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Inference of intraspecific population divergence patterns typically requires genetic data for molecular markers with
relatively high mutation rates. Microsatellites, or short tandem repeat (STR) polymorphisms, have proven informative in
many such investigations. These markers are characterized, however, by high levels of homoplasy and varying
mutational properties, often leading to inaccurate inference of population divergence. A SNPSTR is a genetic system that
consists of an STR polymorphism closely linked (typically < 500 bp) to one or more single-nucleotide polymorphisms
(SNPs). SNPSTR systems are characterized by lower levels of homoplasy than are STR loci. Divergence time estimates
based on STR variation (on the derived SNP allele background) should, therefore, be more accurate and precise. We use
coalescent-based simulations in the context of several models of demographic history to compare divergence time
estimates based on SNPSTR haplotype frequencies and STR allele frequencies. We demonstrate that estimates of
divergence time based on STR variation on the background of a derived SNP allele are more accurate (3% to 7% bias for
SNPSTR versus 11% to 20% bias for STR) and more precise than STR-based estimates, conditional on a recent SNP
mutation. These results hold even for models involving complex demographic scenarios with gene flow, population
expansion, and population bottlenecks. Varying the timing of the mutation event generating the SNP revealed that
estimates of divergence time are sensitive to SNP age, with more recent SNPs giving more accurate and precise estimates
of divergence time. However, varying both mutational properties of STR loci and SNP age demonstrated that multiple
independent SNPSTR systems provide less biased estimates of divergence time. Furthermore, the combination of
estimates based separately on STR and SNPSTR variation provides insight into the age of the derived SNP alleles. In

light of our simulations, we interpret estimates from data for human populations.

Introduction

The inference of within-species population history
from molecular data is typically more challenging than the
inference of species relationships; gene trees are inconsistent
with population history more often than they are with species
history (Arbogast et al. 2002). Both gene flow and
stochasticity contribute to this inconsistency. An additional
challenge is molecular resolution: for intraspecific inference,
genetic regions with a relatively high mutation rate are most
informative. An optimal strategy for intraspecific studies,
therefore, is to examine a large number of independently
evolving, rapidly mutating, molecular regions.

Single-nucleotide polymorphisms (SNPs) provide
extensive data on population history, but few studies have
attempted to estimate population parameters using these
markers. The high mutation rate (e.g., Weber and Wong
1993; Ellegren 2000a; Huang et al. 2002) characterizing
short tandem repeats (STRs, or microsatellites) (Di Rienzo
et al. 1994; Tautz and Shlotterer 1994), coupled with their
wide distribution in the human genome, make them
effective markers for estimating divergence times between
human populations. Various analytical approaches based
on distance statistics (e.g., (6;1)2 by Goldstein et al. [1995]
and Tp by Zhivotovsky [2001]) and coalescent models in
a Bayesian framework (BATWING [Wilson, Weale, and
Balding 2003]) have been developed and applied to STR
data (e.g., Jin et al. 2000; Zhivotovsky, Rosenberg, and
Feldman 2003) in this context.

Although STR loci evolve rapidly and, therefore,
provide needed molecular resolution (Grant and Kluge
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2003), their mutation properties have disadvantages. Loci
evolving according to a simple stepwise mutation model
(Kimura and Ohata 1978) or a two-phase model (Di Rienzo
etal. 1994) exhibit homoplasy, wherein two alleles identical
by state are not identical by descent. If mutation rates are
high, homoplasy obscures the gene history and leads to
estimates of divergence time that are too recent. The extent
and impact of such homoplasy has been evaluated using
molecular characterization of STR flanking regions (e.g.,
Grimaldi and Crouau-Roy 1997; Makova et al. 1998;
Van Oppen et al. 2000) and simulation (Estoup, Jarne, and
Cornuet 2002). Simulation studies illustrated that the
probability of two gene copies at the same locus being
identical by state but not by descent (an index of homoplasy)
was as high as 30%, especially with models including
constraints on allele size. A certain fraction of this
homoplasy can be estimated through further molecular
analysis (molecularly accessible size homoplasy, or
MASH), for example, by sequencing regions flanking the
microsatellite locus (Estoup, Jarne, and Cornuet 2002).
Compound genetic marker systems that include one or
more SNPs tightly linked to an STR also partially reveal
STR homoplasy. The haplotypes of such systems can be
divided into two categories: STR variation on the ancestral
SNP allele background and STR variation on the derived
SNP allele background. The haplotypes with the derived
SNP share a more recent common ancestor than do the
haplotypes with the ancestral SNP. The STR variation on the
derived SNP background is, therefore, likely to be
characterized by far less homoplasy. The younger the
SNP, the less homoplasy we expect to see in the STR
variation on the background of the derived allele. The
nonrecombining region of the human Y chromosome
(de Kniff 2000) constitutes a highly informative example
and has been used to estimate divergence times between
groups (e.g., Hurles et al. 1999; Kayser et al. 2003;
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Knight et al. 2003). The Y chromosome, however, like the
mitochondrial genome, reflects only a fraction of human
history and has been subject to the influence of variation in
effective population size (reflecting variation in the level of
polygyny in human populations as revealed in Kayser et al.
[2003], among other factors) and possible selective sweeps.

In response to the need for independently and rapidly
evolving genetic systems, Mountain et al. (2002) de-
veloped protocols for autosomal SNPSTR systems,
consisting of one or more SNPs tightly linked to an STR
marker. SNPSTR systems satisfy three requirements: (1)
close physical linkage of two or more polymorphisms
(typically < 500 bp), (2) significant differences in
mutation rate between polymorphisms, and (3) potential
for a large number of independently evolving, compound
haplotypic systems.

Using two SNPSTR systems, Mountain et al. (2002)
demonstrated support for the hypothesis that anatomically
modern humans first migrated out of Africa relatively
recently. Tishkoff and et al (1996, 2000) reached similar
conclusions using analogous systems with STRs linked to
ALU polymorphisms rather than SNPs. Although these
initial studies provided qualitative evidence for the potential
contributions of SNPSTR haplotype data to the study of
human evolution, they provided no quantitative evaluation
of the approach in the context of parameter estimation.

The SNP(s) of compound genetic systems such as
SNPSTRs reveal homoplasy at the linked STR locus. STR
variation on the background of a relatively recent SNP
allelle with respect to the time of a population divergence
may, therefore, provide a particularly good estimate of
population divergence time. In this paper, we simulate
coalescent processes to evaluate how informative these
novel marker systems are for estimating the time of
divergence between two populations. Three genetic distance
measures are used to estimate population divergence time.
We compare divergence time estimates calculated from total
STR variation and from STR variation on the derived SNP
allele, evaluating these estimates in terms of accuracy and
precision. Additionally, we explore the impact of population
divergence coupled with population expansion, bottlenecks,
and gene flow (processes not incorporated in models on
which estimators are based) on estimates of divergence time
from SNPSTR variation and from STR variation. We then
evaluate the sensitivity of these measures to the timing of the
mutation event that generated the SNP as well as to the
variability in mutational properties of STR loci. Finally, we
calculate divergence time estimates between African and
non-African populations for published SNPSTR data and
interpret the results in light of the simulations. Although this
study was motivated by questions regarding human
evolution, results are also broadly relevant to intraspecific
studies of other species (Makova et al. 1998; Hey et al.
2004).

Materials and Methods
Simulations

We evaluated estimates of divergence time by
comparing the accuracy and precision of those estimates.
Accuracy (measured as l-the magnitude of the bias)
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corresponds to the proximity between the true value and
the estimate. It is measured as the difference between the
median of estimated divergence time (over 1,000 simula-
tion runs for each locus) and the true divergence time.
Precision is represented here by the range between the 95th
and the 5th percentiles of the same distribution and is
highly correlated with the variance. Error, reflecting both
accuracy and precision, is calculated as follows:

Z (Test - Ttrue)2
I (1)

n

Error =

where T}, is the true divergence time, T, is the estimated
divergence time, and n is the number of simulations. A
high value of error implies low accuracy and/or low
precision.

These statistical properties of estimates of divergence
time (see Estimating Divergence Time) were calculated for
simulated STR and simulated SNPSTR data (see
Coalescent Simulations, Ascertainment), a range of
population histories (see Demographic Scenarios), and
a range of SNP and STR mutation models (see Sensitivity
Analyses).

Coalescent Simulations

The coalescent (Hudson 1990) was used to simulate
genetic variation for both STR and SNPSTR systems
resulting from different demographic scenarios. We
modified the publicly available coalescent simulation
program, SIMCOAL (Excoffier, Novembre, and Schneider
2000), which currently models unlinked systems, to
accommodate linked marker systems. The modified
version is available at www.stanford.edu/group/mountainlab.
Coalescent simulations assume neutral evolution, ran-
domly mating populations, and nonoverlapping genera-
tions. For all demographic scenarios described below,
populations with effective size of 10,000 diploid individ-
uals were modeled, with 45 individuals (90 chromosomes)
sampled per population. Given the close physical linkage
(< 500 bp) separating the SNP and STR of existing
SNPSTR systems for humans (Mountain et al. 2002), we
assumed complete linkage between the SNP and the STR;
the SNP and the STR mutations were modeled on the same
genealogy. STR loci evolved according to a simple step-
wise mutation model (mutation rate =0.0005). All modeled
STR loci (apart from the sensitivity analysis) had the same
mutation rate. A survey of 377 microsatellite loci typed for
more than 1,000 humans by the Marshfield Genotyping
Institute revealed that the average number of alleles is
approximately 10.8, with a standard deviation of 3.6
alleles. Only nine of 377 loci had a size range of more than
20 alleles. We, therefore, modeled a range constraint (the
number of possible allelic states) of 20. The SNP was
modeled as a biallelic system (ancestral or derived allele for
each chromosome) and as a unique event in history of
the two populations. Once we had generated the genealogy
(via the standard SIMCOAL routine), we identified the
branches of the genealogy where the derived SNP mutation
might have arisen, given the specified time of mutation.
One of these branches was picked at random, and all

220z 1890100 ¥ uo 3senb Aq 61520 1/096L/01/L2/a101ie/eqW/W0od dno ojwepede//:sdiy wolj papeojumoq



1962 Ramakrishnan and Mountain

Table 1

Two-Population Divergence Models

Model # Divergence Time" SNP Mutation Time® Gene Flow Begins® Gene Flow Ends® r m Bottleneck
la 5000 6000 - - 0 0 -
1b 2000 2400 — - 0 0 -
2a 5000 6000 5000 0 0 0.00005 -
2b 2000 2400 2000 0 0 0.00005 -
3a 5000 6000 5000 4000 0 0.00005 -
3b 2000 2400 2000 1600 0 0.00005 -
4a 5000 6000 1000 0 0 0.00005 -
4b 2000 2400 400 0 0 0.00005 -
S5a 5000 6000 - - 0.000461° 0 -
5b 2000 2400 — - 0.001160° 0 -
6a 5000 6000 - - 0.000925°¢ 0 -
6b 2000 2400 - - 0.002320° 0 -
Ta 5000 6000 — - 0.001520¢ 0 5%
7b 2000 2400 - - 0.003800¢ 0 5%
8a 2000 2700 — - 0 0 -
8b 2000 3000 — - 0 0 -
8c 2000 8000 - - 0 0 -

# All times in terms of number of generations in the past; r is exponential growth rate/generation, m is migration rate/generation.

® After population divergence, effective population size increases to 100,000.
¢ After population divergence, effective size increases to 1,000,000.
9 After bottleneck, effective size increases to 100,000.

descendents of this lineage inherited the derived SNP
allele. The timing of the mutation that led to the derived
allele (for the SNP) was fixed before divergence. For most
simulations, this time was set to 120% of the divergence
time (see Demographic Scenarios).

Demographic Scenarios

We investigated 17 two-population demographic
histories. Parameters differing between models included
population divergence time, population growth rate,
migration, and the presence/absence of a population
bottleneck. Migration was assumed to be symmetric. See
table 1 for detailed descriptions of these parameters for all
models.

Both ancient (5,000 unscaled generations before
present) and recent (2,000 unscaled generations before
present) population divergence were modeled. In both
cases, the divergence time is not scaled by effective size.
These divergence scenarios were then investigated in combi-
nation with migration, population growth, and population
bottlenecks.

We investigated the impact of gene flow on estimates
of divergence time. A migration rate of 0.00005 per
generation (Nom =1 [i.e., 1 migrant per generation]) was
modeled after population divergence in three situations:
(1) continuous gene flow after divergence (models 2a and
2b), (2) gene flow for the initial generations after
divergence, for 20% of the divergence time (i.e., from
2,000 to 1,600 generations in the past for the recent
divergence [model 3b] and from 5,000 to 4,000 gener-
ations in the past for the ancient divergence [model 3a]),
and (3) gene flow just before the present, for 20% of the
divergence time (400 generations in the past to present for
the recent divergence [model 4b] and 1,000 in the past to
present for the ancient divergence [model 4a]).

We investigated the impact of population growth on
estimates of divergence time. Growth was modeled as
an exponential process. After population divergence, one of

the two populations grew such that population size at t =0
(present) was 10 times the original size (100,000 [models
5a and 5b]) or 100 times the original size (1,000,000
[models 6a and 6b]).

The impacts of a population bottleneck followed by
growth on estimates of divergence time were investigated.
As with the investigations of population growth, only one
of the two populations went through the bottleneck and
subsequent growth. The bottleneck occurred immediately
after population divergence. A bottleneck consisted of
a reduction to 5% of the original population size:
postbottleneck population size was 500 (models 7a and
7b). In both cases, subsequent exponential growth led to
a population size of 1,000,000 at ¢t = 0.

Sensitivity Analyses

We explored the sensitivity of our results for the
recent divergence scenario (table 1, model 1b: no growth,
bottleneck, or gene flow) to timing of SNP mutation and to
mutation model.

All of the above models represented a fairly recent
SNP mutation relative to divergence time. We investigated
the effect of an older mutation event (divergence time:
2,000 generations in the past; SNP mutation event: 2,700,
3,000, and 8,000 generations in the past) on estimates of
divergence time (models 8a, b, and c).

We modeled variation in STR mutation rate and range
constraint by randomly choosing mutation rate and range
constraint from uniform distributions (mutation rate:
0.0001 to 0.005; range constraint: 10 to 20 allele sizes
per locus). Twenty such “realistic loci” were simulated
(1,000 observations per locus) to investigate effects on
divergence time estimation. Divergence time estimates for
the above analyses were based on an average mutation rate
of 0.00255 (average of 0.0001 and 0.005). We did not
calculate T, (see Estimates of Divergence Time) because
initial results revealed that Tp, provides more biased
estimates of divergence time than do the other statistics.
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Ascertainment

Given the focus on divergence time, we simulated
SNPSTR ascertainment by including only simulated data
with at least one derived SNP allele in both populations
(45 samples each). Simulations for the models described
above were repeated to generate 1,000 observations (after
ascertainment) per analysis. For model la, simulations
were repeated to generate observations for 1 (1,000 runs),
2 (2,000 runs), 5 (5,000 runs), 10 (10,000 runs), 20
(20,000 runs), and 100 (100,000 runs) independent loci
(where a locus consists of one STR locus or one SNPSTR
system). For all other models, simulations were repeated
20,000 times to generate data representing 20 independent
loci.

Estimates of Divergence Time

Three different distance statistics were used to
estimate divergence time based on (1) total STR variation
and (2) STR variation on the derived SNP allele. We
assume that in practice the derived SNP can be identified
either through comparison with an outgroup or through
examination of the geographic distribution of the two SNP
alleles. All samples with the derived SNP share a common
ancestor. The STR variation on the derived SNP
background is, thus, conditional on the single event of
the SNP mutation; such genealogies are known as
conditional genealogies (Wuif and Donnelly 1999; Wuif
2000). The STR variation on the derived SNP background
represents a genealogically defined subsample of the data,
making it appropriate to apply statistics independently to
variation on the derived SNP background. Divergence
time estimates based on multiple loci were obtained by
averaging over loci; the estimate based on 20 loci is the
average of 20 single-locus estimates.

(6;1)2 (Goldstein et al. 1995) is a distance statistic
appropriate where data fit a stepwise mutation model (e.g.,
STR allele frequencies):

(3p)* = (m; —my)’ (2)

where m; and m, are mean repeat length in populations 1
and 2. (8p)* can be used to estimate T(3p)* as follows:
6 2

Bu)z = % (3)
where w is the STR mutation rate. T(Su)2 can be calculated
(1) for the STR locus (SNP-blind or ignoring the SNP) and
(2) based on STR wvariation on the derived SNP
background.

The linearity of (3p)* with divergence time is strongly
influenced by the presence of range constraints (Feldman
et al. 1997; Zhivotovsky, Feldman, and Grishechkin
1997). D, provides a less biased estimate of divergence
time than does (8u)2 for STR loci with range constraints
(Feldman et al. 1997). D; was estimated as follows:

Dy = log KLM - Z(amf) / (LM)J L@

L is the number of loci and M is the maximum possible
distance, given by:

T
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_ 1)
g~ BN =11~ 1/R)] (5)
where w is the STR mutation rate, N is the population size,
and R is the range constraint. Tpy(based on D;) was
estimated according to:

Dy,
- —4w(1 — cos(n/R)) (6)

where w is the STR mutation rate and R is the range
constraint. For the simulated population histories (models
1 to 8), we know the value of the range constraint (R = 20).
As aresult, we can calculate Tp, . For real data, it might be
difficult to calculate Tp; when R is not known.

Zhivotovsky (2001) developed a distance-based
statistic characterized by better performance than (Sp)*
given population growth and/or gene flow after population
divergence. Tp estimates divergence time based on STR
variation as follows:

TDL

D, Wy
Ip=——— 7
PTow w ™)
where w is mutation rate, V, is the STR allelic variance in
the ancestral population just before population divergence,

and D, is the average square distance given by:
D, = Z Z(i — )y (8)
i J

where x; and y; are the frequencies of repeat lengths i and j
in populations x and y.

We assumed Vy = 0 for the STR variation on the
derived SNP background when calculating Tp svp. When
calculating Tps7g (based on total STR variation), we
assumed V(; = mutation drift equilibrium allelic variance
(given SMM, as suggested in Zhivotovsky [2001]).

We used all three estimators to calculate divergence
time for the simplest divergence scenarios (models la and
1b) using (1) total STR variation and (2) SNPSTR
variation (STR variation on the derived SNP background).
The optimal statistics (among the above three statistics) for
each marker category (STR and SNPSTR) were identified,
and only those statistics were used to estimate divergence
time for remaining models.

Application to Empirical Data

We calculated the divergence time between African
and non-African samples for both SNPSTR systems (22SR1
and 5SR1 [Mountain et al. 2002]) using Tp syp (formulas
7 and 8, based on the STR variation linked to the derived
SNP allele), T(5 H)zdSNP (formulas 2 and 3, based on the STR
variation linked to the derived SNP allele), and T(31)*str
(formulas 2 and 3, based on the STR). Outgroup comparison
including chimpanzees provided information regarding
ancestral SNP state for each SNPSTR system (Mountain
et al. 2002). Estimates of mutation rate for human STRs
range between 0.0006 and 0.003 (Ellegren 20005). We
estimated divergence time separately for each system using
each of these rates. In addition, we calculated divergence
time from an average of estimates from 5SR1 and 22SR1
using an intermediate STR mutation rate of 0.0018.
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Results
Estimates of Divergence Time
Simple Models

Table 2 presents estimates of divergence time using
T(Bp)éTR, Tpstrs Torstr (based on STR variation) and

T (BH)ESNP, Tpasne, Torasne (based on SNPSTR variation,
derived SNP only) for data simulated on the basis of
a 5,000-generation-old population divergence (model 1a).
Comparison of the estimates to the modeled divergence
time reveals that T(Sp)2 is the best estimator (among the
statistics considered) in the case of total STR variation,
whereas Tp is the best estimator in the case of SNPSTR
variation. Similar results were observed for model 1b. We
assume that optimality under models la and 1b carries
over to more complex models. To evaluate each type of
genetic marker (STR and SNPSTR) under optimal
conditions, all comparisons }Z)resented henceforth focus
on differences between T(5p)” (STR) and Tp (SNPSTR-
derived SNP). “STR” refers to T(3j1)* calculated based on
STR data alone. “SNPSTR” refers to T, calculated on the
basis of the STR variation on the background of the
derived SNP allele for each SNPSTR system.

Table 3 provides a summary of accuracy and
precision of STR and SNPSTR estimators for model 1a,
given the number of loci. Increasing the number of loci did
not significantly change the accuracy but did, as expected,
increase the precision in all cases. For example, the 5th to
95th percentile changed from 382 to 16,444 to 2,677 to
8,116 when the number of loci was increased from 1 to 10
for the SNPSTR estimator. Note that increased precision in
the context of a strong bias (as for STR’s alone) can be
highly misleading (5th to 95th percentile, 1 locus: 15 to
18,700 and 5th to 95th percentile, 20 loci: 1,714 to 7,889).
Both STR-based and SNPSTR-based estimates of di-
vergence time based on 100 loci were characterized by
much lower error (STR: 92 and SNPSTR: 56) than
estimates based on fewer loci. This decreased error is
primarily the result of increased precision.

The SNPSTR estimator was characterized by lower
error (table 4) than the STR estimator for the divergence
time estimates based on 20 loci, given simple models of
recent and ancient (table 1: models la and 1b) population
divergence. For both models, the SNPSTR estimator was
less biased (fig. 2) (0.3% overestimate for ancient diver-
gence, and 3% overestimate for recent divergence) than the
STR estimator (25% underestimate for ancient divergence,
and 14% underestimate for the recent divergence).

Table 3

Table 2
Divergence Time Estimates Based on SNPSTR and STRs
for Three Statistics

Statistic dSNP STR
Tp 5003 2168
T(Sp)? 3409 3750
TpL, 2155 2586

Norte.—For the derived SNP allele (ASNP), divergence time estimate is based on
STR variation on the derived SNP background. All estimates are based on 20 loci.

Box plots (fig. 1) illustrate that the SNPSTR estimator
also has lower variance for both ancient and recent
divergence.

Models with Gene Flow

Continuous gene flow of one migrant per generation
after population divergence (models 2a and 2b) resulted in
SNPSTR estimates characterized by lower error (table 4),
reflecting higher accuracy and higher precision (fig. 2a)
than STR estimates. Although both estimators resulted in
biased estimates, the bias was greater for the STR
estimator (47% and 27% for ancient and recent divergence,
respectively) than for the SNPSTR estimator (31% and
16% for ancient and recent divergence, respectively) (fig.
2a).

Results for models where gene flow between
populations took place during a limited time period
immediately after population divergence (table 1: models
3a and 3b) were very similar to those models with
continuous gene flow. SNPSTR estimates were character-
ized by lower error (table 4) resulting from higher accuracy
and higher precision than STR estimates. Both SNPSTR
and STR estimators underestimated divergence time,
although the estimates were slightly less biased than for
continuous gene flow. For example, the bias for the
SNPSTR estimator was 30% and 15% for ancient and
recent divergence, respectively.

Simulations with recent gene flow between popula-
tions (table 1: models 4a and 4b) revealed lower error
(table 4) and higher precision and accuracy (fig. 2b) for the
SNPSTR estimator than did the STR estimator (table 4).
Although both SNPSTRs and STRs still underestimated
divergence time, estimates were less biased (SNPSTR:
0.8% and 6%, respectively, for ancient and recent
divergence; STR: 25% and 17%, respectively, for ancient
and recent divergence).

Divergence Time Estimates for Different Numbers of Loci

STR Estimator

Number of Loci (Precision)

SNPSTR Estimator

(Precision) Error STR, SNPSTR

1 1,309 (15-18,700)

2 2,350 (160-14,267)

5 3,308 (846-13,528)
10 3,487 (1,515-10,023)
20 3,750 (1,714-7,889)
100 4,567 (3,420-6,314)

3,279 (382-16, 444) 6639,5764
3,916 (1,046-13,041) 4621,4170
4,603 (2,047-9,619) 3417,2517
4,715 (2,677-8,116) 2548,1779
5,003 (3,370-7,568) 1960,1320
5,010 (4,236-7,568) 92,56

Note.—STR and SNPSTR estimators for 1, 2, 5, 10, 20, and 100 loci for a 5,000-generation-old divergence (model 1a). The
95th and 5th percentiles are indicated in parentheses. Error for STR and SNPSTR estimates are shown.
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Table 4
Error of Divergence Estimates for all Models
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Model Number Model Description STR Bias ~ SNPSTR Bias  STR Precision =~ SNPSTR Precision =~ STR Error ~ SNPSTR Error

la Ancient divergence —0.25 +0.003 17157185 3370-7568 1960 1320

1b Recent divergence —0.14 —0.03 817-3424 1336-3202 857 599

2a Ancient divergence —0.47 —0.31 1275-5319 2154-5216 2442 1740
Gene flow

2b Recent divergence —0.27 —0.16 707-2863 1004-2670 842 584
Gene flow

3a Ancient divergence —0.36 —0.30 1598-6430 2168-5474 2093 1740
Initial gene flow

3b Recent divergence —-0.22 —0.15 766-3250 1071-2811 834 579
Initial gene flow

4a Ancient divergence +0.25 +0.008 1812-6708 3229-7346 1934 1725
Recent gene flow

4b Recent divergence +0.17 +0.06 836-3260 1359-3270 794 623
Recent gene flow

Sa Ancient divergence +0.44 —0.067 1376-5263 3073-6813 2361 1231
Low growth

5b Recent divergence +0.37 —0.1 589-2428 1294-3116 869 582
Low growth

6a Ancient divergence —0.51 —0.13 12184867 2963-6702 2586 1235
High growth

6b Recent divergence +0.44 —0.01 535-2178 1243-3097 942 572
High growth

Ta Ancient divergence +0.25 —0.06 2147-8365 2873-6649 2822 1192
Bottleneck and growth

7b Recent divergence +0.75 —0.05 1017-3992 1219-2930 2068 550
Bottleneck & growth

8a Recent divergence —0.16 +0.13 812-3440 1100-3900 862 698
2,700-year-old SNP

8b Recent divergence —0.12 +0.2 820-3100 10004000 849 770
3,000-year-old SNP

8c Recent divergence —0.14 +0.94 817-3430 2311-6658 854 2499

8,000-year-old SNP

Note.—Estimates of divergence time (based on 20 loci, T(é‘)p)2 str for STRs and Tp snp for SNPSTRs) for all models were compared with true divergence time to
estimate error. Higher value of error indicates a more biased and/or less accurate estimate.

Models with Growth and Bottlenecks

Models with population growth (table 1: models Sa
and 5b) revealed that the SNPSTR estimator was
characterized by lower error (table 4), primarily reflecting
lower bias than STR estimates. Simulations demonstrated
overestimates of divergence time by the STR estimator (by
449% and 37%, respectively, for ancient and recent
population divergence) (fig. 4a). The bias was far lower
for the SNPSTR estimator (6% underestimate and 3%
overestimate, respectively, for ancient and recent di-
vergence). The SNPSTR estimator was characterized by
a slightly higher precision than was the STR estimator
(fig. 3a).

For models with a higher growth rate (table 1: models
6a and 6b), results were similar to those presented above,
although the SNPSTR estimator was slightly more biased
(13% and 1% underestimate, respectively, for ancient and
recent divergence) than for lower growth rates.

Models with a population bottleneck followed by
growth (table 1: models 7a and 7b) revealed that the STR
estimator was characterized by a higher error (table 4)
(almost 4 times as large in the case of recent divergence)
than was the SNPSTR estimator, reflecting much higher
accuracy and slightly higher precision (fig. 3b). STRs
overestimated divergence time (25% and 75%, respec-
tively, for ancient and recent divergence) compared with
underestimates of divergence time by the SNPSTR

estimator (6% and 5%, respectively, for ancient and recent
divergence).

Sensitivity Analyses
Timing of Mutation Event Creating SNP

As the mutation event that created the SNP was
pushed back in time relative to divergence, the error
characterizing the SNPSTR estimator increased (table 4,
error: 698, 770, and 2,499, respectively, for 2,700-
generation-old,  3,000-generation-old, and  8,000-
generation-old SNP; figure 4, divergence time estimates
for 2,400-generation-old, 2,700-gneration-old, and 3,000-
generation-old SNP) because of lower accuracy and lower
precision. However, even for a 3,000-generation-old SNP,
error of the SNPSTR estimator was lower than for the STR
estimator (800 versus 900). The bias in estimating
divergence time using Tp increased with increasing SNP
age (13%, 24%, and 94%, respectively, for mutation
timing 2,700, 3,000, and 8,000 generations in the past).

Mutational Properties

Varying mutational properties of the 20 simulated
STR loci revealed much higher error for the STR estimator
(table 5), reflecting much lower accuracy and higher
variance. Using the STR estimator resulted in very
significant underestimates of divergence time (77%)
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compared with a slight overestimate by the SNPSTR
estimator (6%) (table 5). Whereas the 95th percentile to
5th percentile interval was larger for the SNPSTR
estimator, this interval for the STR estimator did not even
include the true divergence time estimate, so that
a comparison of precision is not meaningful in this case.

Application to Empirical Data

Estimates of divergence time between African and
non-African populations for two SNPSTR systems are
given in table 6. For both 22SR1 and 5SR1, the STR
estimates (using T(Bu)z) estimates were relatively low:
1,930 (n=0.003) and 9,654 (1= 0.0006) years for 22SR1
and 6,025 (u = 0.003) and 30,147 (1 = 0.0006) years for
5SR1. The highest estimates of divergence time were
based on SNPSTR variation (on the derived SNP allele)
and Tp: 28,929 (u = 0.003) and 144,645 (n = 0.0006)
years for 22SR1 and 158,320 (i = 0.003) and 791,604
(L = 0.0006) for 5SRI1. Estimates based on the 5SR1
system were always higher than for the 22SR1 system.

Estimates of divergence time between African and
non-African populations averaged over both SNPSTR
systems are given in table 6. The STR estimates (using
T(6p)2) estimates were relatively low (6,632). The highest
estimates of divergence time were based on SNPSTR
variation (on the derived SNP allele) and Tp (156,041).
Estimates based on the 5SR1 system were always higher
than estimates based on the 22SR1 system.

Discussion

The coalescent simulations of population divergence
presented here demonstrate that estimates of divergence
time based on SNPSTR data are characterized by lower
error than those based solely on the STR data, irrespective
of the demographic history and conditional on the modeled
SNP ages. The lower error of SNPSTR estimates is caused
by both higher accuracy (lower bias) and higher precision
in most cases. We compared the most accurate estimator of
divergence time for total STR variation (T(Su)z) to the
most accurate estimator of divergence time for SNPSTR
variation (Tp) to evaluate each type of marker under
optimal conditions, strengthening the above result. The
lower error for SNPSTR data is particularly impressive
because the number of STR alleles on the derived SNP
background is a subset of the total STR variation. (i.e., the
sample size on which the SNPSTR estimator are based is
much lower than that of the STR estimator). The reduced
error reflects the lower levels of STR homoplasy on the
derived SNP background.

When STR variation on the derived SNP is used to
estimate divergence time, Tp, serves as a better estimator
than T(Su)2 or Tpr. Given a stepwise mutation model for
STR evolution, Goldstein et al. (1995) demonstrated that
either average square distance (ASD, or Dy; formula 8) or
(?Su)2 (formula 2) can be used to estimate population
divergence time. Estimates based on (3)* have lower
variance, making it the preferred statistic. However,
estimates of divergence time using (Sp)* are based on
the assumption that the predivergence population is in
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Fic. 1.—Bias and precision for the STR and SNPSTR estimators for
two divergence times, 5,000 (model 1a) and 2,000 (model 1b) generations
in the past. Estimates are based on 20 loci. The box plots summarize the
distribution of divergence time estimates for both statistics. Upper and
lower bounds of the box correspond to the 75th and the 25th percentile for
the STR and SNPSTR estimators, and the midpoint of the box represents
the 50th percentile (bias is the percentage difference between this estimate
and the true value, represented by a solid line). Error bars correspond to
the 95th and 5th percentile for the STR and SNPSTR estimators (i.e.,
precision). Circles represent outliers in the STR and SNPSTR estimator
distributions.

mutation-drift equilibrium. In the models presented here,
because the mutation creating the derived SNP allele is
fairly recent compared with population divergence, this
assumption is inappropriate for the derived SNP. Hence,
T(ow)” estimates based on STR variation at the derived
SNP allele are biased. Because Tp was not developed
based on this assumption, it serves as a more accurate and
precise estimator in the context of SNPSTR variation.
Additionally, the fact that Tp; does not serve as a good
estimator suggests that homoplasic variation caused by
range constraints is low at the derived SNP allele for this
simulated data set.

As expected for both STR and SNPSTR estimators,
divergence time estimates for simulations of population
divergence scenarios without gene flow, expansion, or
bottlenecks (table 1; models 1a and 1b) were less biased
than for more complex histories (Zhivotovsky 2001). The
STR estimator, however, was consistently more biased
than the SNPSTR estimator. Comparing estimates between
the two divergence times demonstrated that bias was
greater for ancient versus recent divergence (25% versus
14%) for the STR estimator. This result reflects increased
homoplasic variation at the STR locus in the case of
ancient divergence. On the other hand, for the SNPSTR
estimator, the ancient divergence time estimates were less
biased than the recent estimates (0.3% versus 3%). The
improved estimates for ancient divergence time probably
reflect the difference in the proportion of samples with the
derived SNP (between model 1a and model 1b). Because
the derived SNP allele is younger in the case of the recent
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Fic. 2.—Bias and precision for the STR and SNPSTR estimators four models of population history. Estimates are based on 20 loci. The box plots
summarize the distribution of divergence time estimates for both statistics. Upper and lower bounds of the box correspond to the 75th and the 25th
percentile for the STR and SNPSTR estimators, and the midpoint of the box represents the 50th percentile (bias is the percentage difference between
this estimate and the true value, represented by a solid line). Error bars correspond to the 95th and 5th percentile for the STR and SNPSTR estimators
(i.e., precision). Circles represent outliers in the STR and SNPSTR estimator distributions. (¢) Two divergence times, 5,000 (model 2a) and 2,000
(model 2b) generations in the past, followed by continuous gene flow (1 migrant per generation); (b) two divergence times, 5,000 (model 4a) and 2,000
(model 4b) generations in the past, followed by recent gene flow (1 migrant per generation).

divergence (2,400 generations versus 6,000 generations),
a smaller proportion of the samples have the derived
allele, leading to greater sampling error. Because im-
proved estimates of divergence time reflect a combination
of decreased homoplasy and increased sample size
(individuals with STR variation on the derived SNP back-
ground), the contributions of these factors cannot be
estimated individually.

Models with gene flow between populations (table 1:
models 2a—4b) resulted in very biased estimates, reflecting
the high level of gene flow modeled here. Estimates will be
less biased for lower levels of gene flow, especially in
cases where gene flow occurred soon after the divergence
event. The small change in bias between continuous gene
flow and ancient gene flow may be the result of the smaller
number of mutations generated at the tips of a coalescent
genealogy. Hence, recent gene flow does not have as
significant an impact on STR variation as does ancient
gene flow, at least for the level of gene flow modeled in
our simulations. Higher levels of recent gene flow might
significantly impact bias and variance of divergence time
estimates.

Demographic scenarios incorporating growth or
a bottleneck followed by growth (table 1: models 5a—7b)
always resulted in biased estimates of divergence time for
the STR, as expected (Zhivotovsky 2001). Such bias is
less evident when STR variation on the derived SNP
background is used to estimate divergence time: the bias is
always lower than 13% when using the SNPSTR
estimator. On the other hand, the STR estimator resulted
in bias between 25% and 75%.

Sensitivity analyses indicated that the earlier the
mutation event that generated the SNP, the greater the bias
in SNPSTR estimates of divergence time. However, only
when the mutation generating the SNP occurred 50%
earlier than the divergence time is the bias comparable to
STR estimates. We also investigated models for much
older SNPs (between 3,000 and 8,000 generations in the
past). We found that for very old SNPs, T, estimates are
characterized by a bias of +95% and that bias increases
linearly with SNP age. The increased bias is consistent
with our understanding that for Tp, the older the SNP
mutation, the less valid is the assumption that Vo = 0
(Zhivotovsky 2001). Additionally, as the SNP gets older,
the value of T(3u)*> based on the derived SNP allele
asymptotically approaches the STR estimate of divergence
time.

Our results demonstrate that the relevance of a given
SNPSTR system depends on the timing of the population
events in question. The same dependency arises in the case
of the Y chromosome. Each unique event polymorphism
(UEP) on the Y chromosome, having arisen in a particular
geographic location at a particular time, has the potential to
reveal information regarding a subset of population events.
The UEP defines a “haplogroup” and associated STR
variation provides insight into population history (Stumpf
and Goldstein 2001). Although the Y chromosome
provides the advantage of multiple STRs linked to any
given UEP, SNPSTR systems provide a different advan-
tage: multiple, independently evolving systems relevant in
the context of any given population event. Using a set of
SNPSTR systems with a range of SNP ages (including
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FiG. 3.—Bias and precision for the STR and SNPSTR estimators for two divergence times, 5,000 (model 5a) and 2,000 (model 5b) generations.
Estimates are based on 20 loci. The box plots summarize the distribution of divergence time estimates for both statistics. Upper and lower bounds of the
box correspond to the 75th and the 25th percentile for the STR and SNPSTR estimators and the midpoint of the box represents the 50th percentile (bias
is the percentage difference between this estimate and the true value, represented by a solid line). Error bars correspond to the 95th and 5th percentile for
the STR and SNPSTR estimators (i.e., precision). Circles represent outliers in the STR and SNPSTR estimator distributions. (a¢) Two divergence times,
5,000 (model 5a) and 2,000 (model 5b) generations in the past, followed by exponential population growth in one of the two diverging population, and
(b) two divergence times, 5,000 (model 7a) and 2,000 (model 7b) generations in the past, followed by a bottleneck and exponential population growth

in one of the two diverging population.

some recent) greatly increases the benefits of using
SNPSTR (derived SNP) estimates of divergence time.

In most data analysis scenarios, estimates of range
constraint and mutation rate require knowledge or assump-
tions about population history, making them difficult to
apply. Extensive molecular analysis has indicated high
levels of variation in mutational properties among STR
loci (Huang et al. 2002). Given the high levels of homoplasy
expected under such conditions, we can expect estimates
based on SNPSTR variation to be closer to the true
divergence time than those based on total STR variation:
there is less homoplasy in the SNSPTR case because the
STR variation on the derived SNP allele background is
more recent.

Simulations described here reveal more accurate and
precise estimation from SNPSTR variation than from STR
variation for a given number of independent loci. Given
that in some cases SNPSTR systems may be more costly to
genotype than STRs, we compared estimates of divergence
time based on five SNPSTR systems with those based on
10 STRs. We found that estimates based on five SNPSTR
systems are still characterized by lower error (because of
lower bias and lower variance) than those estimates based
on 10 STR systems. Divergence time estimates based on
20 SNPSTR systems remain less biased than estimates
from 100 STR loci. The variance of estimates based on
20 SNPSTR systems, however, is higher than that of
estimates based on 100 STRs. Novel methods for more
cost-effective genotyping of SNPSTR systems are cur-
rently under development (A. Knight, personal communi-

cation) and will greatly facilitate the use of SNPSTRs in
the study of humans and of other species.

One additional important statistical measure is that of
power. Because the levels of bias are so high, estimates of
power for both the SNPSTR and the STR estimators do not
illustrate relevant statistical properties of these estimators
correctly. We note, however, that with as few as 20 loci,
the power to distinguish between null models involving no
population divergence and alternative models involving
both recent and ancient population divergence was close to
its maximum value of 1 for both the SNPSTR and the STR
estimators (models 1a and 1b, details not shown). Shorter
divergence times would require a greater number of loci to
attain power close to 1.

The initial divergence between African and non-
African populations is estimated to have taken place on the
order of 95,000 to 170,000 years ago (for example,
Zhivotovsky et al. [2003], based on 377 STR loci). We
interpret divergence time estimates based on STR and
SNPSTR variation (table 6) in the light of those dates and
our simulation results. As expected, T(ESLL)2 based on the
STR variation alone greatly underestimated divergence
time. Variation at the two SNPSTR systems revealed more
evidence for homoplasy at 22SR1 than did 5SR1
(Mountain et al. 2002), consistent with lower T(Sp)2 and
Tp estimates from 22SR1 variation than from 5SR1
variation. Simulations where both mutational properties of
the STR (mutation rate and range constraint) and timing of
SNP varied across loci demonstrated that the lowest
estimates of divergence time (based on STR variation on
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Fi6. 4—Bias and precision of the SNPSTR estimator when the SNP is
2,400-generations-old, 2,700-generations-old, and 3,000-generations-old.
Bias and precision for the STR estimator is the same in all three cases.
Estimates are based on 20 loci. The box plots summarize the distribution of
divergence time estimates for both statistics. Upper and lower bounds of the
box correspond to the 75th and the 25th percentile for the STR and
SNPSTR estimators and the midpoint of the box represents the 50th
percentile (bias is the percentage difference between this estimate and the
true value, represented by a solid line). Error bars correspond to the 95th
and 5th percentile for the STR and SNPSTR estimators (i.e., precision).
Circles represent outliers in the STR and SNPSTR estimator distributions.

the derived SNP allele and Tp) were the most accurate for
a set of loci; older SNPs led to consistently higher,
positively biased estimates of divergence time. Divergence
time estimates from 22SR1 variation are, therefore,
expected to better reflect true divergence time than are
estimates from 5SR1 variation. Additionally, the average
divergence time estimate based on STR variation on the
derived SNP background and Tp (156,041) is within the
range estimated by 377 STRs. In this sense, the two
SNPSTR systems provide a better estimate than do the
corresponding STR systems.

We have demonstrated that SNPSTR systems provide
more accurate and precise estimates of population di-
vergence time than do STR polymorphisms, particularly
when the mutation event generating the SNP took place
shortly before population divergence. In practice, it is
possible to investigate whether a particular SNPSTR
system is informative for estimating divergence times for
the sampled populations. In fact, the ratio of Ty (in the
context of SNPSTR systems) to T(Su)2 (based on the total
STR variation) can be used as a qualitative measure. The
value of Tp increases rapidly with SNP age. On the other
hand, the value of T(8p)” does not change with SNP age.
We found that the ratio Tp/T (8;1)2 increased with the age
of the SNP. When the SNP is pushed back from 2,400
generations to 3,000 generations before present (given
population divergence 2,000 generations ago), this ratio
goes from 1.1 to 1.4, and is even higher for a very old SNP
(1.9 for 6,000-generation-old SNP). This ratio provides
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Table 5
Bias, Precision, and Error of Estimates of Divergence
Time for 20 Realistic Loci (Model 1b)

Bias Precision Error
SNPSTR +0.06 1,289-3,118 577
STR -0.77 245-864 1,500

Note.—Bias (represented as difference between the median estimated
divergence time and the true divergence time), precision (the 5th and 95th
percentile of divergence time estimates) and error (square root of mean square
difference between estimated and true divergence time) of the STR and SNPSTR
estimators of divergence time for 20 realistic loci (mutation rate: 0.0001-0.005; rate
constraint: 10-20).

a qualitative way to assess the age of the SNP in the
SNPSTR system. For the SNPSTR data presented on
human populations, T,/T(31)* for 5SR1 was twice as high
as the value for 22SR1, suggesting that the 22SR1 SNP
mutation is younger. Alternatively, analytical methods
(e.g., Slatkin and Rannala 2000) and coalescent-based
Bayesian methods such as BATWING (Wilson et al. 2003)
can be used to estimate the age of the SNP.

We expect that SNPSTR variation will provide more
accurate and precise estimates not only of divergence time
but also of other population genetic parameters such as
rates of gene flow and population growth. Recent work by
Hey et al. (2004) suggests that SNPSTR systems are more
informative regarding gene flow than are STRs alone.
Further work is necessary to evaluate the accuracy and
precision of such estimates.

In models presented here, we assume complete
linkage between the SNP and the STR constituting the
SNPSTR system. We expect this assumption to be valid in
the case of the human genome when the distance between
the SNP and the STR is less than 500 bp (as is the case for
previously described SNPSTR systems [Mountain et al.
2002]). In simplified terms, the human genome can be
characterized as tightly linked sequence blocks separated
by recombination hotspots. Characterization of linkage
disequilibrium in the human genome demonstrates that
blocks of DNA of length 5,000 bp are essentially
completely linked (Reich et al. 2001). The probability of
recombination between the SNP and the STR is very low if
the SNPSTR system falls within a tightly linked block.
Given the distribution of recombination hotspots in the
human genome, the chance that a SNPSTR will overlap
with a recombination hotspot is low (~3% [Mountain
et al. 2002]). Models incorporating recombination will be
more important when considering SNPSTR systems of
other species or for human SNPSTR systems where the
SNP and STR are further apart. We expect that as the
distance between the SNP and the STR increases, the rate
of recombination will increase, and SNPSTR variation will
provide less additional information beyond the STR
variation. If the SNP and the STR locus are completely
unlinked, we expect estimates of divergence time based on
the derived SNP background to be similar to estimates
based on the STR variation alone. The overall probability
that recombination between the SNP and STR has
introduced haplotypes distinct from the parent haplotypes
depends not only on the physical distance separating the
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Table 6

Estimates of Divergence Time Between African and non-African Human Populations from STR Allele Frequencies or

SNPSTR Haplotype Frequencies

T(SM)ZSTR T(5H)2dSNP Tpasnp
SNPSTR m = 0.0006 m = 0.003 m = 0.0006 m = 0.003 m = 0.0006 m = 0.003
22SR1 9,654 1,930 31,428 6,285 144,645 28,929
5SR1 30,147 6,029 72,2015 14,403 791,604 158,320
Average 6,632 17,270 156,041

NOTE.—T((SLL)2 str: from total STR variation. T((S},L)2 asnp: from STR variation on the derived SNP background. Tpgsnp: from STR variation on the derived SNP
background. Estimates represent years before present for a high (u = 0.003) and low (1= 0.0006) STR mutation rate. Average estimates represent years before present for
average STR mutation rates (i = 0.0018) averaged over loci. Generation time = 25 years. Source: Mountain et al. (2002).

SNP and STR but also on the age of the SNP; if
recombination is relatively rare, we expect the probability
that such distinct haplotypes have been generated to be
lower for younger than for older SNPs.

Here we have focused on simple two-population
models. Inference of more complex population histories
will benefit from evaluation of many SNPSTR systems
with a range of SNP ages. Fortunately, each genome
harbors thousands of potential SNPSTR systems: for
humans, SNPs have been identified within 500 bp
upstream or downstream of STRs in about 25% of the
cases examined (Mountain et al. 2002). We can, therefore,
expect these systems to contribute substantially to our
understanding of evolutionary history.
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