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We consider new parameterizations of NP-optimization problems that have nontrivial
lower and/or upper bounds on their optimum solution size. The natural parameter, we
argue, is the quantity above the lower bound or below the upper bound. We show that
for every problem in MAX SNP, the optimum value is bounded below by an unbounded
function of the input-size, and that the above-guarantee parameterization with respect
to this lower bound is fixed-parameter tractable. We also observe that approximation
algorithms give nontrivial lower or upper bounds on the solution size and that the above
or below guarantee question with respect to these bounds is fixed-parameter tractable for
a subclass of NP-optimization problems.
We then introduce the notion of ‘tight’ lower and upper bounds and exhibit a number
of problems for which the above-guarantee and below-guarantee parameterizations with
respect to a tight bound is fixed-parameter tractable or W-hard. We show that if we
parameterize “sufficiently” above or below the tight bounds, then these parameterized
versions are not fixed-parameter tractable unless P = NP, for a subclass of NP-optimization
problems. We also list several directions to explore in this paradigm.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Parameterized complexity is an approach developed by Downey and Fellows for dealing with computationally hard prob-
lems where small parameter values cover many practical applications. Consider, for instance, the NP-complete Vertex Cover

and Dominating Set problems. These problems are defined as follows: Given a graph G and a positive integer parameter k,
decide whether G has a vertex cover (respectively, dominating set) of size at most k. Both problems can be solved in time
O (nk+2), where n is the number of vertices of G . What is interesting is that for the Vertex Cover problem there exists an
algorithm with run-time O (ck · n), where c is a constant, whereas for Dominating Set there is reason to believe that no
such algorithm exists.

Parameterized complexity is mainly concerned with obtaining algorithms for parameterized problems with run-time
O ( f (k) · nO (1)), where f is a computable function of k alone, as against a run-time of O (nO (k)). Here k is the parameter for
the problem and n is the input size. A parameterized problem which admits an algorithm with run time O ( f (k) · nO (1)) is
called fixed-parameter tractable (FPT). We also use the term FPT time to describe running times of the form O ( f (k) · nO (1)),
where f , k and n are as specified above. The parameter k is not unique, that is, it is possible to parameterize a problem

✩ A preliminary version of this paper appeared in the Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC),
2006 [M. Mahajan, V. Raman, S. Sikdar, Parameterizing MAX SNP problems above-guaranteed values, in: Proceedings of the 2nd International Workshop on
Parameterized and Exact Computation, in: Lecture Notes in Comput. Sci., vol. 4169, Springer, 2006, pp. 38–49. [29]].
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in more than one way and using more than one parameter. For a comprehensive introduction to parameterized complexity
see the classic monograph by Downey and Fellows [11] or the recent texts by Niedermeier [35] and Flum and Grohe [16].

For an NP-optimization problem Q , the standard parameterized version Q par is the following decision problem.

Input: A tuple (I,k), where I is an instance of Q and k, the parameter, is a nonnegative integer.
Question: Is the optimum solution size of I at least k (if Q is a maximization problem) or at most k (if Q is a minimization

problem)?

Although the standard parameterized version is the most popularly studied parameterization of NP-optimization problems,
there are many problems for which the standard version is trivially fixed-parameter tractable. Consider for instance the
problem Max c-Sat. An instance of this problem consists of a Boolean CNF formula with at most c literals per clause and
the objective is to find an assignment which satisfies the maximum number of clauses. This problem is known to be NP-
complete for c � 2. It is well known that if φ is a Boolean CNF formula with m clauses then there exists an assignment that
satisfies at least �m/2� clauses and that such an assignment can be found in time O (|φ|) (see [33]).

Now consider what this means for the standard parameterized version of Max c-Sat, for c � 2. An instance of the
parameterized version consists of a tuple of the form (φ,k), where φ is a Boolean CNF formula with m clauses and at
most c literals per clause and k is a nonnegative integer. The question is whether there exists an assignment that satisfies
at least k clauses of φ. If k � �m/2�, then there exists an assignment which satisfies at least k clauses (because there is
one that satisfies �m/2� clauses) and such an assignment can be obtained in linear time. We therefore answer yes and
output the assignment. Otherwise, k > �m/2� and since every clause has at most c literals, we have |φ| � 2kc. We now use
a brute-force algorithm that looks at all possible assignments to the variables of φ (which are at most 2kc in number) and
check whether any of these assignments satisfies at least k clauses of φ. This brute-force algorithm runs in time O (22kc · |φ|)
and is, by definition, an FPT-algorithm for Max c-Sat. Note, however, that when the brute-force algorithm is applied, k, and
hence the running time is large for all practical purposes.

A similar state-of-affairs exists for several other problems: Max Cut, Planar Independent Set and Max Acyclic Subgraph

to name a few. All these problems have some nontrivial lower bound for the optimum value which is exploited to give
a trivial fixed-parameter algorithm. When the parameter value is below the default lower bound, the answer is no; oth-
erwise, the standard brute-force algorithm itself gives a fixed-parameter algorithm since in this case, the parameter value
is considerably large compared to the input size. However, as we observed before, these algorithms are not necessarily
practical.

To deal with this problem, Mahajan and Raman [28] considered a different parameterization of Max Sat and Max Cut,
where the parameter is the difference between the optimum value and the guaranteed lower bound. They showed that
both these problems are FPT under this parameterization as well. More recently, the “above-guarantee” versions of Linear

Arrangement [20] and Minimum Profile [21,23] have been shown to be in FPT. Our first observation in this paper is
that not just these problems, but all optimization problems in MAX SNP have a nontrivial lower bound for the optimum
value. We prove that the above-guarantee parameterization with respect to this lower bound is fixed-parameter tractable.
We also observe that approximation algorithms give nontrivial lower or upper bounds on the solution size. We show that
the above or below-guarantee question with respect to these bounds is fixed-parameter tractable whenever the standard
parameterized versions of these problems is fixed-parameter tractable. This is dealt with in Section 3 after some definitions
in Section 2 related to optimization problems and parameterized complexity.

We next show that parameterizing above any nontrivial lower bound may not be interesting because, for some nontrivial
lower bounds, the above-guarantee question may still be trivially FPT. This motivates us to define what are known as tight
lower bounds.

Almost all the problems we discussed also have nontrivial upper bounds for the optimum value, and another natural
parameterization is to parameterize below the upper bound. For example, Max Sat has the number of clauses in the input
formula, m, as an upper bound; the upper bound for Max Cut is the number of edges m in the graph. The natural below-
guarantee parameterized questions are: can you satisfy all but k clauses and is there a cut of size at least m − k? The first
is FPT for 2-Cnf Sat [40], and hard (not in FPT unless P = NP) for c-Cnf Sat for c � 3 [28]. The second problem is the
well-known Odd Cycle Transversal problem which was shown to be FPT in [41]. Several vertex/edge-deletion problems,
for example, König Vertex/Edge Deletion [32], Feedback Vertex Set [39], Planar Vertex Deletion [31], fit in the below-
guarantee framework. In Section 4, we list a number of problems having tight upper and lower bounds.

In Section 5 we identify some problems for which the above-guarantee or below-guarantee version is unlikely to be
in FPT. In Section 6 we show that if we parameterize “sufficiently above” tight lower bounds then the above-guarantee
question becomes hard (unless P = NP) for a number of NP-optimization problems. We also show a similar result for the
below-guarantee question with respect to tight upper bounds. Finally in Section 7 we list a number of interesting research
directions.

2. Preliminaries

We briefly introduce the necessary concepts concerning optimization problems and parameterized complexity.
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To begin with, a parameterized problem is a subset of Σ∗ × Z�0, where Σ is a finite alphabet and Z�0 is the set of
nonnegative integers. An instance of a parameterized problem is therefore a pair (I,k), where k is the parameter. In the
framework of parameterized complexity, the run-time of an algorithm is viewed as a function of two quantities: the size
of the problem instance and the parameter. A parameterized problem is said to be fixed-parameter tractable (FPT) if there
exists an algorithm for the problem with time complexity O ( f (k) · |I|O (1)), where f is a computable function of k alone. The
class FPT consists of all fixed-parameter tractable problems. An FPT-algorithm for a parameterized problem is an algorithm
that solves that problem in time O ( f (k) · p(|I|)) for some computable function f and polynomial p. We assume that an
FPT-algorithm for a parameterized problem produces a witness whenever it outputs yes.

A parameterized problem π1 is fixed-parameter-reducible to a parameterized problem π2 if there exist functions
f , g : Z�0 → Z�0, Φ :Σ∗ × Z�0 → Σ∗ and a polynomial p(·) such that for any instance (I,k) of π1, (Φ(I,k), g(k)) is
an instance of π2 computable in time f (k) · p(|I|) and (I,k) ∈ π1 if and only if (Φ(I,k), g(k)) ∈ π2. If π1 is fixed-parameter
reducible to π2 and π2 if FPT, then so is π1. A parameterized problem π1 is fixed-parameter equivalent to a parameterized
problem π2 if π1 is fixed-parameter reducible to π2 and vice versa. Note that if π1 and π2 are fixed-parameter equivalent
then π1 is fixed-parameter tractable if and only if π2 is.

We sometimes use the O ∗(·) notation to describe the running times of algorithms that take exponential time. The O ∗ no-
tation suppresses polynomial factors in the running time expression. For instance, we write O ∗(T (n)) for a time-complexity
of the form O (T (n)· poly(n)) where T (n) grows exponentially with n, the input size. A time-complexity of the form
O ( f (k) · poly(n)) for an FPT-algorithm is sometimes written as O ∗( f (k)).

An NP-optimization (NPO) problem Q is a four-tuple Q = {I , S, V ,opt}, where

1. I is the set of input instances. (Without loss of generality, I can be recognized in polynomial time.)
2. S(x) is the set of feasible solutions for the input x ∈ I .
3. V is a polynomial-time computable function called the cost function and for each x ∈ I and y ∈ S(x), V (x, y) ∈ N.
4. opt ∈ {max,min}.
5. The following decision problem (called the underlying decision problem of Q ) is in NP: Given x ∈ I and an integer k,

does there exist a feasible solution y ∈ S(x) such that V (x, y) � k, when Q is a maximization problem (or, V (x, y) � k,
when Q is a minimization problem).

From the above definition, it follows that the optimum value of every NP-optimization problem is bounded below by 1.
We call a lower bound trivial if it is at most a constant. Given an NP-optimization problem Q , a nontrivial lower bound f
for Q is an unbounded function f : N → N such that for all instances x of Q , we have opt(x) � f (|x|). A nontrivial upper
bound g is an unbounded function g : N → N such that for all instances x of Q , we have opt(x) � g(|x|).

The class MAX SNP was defined by Papadimitriou and Yannakakis [37] using logical expressiveness. They showed that
a number of interesting optimization problems such as Max 3-Sat, Independent Set-b, Max Cut, Max k-Colorable Subgraph

lie in this class. They also introduced the notion of completeness for MAX SNP by a reduction known as the L-reduction. We
define this next.

Let Q 1 and Q 2 be two optimization (maximization or minimization) problems. We say that Q 1 L-reduces to Q 2 if there
exist polynomial-time computable functions f , g , and constants α,β > 0 such that for each instance I1 of Q 1:

1. f (I1) = I2 is an instance of Q 2, such that opt(I2) � α · opt(I1).
2. Given any solution y2 of I2, g maps (I2, y2) to a solution y1 of I1 such that |V (I1, y1) − opt(I1)| � β · |V (I2, y2) −

opt(I2)|.

We call such an L-reduction from Q 1 to Q 2 an ( f , g,α,β)-reduction.
A problem Q is MAX SNP-hard if every problem in the class MAX SNP L-reduces to Q . A problem Q is MAX SNP-

complete, if Q is in MAX SNP and is MAX SNP-hard. Some example MAX SNP-complete problems are Max c-Sat for any
constant c, Independent Set-B , Vertex Cover-B , Dominating Set-B , Max Cut, Max Directed Cut, Max k-Colorable Subgraph.
Cai and Chen [4] established that the standard parameterized version of all maximization problems in the class MAX SNP
are fixed-parameter tractable. In the next section, we show that for all problems in MAX SNP, a certain above-guarantee
question is also fixed-parameter tractable.

3. Parameterizing above or below-guaranteed values

The main objective of this section is to show that there exist broad classes of NP-optimization problems in which every
problem has a nontrivial lower or upper bound on the optimum solution size and the above or below guarantee question
with respect to these bounds is FPT. Recall that a lower or upper bound is nontrivial if it is an unbounded function of the
input size.

We first show that every problem in the class MAX SNP has a nontrivial lower bound on the optimal solution size and
that the parameterized above- or below-guarantee question with respect to this lower bound is FPT.



140 M. Mahajan et al. / Journal of Computer and System Sciences 75 (2009) 137–153
3.1. Parameterizing above the max 3-sat lower bound

Consider the problem Max 3-Sat which is complete for the class MAX SNP. An instance of Max 3-Sat is a boolean
formula f in conjunctive normal form with at most three literals per clause. As already stated, any boolean formula with m
clauses has at least �m/2� satisfiable clauses. Using this, we show the following generalization.

Proposition 1. If Q is in MAX SNP, then for each instance I of Q there exists a positive number γx such that γx � opt(x). Further,
if Q is NP-hard, then the function γ : x → γx is unbounded, assuming P �= NP.

Proof. Let Q be a problem in MAX SNP and let ( f , g,α,β) be an L-reduction from Q to Max 3-Sat. Then for an instance I
of Q , f (x) is an instance of Max 3-Sat such that opt( f (x)) � α · opt(x). If f (x) is a formula with m clauses, then �m/2� �
opt( f (x)) and therefore opt(x) is bounded below by �m/2�/α. This proves that each instance x of Q has a lower bound. We
can express this lower bound in terms of the parameters of the L-reduction. Since f (x) is an instance of Max 3-Sat, we can
take the size of f (x) to be m. Then γx = | f (x)|/2α = m/2α. Further, note that if m is not unbounded, then we can solve Q
in polynomial time via this reduction. �

Note that this lower bound γx depends on the complete problem to which we reduce Q . By changing the complete
problem, we might construct different lower bounds for the problem at hand. It is also conceivable that there exist more
than one L-reduction between two optimization problems. Different L-reductions could give different lower bounds. Thus
the polynomial-time computable lower bound that we exhibit in Proposition 1 is a special lower bound obtained from a
specific L-reduction to a specific complete problem (Max 3-Sat) for the class MAX SNP. Call the lower bound of Proposition 1
a Max 3-Sat-lower bound for the problem Q .

Consider the above-guarantee parameterized version L of Max 3-Sat:

L = {
( f ,k): f is a Max 3-Sat instance and ∃ an assignment satisfying at least k + �m/2� clauses of the formula f

}
.

This problem is fixed-parameter tractable with respect to parameter k [28] and using this we prove the following.

Theorem 1. Let Q be a maximization problem in MAX SNP and ( f , g,α,β) an L-reduction from Q to Max 3-Sat. For an instance x
of Q , let γx represent the Max 3-Sat-lower bound of x. Then the following problem is in FPT:

L Q = {
(x,k): x is an instance of Q and opt(x) � γx + k

}
.

Proof. We make use of the fact that there exists a fixed-parameter tractable algorithm A for Max 3-Sat which takes as
input, a pair of the form (ψ,k), and in time O (|ψ | + h(k)), returns yes if there exists an assignment to the variables of ψ

that satisfies at least �m/2� + k clauses, and no otherwise. See [28,36] for such algorithms.
Consider an instance (x,k) of L Q . Then f (x) is an instance of Max 3-Sat. Let f (x) have m clauses. Then the guaranteed

lower bound for the instance x of Q , γx = m/2α, and opt( f (x)) � α · opt(x). Apply algorithm A on input ( f (x),kα). If A
outputs yes, then opt( f (x)) � m/2 + kα, implying opt(x) � m/2α + k = γx + k. Thus (x,k) ∈ L Q .

If A answers no, then �m/2� � opt( f (x)) < �m/2� + kα. Apply algorithm A on the inputs ( f (x),1), ( f (x),2), . . . ,

( f (x),kα), one by one, to obtain opt( f (x)). Let c′ = opt( f (x)). Then use algorithm g of the L-reduction to obtain a solution
to x with cost c. By the definition of L-reduction, we have |c − opt(x)| � β · |c′ − opt( f (x))|. But since c′ = opt( f (x)), it must
be that c = opt(x). Therefore we simply need to compare c with γx + k to check whether (x,k) ∈ L Q .

The total time complexity of the above algorithm is O (kα · (| f (x)| + h(kα)) + p1(|x|) + p2(| f (x)|)), where p1(·) is the
time taken by algorithm f to transform an instance of Q to an instance of Max 3-Sat, and p2(·) is the time taken by g to
output its answer. Thus the algorithm that we outlined is indeed an FPT-algorithm for L Q . �

Note that the proof of Proposition 1 also shows that every minimization problem in MAX SNP has a Max 3-Sat-lower
bound. For minimization problems whose optimum is bounded below by some function of the input, it makes sense to ask
how far removed the optimum is with respect to the lower bound. The parameterized question asks whether for a given
input x, opt(x) � γx + k, with k as parameter.

Theorem 2. Let Q be a minimization problem in MAX SNP and ( f , g,α,β) an L-reduction from Q to Max 3-Sat. For an instance x
of Q , let γx represent the Max 3-Sat-lower bound of x. Then the following problem is in FPT:

L Q = {
(x,k): x is an instance of Q and opt(x) � γx + k

}
.

Proof. As before, let A be an FPT-algorithm for Max 3-Sat which takes as input, a pair of the form (ψ,k), and in time
O (|ψ | + h(k)), returns yes if there exists an assignment to the variables of ψ that satisfies at least �m/2� + k clauses, and
no otherwise. Let (x,k) be an instance of L Q and f (x) the instance of Max 3-Sat with m clauses. Then γx = m/2α and
opt( f (x)) � α · opt(x). Apply algorithm A on input ( f (x), (k + 1) · α). If A outputs yes, then opt( f (x)) � m/2 + (k + 1) · α,
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implying opt(x) � m/2α + k + 1 = γx + k + 1. In this case, (x,k) /∈ L Q and we return no. If A answers no, then �m/2� �
opt( f (x)) < �m/2�+(k+1) ·α. Apply algorithm A (k+1) ·α−1 times on inputs ( f (x),1), ( f (x),2), . . . , ( f (x), (k+1) ·α−1)

to obtain opt( f (x)). Obtain opt(x) as described in the proof of Theorem 1 and decide the instance (x,k) appropriately. �
Examples of minimization problems in MAX SNP include Vertex Cover-B and Dominating Set-B which are, respectively,

the restriction of the Vertex Cover and the Dominating Set problems to graphs whose vertex degree is bounded by B .

3.2. When the guarantee is defined by an approximation algorithm

If an NP-maximization problem admits an α-approximation algorithm, 0 < α < 1, then α ·opt is a nontrivial polynomial-
time computable lower-bound on the solution size, where opt denotes the optimal solution size. For minimization problems
that admit an α-approximation algorithm we have α > 1 and α · opt is a polynomial-time computable upper-bound on
the solution size. One can parameterize above or below these nontrivial guaranteed values. We show that if (1) the NP-
optimization problem is polynomially bounded, (2) its standard parameterized version is in FPT, and (3) α is a constant,
then the α · opt + k question (for maximization problems) and the α · opt − k question (for minimization problems) are
in FPT.

Theorem 3. Let Q be an NPO problem which admits a constant-factor α-approximation algorithm such that its standard parameter-
ized version is in FPT. Then the following problems are in FPT:

L1 = {
(I,k): max(I) � α · opt + k

}
if Q is a maximization problem;

L2 = {
(I,k): min(I) � α · opt − k

}
if Q is a minimization problem.

Proof. Suppose Q is a maximization problem and let (I,k) be an instance of L1. Then max(I) � α · opt + k if and only
if k � (1 −α) · opt, that is, if and only if k/(1 −α) � opt. Since the standard parameterized version of Q is in FPT, deciding
whether k/(1 − α) � opt is in FPT. The proof when Q is a minimization problem is similar. �
4. Tight lower and upper bounds

For an optimization problem, the question of whether the optimum is at least lower bound + k, for some lower bound
and k as parameter, is not always interesting because if the lower bound is “loose” then the problem is trivially fixed-
parameter tractable. For instance, the following “above-guarantee” version of Max Cut is trivially in FPT. Given a connected
graph G on m edges, does G have a cut of size at least m/2 + k? Since any connected graph G with m edges and n vertices
has a cut of size at least m/2 + �(n − 1)/4� [38], if k � �(n − 1)/4�, we answer yes. Otherwise n � 4k and a brute-force
algorithm that considers all possible vertex partitions is an FPT-algorithm.

We therefore examine the notion of a tight lower bound and the corresponding above-guarantee question. A tight lower
bound is essentially the best possible lower bound on the optimum solution size. For the Max Sat problem, this lower
bound is m/2: if φ is an instance of Max Sat, then opt(φ) � m/2, and there are infinitely many instances for which the
optimum is exactly m/2. This characteristic motivates the next definition.

Definition 1 (Tight lower bound). Let Q = {I , S, V ,opt} be an NP-optimization problem and let f : N → N. We say that f is
a tight lower bound for Q if the following conditions hold:

1. f (|I|) � opt(I) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = f (|I|) for all I ∈ I ′ .

Note that we define the lower bound to be a function of the input size rather than the input itself. This is in contrast to
the lower bound of Proposition 1 which depends on the input instance. We can define the notion of a tight upper bound
analogously.

Definition 2 (Tight upper bound). Let Q = {I , S, V ,opt} be an NP-optimization problem and let g : N → N. We say that g is
a tight upper bound for Q if the following conditions hold:

1. opt(I) � g(|I|) for all I ∈ I .
2. There exists an infinite family of instances I ′ ⊆ I such that opt(I) = g(|I|) for all I ∈ I ′ .

Some example optimization problems which have tight lower and upper bounds are given below. The abbreviations tlb

and tub stand for tight lower bound and tight upper bound, respectively.
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1. Max Exact c-Sat

instance A boolean formula F with n variables and m clauses with each clause having exactly c distinct literals.
question Find the maximum number of simultaneously satisfiable clauses.
bounds tlb = (1 − 1/2c)m; tub = m.
The expected number of clauses satisfied by the random assignment algorithm is (1 − 1/2c)m; hence the lower bound.
To see tightness, note that if φ(x1, . . . , xc) denotes the Exact c-Sat formula comprising of all possible combinations of c
variables, then φ has 2c clauses of which exactly 2c − 1 clauses are satisfiable. By taking disjoint copies of this formula
one can construct Exact c-Sat instances of arbitrary size with exactly (1 − 1/2c)m satisfiable clauses.

2. Max Lin-2
instance A system of m linear equations modulo 2 in n variables, together with positive weights wi , 1 � i � m.
question Find an assignment to the variables that maximizes the total weight of the satisfied equations.
bounds tlb = W /2, where W = ∑m

i=1 wi ; tub = W .
If we use {+1,−1}-notation for boolean values with −1 corresponding to true then we can write the ith equation of
the system as

∏
j∈αi

x j = bi , where each αi is a subset of [n] and bi ∈ {+1,−1}. To see that we can satisfy at least half
the equations in the weighted sense, we assign values to the variables sequentially and simplify the system as we go
along. When we are about to give a value to x j , we consider all equations reduced to the form x j = b, for a constant b.
We choose a value for x j satisfying at least half (in the weighted sense) of these equations. This procedure of assigning
values ensures that we satisfy at least half the equations in the weighted sense. A tight lower bound instance, in this
case, is a system consisting of pairs x j = bi , x j = b̄i , with each equation of the pair assigned the same weight. See [22]
for more details.

3. Max Independent Set-B
instance A graph G with n vertices such that the degree of each vertex is bounded by B .
question Find a maximum independent set of G .
bounds tlb = n/(B + 1); tub = n.
A graph whose vertex degree is bounded by B can be colored using B + 1 colors, and in any valid coloring of the graph,
the vertices that get the same color form an independent set. By the pigeonhole principle, there exists an independent
set of size at least n/(B + 1). The complete graph K B+1 on B + 1 vertices has an independence number of n/(B + 1).
By taking disjoint copies of K B+1 one can construct instances of arbitrary size with independence number exactly
n/(B + 1).

4. Min Dominating Set-B
instance A graph G with n vertices such that the degree of each vertex is bounded by B .
question Find a minimum dominating set of G .
bounds tlb = n/(B + 1); tub = n.
Observe that any vertex can dominate at most B + 1 vertices (including itself) and thus any dominating set has size
at least n/(B + 1). A set of r disjoint copies of K B+1 has a minimum dominating set of size exactly r = n/(B + 1). The
upper bound of n is met by the class of empty graphs.

5. Min Vertex Cover-B
instance A graph G with n vertices and m edges such that the degree of each vertex is at least one and at most B .
question Find a minimum vertex cover of G .
bounds tlb = m/B; tub = nB/(B + 1).
Each vertex can cover at most B edges and so any vertex cover has size at least m/B . This bound is tight for a set of
disjoint copies of K1,B ’s. The upper bound follows from the fact that an independent set in such a graph has size at
least n/(B + 1). The upper bound is met by a disjoint collection of K B+1’s.

6. Max Planar Independent Set

instance A planar graph G with n vertices and m edges.
question Find a maximum independent set of G .
bounds tlb = n/4; tub = n.
A planar graph is 4-colorable, and in any valid 4-coloring of the graph, the vertices that get the same color form an
independent set. By the pigeonhole principle, there exists an independent set of size at least n/4. A disjoint set of K4’s
can be use to construct arbitrary sized instances with independence number exactly n/4.

7. Max Acyclic Digraph

instance A directed graph G with n vertices and m arcs.
question Find a maximum arc-induced acyclic subgraph of G .
bounds tlb = m/2; tub = m.
To see that any digraph with m arcs has an acyclic subgraph of size m/2, place the vertices v1, . . . , vn of G on a line
in that order with arcs (vi, v j), i < j, drawn above the line and arcs (vi, v j), i > j, drawn below the line. Clearly,
by deleting all arcs either above or below the line we obtain an acyclic digraph. By the pigeonhole principle, one of
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these two sets must have size at least m/2. To see that this bound is tight, consider the digraph D on n vertices:
v1 � v2 � v3 � · · · � vn which has a maximum acyclic digraph of size exactly m/2. Since n is arbitrary, we have an
infinite set of instances for which the optimum matches the lower bound exactly.

8. Max Planar Subgraph

instance A connected graph G with n vertices and m edges.
question Find an edge-subset E ′ of maximum size such that G[E ′] is planar.
bounds tlb = n − 1; tub = 3n − 6.
Any spanning tree of G has n − 1 edges; hence any maximum planar subgraph of G has at least n − 1 edges. This bound
is tight as the family of all trees achieves this lower bound. An upper bound is 3n − 6 which is tight since for each n,
a maximal planar graph on n vertices has exactly 3n − 6 edges.

9. Max Cut

instance A graph G with n vertices, m edges and c components.
question Find a maximum cut of G .
bounds tlb = m/2 + �(n − c)/4�; tub = m.
The lower bound for the cut size was proved by Poljak and Turzík [38]. This bound is tight for complete graphs. The
upper bound is tight for bipartite graphs.

10. Min Linear Arrangement

instance An undirected graph G = (V , E) with n vertices and m edges.
question Find a one-to-one mapping σ : V → {1,2, . . . , |V |} such that∑

{u,v}∈E

∣∣σ(u) − σ(v)
∣∣

is a minimum. The minimum value of the objective function over all one-to-one maps is denoted by ola(G).
bounds tlb = m; tub = n(n − 1)(n + 1)/6 = (n+1

3

)
.

Clearly |σ(u) − σ(v)| � 1 for any mapping σ and hence
∑

{u,v}∈E |σ(u) − σ(v)| � m. This lower bound is tight for the
set of paths. For any n-vertex graph G , ola(G) � ola(Kn), where Kn denotes the complete graph on n vertices. It can be
easily seen that for the case of Kn , the value of the objective function remains the same for all one-to-one maps σ and
that ola(Kn) = 1 · (n − 1) + 2 · (n − 2) + · · · + (n − 1) · 1 = n(n − 1)(n + 1)/6.

11. Min Profile

instance An undirected graph G = (V , E) with n vertices and m edges.
question Find a one-to-one mapping σ : V → {1,2, . . . , |V |} such that

∑
v∈V prfσ (v) is a minimum, where prfσ (v) =

σ(v) − min{σ(u): u ∈ N[v]}.
The minimum value of the objective function over all one-to-one maps σ is denoted by prf(G).

bounds tlb = m; tub = (n
2

)
.

This problem is equivalent [3] to the well-known Interval Graph Completion problem [17,23] in that if the minimum
number of edges required to be added to a graph to make it interval is k then its profile is m + k, where m denotes the
number of edges in the graph. Consequently, for any graph G = (V , E),

m � prf(G) �
(

n

2

)
.

Since for each positive integer m there exists an interval graph with m edges, this is a tight lower bound on the
profile of a graph. Since complete graphs are interval graphs too, this result also shows that

(n
2

)
is a tight upper bound.

Interestingly, there is a different lower bound if we restrict the input graph to be connected. If G is a connected graph
on n vertices then prf(G) � n − 1 [26] and this bound is tight since the profile of a path on n vertices is n − 1.

Natural questions for maximization problems in the above or below-guarantee framework are whether the languages

La,max = {
(I,k): max(I) � tlb(I) + k

}
,

Lb,max = {
(I,k): max(I) � tub(I) − k

}
are in FPT. For minimization problems, one can ask whether the following are in FPT.

La,min = {
(I,k): min(I) � tlb(I) + k

}
,

Lb,min = {
(I,k): min(I) � tub(I) − k

}
.

The parameterized complexity of such questions are not known for most problems which are known to have tight bounds.
To the best of our knowledge, the above-guarantee question has been shown to be in FPT only for the Max Sat and Max

c-Sat problems [28] and, more recently, for Linear Arrangement [20] and both versions of Minimum Profile [21,23].
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Since most vertex/edge deletion problems can be cast as below-guarantee parameterized questions, comparatively more
results are known about such problems. For instance, for the Independent Set problem a trivial upper bound on the solu-
tion size is the number of vertices in the graph. This bound is tight as the family of trivial graphs meets this bound. Given
a graph G on n vertices, the question of whether there exists k vertices whose deletion leaves a trivial graph (or equiva-
lently, does G have an independent set on n − k vertices?) is fixed-parameter tractable, being equivalent to the well-known
Vertex Cover problem [35]. Other examples include Feedback Vertex Set [39], Directed Feedback Vertex Set [7], Odd Cycle

Transversal [41] and Chordal Vertex Deletion [30] which are all of the form: “is there an acyclic (undirected/directed),
bipartite and chordal graph, respectively, on n − k vertices?”

An interesting example of a non-graph-theoretic problem parameterized below a guaranteed upper bound is the Min

2-Sat Deletion problem [28].

Min 2-Sat Deletion

Input: A Boolean 2-CNF formula φ with m clauses.
Parameter: A positive integer k.
Question: Does there exist an assignment that satisfies m − k clauses of φ? In other words, can k clauses be deleted from φ

to make it satisfiable?

This problem has been shown to be fixed-parameter tractable by Razgon et al. [40]. Note that the problem of deciding
whether k clauses can be deleted from a c-CNF formula to make it satisfiable is NP-hard for c � 3 [28].

In the next section we exhibit problems whose above or below-guarantee parameterized versions are hard.

5. Hard above or below-guarantee problems

We first exhibit two problems whose above-guarantee parameterized versions are hard (not in FPT unless P = NP).
To the best of our knowledge, these are the only ones in this category. Consider the problem Min Weight t-connected

Spanning Subgraph defined as follows [8]:

Input: A connected graph G with n vertices and nonnegative integers t and k.
Parameter: The integer k.
Question: Does there exists a t-vertex-connected spanning subgraph of G with at most k edges?

This problem is NP-complete for undirected graphs for t � 2 [8] and is easily fixed-parameter tractable as shown below.

Lemma 1. Let G = (V , E) be a simple, connected graph on n vertices and let k, t be nonnegative integers. Then deciding whether G has
a t-vertex-connected spanning subgraph with at most k edges can be done in time polynomial in n, for every fixed k.

Proof. For t � 2, a t-vertex-connected spanning subgraph of G must have at least n edges. Therefore if k < n, answer no;
else, n � k and any brute-force algorithm that solves the problem is fixed-parameter tractable. �

As discussed in the proof of Lemma 1 above, n is a trivial lower bound for the problem and is tight for the case t = 2.
The above-guarantee version, however, is not fixed-parameter tractable, unless P = NP.

Theorem 4. Let G = (V , E) be a simple, connected graph on n vertices and let k, t be nonnegative integers. Deciding whether G has
a t-vertex connected spanning subgraph with at most n + k edges is not fixed-parameter tractable with respect to parameter k, unless
P = NP.

Proof. Note that for t = 2 and k = 0 this problem is equivalent to asking whether G has a Hamiltonian cycle and hence
if the above-guarantee question can be answered in time O ( f (k) · nc), the Hamiltonian Cycle problem can be solved in
polynomial time implying P = NP. �

Next consider the Bounded Degree Min Spanning Tree [18] problem.

Input: A connected graph G = (V , E) with edge costs w : E → Z+ and nonnegative integers c and k.
Parameter: The integer k.
Question: Does there exist a spanning subgraph T of total edge-weight at most k such that each vertex in T has degree at

most c?

Since the total weight of any spanning tree is at least n − 1, we have the following result.

Lemma 2. The Bounded Degree Min Spanning Tree problem is fixed-parameter tractable with respect to parameter k.
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The above-guarantee version (Does G have a spanning tree with total weight at most n − 1 + k and vertex degrees
bounded by c?) is again not fixed-parameter tractable unless P = NP as the case c = 2 and k = 0 reduces to solving the
Hamiltonian Path problem.

Theorem 5. Given a connected graph G = (V , E) with edge costs w : E → Z+ and positive integers c and k, deciding whether G has
a spanning tree with weight at most n −1+k and vertex degrees bounded by c is not fixed-parameter tractable with respect to k unless
P = NP.

We next consider a problem parameterized below a tight upper bound, called Wheel-free Deletion, that is W[2]-
hard [27]. A vertex v in a graph G is said to be universal if v is adjacent to all vertices of G . A wheel is a graph W
that has a universal vertex v such that W − v is a cycle. A graph is wheel-free if no subgraph of G is a wheel. The class
of wheel-free graphs is hereditary [25] and poly-time recognizable [27]. The Wheel-free Vertex/Edge Deletion problem is
defined below:

Input: A graph G = (V , E) with n vertices and m edges and a nonnegative integer k.
Parameter: The integer k.
Question: Does G have an induced subgraph on n − k vertices/m − k edges that is wheel-free?

Note that for all n and m there exist wheel-free graphs on n vertices or m edges. The tight upper bound is witnessed by
the class of paths, for instance.

In [27], the Wheel-free Vertex/Edge Deletion problems were shown to be W[2]-hard by a reduction from Hitting Set.
This is one of the few graph-modification problems known to be hard.

6. Parameterizing sufficiently above or below guaranteed values

In this section, we study somewhat different, but related, parameterized questions: Given an NP-maximization prob-
lem Q with a tight lower and a tight upper bound, denoted by tlb and tub, respectively, what is the parameterized
complexity of the following questions?

Q a,max(ε) = {
(I,k): max(I) � tlb(I) + ε · |I| + k

}
, (1)

Q b,max(ε) = {
(I,k): max(I) � tub(I) − ε · |I| − k

}
. (2)

Here |I| denotes the input size, ε is some fixed positive rational, k is the parameter and a and b denote, respectively, the
above and below-guarantee version of the problem. For NP-minimization problems, the corresponding questions are:

Q a,min(ε) = {
(I,k): min(I) � tlb(I) + ε · |I| + k

}
, (3)

Q b,min(ε) = {
(I,k): min(I) � tub(I) − ε · |I| − k

}
. (4)

In Theorem 6, we show that Problems 1 and 3 are not fixed-parameter tractable for a certain class of problems, un-
less P = NP. Theorem 7 establishes this result for Problems 2 and 4. To define the class of optimization problems for which
we establish the hardness result in Theorem 6, we need some definitions. To motivate these, we start with an overview of
the proof for maximization problems (Problem 1 above).

Assume that for some ε in the specified range, Q a,max(ε) is indeed in FPT. Now consider an instance (I, s) of the
underlying decision version of Q . Here is a P-time procedure for deciding it. If s � tlb, then the answer is trivially yes.
If s lies between tlb and tlb + ε|I|, then “add” a gadget of suitable size corresponding to the tub, to obtain an equivalent
instance (I ′, s′). This increases the input size, but since we are adding a gadget whose optimum value matches the upper
bound, the increase in the optimum value of I ′ is more than proportional, so that now s′ exceeds tlb + ε|I ′| and we handle
this case next. If s already exceeds tlb + ε|I|, then “add” a gadget of suitable size corresponding to the tlb, to obtain an
equivalent instance (I ′, s′). This increases the input size faster than it boosts the optimum value of I ′ , so that now s′ exceeds
tlb+ε|I ′| by only a constant, say c1. Use the hypothesized FPT algorithm for Q a,max(ε) with input (I ′, c1) to correctly decide
the original question.

To make this proof idea work, we require that the following conditions be met:

1. The NPO problem should be such that “addition” of problem instances is well defined and that the optimum of the
sum is equal to the sum of the optima (see Definition 3).

2. There exist gadgets whose addition to a problem instance increases the instance size faster than it does the optimum
value (see Property P1 below).

3. There exist gadgets whose addition to a problem instance increases the optimum value faster than it does the instance
size (see Property P2 below).

4. The gadgets mentioned in points 2 and 3 must be easily constructible (see Definition 4).
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Definition 3 (Partially additive problems). An NPO problem Q = {I , S, V ,opt} is said to be partially additive if there exists
an operator + which maps a pair of instances I1 and I2 to an instance I1 + I2 such that

1. |I1 + I2| = |I1| + |I2|, and
2. opt(I1 + I2) = opt(I1) + opt(I2).

A partially additive NPO problem that also satisfies the following condition is said to be additive in the framework of
Khanna, Motwani et al. [24]: there exists a polynomial-time computable function f that maps any solution s of I1 + I2 to
a pair of solutions s1 and s2 of I1 and I2, respectively, such that V (I1 + I2, s) = V (I1, s1) + V (I1, s2).

For many graph-theoretic optimization problems, the operator + can be interpreted as disjoint union. Then the problems
Max Cut, Max Independent Set-B , Minimum Vertex Cover, Minimum Dominating Set, Maximum Directed Acyclic Subgraph,
Maximum Directed Cut are partially additive. For other graph-theoretic problems, one may choose to interpret + as follows:
given graphs G and H , G + H refers to a graph obtained by placing an edge between some (possibly arbitrarily chosen)
vertex of G and some (possibly arbitrarily chosen) vertex of H . The Max Planar Subgraph problem is partially additive with
respect to both these interpretations of +. For boolean formulae φ and ψ in conjunctive normal form with disjoint sets of
variables, define + as the conjunction φ ∧ ψ . Then the Max Sat problem is easily seen to be partially additive.

Definition 4 (Dense set). Let Q = {I , S, V ,opt} be an NPO problem. A set of instances I ′ ⊆ I is said to be dense with
respect to a set of conditions C if there exists a constant c ∈ N such that for all closed intervals [a,b] ⊆ R+ of length
|b − a| � c, there exists an instance I ∈ I ′ with |I| ∈ [a,b] such that I satisfies all the conditions in C . Further, if such an I
can be found in polynomial time (polynomial in b), then I ′ is said to be dense poly-time uniform with respect to C .

For example, for the Maximum Acyclic Digraph problem, the set of all oriented digraphs (digraphs without 2-cycles) is
dense (poly-time uniform) with respect to the condition: opt(G) = |E(G)|.

Let Q = {I , S, V ,opt} be an NP-optimization problem with a tight lower bound f : N → N and a tight upper bound
g : N → N. We assume that both f and g are increasing and satisfy the following conditions

P1 For all a,b ∈ N, f (a + b) � f (a) + f (b) + c∗ , where c∗ is a constant (positive or negative).
P2 There exists n0 ∈ N and r ∈ Q+ such that g(n) − f (n) > rn for all n � n0.

Property P1 is satisfied by linear functions ( f (n) = an + b) and by some sub-linear functions such as
√

n, log n, 1/n. Note
that a super-linear function cannot satisfy P1.

Now that we have formally defined all the required properties, we can state the theorem precisely.

Theorem 6. Let Q = {I , S, V ,opt} be a polynomially bounded NP-optimization problem such that the following conditions hold.

1. Q is partially additive.
2. Q has a tight lower bound (tlb) f , which is increasing and satisfies condition P1. The infinite family of instances I ′ witnessing

the tight lower bound is dense poly-time uniform with respect to the condition opt(I) = f (|I|).
3. Q has a tight upper bound (tub) g, which with f satisfies condition P2. The infinite family of instances I ′ witnessing the tight

upper bound is dense poly-time uniform with respect to the condition opt(I) = g(|I|).
4. The underlying decision problem Q̃ of Q is NP-hard.

Let p := sup{r ∈ Q+: g(n) − f (n) > rn for all n � n0} and for 0 < ε < p, define Q a(ε) to be the following parameterized problem

Q a(ε) = {
(I,k): opt(I) � f

(|I|) + ε|I| + k
}

for maximization problems;
Q a(ε) = {

(I,k): opt(I) � f
(|I|) + ε|I| + k

}
for minimization problems.

If Q a(ε) is FPT for any 0 < ε < p, then P = NP.

Proof. We present a proof for NP-maximization problems and towards the end we outline the necessary changes needed
for this proof to work for minimization problems. Therefore let Q be an NP-maximization problem and suppose that for
some 0 < ε < p, the parameterized problem Q a(ε) is fixed-parameter tractable. Let A be an FPT-algorithm for it with run
time O (t(k)poly(|I|)). We will use A to solve the underlying decision problem of Q in polynomial time. Note that for
0 < ε < p, g(n) − f (n) − εn is strictly increasing and strictly positive for large enough values of n.

Let (I, s) be an instance of the decision version of Q . Then (I, s) is a yes-instance if and only if max(I) � s. We consider
three cases and proceed as described below.

Case 1. s < f (|I|).

Since max(I) � f (|I|), we answer yes.
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Case 2. f (|I|) � s < f (|I|) + ε|I|.

In this case, we claim that we can transform the input instance (I, s) into an ‘equivalent’ instance (I ′, s′) such that

1. f (|I ′|) + ε|I ′| � s′ .
2. |I ′| = poly(|I|).
3. opt(I) � s if and only if opt(I ′) � s′ .

This will show that we can, without loss of generality, go to Case 3 below directly.
To achieve the transformation, add a tub instance I1 to I . Define I ′ = I + I1 and s′ = s + g(|I1|). Then it is easy to see

that max(I) � s if and only if max(I ′) � s′ . We want to choose I1 such that f (|I ′|) + ε|I ′| � s′ . Since |I ′| = |I| + |I1| and
s′ = s + g(I1), and since f (|I|) < s, it suffices to choose I1 satisfying

f
(|I| + |I1|

) + ε|I| + ε|I1| � f
(|I|) + g

(|I1|
)
.

By Property P1, we have f (|I| + |I1|) � f (|I|) + f (|I1|) + c∗ , so it suffices to satisfy

f
(|I1|

) + c∗ + ε|I| + ε|I1| � g
(|I1|

)
.

By Property P2 we have g(|I1|) > f (|I1|) + p|I1|, so it suffices to satisfy

c∗ + ε|I| � (p − ε)|I1|.
Such an instance I1 (of size polynomial in |I|) can be chosen because 0 < ε < p, and because the tight upper bound is
polynomial-time uniform dense.

Case 3. f (|I|) + ε|I| � s.

In this case, we transform the instance (I, s) into an instance (I ′, s′) such that

1. f (|I ′|) + ε|I ′| + c1 = s′ , where 0 � c1 � c0 and c0 is a fixed constant.
2. |I ′| = poly(|I|).
3. max(I ′) � s′ if and only if max(I) � s.

We then run algorithm A with input (I ′, c1). Algorithm A answers yes if and only if max(I ′) � s′ . By condition 3 above,
this happens if and only if max(I) � s. This takes time O (t(c1) · poly(|I ′|)).

We obtain I ′ by adding a tlb instance I1 to I . What if addition of any tlb instance yields an I ′ with s′ < f (I ′) + ε|I ′|? In
this case, s must already be very close to f (|I|) + ε|I|; the difference k � s − f (|I|) − ε|I| must be at most εd + c∗ , where d
is the size of the smallest tlb instance I0. (Why? Add I0 to I to get s + f (d) < f (|I| + d) + ε(|I| + d); applying property P1,
we get s + f (d) < f (|I|) + f (d) + c∗ + ε|I| + εd, and so k < c∗ + εd.) In such a case, we can use the FPT algorithm A with
input (I,k) directly to answer the question “Is max(I) � s?” in time O (t(εd + c∗) · poly(|I|)).

So now assume that k � c∗ + εd, and it is possible to add tlb instances to |I|. Since f is an increasing function, there
is a largest tlb instance I1 we can add to I to get I ′ while still satisfying s′ � f (I ′) + ε|I ′|. The smallest tlb instance bigger
than I1 has size at most |I1| + c, where c is the constant that appears in the definition of density. We therefore have the
following inequalities

f
(|I ′|) + ε|I ′| � s′ < f

(|I ′| + c
) + ε

(|I ′| + c
)
.

Since f is increasing and satisfies property P1, we have[
f
(|I ′| + c

) + ε
(|I ′| + c

)] − [
f
(|I ′|) + ε|I ′|] � f (c) + c∗ + εc � c0,

and hence s′ = f (|I ′|) + ε|I ′| + c1, where 0 � c1 � c0. Note that c0 is a constant independent of the input instance (I, s).
Also, since Q is a polynomially bounded problem, |I1| is polynomially bounded in |I|.

Note that the proof for Cases 2 and 3 do not make explicit use of the fact that Q is a maximization problem; the proof
here goes through for minimization problems as well. In fact, the only change necessary for minimization problems is in
Case 1 where if s < tlb, we return no. �
Remark 1. Note that there are some problems, notably Max 3-Sat, for which the constant c0 in Case 3 of the proof above,
is 0. For such problems, the proof of Theorem 6 actually proves that the problem Q ′ = {(I,k): max(I) � f (|I|) + ε|I|} is
NP-hard. But in general, the constant c0 � 1 and so this observation cannot be generalized.

The constraints imposed in Theorem 6 seem to be rather strict, but they are satisfied by a large number of NP-
optimization problems.
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Corollary 1. For any NP-optimization problem Q in the following list, the Q a(ε) problem is not fixed-parameter tractable unless
P = NP:

Problem tlb(I) + ε · |I| + k Range of ε

1. Max Sat ( 1
2 + ε)m + k 0 < ε < 1

2

2. Max c-Sat ( 1
2 + ε)m + k 0 < ε < 1

2

3. Max Exact c-Sat (1 − 1
2c + ε)m + k 0 < ε < 1

2c

4. Max Lin-2 ( 1
2 + ε)m + k 0 < ε < 1

2

5. Planar Independent Set ( 1
4 + ε)n + k 0 < ε < 3

4

6. Independent Set-B ( 1
B+1 + ε)n + k 0 < ε < B

B+1

7. Dominating Set-B ( 1
B+1 + ε)n + k 0 < ε < B

B+1

8. Vertex Cover-B m
B + εn + k 0 < ε <

(B−1)(2B+1)
2B(B+1)

9. Max Acyclic Subgraph ( 1
2 + ε)m + k 0 < ε < 1

2

10. Max Planar Subgraph (1 + ε)n − 1 + k 0 < ε < 2

11. Max Cut
m
2 + �n−c

4 � + εn + k 0 < ε < 1
4

12. Max Dicut
m
4 +

√
m
32 + 1

256 − 1
16 + εm + k 0 < ε < 3

4

Remark 2. Note that the results for Vertex Cover-B and Max Cut do not follow directly from Theorem 6 (as the bounds
involve both n, the number of vertices, and m, the number of edges) but they can proved independently using the same
proof-technique.

We now extend Theorem 6 to the corresponding variant of the below-guarantee question. Let Q = {I , S, V ,opt} be
an NP-optimization problem with a tight lower bound f : N → N and a tight upper bound g : N → N which are increasing
functions and satisfy the following conditions

P3 For all a,b ∈ N, g(a + b) � g(a) + g(b) + c∗ , where c∗ is a constant.
P4 There exists r ∈ Q+ such that g(n) − f (n) > rn for all n � n0 for some n0 ∈ N.

Theorem 7. Let Q = {I , S, V ,opt} be a polynomially bounded NP-optimization problem such that the following conditions hold.

1. Q is partially additive.
2. Q has a tight lower bound (tlb) f such that the infinite family of instances I ′ witnessing the tight lower bound is dense poly-time

uniform with respect to the condition opt(I) = f (|I|).
3. Q has a tight upper bound (tub) g which is increasing, satisfies condition P3, and with f satisfies P4. The infinite family of

instances I ′ witnessing the tight upper bound is dense poly-time uniform with respect to the condition opt(I) = g(|I|).
4. The underlying decision problem Q̃ of Q is NP-hard.

Let p := sup{r ∈ Q+: g(n) − f (n) > rn for all n � n0} and for 0 < ε < p, define Q b(ε) to be the following parameterized problem

Q b(ε) = {
(I,k): max(I) � tub(I) − ε · |I| − k

}
(maximization problems);

Q b(ε) = {
(I,k): min(I) � tub(I) − ε · |I| − k

}
(minimization problems).

If Q b(ε) is FPT for any 0 < ε < p, then P = NP.

Proof Sketch. We sketch a proof for NP-minimization problems. Assume that for some ε in the specified range, Q b(ε) is
indeed in FPT. Consider an instance (I, s) of the underlying decision version of Q . Here is a P-time procedure for deciding
it. If s > tlb, then the answer is trivially yes. If s lies between tub and tub − ε|I|, then “add” a gadget of suitable size corre-
sponding to the tlb to obtain an equivalent instance (I ′, s′). This increases the input size, but since we are adding a gadget
whose optimum value matches the lower bound, the increase in the optimum value of I ′ is less than proportional, so that
now s′ is less than tub − ε|I ′|. If s were already less than tub − ε|I|, then “add” a gadget of suitable size corresponding to
the tub to obtain an equivalent instance (I ′, s′). This increases the optimum value faster than it does the instance size, so
that now s′ is less than tub − ε|I ′| by only a constant, say c1. Use the hypothesized FPT algorithm for Q b(ε) with input
(I ′, c1) to correctly decide the original question. �

The next result shows that for a number of NP-optimization problems, the below-guarantee parameterized variant is
unlikely to be in FPT.
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Corollary 2. For any NP-optimization problem Q in the following list, the Q b(ε) problem is not fixed-parameter tractable unless
P = NP:

Problem tlb(I) + ε · |I| + k Range of ε

1. Max Sat (1 − ε)m − k 0 < ε < 1
2

2. Max c-Sat (1 − ε)m − k 0 < ε < 1
2

3. Max Exact c-Sat (1 − ε)m − k 0 < ε < 1
2c

4. Max Lin-2 (1 − ε)m − k 0 < ε < 1
2

5. Planar Independent Set (1 − ε)n − k 0 < ε < 3
4

6. Independent Set-B (1 − ε)n − k 0 < ε < B
B+1

7. Dominating Set-B (1 − ε)n − k 0 < ε < B
B+1

8. Vertex Cover-B ( B
B+1 − ε)n − k 0 < ε <

(B−1)(2B+1)
2B(B+1)

9. Max Acyclic Subgraph (1 − ε)m − k 0 < ε < 1
2

10. Max Planar Subgraph (3 − ε)n − 6 − k 0 < ε < 2

11. Max Cut m − εn − k 0 < ε < 1
4

12. Max Dicut (1 − ε)m − k 0 < ε < 3
4

7. Conclusion and further research

We have argued that for several optimization problems including all those in MAX SNP, the above or below-guarantee
parameterization is the natural and more practical direction to pursue. In Section 5 we exhibited two problems for which
the above-guarantee parameterization is hard and there are problems such as Max Sat [28], Min Linear Arrangement [20]
and Min Profile [21,23] for which this question is fixed-parameter tractable. The main problem left open is:

Open Problem 1. Is there a characterization for the class of problems for which the above or below-guarantee question with
respect to a tight lower or upper bound is in FPT (or W[1]-hard)?

We believe that there are several natural directions to pursue both from an algorithmic as well as from a practical point
of view. As stated before, not many results are known on parameterized above or below-guarantee problems. In fact, the
complexity of problems (1) through (9) stated in Section 4, when parameterized above their guaranteed values, is open.
Some of the more interesting above-guarantee problems are:

Open Problem 2. Planar Independent Set: Given an n-vertex planar graph and an integer parameter k, does G have an
independent set of size at least �n/4� + k?

Open Problem 3. Max Exact c-Sat: Given a Boolean CNF formula F with m clauses such that each clause has exactly c
distinct literals and an integer parameter k, does there exist an assignment that satisfies at least (1 − 2−c)m + k clauses.

Here are some interesting below-guarantee problems which are open:

Open Problem 4. (See [32].) König Edge Deletion Set: Given a graph G on n vertices, m edges and an integer k, does
there exist an edge-induced subgraph of G on m − k edges that is König (a graph in which a minimum vertex cover and
a maximum matching have the same size)? In other words, can k edges be deleted from G to make it König?

Open Problem 5. (See [9,34].) Perfect Vertex Deletion: Given a graph G on n vertices and m edges and an integer k, does
there exist a vertex-induced subgraph on n−k vertices that is perfect? A similar question can be framed for the edge version.

7.1. Deciding whether the optimum equals the guarantee

If an above-guarantee problem is FPT, we can test in polynomial time whether the optimum solution size for a given
instance I equals the lower bound TLB(I) by simply running the algorithm on the input with k = 1. In fact, one way to prove
that an above-guarantee problem does not have an FPT-algorithm is by showing that there is no polynomial time algorithm
(assuming P �= NP) that decides whether the optimum equals the guaranteed lower bound. The question of whether there
exists such a polynomial time algorithm is open for problems (1) through (7) stated in Section 4. For many of these
problems, such as Planar Independent Set and Max Cut, this may be an interesting independent problem in extremal graph
theory.
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Open Problem 6. Is there a polynomial time algorithm that decides whether

1. A given planar graph G on n vertices has a maximum independent set of size exactly �n/4�?
2. A given connected graph G has a maximum cut of size exactly �m/2� + �(n − 1)/2�/2?

7.2. When the guarantee is a structural parameter

In this subsection we consider problems where the lower bound is a function of the problem instance rather than the
input size.

7.2.1. Above-guarantee vertex cover
Consider the Vertex Cover problem. Given a graph G = (V , E), a vertex cover of G is a subset V ′ ⊆ V , such that every

edge of G has at least one endpoint in V ′ . The Vertex Cover problem is the problem of deciding whether, given a graph G
and a positive integer k, G has a vertex cover of size at most k. This problem, when parameterized by k, is known to be in
FPT by a number of FPT-algorithms (see [35]). Note that if M is a maximum matching of G of size μ, then any vertex cover
has to include at least one vertex of each matched edge and therefore the size of a minimum vertex cover is at least that
of a maximum matching. The set of all vertices of a maximum matching is clearly a vertex cover of the graph. Thus the
size of a minimum vertex cover of G = μ + k, for some 0 � k � 2μ. The class of graphs for which the size of a maximum
matching equals that of a minimum vertex cover are called König graphs and it includes the set of all bipartite graphs.

One can now consider an above-guarantee version of the Vertex Cover problem.

Above Guar Vertex Cover

Input: A graph G with a maximum matching of size μ.
Parameter: A positive integer k.
Question: Does G have a vertex cover of size at most μ + k?

The lower bound guarantee for this problem is different in the sense that it is a function of the input instance and not the
input size. The Above Guar Vertex Cover is fixed-parameter reducible [32] (in fact, fixed-parameter equivalent [15]) to Min

2-Sat Deletion.
The parameterized complexity of these problems was open for quite some time until recently Razgon et al. [40] showed

the latter problem to be fixed-parameter tractable. This also shows that Above Guar Vertex Cover is fixed-parameter
tractable. Interestingly, it was already known that one can check in polynomial time whether the size of a minimum vertex
cover equals that of a maximum matching [10]. This is in contrast to the problems considered before (problems in Sec-
tion 4) where we do not know whether there exists a polynomial time algorithm to decide whether a given instance has an
optimum value equal to the tight lower bound.

7.2.2. The Kemeny score problem
The Kemeny Score problem is a rank-aggregation problem that arises in social choice theory [2,13]. Informally, the goal of

this problem is to combine a number of different rank orderings on the same set of candidates to obtain a “best” ordering.
An election (V , C) consists of a set V of votes and set C of candidates. A vote is simply a preference list of candidates
(a permutation of C ). A “Kemeny consensus” is a preference list of candidates that is “closest” to the given set of votes.
Given a pair of votes π1, π2, the Kendall-Tau-distance (KT-distance for short) between π1 and π2 is defined as

dist(π1,π2) =
∑

{c,d}⊆C

dπ1,π2(c,d),

where dπ1,π2(c,d) = 0 if π1 and π2 rank c and d in the same order, and 1 otherwise. The score of a preference list π with
respect to an election (V , C) is defined as

scr(π) =
∑
πi∈V

dist(π,πi).

A preference list π with minimum score is called a Kemeny consensus of (V , C) and its score scr(π) is called the Kemeny
score of the election (V , C).

The Kemeny Score problem is the following.

Kemeny Score

Input: An election (V , C) and an integer k.
Parameter: The integer k.
Question: Is the Kemeny score of (V , C) at most k?

This problem is NP-complete even for the case when the number of votes is four, whereas the complexity of the case |V | = 3
is still open [13]. The case |V | = 2 can be solved trivially as the Kemeny score is simply the KT-distance of the two votes.
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In [2], Kemeny Score was shown to be in FPT. Also note that there are at most |C |! distinct votes and therefore for
constant |C |, the problem is polynomial-time solvable irrespective of the number of votes.

Observe that given an election (V , C) and a preference list π , the score of π with respect to (V , C) is lower bounded by

LV ,C =
∑

{a,b}∈C

min
{
ν(a,b), ν(b,a)

}
,

where ν(a,b) is the number of preference lists in V that rank a higher than b. Thus the Kemeny score of (V , C) is lower
bounded by LV ,C . Observe that this lower bound is tight since in the case where V contains r − 1 identical preference lists
along with a single copy of the reverse of these lists, the Kemeny score of (V , C) equals LV ,C = (|C |

2

)
.

Hence a more natural question is:

Above-Guarantee Kemeny Score

Input: An election (V , C) and an integer k.
Parameter: The integer k.
Question: Is the Kemeny score of (V , C) at most LV ,C + k?

We note that this problem is fixed-parameter tractable by a parameter-preserving reduction to a weighted variant of Di-

rected Feedback Vertex Set, where the vertices have weights and one has to decide whether there exists a feedback vertex
set of weight at most k, with k as parameter. The following reduction appears in [13]. Given an election (V , C), construct
an arc-weighted directed graph G on |C | vertices as follows: for each pair of vertices u and v , there exists an arc from u
to v if and only if the majority of the votes in V rank u higher than v; the weight of the arc from u to v is the difference
between the number of votes that rank u higher than v and vice versa. Note that in case of tie, there are no arcs between u
and v .

Claim. The election (V , C) has a Kemeny score of at most LV ,C + k if and only if G has a feedback arc set of weight at most k.

The problem of deciding whether an arc-weighted directed graph has a feedback arc set of size at most k fixed-
parameter reduces to the problem of deciding whether a vertex-weighted directed graph has a feedback vertex set of
size at most k [14]. This latter problem is in FPT since the algorithm for Directed Feedback Vertex Set presented in [7]
actually works for this vertex-weighted variant of the problem. Consequently, Above-Guarantee Kemeny Score is in FPT.

Open Problem 7. Are there other “natural” problems where the lower bound is a function of the input instance rather than
the input size? If so, are their above guaranteed versions fixed-parameter tractable?

7.3. Above-guarantee approximation

We examine the notion of an above-guarantee approximation algorithm. The idea, as in recent attempts to study pa-
rameterized approximation [5,6,12], is to try and approximate the parameter k by an efficient algorithm. To motivate this
discussion, we consider the Vertex Cover problem once more. As we observed already, a graph G with a maximum match-
ing of size μ has a minimum vertex cover of size β(G) = μ + k for some 0 � k � 2μ. A 2-approximate algorithm for this
problem simply includes all vertices of a maximum matching. What is interesting is that no polynomial time algorithm is
known for this problem which has an approximation factor a constant strictly less than 2. In fact, it is now an outstanding
open problem whether there indeed exists such a polynomial time approximation algorithm.

An above-guarantee approximation algorithm for the Vertex Cover problem tries to approximate k instead of the “entire”
vertex cover. For example, an algorithm which outputs a solution of size at most μ + α(β(G) − μ), where α > 1, performs
better than the 2-approximate algorithm (the one which includes all vertices of a maximum matching) whenever μ +
α(β(G) − μ) < 2μ, that is, whenever β(G) − μ < μ/α. Since μ = O (n), this means that whenever β(G) − μ < O (n/α), the
additive approximation algorithm beats the 2-approximate algorithm. Here n is the number of vertices in the input graph.

Formally, one can define an above-guarantee α-approximate algorithm as follows. If Q is an NP-maximization problem
with a tight lower bound (tlb) on its optimal solution size, then an above-guarantee α-approximate algorithm for Q takes
as input an instance I of Q and outputs a solution of size at least tlb(I) + α(opt(I) − tlb(I)) in time polynomial in |I|. For
an NP-minimization problem, an α-approximate algorithm outputs a solution of size at most tlb(I) + α(opt(I) − tlb(I)) in
time polynomial in |I|. Note that for an NP-maximization problem α < 1; for a minimization problem α > 1. One can now
think of developing above-guarantee approximate algorithms for other problems which have a guaranteed lower bound on
their solution size.

Open Problem 8. Does there exist an above-guarantee approximation algorithm for the following problems?

1. Planar Independent Set.
2. Max Cut.
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We note that the standard optimization versions of both these problems have good approximation algorithms. The Pla-

nar Independent Set problem has a PTAS due to Baker [1]. For Max Cut, there exists a 0.879-approximate algorithm due
to Goemans and Williamson [19]. Baker’s algorithm takes as input a planar graph G and a positive integer p and outputs
an independent set of size at least p/(p + 1) times optimal in time O (8p p|V (G)|). Thus if a maximum independent set
has size n/4 + k, Baker’s algorithm outputs a solution of size at least p/(p + 1) · (n/4 + k). Here again an above-guarantee
approximate algorithm which outputs a solution of size at least n/4 + αk, α a constant, yields a better solution whenever

p

p + 1

(
n

4
+ k

)
<

n

4
+ αk,

that is, whenever

k <
n

4{p − α(p + 1)} .

Thus if the optimum is only a “small distance” away from the lower bound, an above-guarantee approximation performs
better than the PTAS. A similar observation can be made for the Max Cut problem. This could be the motivation for devel-
oping such algorithms.

In summary, we believe that parameterizing above or below guaranteed bounds is a paradigm that enlarges the range
of the parameter for which the parameterized algorithms remain practical. Further, as we have outlined, there are several
interesting problems yet to be explored in this paradigm.
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