = y mod 2. (A nice alternative 

construction is presented in [28].) If we implement this polynomial in the obvious 
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way lo and apply it to the arithmetic circuit constructed in the preceding paragraph, 

we obtain an arithmetic circuit of degree n o(‘“g’ogn) and polynomial size, whose low 

order bit is the same as the output of the original AC’ circuit with high probability, 

and with the additional property that the other clogn low-order bits of the result are 

always zero (where c is the constant such that there are clogn probabilistic bits). 

Now we merely make nc copies of the circuit, with a different sequence of proba- 

bilistic bits hardwired into each copy, and add the output gates of each of those circuits. 

Note that the bit clog n positions to the left of the low-order bit is exactly the majority 

vote of these circuits, and thus is equal to the output of the original circuit. 0 

5. Optimization classes 

The class OptP was defined by Krentel [30] as the class of functions that can be 

defined as f(x) = max{y: there is some path of M that outputs y on input x}, where 

A4 is a nondeterministic polynomial-time Turing machine. The analogous class OptL 

was defined in terms of logspace-bounded nondeterministic machines [8,9]. Vinay 

[51,52] considered the analogous class defined in terms of LOGCFL machines. Since 

LOGCFL coincides with SAC’, he called this class OptSAC’. However, this notation 

is misleading, as will be illustrated in this section. So in this paper we refer to this 

class as OptLOGCFL. 

For any alphabet C, one obtains the semiring (C* Cl {I}, +, x ) where x denotes con- 

catenation and + denotes lexicographic maximum (Vx E C* U {I}, I x x = x x I = I 

and x + I = _L + x=x). We will usually denote this semiring as (C*,max, concat). 

We use the notation OptNC?, OptSA@ and OptA@ to denote the classes of func- 

tions computed by uniform O(logk n)-depth bounded, semi-unbounded and unbounded 

(max, concat) circuits, respectively. 

While the Opt classes consist of functions from C* to C*, the Boolean classes 

map C* to (0, 1). Nonetheless, we may talk of an optimizing function f belonging 

to a Boolean class of functions g in the following sense: f E 2 if the language 

Lf = {(x, i, b): the ith symbol of f(x) is b} is in g. 

5.1. Relating optimization classes and (max, concat) circuits 

It is shown in [9] that OptL is contained in AC’ (a later proof may be found in 

[4]); it is also shown in [9] that iterated matrix multiplication over (C*,max,concat) 

is complete for OptL. As was pointed out by Jenner [25], it is not hard to use the 

techniques of [42,49] to show: 

Proposition 5.1. OptL is the class of functions computed by uniform families of left- 
skew arithmetic circuits over (C*,max,concat). 

lo It is observed in [S] that this polynomial can be implemented via ukform constant-depth circuits 
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In [51] it was claimed that OptLOGCFL coincides with OptSAC’, but this claim 

was later retracted [52]. Instead, the following is easy to show (using the techniques 

of, e.g., [48,51]): 

Proposition 5.2. OptLOGCFL is the class of functions computed by uniform families 

of arithmetic circuits of polynomial degree over (C*, max, concat). 

Proof. (C) Let LOGCFL machine M be given; it can be assumed that the worktape 

of A4 keeps track of 

l the number of steps executed so far, and 

l the number of output symbols that have been produced thus far in the computation. 

Also assume that each time an output symbol is produced, it is preceded by a push 

and followed by a pop, and that the stack changes height by one on all other moves. 

Let nk be a bound on the run time of M on inputs of length n. 
The circuit we build will have gates with labels of the form (CD, i,j, a, b), which 

should evaluate to the maximum of all words w that can be produced as bits i through 

j of a string output in a segment of computation beginning at time a and ending at 

time b, beginning in surface configuration C and ending in surface configuration D, 

where (C, D) is a realizable pair. The leaves will be of the form (C, D, i, i + c, a, a + 1) 

(where c E { - 1, 0)) which will evaluate to c E Z U {A} if M can move in two steps 

from C to D outputting (T (and i,c and a agree with C and D) and will evaluate to I 

otherwise; note that this leaf will depend on the input. (Strictly speaking, this “leaf” 

will be implemented by a sub-circuit of the form MAX,,z[xj, a, oa, I].) 
Non-leaf nodes of the form (C, D, i, j, a, b) are the maximum over all E, F, k, and c 

(a+l<c<b-2) of concat((C,E,i,k,a,c), (E,D,k+l,j,c+l,b)) and (E,F,i,j,a+l, 
b- 1) (where in this last expression only those E and F are considered where C k E via 

a push and F t D via a pop of the same meta-symbol). Standard analysis [ 171 shows 

that gates defined in this way have the properties outlined in the preceding paragraph. 

The output of the circuit is the maximum over all m of (Cinit, Daccept, 1, m, 1, nk). The 

degree of any node (C, D, i, j, a, b) can be seen to be b - a, and thus is polynomial. 

(I>) This direction is also completely standard. The LOGCFL machine will start 

exploring the circuit C,, at the root. To explore a x gate, put the right child on the 

stack and explore the left child. To explore a + gate, non-deterministically choose a 

child and explore it. To explore a leaf, output the value of the leaf (this might depend 

on the input); then pop the top node off the stack and explore it. (If a I is encountered, 

halt and reject.) 

It is easy to see by induction that the time required to explore a gate g is O(depth(g)x 

degree(g) x t(n)) where t is the time required to check connectivity between gates. 

Thus the entire running time is polynomial. 0 

Since OptSAC’ has circuits of polynomial degree, it is contained in OptLOGCFL. 

We investigate below the extent to which OptLOGCFL itself can be characterized in 

terms of circuits of small depth. No parallel algorithm for OptLOGCFL is presented in 
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[52], and in fact this is explicitly listed as an open problem there; instead, attention is 

drawn to the negative results of [29,37] showing that depth reduction is not possible 

in general for non-commutative semirings. 

5.2. Depth reduction for (max, concat) circuits 

In this section we show that (max, concat) circuits of polynomial size and degree 

can be simulated by (max, concat) circuits of polynomial size and logarithmic depth, 

when unbounded-fanin gates are allowed. In other words, we show that OptLOGCFL 

is contained in OptAC’ , and hence in OptNC*. Since functions with quasi-polynomial 

degree can be computed in OptAC’ (and hence there are functions f E OptAC’ with 

1 f (x)1 not polynomial in 1x1), OptLOGCFL C OptAC’ is a proper containment. 

Our first proof of this depth reduction was rather complicated, and was similar in 

spirit to the proof given Section 3 for the commutative case. Although we feel that 

a proof in this vein is instructive, the proof given below is extremely simple, and is 

very similar to the argument in [4]. Further, the proof we give here explicitly uses the 

algorithm from [31] to construct individual bits of the output; it thus follows from this 

construction (Lemma 5.5) that OptLOGCFL is in AC’. 

Note that, in order to achieve logarithmic depth, we see no way to avoid using 

unbounded-fanin concat gates; it remains an open question if the equalities LOGCFL = 

SAC’ and #LOGCFL = #SAC’ translate to the (max, concat) setting as OptLOGCFL = 

OptSAC’. In Section 6.4 we will describe a restriction on AuxPDAs that characterizes 

OptSAC’. 

Theorem 5.3. Zf f is computed by a family of arithmetic circuits over (C*,max, 

concat) of polynomial size and degree, then f is computed by a family of arithmetic 
circuits over (C*,max,concat) of polynomial size with depth O(log* n). (In fact, f 
is computed by a family of unbounded-fanin arithmetic circuits of logarithmic depth, 
and ,f is also in the Boolean class AC’.) 

Proof. The outline of our proof is as follows: Given an input x and a polynomial-size, 

polynomial-degree circuit, we first convert the circuit to a normal form guaranteed 

by Lemma 5.4. We then build an equivalent circuit over the (commutative) semiring 

(Z,max,plus), and evaluate this circuit using the [31] algorithm (which in this setting 

can be implemented in AC’). This is described in Lemma 5.5. Finally, we turn this 

AC’ algorithm into a family of arithmetic circuits. 

The following definition is similar to the notion of a proof tree or “accepting subtree” 

studied in [50], but is specific to circuits over the algebra (C*,max,concat): Let g be 

a max gate, and let h be an input to g, and consider the behavior of the circuit when 

given some input x. We say that h contributes to the value of g if the value of h is 

equal to the value of g (that is, the value of h is the largest value that is input to g). 

More generally, we say that a gate g contributes to the value of g’ (where g’ is not 

necessarily adjacent to g) if there is a path from g’ to g such that every edge h’ ---f h 
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on this path (where h’ is a max gate) has the property that h contributes to the value 
of h’. We say that g contributes to the vaiue of the circuit if it contributes to the value 
of the output gate. A contributing sub-circuit at h is a sub-circuit where each max 
gate has one child and each concat gate has all its children in the sub-circuit, and all 
nodes in the sub-circuit contribute to the value of h. 

The following lemma is immediate from the proof of Proposition 5.2, 

Lemma 5.4. For cmy circuit fam~iy of po~ynom~~ size and degree, there is an equiv- 

alent circuit family of polynomial size and degree such that each node (other than 
the output node) is labeled with a pair i,j, and if node h is labeled with i, j, then it 
contributes to the value of the circuit only if the value of h is equal to symbols i 

through j of the output. (For convenience later on, we will number symbols from the 
right, starting with position 0 at the rightmost end. > 

Assume that the alphabet C = (0, 1); the argument for other alphabets is similar. 

Lemma 5.5. If f is computed by a family of arithmetic circuits over (C*, max, 
concat) ofpo~ynoFniai size and degree, then Lf is in AC’. 

Proof. Let input x and circuit Ci be given. Replace each leaf of CI that evaluates 
to l(0) with a pair of leaves evaluating to ll(10); this has the effect of forcing any 
output of non-zero length to have some l’s in it. Call this new circuit C. Let nk be 
an upper bound on the number of bits in the output of C(X) (this follows from the 
degree bound on C). 

Now build a (max,plus) circuit (operating over the integers) as follows. ” Recall 
that each leaf node of C is labeled with a pair as in Lemma 5.4. For each leaf labeled 
with pair (i, i) that evaluates to 1, change that leaf to the number 2’. (Note that 2’ can 
be computed by a sub-circuit of depth log i.) All other leaves receive the value 0. Call 
the new circuit C’. 

It is now easy to observe that the output of C’ is the number whose binary repre- 
sentation is the value of the output gate of C. 

The individual bits of the output of circuit C’ can be evaluated using the algorithm 
of [31], which consists of O(Iogn) applications of a routine called Phase. A single 
application of Phase consists of matrix multipIication over (Z, max,plus), and hence 

can be done in AC’. Thus O(logn) applications of Phase can be done in AC’, resulting 
in an AC’ circuit computing the function computed by C’. 

This shows that the language Lf, = { ( x, i, b): the ith bit of C’(x) is h} is in AC’, 
A trivial modification now shows that Lf = { ( x, i, b): the ith bit of f(x) is b} is in 
AC’. El 

” Formally, it is necessary to include the element J_ = -cc in order to make this structure a semiring. 

This could be replaced by a large enough negative number. 
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Now we can build log-depth arithmetic circuits over (max, concat) for Ci in an essen- 

tially trivial way. Namely, note that ({I, A}, max, concat) is isomorphic to ((0, l}, V, A). 

Thus we can build log-depth arithmetic circuits (using unbounded-fanin max and con- 

cat gates) of the form [i,b] that evaluate to 1. if (x, i,b) is in L,f, and evaluate to 

I otherwise. The final arithmetic circuit is the maximum (over all output lengths 

m) of the result of concatenating (for m 2 i 2 1) the maximum over all bits b of 

concat(b, [i, b]). 0 

6. Depth reduction in non-commutative settings 

In the commutative setting, any polynomial-degree uniform circuit can be depth- 

reduced (Theorem 3.1). In the non-commutative case, we know of one semiring where 

this holds (the (max,concat) circuits, described in Section 5) and another where it 

does not (the (union, concat) circuit lower bounds from [29,37]; see Section 7). Where 

exactly does the proof of Theorem 3.1 break down in this setting? 

Let us say that a circuit is “right-lopsided” if at each x gate, the degree of the left 

child does not exceed the degree of the right child. The construction in Theorem 3.1 

(and each depth-reduction construction in the literature so far) uses right-lopsidedness 

to make depth reduction possible - the heavier child on the right is stacked while 

the left child is processed. Since the circuit is of polynomial degree, this ensures that 

the stacking level is only logarithmic. (In general, the stacking or recursion level is 

log(degree).) This then is the role commutativity plays - it allows any x gate to be 

rewritten in a right-lopsided way (as we assumed in the proof of Theorem 3.1). 

Clearly, then, in the non-commutative case, if we are given a circuit which is of 

polynomial degree and is already right-lopsided, the same construction goes through. 

In this section, we show that for non-commutative circuits, right-lopsidedness is 

not necessary (though sufficient) for depth reduction. We identify a property called 

short-left-paths (of which right-lopsidedness is a special case), and show that 

polynomial-degree circuits with this property can be depth reduced. We even show 

that the symmetric property of short-right-paths (and hence left-lopsidedness) suffices. 

The resulting depth-reduced circuits are semi-unbounded, and we also characterize them 

via generalized AuxPDA machines. 

6. I. Suficient conditions jtir depth reduction 

We consider a generalization of left-skewness called short-left-paths, defined in terms 

of a new labeling scheme. For any proof tree in an algebraic circuit, consider the 

labeling of each gate by an integer according to the following rules. The root gate 

is labeled 0, all children of a + gate labeled k are labeled k, the right child of a x 

gate labeled k is labeled k, and the left child of a x gate labeled k is labeled k + 1. 

It is easy to determine the label of any node in a given proof tree according to this 

scheme: Label each edge by N or L or R if the edge is from a + gate to a child, or 
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from a x gate to its left child, or from a x gate to its right child, respectively. Then 

the label of the gate is simply the number of edges labeled L on the unique path from 

the root to this gate in the tree. (Note that in the circuit, the gate to which the node 

corresponds might be reachable by more than one path.) 

In a left-skew circuit, all gates in any proof tree get labels 0 or 1. Generalizing 

this, we say that an algebraic circuit has short-left-paths if for every proof tree in the 

circuit, the maximum label used by this labeling scheme is O(logn). 

If this labeling is extended to the circuit, then the label of a gate may not be uniquely 

defined. In this case, we make multiple copies of the gate, each with a unique label. 

This does not cause the size of the circuit to be non-polynomial, since the number 

of labels required is small. Short-right-paths are similarly defined. The main result of 

this section is the following theorem: 

Theorem 6.1. Over any semiring, the classes of functions computed by the following 

are equal. 
1. polynomial-size circuits of polynomial degree, with short-left-paths, 
2. polynomial-size circuits of polynomial degree, with short-right-paths, 
3. polynomial-size semi-unbounded circuits of logarithmic depth. 

(In particular, for left-skew or right-skew circuits, depth reduction is always possible. 

This cannot be extended to skew circuits, since the linear depth lower bound given 

by [29,37] is for a function with skew circuits.) 

The rest of this section is devoted to proving the above theorem. 

It is easy to see that for circuits of polynomial degree, right-lopsidedness implies 

short-left-paths, and left-lopsidedness implies short-right-paths. The next lemma shows 

that lopsidedness is not necessary for depth reduction. (Recall that all previous depth- 

reduction results have used the notion of lopsidedness; hence lopsidedness is sufficient 

for depth reduction.) We show that it is sufficient that the proof trees be reduced in 

one direction: hence short-left-paths. One should notice that the final depth-reduced 

circuit has both short-left and short-right paths. 

Lemma 6.2. Let R be any semiring. The class of functions computed by untform 
polynomial-size semi-unbounded arithmetic circuits over R of depth O(logn) is equal 
to the class of functions computed by untform polynomial-size arithmetic circuits over 
R, having polynomial degree and short-left-paths. 

Proof. The inclusion from left to right follows from the observation that semi- 

unbounded logarithmic-depth circuits have both short-left-paths and short-right-paths. 

This holds even after they are converted to bounded fanin equivalents, since the con- 

version only increases the depth through + nodes, and this does not affect our labeling. 

The inclusion from right to left: Let C be the polynomial-degree circuit with short- 

left-paths. Then by a trivial modification of the proof of Lemma 3.4, there is an 

equivalent uniform circuit C’ where each gate description carries the unique label of 
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the gate under the short-left-path labeling scheme, along with the algebraic degree of 

the gate, and also satisfies the other conditions of Lemma 3.4. 

Let us understand how we may accomplish the depth reduction of C’. The task is to 

transform all proof trees into small depth trees. Note that the proof trees are already 

short in one direction. So it is the other direction (corresponding to right paths) that 

needs to be compressed. The task will be accomplished by dividing the proof tree 

into smaller subtrees. In general, we can talk of a proof tree rooted at one gate g 

and terminating at another gate h, which is not necessarily a leaf. Such a proof tree 

evaluates to [y, h], as described in the proof of Theorem 3.1. As further described there, 

being the terminal node of an exploration from g is equivalent to being reachable from 

g via a path using only + gates and the second edges (labeled R) out of x gates. 

We call such a path the current focus puth (CFP), and concentrate on compressing 

this path. 

Note that the length of a CFP can be polynomial in n. To achieve logarithmic depth, 

a divide-and-conquer scheme is called for; this is precisely what the algebraic degree 

tag on each gate allows us to do. Consider two gates g and h with degrees dg and dh, 

respectively. By assumption, g and h are on a CFP rooted at g. Now, either there are 

x gates between g and h or there are none. In the latter case, they are +-adjacent to 

each other (as defined in Definition 3.3). 

Consider the former case. All x gates on the path from g to h have degrees in the 

range [dg,dh] in decreasing order. Consequently, there are +-adjacent gates ZI and 22 

on the CFP such that their degrees satisfy 

dz >dg+dh 
1, 

2 
> dz2 

and z1 is a x gate. (It is possible that z1 is g or z2 is h, but obviously not both at 

the same time.) These gates are unique to a proof tree. The output of the proof tree 

(which is the product of the leaves in left to right ordering) may be decomposed into 

three parts: leaves encountered while traversing the tree from (1) g to z1 (2) z1 to z2 

(3) z2 to h. The product of the leaves in this ordering is the product of the leaves in 

the traversal from g to h. 
In the latter case, i.e. when g and h are +-adjacent, if g is a x gate, then the leaves 

encountered in traversing the pruned proof tree from g to h are precisely the leaves 

encountered while traversing the proof tree rooted at the left child of g. So we move 

the CFP down by one level; the new CFP represents the proof tree rooted at the left 

child of g. (If g is a + gate, then the leaves encountered are exactly the same as those 

encountered when traversing the proof tree at some gate g’ +-adjacent to g; recall that, 

by the normal form of Lemma 3.4, the path from g to g’ has length at most 3.) 

Let [g; dg,Lg] denote the function computed at g where dg is the degree of the gate 

and Lg is the number of L’s in a path from the root to g. Though this information is 

implicit in the gate labels, making it explicit makes it easy to analyze the construction. 

Let [g, h; dg - dh,Lg] denote the function computed at [g; dg,Lg] if the proof trees are 

pruned at h. [g, h, 0; dg - dh, Lg] is the same as [g, h; dg - dh, Lg] except that addition- 
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ally, g and h are +-adjacent on some CFP. Note that it is easy to check if two gates 

are +-adjacent, by the normal form of Lemma 3.4. 

The circuit construction is described below: 

Cl:,eaf [g,l;dg- l,Lgl if g is a x gate, 

[g;dgJgl= C h leaf or x gate +-adjacent to 9 [h; dh,Lg] if g is a + gate, 

9 if g is a leaf, 

[g, 4 ds - dk Lgl 

C [g,zl;dg-dzl,L 1 [ g x z1,~2,O;dzrdzz,~gl x [z2,kdz2-dUgl, 
zl,q:as in (*) 

[g,kO;dg-dUgI= C [gL,CdgL.- lJg+ll, 
1: leaf 

[9> 9; 0, Lgl = 
g if g is a leaf, 

1 otherwise. 

We need to argue that the circuit has small depth. Consider the potential function 

Y of a gate [g; dg,Lg], defined as Y = (log(dg),Lg). Assuming that the degree of the 

circuit is nk, and that left-paths do not exceed clogn, the potential function at the 

output gate is (k logn,O). (The output gate has zero left-path length.) The leaves have 

a potential of (0,~ logn). Any path of length at least 3 in the circuit encounters a x 

gate. As we move from the root to any leaf in the circuit, at each x gate either the 

first component decreases by 1 (the degree comes down by a factor of 2 at the left 

and right child of the x gate), or (in the case of the middle child of the x gate) at 

the next level the second component increases by 1 (left-path length increases by 1). 

Consequently, the depth of the circuit is no more than (2c + 2k) log n. 0 

Remark. This proof is very similar to the proof of Theorem 3.1. We represent a col- 

lection of potential proof trees, using O(logn) bits, by specifying the “root” and by the 

“leaf’ on the CFP. Though many proof trees may have the same representation at some 

level, this is irrelevant because at some point of the compression, two distinct proof 

trees must necessarily differ. A discerning reader would notice that this representation 

is precisely the so-called realizable pair of surface configurations. 

The formulation of the next lemma requires a technical strengthening of the result of 

Lemma 6.2. Lemma 6.2 shows how to construct a log-depth semi-unbounded family 

{&} equivalent to a given family {Cn} with short-left-paths, in the sense that for 

all x of length n, C,,(x) = D,(x). In fact, we have established a somewhat stronger 

notion of equivalence, and this becomes important for us below. For this we need 

some additional definitions. 

For any circuit C and input x, let C, denote the circuit which results from re- 

placing each leaf node [xi,a,b,c] by the element of R to which this leaf evaluates 

on input x. Thus C, has no input variables, the leaves are labeled by constants, and 

hence it computes a constant function. Corresponding to C, is a formal polynomial 
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P(C,x) = C, ct n(t); the next few sentences provide a definition of P(C,x). As in the 

proof of Theorem 3.1, the value of C, can be expressed as C, n (e), where the sum is 

taken over all explorations e, and n(e) denotes the product of all the values encoun- 

tered at leaves of C, along that exploration. Note that some two explorations e and 

e’ may encounter exactly the same sequence of values at the leaves they visit. In this 

case, we say that there is some term t such that n(t) = n (e) = n (e’). Thus we may 

group these terms, and express the value of C, as C, ct n(t), where c, is equal to the 

ring element ( 1 + 1 + . . + 1) that results by adding 1 j times, where j is the number 

of distinct explorations e such that fl (t) = n(e). It will cause no confusion to think 

of c, as being the natural number j. (Also note that this sum is an infinite sum over 

all terms t in 9’*; for all but finitely many t, ct = 0.) 

Definition 6.3. Two circuits Ci and C2 are said to be strongly equivalent if, for all 

x, and all terms t, the coefficients of term t in P( Ci ,x) and P( C2,x) differ only if 0 

appears in the term t. 

To illustrate, consider the three circuits with one input variable x over the 

(maxconcat) semiring: 

Ci =max{(l~x),(x~1)}, 

All three of these circuits give the same output on all inputs x E (0, l}. However, Ci 

and Cs are strongly equivalent, whereas Cl and C2 are not. 

If two circuits give the same output but are not strongly equivalent, then the proof 

that they are not strongly equivalent usually requires detailed analysis of the underlying 

structure of the semiring R. Thus it is not surprising that examination of the proof of 

Lemma 6.2 shows that we have actually established 

Lemma 6.4. For any uniform family {C,,} of polynomial-size arithmetic circuits over 
R of polynomial degree, with short-left-paths, there i,r a uniform jhmily {D,,} ofsemi- 
unbounded arithmetic circuits over R of depth O(logn), such that for all n, C,, and 
D, are strongly equivalent. 

In general, the above construction converts a polynomial-size circuit of degree d and 

largest left-path-label 1 to a semi-unbounded circuit of depth O(logd + 1) provided 

d ~O(poly). So some depth reduction can be achieved even if left-path-labels are 

polylogarithmic. 

A short-right-path non-commutative circuit can obviously have high pushdown height 

when simulated on an AuxPDA. But we show below that it can be depth-reduced! This 

shows that it is sufficient for paths to be short in one of the two directions, either left 
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or right. It also indicates the weakness of showing depth-reduction via the AuxPDA 

model, and the advantages of staying entirely within the circuit model, as in Section 3. 

Lemma 6.5. Let R be any semiring. The class of functions computed by uniform 
polynomial-size semi-unbounded arithmetic circuits over R of depth (O(log n)) is equal 

to the class of functions computed by uniform polynomial-size arithmetic circuits over 
R of polynomial degree, with short-right-paths. 

Proof. The inclusion from left to right follows from the same observation as in 

Lemma 6.2. 

To show the inclusion from right to left, consider a function f computed by a uni- 

form polynomial-size arithmetic circuit C over R of polynomial degree, with short- 

right-paths. Let C’ be the circuit that results by swapping the right and left inputs 

of each x gate (like a mirror image of C). It is clear that C’ has short left paths, 

and thus, applying Lemma 6.4, there is a strongly equivalent C” of logarithmic depth. 

Now, by swapping left and right inputs of all the x gates again, we get a circuit C”‘. 

We show below that C”’ computes the same function f that the original circuit C 

does. (This is easy to see intuitively. However, there are some subtle points that re- 

quire the formal proof below. In particular, it is important that C’ and C” be strongly 

equivalent, instead of merely producing the same output. The examples Cl and CZ 

given above show that taking the mirror images of two circuits that produce the same 

output may produce two circuits that do not compute the same function.) 

As in the discussion preceding the definition of strong equivalence, for any input x, 

we obtain “constant” circuits C,, CL, Cc, and CF such that for each x, C, evaluates 

to the same element of R as does the circuit C on input X, etc. 

Let C, c1 fl (t) be the formal polynomial P(C,x). (Note that the coefficient ct ac- 

tually depends on X. However, to simplify notation below, we supress this additional 

subscript.) For any term t, tR denotes the same term multiplied in reverse order. The 

following simple inductive argument shows that the formal polynomial associated with 

C:,P(C’,x) is precisely C, ct(n (tR)). 

Basis: C, is a single leaf: Trivial. 

Inductive step: 
Case 1: C, has a + output gate, whose inputs are several smaller circuits CX,;, 

where P(Ci,x) = c, ci,i(fl (t)). Then the formal polynomial associated with C,, say 

C, ct n(t), is equal to xi (‘JJ c~,~ fl (t)). Thus ct = xi ci,t. Similarly, considering the 

formal polynomial for C$, we have ci = xi &. By the induction hypothesis, the formal 

polynomial associated with each Ci,i is C, ci,l n (tR). Thus c;,~ = Ci,fR, and the claimed 

result follows. 

Case 2: C, has a x output gate, whose inputs are sub-circuits CX,i and CX,2. 

Then the formal polynomial associated with C,, C, ct n(t), is precisely 

CC,, c~,fi n (tl)) x CC,, ~12 n (~2))~ which equals CIlxrZ (QI . ~12) II (tl x t2). 
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Doing the same analysis for Ci shows that it has the formal polynomial 

This completes the induction. 

Note that this also establishes that if P(C”‘,x) is equal to C, cy’n(t), then 

P( C”, X) = c, c;” n (tR>. 

Now, for every input X, the value of C(x) is P(C,x) = C, ct (n(t)), and the value 

of C”‘(x) is P(C”‘,x) = C f c:/‘(n (t)). To prove that C and C”’ produce the same 

output on each input, it thus will suffice to show that for any term t that does not 

contain 0, for each x, the coefficients ct and ci” in P( C,x) and P(C”‘,x), respectively, 

are equal. 

But we do know this, because P(C’,x)= c, ct(n(tR)), and P(C”,x)= c, cy 

(n (tR)), and C’ and C” are strongly equivalent, meaning that for any term tR that 

does not contain 0, ct and ci” are equal. 0 

6.2. The generalized LOGCFL model 

In the case of the Boolean ring and computation over integers, SAC’ circuits and 

LOGCFL machines (AuxPDAs) give rise to the same class of functions [48,51]. 

To extend this to the general setting of arbitrary semirings, we consider a gener- 

alized LOGCFL machine that computes a function f(xr,. . , ,x,) in the following 

manner. 

l The machine takes x1 , . . .,x, as input, where x; belongs to the (finite) set of gener- 

ators of the appropriate semiring. 

l The output symbols produced by the machine belong to the finite set of generators 

or constants of the semiring, or are projections of some input value. 

l Let p be a computation path of the LOGCFL machine. Let plp2 . . . pm be the se- 

quence of output symbols written along the path p. Then, over any semiring, the 

generalized LOGCFL machine is said to compute the function 

c PI x P2 x ... x Pm. 
p : a valid path 

Recall that a LOGCFL machine M is said to be h(n)-height-bounded if, on all 

computation paths of M, the height of the pushdown never exceeds h(n) log n (i.e., the 

stack never contains more than h(n) meta-symbols, each logn symbols long). 

We show that bounding pushdown height in LOGCFL machines to O(logn) meta- 

symbols corresponds exactly to restricting circuits to having short-left-paths. This then 

gives a machine characterization of SAC’ circuits over the appropriate semiring. 

Lemma 6.6. Let R be any semiring, not necessarily commutative. The class of func- 
tions computed by uniform polynomial-size arithmetic circuits over R of polynomial 
degree, with short-left-paths, is equal to the class of functions computed by general- 
ized log n-height-bounded LOGCFL machines. 
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Proof. (1) Left-to-right inclusion: From Lemma 6.2, it suffices to show that semi- 

unbounded logarithmic-depth circuits can be simulated by O(log n)-height-bounded gen- 

eralized LOGCFL machines. 

The generalized LOGCFL machine begins with the description of the root gate on 

its worktape. Let the gate described on its worktape be g. If g is a + gate, it non- 

deterministically chooses a child g’ of g, and replaces g on its worktape with this gate. 

If g is a x gate with children gL and gR, it stacks gR and replaces g on its worktape 

with gL. If g is a leaf evaluating to a (this may depend on the input), it outputs a, 

and replaces g on its worktape with the gate label topmost on the stack. The machine 

halts when it has just processed a leaf and the stack is empty. 

Clearly, this machine computes the same function as the circuit. Each exploration 

of the LOGCFL machine corresponds to a proof tree in the circuit. Since the circuit 

has polynomial degree, any exploration of the LOGCFL machine is polynomial-time 

bounded. Also, since the circuit has logarithmic depth, it is straightforward to see 

that the LOGCFL machine so defined is logn-height-bounded. (Only right children are 

stacked, so the stack has at most one gate at each level.) 

(2) Right-to-left inclusion: Fix a LOGCFL machine M. Without loss of generality 

assume that (a) M halts in a unique configuration, C,,, (b) M pushes or pops on 

every move, so the total number of moves is even (and in fact, we may assume that 

the running time is exactly 2nk), (c) M outputs something only on peak configurations. 

(A configuration is a peak configuration if the previous step is a push and the next step 

is a pop.) Without loss of generality, M outputs a symbol on every peak configuration 

(since outputing the multiplicative identity A has the same effect in our setting as 

producing no output). 

The circuit has gates with labels of the form (P, $3, h, p,q). The labels have the 

following interpretation: P is a surface configuration at time p, Q is a surface config- 

uration at time q, and (P, Q) is a realizable pair with common pushdown height h. 

If q - p = 2, then in the circuit the gate (P, Q, h, p, q) is represented by a constant- 

depth sub-circuit. This sub-circuit uses predicates [xi, a, il,1] to simulate M’s access to 

its input. The entire sub-circuit evaluates to I if there is no legal sequence of 2 moves 

from P to Q on the given input. Otherwise, there is a peak configuration between 

P and Q; this peak configuration produces a symbol c, as output. In this case, the 

sub-circuit also evaluates to c. The construction of this sub-circuit is straightforward 

but tedious and is omitted here. 

If q - p > 2, then we focus on the profile of the potential computation. A projile of 

a computation sequence is a graph depicting the behavior of the pushdown height over 

time for that computation sequence. Fix a profile for the realizable pair (P, Q, h, p, q). 
There are now two possibilities. 

Firstly, the pushdown height may be strictly greater than h throughout the compu- 

tation from P to Q (excluding the endpoints, of course). In such a case, we can find 

a realizable pair (Zi ,Z2), such that P pushes some meta-symbol b to reach Zi in one 

step, and Z2 pops the same meta-symbol b to reach Q in one step. Besides, there will 

be at least two moves in the sequence from Zi to Z2 (since q - p>2), and both Z, 
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and 2, will have pushdown height h + 1. In the circuit, we represent this possibility by 

a sum (guess), over all choices of Zt and Z2, of the product of two sub-circuits: the 

right sub-circuit has its root labeled by (Zt,Z2, h + 1, p + 1, q ~ I), and on the left is 
push(h) P(jP(h) 

a constant-depth sub-circuit evaluating to i. if P ----f Zt and Z2 - Q (where b is the 

top-of-stack symbol in Zt and Z,) and to I otherwise. (The left sub-circuit validates 

the moves from P to Zt and from Z, to Q). 

Secondly, there may be a surface configuration Z such that (P, Z) and (Z, Q) are 

realizable pairs. In such a case, there is a Z closest (in time) to P; let this Z occur at 

time t, p < t <q. While it is quite correct to say that (P, Q, h, p,q) should evaluate to 

the product of (P, Z, h, p, t) and (Z, Q, h, t, q), this will not ensure that Z is closest to P. 

We would like to ensure this, because it will let us keep the circuit depth down. So in 

this product, we directly represent the left term by its expansion, assuming that there is 

no surface configuration at the same height as, and between, P and Z. The expansion 

is as described in the previous paragraph. In other words, we represent this possibility 

by the sum, over all choices of Z,, Z,, Z and t where p < t <q, of the product of 

the following 3 terms: ( 1) (Zt , Z2, h + 1, p + 1, t - 1 ), (2) a constant-depth sub-circuit 
P(‘P(h 1 

evaluating to A if P ‘ush(b) Z1 and Z2 - Z (where b is the top-of-stack symbol in Z1 

and Z2) and to I otherwise, and (3) (Z,Q, h, t,q). 
There is one case where the above construction will not work. If the guessed Z 

is just 2 moves away from P, then by expanding the P-to-Z computation one step 

further, we end up with a gate labeled (Zt ,Z2, h + 1, t - 1, t - 1). This means that Zt 

should be the same as Z2, and is a peak configuration which could potentially produce 

some output. This output symbol is not accounted for in the above construction. To 

avoid this situation, we allow, in the above sum, only configurations far away from 

P; t should satisfy p + 2 < t -c q. We also have a third independent possibility, when 

t= p + 2. This is represented by the sum, over all choices of Z, of the product of 

(P, Z, h, P, p +- 2) and G Q, h, p + 2, 4). 
Finally, the gate (P, Q, h, p,q), is the sum of the three circuits described in the 

preceding three paragraphs. 

We have described how to build up a circuit rooted at a gate labeled (P, Q, h, p, q). 
To complete the construction, we observe that the output gate of the desired circuit 

carries the label (Ci,, Cb,l, O,O, 2nk). 
It is clear that the resulting circuit has polynomial size and polynomial degree and 

computes the same function as the LOGCFL machine M. (The degree of each gate is 

related to the number of output symbols accounted for by the sub-circuit rooted at that 

gate.) The labels have been assigned so that at each x gate, the left child is either a 

constant-depth sub-circuit, or has an increased value of the parameter h. Note that h 
increases as we go down from root to leaf. Since A4 is O(logn)-height-bounded, the 

value of h is bounded by O(logn); it follows that every proof tree in the circuit has 

short-left-paths. 0 

Theorem 6.7. Over any jinitely-generated semiring, the classes offunctions computed 
by the jTollow*ing are equal. 
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1. polynomial-size circuits of polynomial degree, with short-left-paths, 

2. polynomial-size circuits of polynomial degree, with short-right-paths, 
3. polynomial-size semi-unbounded circuits of logarithmic depth, 

4. log n-height-bounded generalized LOGCFL machines. 

6.3. Short paths in dtfherent directions intertwined 

In the next theorem, we show that a small number of nested sub-circuits that alter- 

nately satisfy the short-left-paths and short-right-paths conditions allow depth reduction. 

This allows many circuits to be depth-reduced. 

Given a circuit C with a gate g in it, let C, denote the sub-circuit of C rooted 

at g. Then by [C : C,], we mean the circuit in which the sub-circuit Cg is excluded 

from C. This circuit has, as circuit inputs, the circuit inputs of C and new variables 

representing the outputs of gates in C,. If C, has size s(n), then [C : C,] has n +s(n) 
circuit inputs. We restrict our attention to polynomial-size circuits, so s(n) is always 

bounded by a polynomial. 

If gates gl,. . . , gt are gates in C such that C,, , . . . , C,, are mutually disjoint, then the 

notation [C : C,, , . . . , C,,] is the natural extension of [C : Cg]; it represents the circuit 

where C,, , . . . , C,, are excluded and outputs of gates in these sub-circuits are replaced 

by new variables. 

Now consider the case when [C : C,, , . . . , C,,] has short-left-paths but C,, , . . . , C,, 

have short-right-paths. We say that the circuit C has intertwining depth 1. Similarly, if 

[C:C,,,..., Cs,] has short-right-paths but C,, , . . . , C,, have short-left-paths, then again 

the intertwining depth is 1. (A circuit which has short-left- or short-right- paths has 

intertwining depth zero.) If C,, , . . . , C,, themselves have intertwining depth k, then C 

has intertwining depth k + 1. 

Theorem 6.8. Let C be a polynomial-size polynomial-degree circuit with intertwining 

depth k(n). Then there is an equivalent polynomial-size semi-unbounded circuit C’, 
of depth O(k(n)logn), computing the same function. (However, the circuit C’ is 

nonuniform. ) 

Proof (sketch). We consider the case when the intertwining depth is 1 and there is 

only one nested gate g (i.e. t = 1). The construction of Lemma 6.2 can be applied to 

reduce the depth of [C : C,], giving circuit [C’ : C,]. For each gate h in C,, consider 

the circuit C,(h) which is the same as C, but has h as the output gate. Lemma 6.5 

can be applied to each such circuit to reduce its depth, giving circuit CL(h). Patch the 

circuit [C’ : C,] by putting a copy of the circuit C;(h) at those inputs which correspond 

to the variable representing gate h. The resulting circuit is still of polynomial size, and 

its depth is depth([C’ : C,]) + maxh depth(Ci(h)). 

The above construction is non-uniform because the intertwining structure has to be 

given as an advice to the constructor of the depth-reduced circuit. q 
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Corollary 6.9. Let C be a polynomial-size polynomial-degree circuit. 

(1) ij” C has 0( 1) intertwining depth, it has an equivalent log-depth circuit. 
(2) Zf C has O(log”“’ n) intertwining depth, it has an equivalent polylog-depth cir- 

cuit. 
In both cases, the equivalent depth-reduced circuits are nonuniform. 

This result cannot be mrther improved to circuits which have linear intertwining but 

sublinear depth, because, referring back to the function cited in [29,37], the corre- 

sponding skew circuit has O(n) intertwining depth. 

6.4. A new optimization class and its circuit characterization 

Consider a restricted version of OptLOGCFL, where the underlying AuxPDA trans- 

ducer’s pushdown height is bounded by O(log n). (Recall that each stack symbol is 

assumed to be O(logn) bits long. Thus effectively the stack holds O(log* n) bits.) We 

denote this class by R-OptLOGCFL. If we consider the Boolean or counting versions 

of LOGCFL, then restricting the pushdown to logarithmic depth does not make the 

class any weaker; see [51, Lemma 3.11. However for the optimizing functions it may 

make a difference. 

From the resource bounds on the transducers computing these optimizing func- 

tions, it is clear that OptL C R-OptLOGCFL C OptLOGCFL. The next result follows 

from Theorem 6.7, and gives a circuit characterization of the class R-OptLOGCFL as 

OptSACt. 

Theorem 6.10. R-OptLOGCFL = OptSAC’; a function is computed by a uniform fam- 

ily of polynomial-size logarithmic-depth semi-unbounded (max, concat) circuits iff it 
is computed by a generalized LOGCFL machine, over (max, concat), whose pushdown 

height is bounded by O(logn). 

Recall, from Section 5.1, that OptL corresponds to left-skew circuits, and 

OptLOGCFL to polynomial-degree circuits. Thus, in terms of circuits, the contain- 

ment OptL & R-OptLOGCFL C OptLOGCFL says that left-skew (max, concat) circuits 

can be converted to semi-unbounded logarithmic-depth (max, concat) circuits, which 

in turn, are of polynomial degree. 

Note that a (max, concat) circuit can be converted to a family of Boolean circuits in a 

trivial way: replace max gates by equivalent AC0 circuits, and represent concat by juxta- 

position of wires. (We need to assume that the length of the output of each concat gate 

is fixed and known.) This operation, on an OptSAC’ circuit, yields an AC’ circuit, giv- 

ing an alternative proof that OptL and OptSAC’ are in AC’. This direct conversion pre- 

dictably fails for OptAC’ ; we end up with a log depth but quasi-polynomial-size circuit. 

7. Circuit size lower bounds for (union, concat) generator circuits 

For any alphabet C, consider the semiring (2Z* , +, x), where + denotes set union 

and x denotes set concatenation. We will consider arithmetic circuits over this semiring, 
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where each gate in the circuit evaluates to a subset of C*. We consider C = (0, 1). The 

empty set 0 is the additive identity or bottom element I, and {e}, the set containing 

the empty string, is the multiplicative identity ;1. {{0}, {l}, I, A} is a finite set of 

generators, and the input gates are labeled by elements of this set. 

As in previous work on this semiring [29,37], our interest will focus on the ability 

of circuits of this sort to generate languages, as opposed to computing functions, More 

precisely, consider a circuit family {Cn} over this semiring where each C, computes 

a constant function. (That is, none of the n variables for C,, are connected via any 

path to the output gate; note that for different 12, the circuit C,, may be computing a 

different output, and fairly large size may be required to compute this output.) If each 

C, produces a set A, c C” as output, then we will say that the family {C,,} generates 

the language U, A,,. 

Note that if {C,,} generates a set A, then the formal polynomial P(C,,, w) does not 

depend on the word w (because C,, has no input variables) and thus we will denote this 

formal polynomial as P(C,), and we can write this polynomial as P(C,)= U,,,C~{W}, 

where c, is the number of distinct explorations of C,, that visit leaves whose product 

is the set {w}. (Although in this semiring, 0 = I = 8 and 1 = 1 + 1 = . = {e} = 1, it 

will be more useful to us to continue to view c, as a natural number.) Thus for every 

word w of length n, w EA iff the coefficient c, in the formal polynomial P(C,) is 

greater than zero. 

We say that {Cn} generates A unambiguously if w E A implies c, = 1, and c, = 0 

otherwise. 

The reason we are interested in (union, concat) generators is that the only ex- 

plicit depth lower bounds known for non-commutative computation have been shown 

for such generators [29,37]. In particular, in [29,37] it is shown that the language 

Li = {wwR 1 w E (0, 1 }* } has no sub-linear-depth generator of any size. Nisan further 

extends the argument to show that there are no sub-linear-depth generators for the non- 

commutative permanent and determinant, or even for any function weakly equivalent to 

these functions. The proof technique used is to relate the branching program size B(f) 

of a homogeneous degree d function f, the formula size F(f), and the depth D(f) as 

follows: B(f) <O(dF(f)), and F(f) ~2 @f) Then, through matrix rank arguments, a . 

lower bound on B(f) is shown. 

The above technique does not yield any lower bound on circuit size. However, we 

observe that a branching program is nothing but a left-skew circuit; thus the matrix rank 

argument does give a lower bound on left-skew circuit size. In this section, we extend 

this argument to skew circuits which are not necessarily left-skew but nonetheless 

have a fixed pattern among the x gates. We call such circuits clone-skew circuits, 
since each proof tree of the circuit shows the same pattern of skew gates. However, 

before formally defining clone-skew circuits, we first establish some useful connections 

between one-way language acceptors and (union, concat) generators. 
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7.1. One-way acceptors and (union, concat) generators 

In this subsection we explore the connection between language acceptors with one- 

way read-only input tapes and (union, concat) generator circuits. Languages classes 

characterized by one-way acceptors have been the subject of study in much previous 

work. Notably, l-NLOG has been studied in depth in, e.g.[ 1,211, and l-way AuxPDAs 

in [14]. 

The following lemmas show that left-skew generators generate exactly the languages 

accepted by l-NLOG machines, and the languages generated unambiguously are exactly 

the languages accepted by I-ULOG machines I2 (where 1 -NLOG (l-ULOG) refers to 

logspace-bounded machines that have a one-way input head, and are non-deterministic 

(respectively, non-deterministic with at most one accepting path on any input)). (This 

is similar to the relationship between skew circuits and NLOG or OptL.) The one-way 

read-only nature of the input tape guarantees left skewness. 

Lemma 7.1. A language L is accepted by u l-NLOG machine iff there is a uniform 
polynomial-size left-skew (union, concat) circuit that generates it. 

Proof. Let M be a I-NLOG machine accepting L. We construct a polynomial size 

circuit family { Cn} generating L as follows. Without loss of generality we assume that 

in each non-halting configuration of M, M either reads an input bit and changes state, 

or changes the scanned tape symbol and state, but not both. Thus each configuration 

is either a Read configuration or a Move configuration. We further assume that Read 

configurations are deterministic. 

The circuit C,, has gates labeled by the possible configurations of M on inputs of 

length n; there are polynomially many of them. The output gate of C,, is the gate 

labeled by the initial configuration of M on an input of length n. 

If c is a Move configuration with successors {cl,. . . , ck}, then in C,,, c is a union 

gate with children labeled by {cl,. . . , ck}. If c is a Read configuration, let ci be the 

resulting configuration when the input bit read is i (i E (0, 1 }). Then in C,,, c is a union 

gate with two children, cb and ci, Each ci is a concat gate with left child receiving 

the constant i and right child the gate labeled c;. If c is a Halt configuration, then the 

gate c is an input gate, receiving the constant 2 (1.) if c is an accepting (rejecting) 

configuration. (Note that the machine would actually know that it has reached the end of 

its input by reading an end marker. In our setting we will label a “move” configuration 

as accepting or rejecting depending on whether the machine would accept if it were 

to read the end-marker after reading the nth symbol; we can assume that the machine 

records the number of symbols read. Details are routine and are left to the reader.) 

It is straightforward to see that this circuit is left-skew and logspace uniform. Let 

WE L. Then there is at least one computation path of M leading to acceptance. The 

“These results improve results of [33], where a one-way containment for deterministic and non- 

deterministic acceptors was shown. 
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corresponding path in C ensures that c, is a non-zero coefficient in the formal poly- 

nomial of C. In fact, the coefficient c, in P(C) is exactly the #L function given by 

the number of accepting computations of A4 on w. 

For the converse inclusion, let {C,,} be a uniform family of left-skew circuits gen- 

erating L. Our l-NLOG M machine guesses the length 12 of its input, and stores the 

output gate of C, on its tape. A4 then begins an exploration of C,, as follows. If the 

current gate g being explored is a + gate, then A4 guesses a gate that is input to g 

and stores that on its tape. If the current gate g is a x gate, then if the left input of 

g does not match the next input symbol, A4 halts and rejects. Otherwise, M stores the 

gate h that is the right input to g on its tape, and proceeds to explore h. If g is a leaf, 

then A4 halts and accepts iff the symbol input to g is the next unread symbol, as well 

as being the nth and final input symbol. It is straightforward to verify that accepting 

computation paths of A4 on w correspond to explorations evaluating to w in L. q 

Corollary 7.2. A language L is accepted by a l-ULOG machine ifs there is a uniform 

polynomial-size left-skew (union, concat) circuit that generates it unambiguously. 

Since left-skew circuits have short-left-paths, it follows from Theorem 6.7 that all 

languages in l-NLOG have polynomial-size logarithmic-depth semi-unbounded gener- 

ator circuits. (The reduced-depth circuit is no longer left-skew; in fact it is not even 

skew.) 

As an example of the computational power of left-skew circuits, we mention the 

by-now-standard example from [8]: the set of all unsatisfying assignments of a 3SAT 

formula can be computed by the above circuits. This is because a l-NLOG machine can 

recognize (F,u), where u is an assignment that does not satisfy the 3SAT formula F. 
Similarly, we can relate AuxPDAs with one-way inputs to polynomial-size genera- 

tors. The algebraic degree of the generators is related to the run-time of the AuxPDAs. 

Let I-AuxPDA denote the class of languages accepted by one-way non-deterministic 

logspace-bounded auxiliary pushdown automata, and let l-LOGCFL denote the class 

accepted by I-AuxPDAs that run in polynomial time. 

Lemma 7.3. A language L is accepted by a l-LOGCFL machine ifs there is a poly- 
nomial-size, polynomial-degree circuit generating L. A language L is accepted by a 

l-AuxPDA machine ifs there is a polynomial-size circuit generating L. 

Proof. Let L be accepted by a l-LOGCFL machine M. We sketch how to modify the 

proof of Lemma 6.6 to build a polynomial degree circuit generating L. Note first that 

Lemma 6.6 shows how to build a log-depth circuit to simulate an AuxPDA that has a 

small height bound. If the AuxPDA is not assumed to have a small height bound, then 

the circuit constructed is still correct, but it will no longer have small depth. (However, 

small depth is not required for this lemma.) Another problem that must be addressed is 

that our AuxPDA is accepting a language, and we are supposed to build a circuit that 

generates the language, which is different from what is required in Lemma 6.6. The 
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only change that is required to address this problem is to change the constant-depth 

circuit constructed in the case q - p = 2 in the proof of Lemma 6.6; instead construct 

a constant-depth circuit that evaluates to the set of all strings x such that (P, Q) is 

a realizable pair because the machine can start in surface configuration P and reach 

configuration Q consuming input x. Details are left to the reader. 

For the converse, let L be generated by {CR}. Then our I-LOGCFL machine will 

first guess the length of the input, put the output gate of C, on its worktape, and 

begin an exploration, much as in the proof of Lemma 7.1. To explore a + gate, non- 

deterministically guess a child to explore. To explore a x gate, put the right child on 

the stack and explore the left child. When a leaf is encountered, match it against the 

next input symbol, and then explore the node stored on top of the stack. If the degree 

of the circuit is small (polynomial), then the runtime will be polynomial. 

If the degree of the circuit is not small, then the same routine will work, showing 

that anything that can be generated by polynomial-size circuits can be accepted by a 

1 -AuxPDA. 

To complete the proof, we need only show that every set accepted by a I-AuxPDA 

can be generated by a polynomial-size circuit. The crucial observation here is that if 

a I-AuxPDA does not run in polynomial time, then it makes many moves without 

moving its input head. Thus we can build a polynomial-size circuit that evaluates to I 

if (P, Q) is a realizable pair via a computation that consumes no input, and evaluates 

to I otherwise. The rest of the construction is similar to the construction sketched 

above for I-LOGCFL. (Related observations concerning AuxPDAs that have limits on 

the number of times they move their input heads are made in [3,4]; providing a full 

proof is routine, using ideas presented there.) 0 

Corollary 7.4. A language L is accepted by an unambiguous I-LOGCFL machine ifs 
there is a polynomial-size, polynomial-degree circuit generating L unambiguously. 

A language L is accepted by an unambiguous I-AuxPDA machine ifs there is a 

polynomial-size circuit generating L unambiguously. 

7.2. Lower bounds for (union, concat) circuits with restricted skewness patterns 

Given a semi-unbounded generator circuit C,, and a string w of length n, consider 

the problem of determining whether the coefficient cIy in the polynomial P(C,,) is non- 

zero. If the coefficient is non-zero, then the circuit must have a proof tree for this 

monomial w. 

For the purpose of analyzing how the tree constructs (or parses) the monomial, the 

union gates can be ignored; the parse structure is determined by the subtrees rooted 

at concat gates. If the circuit is left-skew, then all proof trees look identical, since 

each concat gate has its left subtree anchored to a leaf node. The same is true for 

right-skew circuits. Now consider classes of skew circuits that satisfy the following 

constraint: “All proof trees in the circuit are identical”. We call this class the class of 

clone-skew circuits. 
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In any proof tree of a skew circuit, all concat gates lie on a single root-to-leaf 

path, with the leaf inputs of the concat gates hanging off this path on either side, 

Label a concat gate L (R) if it is left-skew (right-skew). (The L’s and R’s are not to 

be confused with the LR labeling in Section 6.) Now the sequence of the labels of 

the concat gates from root to leaf gives the parse structure of the proof tree. These 

sequences are the same for all proof trees in a clone-skew circuit. Let o denote this 

sequence; we can then refer to a-clone-skew circuits. 

Consider a a-skew tree computing a monomial m, and let N be some node on the 

tree computing the partial monomial v. Then we can write m = l’v.r, where I (r) is the 

product of the symbols seen at left-skew (right-skew, respectively) gates on the path 

from the root to N. Note that as we travel from root to leaf, all symbols in I as well 

as in r are seen before we reach the node N. Let u be the sequence of symbols seen 

on the root-to-N path, written in the order in which they are seen. Now, the sequence 

o tells us how to obtain I and r horn U. Namely, index symbols of u by elements from 

the sequence r~ (a prefix of suitable length). 1 is the product, in left-to-right order, of 

the symbols of u that get indexed L. And r is the product, in reverse order, of the 

symbols of u indexed R. 

Given the symbols in the order in which a root-to-leaf traversal sequence scans them, 

and given sequence CJ, we can construct the monomial. We can do the same if part 

of the monomial is given directly. Given u and v as above, and sequence O, we can 

splice u and v together to correctly construct m. Let us denote this by o(u, v) = m. 

The results in this section extend Nisan’s results on non-commutative computation 

[37], and thus it is necessary to express his framework using the circuit models we 

have used thus far in this paper. Nisan’s work is motivated by the desire to under- 

stand the extent to which efficient computation of the permanent and determinant rely 

on commutativity. To explore this, he considers the non-commutative ring formed by 

adding non-commuting indeterminates xi ,x2,. . . to the reals. (The indeterminates com- 

mute with the reals, but not with each other.) In this setting, then, the IZ x n permanent 

is defined to be the polynomial on n2 indeterminates xi, 1,. . . ,x,,, given by 

C nXi,fl(i) 
aES, i 

and the IZ x n determinant is defined similarly, with the sign of 0 multiplied in. 

Thus, just as in the case of (union, concat) circuits, Nisan’s focus is on circuit 

families { Cn} where C, is computing a constant function (i.e., there are no input 

variables). It is perhaps counterintuitive to think of the n x II permanent or determinant 

as being a constant function; however in Nisan’s setting a circuit C,, computing the 

it x n determinant is a circuit with no input variables, but having leaves labeled by 

indeterminates (which are semiring elements) and having the 12 x H determinant as its 

formal polynomial. Nisan does allow reals to appear as constants labeling leaves in the 

circuit; in his setting the formal polynomial P(C,,) = C, c, n(w) where w is a finite 

sequence of indeterminates, and c, is obtained by grouping together all terms having 

the same sequence w and adding those coefficients. (This is a departure from earlier 
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sections, where the formal polynomial of a circuit would have constants embedded in 

the middle of terms.) 

For a language L, define function J‘L(~); J’L(~) = cu,CZ,, x~(w)w, where XL(W) eval- 

uates to one of the semiring constants 0 or 1 (0 or {e}). (We drop the subscript n 

where it is obvious). 

Now we follow notation and definitions from [37]. 

Definition 7.5 (Nisan [37]). An Algebraic Branching Program (ABP) is a directed 

acyclic graph with one source and one sink. The vertices of the graph are partitioned 

into “levels” numbered from 0 to n, where edges may only go from level i to level 

i + I. n is the degree of the ABP. The source is the only vertex at level 0, and the 

sink is the only vertex at level n. Each edge is labeled with a homogeneous linear 

function of the form dices,. The size of the ABP is the number of vertices. 

An ABP computes a homogeneous polynomial of degree n; the function is the sum 

over all source-to-sink paths of the product of the linear functions labeling the edges 

on the path. Here each xi is an element of C, and each coefficient ci is one of the 

semiring constants 0 or 1. 

ABPs are essentially leveled left-skew circuits. To generalize this to clone-skew 

circuits, we generalize the definition of ABPs as follows. Each edge (e) is labeled by 

a linear function fe as well as a tag te E {L, R}. The tag indicates whether fe should 

pre-multiply (tag L) or post-multiply (tag R) the partial function already constructed. 

Formally, the Generalized ABP (GABP) computes a function that is the sum, over all 

source-to-sink paths p, of the function computed on the path p. The function computed 

by a path is defined as follows: Let op denote the sequence of tags on the edges in path 

p, and let s/, denote the sequence of labels on the edges. Then the function computed 

by p is a,(s,,,e), where e is the empty sequence. In other words, the labels on the 

edges of the path are rearranged according to the sequence up and then multiplied. 

It is easy to see that a a-clone-skew circuit corresponds to a a-GABP, i.e. a GABP 

where for any source-to-sink path p =el . . .ek, the sequence of tags t(el). . . t(eh) is 

precisely g. 

We can define, analogous to Nisan’s matrices Mk(f‘), matrices of the form Mk,(i(f). 

Matrix MX.,6(f‘) has rows indexed by monomials of degree k, and columns indexed 

by monomials of degree iz - k. The entry at (u, r) is the coefficient of the monomial 

a(u,u) in .f. 

The following lemma is an easy extension of Theorem 1 from [37]. 

Lemma 7.6. The size of the smallest o-clone-skew circuit generating L n C” unam- 
biguously is exactly Ci=, rank(Mk..( f~)). 

It is worthwhile observing that we can strengthen Lemma 7.6 slightly by deleting the 

word “unambiguously”. The proof amounts to slightly modifying the notion of what it 

means for an ABP to compute a function. 
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An ABP is said to compute the function f that is the sum (in the appropriate 

semiring) over all source-to-sink paths, of the product of the labels of edges on the 

path. In this section we are interested only in (union,concat) circuits, and the formal 

polynomial counts the number of explorations. So, for the ABP too, it makes sense to 

instead associate a function f that is defined as a formal polynomial: for a word w, the 

coefficient of w in f is the number of source-to-sink paths in the ABP that evaluate to 

w. Of course, the same definition can be used for GABPs. If we use the new definition, 

then we have an equivalence between formal polynomials of a-skew (union,concat) 

circuits and U-GABPs. Now use Nisan’s proof, with appropriate Lk,o and Rk matrices. 

Lemma 7.7. The size of the smallest o-clone-skew circuit generating L n C” with the 

formal polynomial f is exactly 

5 rak@fk,d f )). 
k=O 

Theorem 7.8. The class of languages generated unambiguously by left-skew circuits 
is strictly contained in the class of languages generated unambiguously by clone-skew 

circuits. 

Proof. Consider the language Li = {ww” 1 w E {O,l}*}. In [37, Theorem 4.21 it is 

shown that any left-skew circuit generating LI unambiguously must have exponen- 

tial size. However, it is easy to see that for CJ = LRLRLR.. . , there is a linear size 

a-clone-skew circuit generating Lt. 0 

The skewness pattern required for generating L1 follows from the fact that L1 is a 

linear context-free language. If we consider context-free languages that are not linear, 

then it is reasonable to expect that skew circuits for such languages must be large. We 

show in one such instance that this is indeed the case; the language L2 = {x E { 0, l}* 1 x 

is not of the form ww} has no sub-exponential size unambiguous clone-skew generators. 

However, the lower bound heavily relies on unambiguity; the language does have 

polynomial-size left-skew generators. l3 

Lemma 7.9. Any clone-skew circuit family generating LZ unambiguously must have 
exponential size. 

Proof (sketch). Let f be the function corresponding to L2 for words of length n. 
First, we illustrate the proof idea by considering the case when the proof tree must 

have concat gates on any root-to-leaf path labeled o = LRLRLR . . . , as described in the 

previous proof. Now consider the matrix n/i,,,,,( f ). This matrix has exactly one zero 

in each row and one zero in each column; all other entries are 1. It thus has rank 2”/2. 

The lower bound follows from Lemma 7.6; no a-clone-skew circuit of sub-exponential 

I3 In [33], Lemma 17 claims that L2 also has polynomial-size non-skew unambiguous circuits. This state- 
ment is erroneous. 



E. Allender et al. I Theoretical Computer Science 209 (1998) 47-86 83 

size can generate L2. This argument can be extended to a-clone-skew circuits, for 

any 0. Thus no clone-skew circuit of sub-exponential size can generate Lz. 0 

Proposition 7.10. L2 can be generated by a polynomial-size Iqft-skew circuit fami@. 

Proof. Lz can be accepted by a I-NLOG machine which guesses the (even) length n 

of the input and an integer 1 < i d n/2, and then verifies that the input bits at positions 

i and i + n/2 are distinct and that the geussed input length is correct. The proposition 

now follows from Lemma 7.1. (All words of odd length are accepted.) q 

Thus unambiguity is a proper restriction: 

Theorem 7.11. The class of languages generated unambiguously by polynomial-size 

clone-skew circuits is strictly contained in the class of languages generated by 
polynomial-size clone-skew circuits. 

Burtshick [ 151 credits Dietzfelbinger with pointing out that the technique of [34] can 

be used to show that I-ULOG is properly contained in l-NLOG. (This was treated as 

an open question in [8, Theorem 4.161.) Theorem 7.11 is only a slight generalization of 

this result, and the proof we have presented is quite similar to that in [ 151. In contrast 

it does not seem to be known if unambiguous 1 -LOGCFL or l-AuxPDA machines 

are less powerful than the unrestricted versions of these machines. Note, however, that 

Huynh has shown that if all l-LOGCFL languages (or even all 1 -NLOG languages) 

are accepted by unambiguous l-LOGCFL machines, then P = PP [22]. 

It is not true in general that non-linear context-free languages require large skew 

circuits. For instance, let LJ be the Dyck language of balanced parentheses, where 

0 (1) is interpreted as an opening (closing) parenthesis. This set is easily seen to be 

in I-DLOG, and thus has polynomial-size unambiguous left-skew circuits. 

7.3. A lower bound for general skew circuits 

Lemma 2 of [37] indicates that computing the permanent or determinant in a non- 

commutative setting via left-skew circuits requires at least exponential size. We show 

that this lower bound holds even if arbitrary skew circuits are allowed. 

Theorem 7.12. Any skew circuit family computing the permanent or determinant in 

a non-commutative setting must have at least exponential size. 

Proof. We need the following definition: A function f is said to be weakly equivalent 

to a fimction g if, for each monomial in g with a non-zero coefficient, there is a 

monomial in f with the same variables (though not necessarily in the same order) 

with a non-zero coefficient, and vice versa. 

Consider any skew circuit computing the permanent. By treating the gates as com- 

mutative gates, the circuit can trivially be converted into a left-skew circuit of the 
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same size. The function computed by such a circuit is clearly weakly equivalent to the 

permanent. By Theorem 2 of [37], any function weakly equivalent to the permanent 

has exponential size. q 

8. Conclusions 

A large literature already exists, studying many aspects of arithmetic circuit com- 

plexity. In addition, various important complexity classes (notably NLOG, LOGCFL, 

and related classes) are characterized alternatively in terms of arithmetic circuits over 

particular semirings, or in terms of automata. 

In this paper, we have shown that the automata-theoretic framework can be used 

meaningfully over any semiring, and we have used this approach to give proofs of theo- 

rems (such as depth-reduction theorems) in the uniform setting (where previously, gen- 

eral results were known only in the non-uniform setting and separate proofs had been 

given in the uniform setting for different specific semirings). We have specifically con- 

sidered the case of non-commutative semirings. In some instances, (the (max, concat) 

semiring) we were able to present new depth-reduction theorems, and in other instances 

(the (union, concat) semiring, where it was known that depth-reduction is impossible) 

we have given new automata-theoretic characterizations in terms of one-way machines. 

The automata-theoretic approach is not always sufficient. In a number of our proofs, 

we have found it necessary to work directly in the circuit model. The connection 

between Boolean and arithmetic circuit complexity is central to complexity theory, and 

our results (such as OptLOGCFL C AC’) shed new light on these connections. 

In Table 1, we tabulate the known characterizations of some important classes. All 

circuits referred to here are of polynomial size. OptLOGCFL is contained in AC’; 

#LOGCFL is contained in TC' . 

Table 1 

Language class Boolean circuits 

NLOG 

LOGCFL 

Skew [49] 

(1) Polynomial degree [39] 

(2) Logarithmic depth semi-unbounded 

(SAC’ ) [48] 

Counting variant Arithmetic circuits with + and x gates 

#L Skew 

#LOGCFL ( 1) Polynomial degree [5 I] 

(2) Logarithmic depth semi-unbounded (#SAC’) [51] 

Optimization variant Arithmetic circuits with max and concat gates 

OptL Skew [8] 

R-OptLOGCFL (1) Logarithmic depth semi-unbounded (OptSAC’ ) 

(2) Polynomial degree, short-left-paths 

(3) Polynomial degree, short-right-paths 
OptLOGCFL Polynomial degree 
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