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Email: ftpmail@ftp.eccc.uni-trier.de with subject ’help eccc’Parametrizing Above Guaranteed Values: MaxSatand MaxCutMeena Mahajan and Venkatesh RamanThe Institute of Mathematical Sciences,C. I. T. Campus, Chennai, India 600 113.fmeena,vramang@imsc.ernet.inAbstractIn this paper we investigate the parametrized complexity of the problems MaxSatand MaxCut using the framework developed by Downey and Fellows[7].Let G be an arbitrary graph having n vertices and m edges, and let f be anarbitrary CNF formula with m clauses on n variables. We improve Cai and Chen'sO(22km) time algorithm for determining if at least k clauses of of a c-CNF formula fcan be satis�ed[4]; our algorithm runs in O(jf j+k2�k) time for arbitrary formulae andin O(m+ k�k) time for c-CNF formulae. We also give an algorithm for �nding a cutof size at least k; our algorithm runs in O(m+ n + k4k) time.Since it is known that G has a cut of size at least dm2 e and that there exists anassignment to the variables of f that satis�es at least dm2 e clauses of f , we argue thatthe standard parametrization of these problems is unsuitable. Non-trivial situationsarise only for large parameter values, in which range the �xed-parameter tractablealgorithms are infeasible. A more meaningful question in the parametrized settingis to ask whether dm2 e + k clauses can be satis�ed, or dm2 e + k edges can be placedin a cut. We show that these problems remain �xed-parameter tractable even underthis parametrization. Furthermore, for upto logarithmic values of the parameter, ouralgorithms run in polynomial time.We also discuss the complexity of the parametrized versions of these problems whereall but k clauses have to satis�ed or all but k edges have to be in the cut.
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1 IntroductionGiven a boolean formula in conjunctive normal form (CNF) f with m clauses on n variables,the MaxSat problem asks for the maximum number of clauses that can be satis�ed by anyassignment. The decision version of the problem which asks whether at least k of the clausescan be satis�ed is NP-Complete when k is an integer given as part of the input[11].Given a graph G = (V;E) on n vertices and m edges, the MaxCut Problem asks for themaximum number of edges that can be placed in a cut (S; �S) for some S � V . (An edge isin cut (S; �S) if it has exactly one end point in S.) Again, the decision version which askswhether there is a set S � V such that j(S; �S)j � k is NP-complete when k is an integergiven as part of the input[11]. (This is equivalent to asking whether 9E 0 � E : jE 0j � k andG0 = (V;E 0) is bipartite.)We investigate the parametrized complexity of MaxSat and MaxCut using the frameworkdeveloped by Downey and Fellows[7]. In this framework, a parametrized problem is (uni-formly) �xed-parameter tractable (in the class FPT), if there is an O(g(k)N�) algorithm forthe problem, where g is an arbitrary (could be exponential or worse) function of k, N is thesize of the input, and � is a constant independent of k. Standard polynomial time reductionsdo not necessarily preserve parametrized complexity, so to study problems in this frameworkwe need FPT reductions which preserve independence of the parameter from the input size.FPT reductions re�ne and expose a rich structure within the NP-complete degree. For aformal exposition of parametrized complexity, see [7, 8].We �rst show that MaxSat and MaxCut are both �xed-parameter tractable in the sensedescribed above. In particular, our results mean that for any �xed k, MaxSat and MaxCuthave O(m + n) algorithms.However, these results are not very exciting because both these problems share an im-portant property: for k � dm2 e the answer is always yes. In other words, dm2 e is a kind of\guaranteed value" (see Propositions 5 and 13). Thus non-trivial situations arise only forlarge parameter values, in which range the FPT algorithms described above are infeasible.Consequently, in a parametrized setting, a more meaningful question to ask is: How muchlarger than the guaranteed value is the maximum value? In this paper, we show that bothMaxSat and MaxCut are FPT in this sense as well; given integer k, checking satis�ability of(dm2 e+ k) clauses or existence of an (dm2 e+ k) size cut is in FPT.Note that even for constant k, polynomial-time algorithms for these versions are notobvious. Our FPT results imply polynomial-time algorithms for constant k, in fact for valuesof k upto logarithmic in input size. For more on logarithmically bounded parametrization,see [17].There is another way in which these problems can be parametrized. Consider MaxSat.Checking if all clauses can be satis�ed is NP-complete. What about all but at most one?All but at most two? All but at most k? The parameter now speci�es the distance fromthe value that is \guaranteed to be hard". However, for any �xed k, we are still looking atNP-complete problems. (The formula f is in SAT i� all but one clause of f ^ x ^ �x can besatis�ed, where x is a new variable not occurring in f . For any k, k new variables can beadded to f in this fashion.) Not surprisingly, we show that this kind of parametrization givesa problem hard for the class W [2] in the W hierarchy de�ned by Downey and Fellows[7].2



This is evidence that it is unlikely to be in FPT.For MaxCut, parametrizing in this direction has unexpected implications. At one ex-treme, checking if all but at most k edges can be put in a cut is also easy for constant k;just cycle through all the �jEjk � subsets of E of size m� k testing bipartiteness. At the otherextreme, checking if 0 � i � dm2 e edges can be put into the cut is also easy (the answer isalways Yes). Can the problem really become hard in the middle range? We show that this\all but at most k" parametrized version of MaxCut is no harder than the correspondingversion of even 2-CNF-MaxSat.De�ning the following parametrized problems, the results of this paper are tabulatedbelow:L1 = f hf; ki j 9 an assignment satisfying at least k clauses of the formula f gL2 = f hf; ki j 9 an assignment satisfying at least k + dm2 e clauses of the formula f gL3 = f hf; ki j 9 an assignment satisfying at least m� k clauses of the formula f gC1 = f hG; ki j 9 a cut of size at least k in the graph G gC2 = f hG; ki j 9 a cut of size at least k + dm2 e in the graph G gC3 = f hG; ki j 9 a cut of size at least m� k in the graph G gL1, C1, L2, C2 FPT, in P for logarithmically bound parametersL3 W[2] hardC3 reducible to the 2-CNF restriction of L3Cai and Chen [4] show that the (standard) parametrized versions of all problems inMaxSNP are �xed-parameter tractable; however MaxSat is not in MaxSNP. Our algorithmfor L1 provides the �rst proof that L1 is �xed-parameter tractable. Since C1 is in MaxSNP,it has been known that C1 is in FPT through the MaxSNP reduction. We give a simplerdirect algorithm for C1.It has been brought to our notice recently that the hardness of L3, not just for W[2] butfor the entire W hierarchy W[P], is already known [10].2 Parametrizing MaxSatWe �rst examine special cases of the maximum satis�ability problem. These are used asbuilding blocks in subsequent algorithms. In the subsequent three subsections, we investigatethe parametrized complexity of the languages L1, L2 and L3.2.1 Handling Special CasesFor the MaxSat problem, some assumptions routinely made in Sat are not reasonable. Onesuch assumption is that to begin with, all clauses are distinct; another, that there are nounit clauses. In our algorithms, we will not make any such assumptions. However, we doassume, without loss of generality, that within a clause, all literals are distinct. We alsoassume, without loss of generality, that no clause contains both a variable and its negation(no clause is trivially true). 3



Proposition 1: If f is a Boolean CNF formula with only unit clauses, then an assignmentthat satis�es the maximum number of clauses can be found in O(jf j) time.Proof: The greedy algorithm of assigning true to each variable with more positive oc-currences than negated, and false to all the remaining variables, clearly gives the optimumsolution. Occurrences of each variable can be counted in a single scan of f , giving a lineartime algorithm. 2Lemma 2: Given a Boolean CNF formula f , if there are k clauses in it that each containat least k literals, then there is an assignment satisfying all these k clauses. The assignmentcan be found in O(jf j) time.Proof: Let C1; C2; : : : ; Ck be a set of \long" clauses, each containing at least k literals.A satisfying assignment can be found in k stages as follows: At stage i, pick the �rstunassigned literal in clause Ci, and set it to true. (There will be one such literal, since onlyi � 1 variables have already been assigned values.) After k stages, the remaining variablescan be set arbitrarily.The assignment can be found in linear time by maintaining a 
ag for each variableindicating whether it has been assigned a value or not. Now, in a single scan, we can identifythe long clauses and satisfy them as described above. 2Corollary 3: Given a Boolean CNF formula f with m clauses, if each clause contains atleast m literals, then f is satis�able. A satisfying assignment can be found in O(jf j) time.Lemma 4: [19] Let f be a Boolean CNF formula such that each variable occurs at mosttwice in f (f is an instance of Twice-Sat). Then an assignment satisfying the maximumnumber of clauses of f can be found in O(jf j) time.2.2 The Complexity of L1Proposition 5: Let f be a Boolean CNF formula with m clauses. An assignment satisfyingat least dm2 e clauses exists, and can be found in O(jf j) time.Proof: Pick any assignment A. If A satisifes dm2 e clauses, we are through. Otherwise, thebitwise complement assignment �A satis�es all the clauses left unsatis�ed by A (and possiblysome more too); thus it satis�es dm2 e clauses.In fact, this argument shows that at least half of all possible assignments satisfy at leastdm2 e clauses. 2Cai and Chen[4] used this observation to prove that the parametrized Max-c-Sat, whereevery clause has at most c variables, is FPT (and hence every problem in MaxSNP is FPT).Their algorithm relies on the boundedness of the clauses.We present in Figure 1 a simple algorithm for L1, the Branching-SAT algorithm. It hasFPT complexity for any CNF, with no bound on the number of variables per clause. Inparticular, for c-CNF, it gives a better time complexity than the algorithm of [4].Theorem 6: Given a boolean CNF formula f with n variables and m clauses and aninteger k, in O(k22k + jf j) time, we can �nd an assignment to the variables that satis�es at4



Branching SAT Algorithm B-S-A-1 (f , k)input CNF formula f with m clauses, parameter k.output Yes, if there is an assignment which satis�es at least k clauses of f ,No otherwise.begin 1 If k > m then output No and halt.2 If k � dm2 e then output Yes and halt.3 Separate the clauses of f into two sets: long clauses (k or more literals perclause) and short clauses. Let fl and fs be the conjunctions of the long clausesand the short clauses respectively; f = fl ^ fs. Let fl have b clauses. If b � kthen output Yes and halt.4 Construct any binary tree T of the following type: The pair hfs; k � bi is atthe root. In general, each node in the tree is labelled by some formula g andsome non-negative integer j.If j exceeds the number of clauses in g, then hg; ji is a leaf node labelled No.If j = 0, then hg; ji is a leaf node labelled Yes.If no variable occurs in g both positively and negatively, then hg; ji is a leafnode labelled Yes.Otherwise, pick a variable v which has a positive and a negative occurrencein g. Let vt be the number of clauses of g that contain the literal v, and letgv be the simpli�ed formula obtained by setting v to true in g. Similarly, letvf be the number of clauses of g that contain the literal �v, and let g�v be thesimpli�ed formula obtained by setting v to false in g. Then hg; ji has twochildren, labelled hgv; j � vti and hg�v; j � vfi.If T has a leaf node labelled Yes then output Yes, else output No.end Figure 1: FPT algorithm for satisfying k clauses (L1)5



least k clauses of the formula or discover that no such assignment exists.For instances of c-Sat, the running time is O(ck2k + jf j).Proof: Consider �rst the algorithm B-S-A-1 from Figure 1 for the decision version.Correctness Steps 1,2,3 tackle simple cases. In step 4, at a node hg; ji, the algorithmtries to �nd if at least j clauses of g are satis�able. If the answer is not trivially known (fortrivial cases, the node is a leaf labelled Yes or No appropriately), then any assignment tog must set each variable to either true or false. Instead of exploring all assignments, thealgorithm explores only carefully chosen partial assignments. It is easy to see that if there isan assignment satisfying j or more clauses of g, then some partial version of this assignmentis constructed along some path from hg; ji to a leaf labelled Yes. And if there is no suchassignment, then all leaves of the subtree rooted at hg; ji are labelled No.Time Analysis From Proposition 5 and Lemma 2, it follows that the �rst three steps runin linear time.In the fourth step, the binary tree T is constructed. At a node hg; ji, the processingrequired to �nd the descriptions of its children, or to discover that it is a leaf node, requiresO(jgj) time. If this is not a leaf node, then its children are labelled by integers strictly smallerthan j and by formulae of length less than jgj. Since the root is labelled with hfs; k � bi,the tree is of depth at most k � b and hence size at most 2k�b. So it can be constructed inO(jfsj2k�b) time. But step 4 is executed only if m < 2k, and fs has only short clauses oflength at most k. So jfsj < 2k2, and T can be constructed in O(k22k) time.The modi�cation to tackle the search version is as follows: Search versions of steps 2and 3 follow from Proposition 5 and Lemma 2 respectively. Step 4 is constructive and givesa partial assignment satisfying k � b short clauses. Under this partial assignment (whichassigns values to at most k � b variables), some clauses of fl may already be satis�ed. Sothere are at most b clauses left in fl, each of reduced length at least k � (k � b) = b, andLemma 2 is again applicable.Further, if the input is a c-CNF formula, then at step 4 we know that m < 2k and hencejfsj � cm < 2ck. So the running time is only O(ck2k + jf j). 2In step 4, if the node being processed is not a leaf node, we have to choose a variablev for branching. Apart from checking that v occurs both positively and negatively, we canbe clever and pick such a variable that appears in the maximum number of clauses. Theidea is to push the integer part of the node label hg; ji to 0 faster. This idea is used in thealgorithm described in Figure 2, which establishes the following theorem.Theorem 7: Given a boolean CNF formula f with n variables and m clauses and aninteger k, in O(k2�k + jf j) time, we can �nd an assignment to the variables that satis�esat least k clauses of the formula or discover that no such assignment exists. Here � is thegolden ratio (1 +p5)=2.For instances of c-Sat, the running time is O(ck�k + jf j).Proof: The algorithm B-S-A-2 solves the decision version, and can be modi�ed to solvethe search version as described in the proof of Theorem 6. Its correctness follows from thatof Theorem 6 and Lemma 4. 6



Modi�ed Branching SAT Algorithm B-S-A-2 (f , k)input CNF formula f with m clauses, parameter k.output Yes, if there is an assignment which satis�es at least k clauses of f ,No otherwise.begin Steps 1,2,3 are as in B-S-A-1.Step 4: Construct the following binary tree T : The pair hfs; k� bi is at the root. Ingeneral, each node in the tree is labelled by some formula g and some non-negativeinteger j.If j exceeds the number of clauses in g, then hg; ji is a leaf node labelled No.If j = 0, then hg; ji is a leaf node labelled Yes.If no variable occurs in g both positively and negatively, then hg; ji is a leaf nodelabelled Yes.Otherwise, of all the variables that occur in g both positively and negatively, choosethat variable v which occurs the maximum number of times.If v occurs only twice in g, then hg; ji is a leaf node whose label Yes/No is determinedas follows: First, set all variables that occur only positively or only negatively ing to true and false respectively. This satis�es say p1 clauses, and simpli�es g to aformula g0 where each variable occurs at most twice. Using the method of Lemma 4,�nd p2, the maximum number of clauses satis�able in g0. If p1 + p2 � j, then hg; jiis a leaf node labelled Yes, otherwise hg; ji is a leaf node labelled No.If v occurs more than twice, then hg; ji has two children hgv ; j� vti and hg�v; j� vfi,as in B-S-A-1. Figure 2: Modi�ed Branching Sat algorithm
7



To see its time complexity, note that steps 1,2,3 are the same as in B-S-A-1 and hencerun in linear time.At step 4, the processing at each node hg; ji is of two types: (1) �nd the labels of thetwo children, or (2) label the leaf. The �rst type of processing is easily seen to be possiblein O(jgj) time, as in B-S-A-1. The second type can also be done in O(jgj) time, using anappropriate linked list representation for the variables and clauses of g and then using theresult of Lemma 4. So either way, a node can be processed in O(jgj) time.If node hg; ji is not a leaf, both its children have labels with integers strictly less thanj. Furthermore, since vt + vf � 3, at least one of vt and vf exceeds one, and so at least onechild has a label with integer strictly less than j � 1. So the size of the tree constructedsatis�es the Fibonacci recurrence: T (j) � 1 + T (j � 1) + T (j � 2). Since its root is labelledk � b, the number of nodes in the binary tree is bounded by the solution to this recurrenceat k � b, which is �k�b where � is the golden ratio (1 +p5)=2.Thus the entire tree can be constructed and labelled in time O(�k�bjfsj). As arguedearlier, jfsj 2 O(k2) and so the algorithm runs in time O(k2�k + jf j). For instances ofc-SAT, jfsj = O(ck), and the run time is O(ck�k + jf j). 22.3 The Complexity of L2Recall that if f is a CNF formula with m clauses, then the pair hf; ki belongs to L2 i� atleast dm2 e + k clauses of f can be satis�ed.Proposition 8: Let f be a Boolean CNF formula with m clauses, of which p clauses arenot unit clauses. An assignment satisfying at least dm2 e + p4 � 1 clauses exists, and can befound in O(jf j) time.Proof: If we set each variable to 0 or 1 uniformly and independently, then the expectednumber of clauses satis�ed by this random assignment will be at least m2 . Something strongeris true. Since the random assignment satis�es a non-unit clause with probability at least34 , it follows that if f has p non-unit clauses, then the expected number of clauses satis�edby the random assignment is at least m�p2 + 3p4 = m2 + p4 . Thus there is some assignmentsatisfying at least dm2 + p4e � dm2 e+ p4 � 1 clauses. 2This argument gives us a randomized algorithm for �nding a good assignment, one whichsatis�es at least dm2 e+ p4 � 1 clauses. The algorithm can be derandomized using the methodof conditional expectations, to construct a good assignment in O(jf j) time. For details, see[21].If f has more than 4k+3 non-unit clauses, the above argument guarantees an assignmentsatisfying at least dm2 e + k. So now we can assume without loss of generality that f has atmost 4k + 3 non-unit clauses. An algorithm for the decision version is shown in Figure 3.(The search version of �nding such an assignment is obtained by an easy modi�cation andby including the derandomization described above.)Theorem 9: Given a boolean CNF formula f with n variables and m clauses, and aninteger k, we can in O(jf j+ k2�6k) time �nd an assignment to the variables that satis�es atleast dm2 e+ k clauses or discover that such an assignment does not exist.8



Large Sat Algorithm L-S-A (f; k)Input formula f with m clauses on n variables, integer k.Output Yes, if at least T = dm2 e+ k clauses of f can be satis�ed, otherwise No.beginLet U be the set of unit clauses and N the set of non-unit clauses, jU j+ jN j = m.If N = ;, solve the pure-unit-clauses instance using the proof of Proposition 1.Elseif jN j � 4k + 4, report Yes.Else While there are unit clauses v and v in U , modify f by removing both clauses.This decreases m by 2 and T by 1.Now, if jU j � dm2 e+ k, output Yes.Otherwise, report B-S-A-2(f , T ).End Figure 3: FPT algorithm for satisfying dm2 e+ k clauses (L2)Proof:Correctness If jN j is 0, or exceeds 4k + 4, the correct decision is arrived at followingPropositions 1 and 8. Otherwise, the while loop is executed. This removes clauses of theform v and �v in pairs, since exactly one of these is satisifed by any assignment. Once thewhile loop is completed, there are no con
icting clauses within U . So all the clauses in Ucan be satis�ed by setting the variables occurring in U appropriately. If this number itself islarge enough (jU j � dm2 e+k), then there is nothing left to be done. Otherwise, the algorithmB-S-A-2, whose correctness we have already seen, is invoked.Time Analysis The �rst three steps are trivial. Note that when B-S-A-2 is called, jU j <dm2 e+k, and jN j � 4k+3, so m = jU j+ jN j � (dm2 e+k�1)+(4k+3), hence bm2 c � 5k+2.So the number of clauses to be satis�ed, T = dm2 e + k, is bounded by 6k + 3. The timebound now follows from Theorem 7. 2Corollary 10: Given a boolean CNF formula f with n variables and m clauses and aninteger k 2 O(logmn), we can �nd an assignment to the variables that satis�es at leastdm2 e + k clauses of the formula, or discover that no such assignment exists, in polynomialtime.To decide membership of hf; ki in L1 (where k � dm2 e), one could use L-S-A(f ,k � dm2 e)instead of using B-S-A-2(f , k). This turns out to be a better option provided k < 3m=5.9



2.4 The Complexity of L3If f is a CNF formula with m clauses, then the pair hf; ki belongs to L3 i� the deletion ofat most k clauses from the formula f makes it satis�able. That is, at least m� k clauses off can be satis�ed.We show that L3 is hard for the complexity class W [2] (see [7] for the de�nition of theW -hierarchy). This essentially means that L3 is unlikely to be in FPT. We show the W [2]hardness of L3 by reducing the W [2]-hard dominating set problem to it. The parametrizeddominating set problem is the following: given a graph G = (V;E) and an integer k, is therea subset V 0 � V , jV 0j � k, such that 8i 2 V , 9j 2 N [i]: j 2 V 0? Here N [i] for a vertex iis the closed neighbourhood of i (containing i and all its neighbours). The reduction is asfollows: Given G = (V;E), introduce a variable xi for vertex i of G, and consider the formulaF = �x1 ^ �x2 ^ :::�xn ^ n̂i=1 �_j2N [i] (xj)�It is easy to see that there is a dominating set of size at most k in G if and only if there isan assignment to F that satis�es all but at most k clauses. Thus we haveTheorem 11: Given a boolean CNF formula and an integer k, the problem of decidingwhether there is an assignment to the formula that satis�es all but at most k of the clausesis W [2]-hard.It has been brought to our notice recently that the hardness of L3, not just for W[2] butfor the entire W hierarchy W[P], is already known [10].We observe that even if the clause sizes are bounded by three, L3 remains hard; thestandard polynomial-time reduction (see for example [11]) from an unrestricted SAT formulaf to a 3-SAT formula f 0 has the property that (f; k) 2 L3 if and only if (f 0; k) 2 L3. Thuswe haveTheorem 12: Given a boolean CNF formula in which each clause has at most threevariables, and an integer k, the problem of deciding whether there is an assignment to theformula that satis�es all but at most k of the clauses, is W [2]-hard.However, we do not know the parametrized complexity of the 2-CNF restriction of L3.If L3(k) = fhf; ki j hf; ki 2 L3g is �xed-paramater tractable for any �xed k, thenP = NP. (This is because Sat can be framed as an L3(k) instance for any k by adding someclauses.) Therefore, if L3(k) is inW [i], thenW [i] in FPT would imply P = NP. Such a strongconsequence of the W -hierarchy collapse appears unlikely; the best known consequence of aW [i]-complete problem being FPT is that the W hierarchy up to the class W [i] collapses toFPT. Therefore, even for a �xed k, it appears unlikely that L3(k) is in any level of the Whierarchy.This version of MaxSat, L3, is somewhat di�erent frommost other parametrized problemsin that it remains NP-complete even for a constant k. (It has no known algorithm with runtime jf jb(k), where b can be an arbitrary function of k. An algorithm with such a run timewould in fact imply P=FPT=W[P]=NP.) The parametrized complexity framework is notreally geared to address such problems. 10



3 Parametrizing MaxCutWe start with a well known proposition that every graph has a cut of size dm2 e and such acut can be found in linear time.Proposition 13: Given a graph G with n vertices and m edges, a cut in G of size at leastdm2 e can be found in O(m+ n) time.Proof: Pick a random partition (S; �S) of V by placing each vertex of V in S uniformlyand independently with probability 12 . Each edge (u; v) is in the cut (S; �S) with probabilityexactly half. So the expected cut size on a random partition is m2 . Furthermore, by aderandomization technique based on conditional expectations, similar to the one used forMaxSat, we can �nd a cut of size at least dm2 e in O(m+ n) time. 2We now consider the parametrized versions of Maxcut as de�ned in Section 1.3.1 The Complexity of C1 and C3The language C1 is the direct decision version of the maximization problem. As the MaxCutproblem is in the class MaxSNP, C1 is �xed-parameter tractable by the result of [4]. Wepropose some simple algorithms which directly place C1 in FPT without recourse to theMaxSNP reduction. We also comment on the complexity of C3.First, reduce MaxCut to Max2Sat using the following reduction from [21]: create avariable v for every vertex v in the graph. For every edge (i; j) in the graph, create two2-literal clauses f�i _ �jg and fi _ jg. The formula fG is the conjunction of these 2m clauseswhere m is the number of edges in the graph.The following Proposition follows easily by identifying variables set to true with verticesin S.Proposition 14: Given a graph G with m edges, let fG be the corresponding formuladescribed above. G has a cut of size exactly p if and only if there is an assignment satisfyingexactly m+ p of the 2m clauses of fG.Corollary 15: The parametrized language C3 �xed-parameter reduces to the subset of L3where the input formula f is in 2-CNF (it has at most two literals per clause).Algorithms for C1Input: A graph G with n vertices and m edges, an integer k.If k � dm2 e, then the required cut can be found in O(m+ n) time using Proposition 13.Otherwise, any one of the following methods may be used.Method 1 Construct fG as described in Propostion 14 and call the algorithm L-S-A(fG,k).From Theorem 9, this algorithm requires O(m+ n+ k2�6k) time.Method 2 Instead of calling L-S-A as in Method 1, note that at this stage m < 2k and som+ k < 3k. So construct fG and call the algorithm B-S-A-2(fG, m+ k) given in theproof of Theorem 7. The running time is O(m + n+ k2�3k).11



Method 3 At this stage m < 2k. Without loss of generality, we can remove isolatedvertices, since they do not contribute any edges to any cut. So n � 2m, i.e. n < 4k.Find the maximum cut in G as follows: cycle through all subsets S � V , for each S,�nd the size of the cut (S; �S), and keep track of the maximum cut. If this is at leastk, report Yes, otherwise report No. There are at most 2n subsets, and processing eachsubset requires O(m) time, so this method requires O(m2n) time. Since n � 4k andm � 2k, this algorithm has a run time of O(m + n+ k24k).Method 4 Cycle through all subsets H � E of size exactly k. For each H, check if thegraph (V;H) is bipartite. If any such subset is found, report Yes, otherwise report No.There are at most �mk� subsets, and processing each subset requires O(m) = O(2k)time. Since �mk� � 2m < 22k, this algorithm has a run time of O(m+ n + k22k).The theorem below follows from Method 4.Theorem 16: Given a graph G with n vertices and m edges, and an integer k, we can inO(m+ n+ k22k) time �nd a cut of size at least k in G or discover that such a cut does notexist.3.2 The Complexity of C2For C2, we develop two FPT algorithms: one has the feature that it runs in polynomial timefor logarithmically bounded parameter values, and the other runs in linear (O(m+ n)) timewhen k is a constant.For the �rst algorithm, we use the following result [1, 2].Theorem 17: ( Edwards[1, 2]) Given a connected graph G with no self-loops, there existsa bipartite subgraph of G with at least m2 + 12 ln�12 m edges.We use the simpler version: every connected graph without self-loops has a cut of size atleast m2 + n�14 . Consequently, if a graph has c components (and no self-loops), then it has acut of size at least m2 + n�c4 .Figure 4 shows our FPT algorithm for the decision version of C2. Step 1 runs in O(m+n)time, using any standard connected components algorithm. In step 2, in each Gi, the timespent is O(mi2ni), which is at most O(mi24k). So the total time required is O(m24k+m+n).For the search version, step 2 already constructs the cut as required. Step 1 (whenk � n�c4 ) can be made constructive by using an O(n3) time implementation of Edward'sproof, due to Poljak and Turzik [18]. Thus we have the following theorem.Theorem 18: Given a graph G and a parameter k, in O(n3 + m24k) time we can �nd acut of size at least dm2 e+k if one exists in G. The decision version runs in O(n+m+m24k)time.Corollary 19: Given a graph G and a parameter k 2 O(logmn), we can �nd a cut of sizeat least dm2 e+ k in G, if one exists, in polynomial time.A di�erent approach, which we describe below, gives an FPT algorithm with run timeO(m + n + e(k)), where e is a function of k alone. For small values of k, this is better,12



Large Cut Algorithm L-C-A-1 (G; k)Input A graph G = (V;E) with n vertices and m edges, an integer k. Without loss ofgenerality, assume that G has no isolated vertices and no self loops.Output Yes if there is a cut of size dm2 e+ k in G; otherwise No.beginStep 1 Find the connected componentsG1; G2; : : : ; Gc of G. Let Gi have ni verticesand mi edges. If k � n�c4 , then output Yes and halt.Step 2 Otherwise, n � c < 4k. For each i, ni � n � (c � 1) � 4k. For each Gi,�nd the maximum cut size si using the Method 3 described in the previoussubsection. If Pci=1 si � dm2 e + k, then output Yes and halt, otherwise outputNo and halt.end Figure 4: Algorithm for MaxCut C2since the O(m) and O(n) terms are additive. However, it does not give polynomial timealgorithms for logarithmic values of k.For this algorithm, we �rst note the following stengthening of the proposition that everygraph with m edges has a cut of size at least dm2 e.Theorem 20: [12] Given a graph G, and an arbitrary matching M in the graph, thereexists a cut in the graph of size at least dm2 e+ b jM j2 c.We exploit this result in our second FPT algorithm for C2. Figure 5 shows the algorithmfor the decision version.To see why this is an FPT algorithm, note that Steps 1 and 2 run in linear time. If Step3 is reached, then we already know that jM j < 2k, so jSj � 4k � 2. Also, since M is amaximal matching, S forms a vertex cover. And the cut (S; �S) is not large enough. Thusthe following inequalities hold:dm2 e + k > size of the cut (S; �S)= m� the number of edges with both end points in S(no edge has both endpoints in �S because M is maximal)� m� �jSj2 �� m� (2k � 1)(4k � 3)Hence dm2 e + k � (2k � 1)(4k � 3) + 2kThus if Step 3 is reached, we know that m, and hence dm2 e+ k, are O(k2). So is n, sincethere are no isolated vertices. Using the algorithm for C1 at this stage yields a running timeof O(k22dk2 +m+ n) for some constant d.For the search version, steps 2 and 3 already construct cuts as required. To make Step 113



Large Cut Algorithm L-C-A-2 (G; k)Input A graph G = (V;E) with n vertices and m edges, an integer k. Without loss ofgenerality, assume that G has no isolated vertices.Output Yes if there is a cut of size dm2 e+ k in G; otherwise No.beginStep 1 Find a maximal matching M in the graph. If jM j � 2k, then output Yesand halt.Step 2 Let S be the set of vertices of the matching M . If the cut (S; �S) is of sizeat least dm2 e+ k then ouput Yes and halt.Step 3 Call the algorithm for C1 (described in the preceding subsection, Theo-rem 16), with parameter (dm2 e+ k).end Figure 5: Algorithm for MaxCut C2constructive, one approach is to use a recursive implementation of the proof of Theorem 20.We give in Figure 6 a bottomup approach of the same construction that takes O(m) time.For a proof that this produces a cut of the required size, see [12].Thus we have the following theorem.Theorem 21: Given a graph G and a parameter k, in O(k22dk2 +m+ n) time where d isa constant, we can �nd a cut of size at least dm2 e+ k if one exists in G.In keeping with the philosophy of looking at parameter values over and above the guar-anteed values, Theorem 17 suggests that the parametrized complexity of C4 de�ned belowis also of interest. We do not know of any FPT algorithm for this problem.C4 = fhG; ki j 9 a cut of size at least k + m2 + 12 ln�12 m in the graph G g4 ConclusionsWe have investigated the �xed-parameter complexity of the MaxSat and MaxCut problems.One could also consider the corresponding MinSat and MinCut problems. The MinCutproblem has several polynomial time algorithms[15, 16]. For a recent algorithm not basedon network 
ows, see [20]. In the MinSat problem the aim is to �nd the minimum num-ber of clauses of a given formula that must be satis�ed by any truth assignment. Kohli,Krishnamurti and Mirchandani[13] have shown that the decision version of this problemis NP-complete. We can easily show (by an appropriate \UnSat" version of the B-S-A-1 algorithm of Section 2.2, or by using the FPT reduction[14] to Vertex Cover) that theparametrized MinSat language L4 = fhf; ki j 9 an assignment satisfying at most k clauses14



Cut Construction including Matching (G;M)input A graph G = (V;E), a matching in G given as a list of edgesM = h(u1; v1); (u2; v2) : : : ; (ujM j; vjM j)i.Output A set S � V such that the cut (S; �S) contains all the matched edges and atleast half of the non-matched edges.beginInitialise W (the set of vertices already examined) and (S;W � S) (the cut con-structed so far).W = fu1; v1g, S = fu1g.For i = 2 to jM j doW = W [ fui; vig, S1 = S [ fuig, S2 = S [ fvig.If (S1;W � S1) gives a larger cut than (S2;W � S2)in the subgraph induced by Wthen S = S1else S = S2.EndForWhile there is a vertex v 2 V �W doW = W [ fvg, S 0 = S [ fvgIf (S 0;W � S 0) gives a larger cut than (S;W � S)in the subgraph induced by Wthen S = S 0.EndWhileend Figure 6: Algorithm for Cut Construction
15



of the CNF formula f g is �xed-parameter tractable.We make some observations based on our investigation which suggests possible directionsto pursue in the area of parametrized complexity.� In the parametrized versions, � k (or � k) questions and = k questions can havedi�erent parametrized complexity. For instance, consider the MinWtSat problem, onbounded CNF formulae, which asks for a satisfying assignment with the minimumweight (the number of \true" variables). The parametrized languageL5(c) = fhf; ki j f is a c-Sat formula with a satisfying assignment of weight kgis NP-complete even for c = 2, as witnessed by the following reduction from Inde-pendent Set. Given a graph G = (V;E) and an integer k, construct the formulaf = ^(i;j)2E(�xi _ �xj). Then there is a weight k assignment satisfying f if and only ifG has an independent set of size k. (What is more, in f every variable appears onlynegatively.) Since the Independent Set problem is W [1]-complete[8], it follows thatL5(c) is W [1]-hard even for c = 2.However, the related parametrized languageL6(c) = fhf; ki j f is a c-Sat formula with a satisfying assignment of weight at most kgis �xed-parameter tractable. To see this, consider an algorithm which scans the inputfor a positive clause (a clause with no negated literals). (If no such clauses exist, settingall variables to false satis�es all clauses.) On �nding such a clause, it branches alongc paths, setting one of the variables of this clause to true along each path. The treeso constructed is not explored beyond depth k, so the algorithm is an FPT algorithm.When there is no bound on the number of variables per clause, Downey and Fellows[7],and Cai and Chen[4, 5, 6] have independently shown that the problem isW [2]-complete.This di�erence between the complexities of L5(c) and L6(c) is in sharp contrast tothe observation by Cai and Chen[4] that Q=k, Q�k and Q�k versions, are all FPTequivalent for any optimization problem Q if the parametrized questions are of theform \Is the size of the optimum solution =;� or � k". Querying the existence ofsolutions of a particular size is, in many settings, a more natural decision version thanbounding the optimum value, and in this setting, the Q=k, Q�k and Q�k versionsrequire independent analysis.The natural direction to pursue is whether there are other examples of this type. Weconjecture that the languages L1, L2, C1, C2 we investigated in this paper fall in thiscategory | i.e. their corresponding \=k" versions are hard for the W hierarchy. Infact, even if the instance of L1 consists of unit clauses alone, we do not know whetherthe \=k" version is in FPT.� Study of parametrized complexity is useful even to design polynomial algorithms whenthe parameter values are bounded. For example, the only way we know that thelanguages L1(k); L2(k) and C2(k) are polynomial time recognizable if k is a constant,is by observing that they are �xed-parameter tractable.16



� Even if a problem is �xed-parameter tractable, designing simpler and more e�cient al-gorithms is worth pursuing. As the dependence of run time on k improves, this will giveus feasible algorithms for larger ranges of the parameter. Our O(m + �kk) algorithmcompared to Cai and Chen's O(26km) for the standard parameterized Max3Sat, andthe O((1:324718)kk2 + nk) algorithm[3] for vertex cover improving over the straight-forward O(2kn) algorithm are clear examples of this direction.Even more dramatically, an FPT algorithm where dependence on the parameter isof the form 2ck for some constant c gives polynomial-time algorithms for values of klogarithmic in the input size. Our algorithms for L1, L2, C1 and the �rst algorithm forC2 are of this form.� Invariably, the \at least (at most) k" parametrized version and the \all but k" versionshave complementary parametrized complexity as witnessed by the following examples.{ For Vertex Cover, the \at most k" version is �xed-parameter tractable whereasthe \all but at most k" version is the same as the \at least k" version of cliqueand hence is W [1] complete.{ For the irredundant set problem, the \at most k" version is W [1]-Completewhereas the \all but k" version (called the co-irredundant set problem) is inFPT[9].{ For the MaxSat problem, the \at least k" version is �xed-parameter tractable(Section 2.1) whereas the \all but at most k" version is W [2]-hard (Section 2.3).It would be interesting to explore this property in other parametrized problems.We end with some speci�c open problems: What is the parametrized complexity of thefollowing?1. Parametrized (all but k) Max2SatInput: A boolean CNF formula in which each clause has at most 2 variables.Parameter: k > 0.Question: Is there an assignment that satis�es all but at most k of the clauses?2. Parametrized (all but k) MaxCutInput: A graph G.Parameter: k > 0.Question: Is there a set of at most k edges whose removal makes the graph bipartite?3. Parametrized (beyond the large guarantee) MaxCutInput: A graph G.Parameter: k > 0.Question: Does G have a cut of size at least k + m2 + 12 l (n�1)2 m?In Section 3.1, we have shown that problem 2 above is no harder than the problem 1.17
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