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1  | INTRODUC TION

Chemical communication is the oldest and most ubiquitous mode of 
communication in the living world (Wyatt, 2003). From chemotaxis 
in bacteria (Adler, 1975) to foraging trails in ants (Billen & Morgan, 
1998), examples of organisms using chemical cues to find resources 
(Leonhardt, Menzel, Nehring, & Schmitt, 2016; Wilson, 1965), con-
specifics (Brennan & Kendrick, 2006; Dweck et al., 2015) or to avoid 
danger (Holopainen & Blande, 2012; Mathis & Smith, 1993) can be 
found across the tree of life. The sheer diversity and abundance of 

chemicals in the environment provide an opportunity for organisms 
to utilize them for survival and reproduction. Organisms often em-
ploy multiple chemical compounds as blends in specific ratios, from 
two to six compounds in moth pheromones (Roelofs, 1995) to mix-
tures of several compounds for individual recognition in mammals 
(Brennan & Kendrick, 2006). These chemicals are also released into 
a complex natural environment with thousands of chemicals ema-
nating from every microbe, plant, and animal. This cacophony of in-
formation can make the collection, separation, and interpretation of 
chemical signals a daunting task, particularly for unknown analytes 
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Abstract
Chemical ecology is an ever-expanding field with a growing interest in population- 
and community-level studies. Many such studies are hindered due to lack of an effi-
cient and accelerated protocol for large-scale sampling and analysis of chemical 
compounds. Here, we present an optimized protocol for such large-scale study of 
volatiles. A large-scale in situ study to understand role of semiochemicals in variation 
in mating success of lekking blackbuck was conducted. Suitable methods for sam-
pling and statistical analysis were identified by testing and comparing the efficiencies 
of available techniques to reduce analysis time while retaining sensitivity and com-
prehensiveness. Solid-phase extraction using polydimethylsiloxane, analysis using a 
semiautomated detection of retention time and base peak, and statistical analysis 
using random forest algorithm were identified as the most efficient methods for 
large-scale in situ sampling and analysis of volatiles. The protocol for large-scale vola-
tile analysis can facilitate evolutionary and metaecological studies of volatiles in situ 
from all types of biological samples. The protocol has potential for wider application 
with the analysis and interpretation methods being suitable for all kinds of semio-
chemicals, including nonvolatile chemicals.
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embedded in a natural matrix. While organisms such as plants and 
insects have been extensively studied and constitute a large pro-
portion of our existing knowledge of chemical cues, systems such 
as mammals (Burger, 2005) and marine organisms (Hay, 2014) have 
been relatively less frequently explored and are largely restricted to 
zoo or captive individuals, due to difficulty in large-scale sampling 
under natural conditions.

Large-scale sampling and analysis of infochemicals have be-
come particularly relevant in recent years due to a remarkable 
shift in chemical ecology from an individual-centric (Vet, 1999) to 
a more population- and community-centric approach (Dicke, 2006). 
Chemical ecologists are now interested not only in the chemical 
cues produced by organisms and the behavioral responses elicited, 
but also at the individual variations in these infochemicals and re-
sponses (Vet, 1999), their impact on populations and interspecies 
interactions (Hay, 2014), and the role of chemical communication in 
shaping communities and ecosystems (Dicke, 2006). Nevertheless, 
large-scale studies of complex chemical matrices pose a consider-
able challenge for sampling, analysis, and interpretation of volatiles. 
In this study, we have attempted to address the major concerns as-
sociated with large-scale in situ sampling and analysis of volatile or-
ganic compounds (VOCs) and have developed an optimized protocol 
for such studies.

A wide variety of sampling techniques is available to extract and 
retain the volatile profile of a biological sample (Millar & Haynes, 
1998). Large-scale volatile sampling requires a good balance of sen-
sitivity, chemical retention and preservation, and sampling compre-
hensiveness. Relatively small amounts of volatiles are released from 
biological samples and diffuse in a large volume of air, which requires 
volatile sampling techniques to be highly sensitive to capture them. 
Often, large-scale sampling requires collection over long duration 
to obtain the required sample size, necessitating the storage of 
samples for lengthy periods before analysis and increasing the risk 
of microbial contamination and loss or degradation of sample (e.g., 
Birkemeyer et al., 2016). In addition, the complete volatile profile 
of a biological sample is often difficult to obtain due to differences 
in adsorption/absorption efficiencies of the volatile constituents. 
Different sampling techniques might thus capture different subsets 
of the same original volatile composition. When studying a novel or-
ganism with a large repertoire of unknown volatiles, it is therefore 
important to choose the most comprehensive sampling technique. In 
situ techniques can eliminate the need to collect and store samples 
but must also be optimized for sensitivity and comprehensiveness.

Identification is a major rate-limiting step in large-scale analy-
sis of semiochemicals. Analysis of VOCs is commonly performed 
using gas chromatography for separation (Dewulf, Van Langenhove, 
& Wittmann, 2002) and mass spectrometry for identification and 
quantification. Mass spectrum for each extracted volatile is visually 
compared to reference chromatograms in mass spectral libraries to 
initiate the process of identification. This is a highly laborious pro-
cess and becomes especially difficult when sample sizes are large, 
and samples are rich in volatiles, such as studies that look at individ-
ual recognition in populations (O’Dwyer & Nevitt, 2009). Analysis is 

particularly arduous for novel biological systems as existing libraries 
(Wiley MS library [http://www.palisade.com], National Institute of 
Standards and Technology MS library [http://www.nist.gov], and 
binbase library; Skogerson, Wohlgemuth, Barupal, & Fiehn, 2011) 
are often ill-equipped for natural product identification, particularly 
rare compounds.

Finally, statistical analysis of volatiles should be relevant to 
the study system as well as adhere to the nature of volatile data. 
Typically, volatile profiles of samples belonging to two or more dis-
tinct sample sets are compared using clustering or classification tools 
to identify distinguishing volatiles from each set. However, classify-
ing a study system into explicit sets may not always be possible and/
or justifiable. Researchers may, in some cases, be interested in the 
variation in volatile composition across the range of a particular fac-
tor or may be unsure about the classification categories. In such sce-
narios, regression and clustering analysis can be used, respectively, 
for functional inferences. A major limiting factor for statistical anal-
ysis of VOCs is high dimensionality, that is, relatively larger number 
of variables/volatiles (p) than samples (n) (Johnstone & Titterington, 
2009). Another important aspect of analysis of volatiles which is 
often ignored is that volatile data are represented as relative pro-
portions (instead of absolute concentrations) of extracted volatiles. 
Such “compositional” data require transformations rendering them 
suitable for standard statistical tools (Aitchison, 1982) or tools that 
conform to the nonindependent nature of such data (Ranganathan 
& Borges, 2011).

We have addressed concerns particular to large-scale field stud-
ies of volatiles at each stage: sampling, analysis, and interpretation 
of VOCs. In an attempt to alleviate as many of these concerns as 
possible, we have developed a pipeline for large-scale in situ studies 
of VOCs. To develop our pipeline, as a case study, we have explored 
the role of chemical communication in lek mating behavior of an an-
telope, Indian blackbuck, Antilope cervicapra.

2  | MATERIAL S AND METHODS

2.1 | Case study species

The blackbuck is an antelope endemic to the Indian subcontinent. 
It is a near-threatened species, primarily found in grasslands and 
open woodlands in India (IUCN). Blackbuck are known to breed 
throughout the year with two annual mating peaks, March–April and 
August–October (Ranjitsinh, 1989). They have a wide variety of mat-
ing systems, including the rare lek mating, in which males aggregate 
and display to females on small, clustered, resource-less territories 
(Isvaran, 2003). There is a strong spatial skew in mating success of 
males in a blackbuck lek (aggregation of males), with 90% of the mat-
ings occurring in central territories (Isvaran & Jhala, 1999). All ter-
ritories are repeatedly marked by males with dung and urine that 
accumulate to form dung piles (Figure 1a). The dung piles are peri-
odically evaluated by potential mates as well as competitors, pos-
sibly for olfactory cues about age (like in white rhino, Marneweck, 
Jürgens, & Shrader, 2017), strength, virility, genetic compatibility, or 
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identity (e.g., MHC and MUPS in mice, Cotton, 2007) of the defeca-
tor. A study on captive blackbuck (Rajagopal, Archunan, Geraldine, & 
Balasundaram, 2010) highlights variation in volatile profile of urine 
of males corresponding to dominance hierarchy. Similarly, in a lek, 
olfactory cues from dung piles are likely contributors to spatial vari-
ation in mating success of males and, in that case, are hypothesized 
to have a spatial variation corresponding to mating success.

2.2 | Case study site

Volatile sampling for the study was conducted in Tal Chhapar wild-
life sanctuary, Rajasthan, India (27°47′53″N 74°26′06″E), during 
March–April 2015 and 2016. Tal Chhapar is a densely populated 
blackbuck sanctuary (>4,000 blackbuck in 800 ha area of grassland) 
hosting a single lek occupied by 150(±20) males during the mating 
peak. Before the onset of the study, all principal (large) dung piles on 
the lek were marked using GPS (Figure 1b) and the mean of their lati-
tudes and longitudes was designated as lek center (Isvaran & Jhala, 
1999). All territories within 65 m from lek center were defined as 
central territories (C), territories on the edge of the lek (120–250 m 
from lek center) were defined as peripheral territories (P), and the 
rest (between 65 and 120 m) were defined as middle territories 
(M). To determine spatial variation in volatile profiles of dung piles, 
13 territories from each zone were selected for volatile sampling 
(Figure 1b).

2.3 | Sample collection

Freshly defecated fecal pellets (10–15 pellets) were collected, when-
ever available, from each of the 39 selected territories in sterilized 
glass vials using sterilized gloves. Owing to dry (15% humidity), hot 
(temp 35–43°C), and windy climate at sampling site during summer, 
pellets become very dry and brittle within 3–4 hr of defecation; 
hence, moisture and softness of pellet were used to detect fresh-
ness. Samples were collected on alternate days during least active 
period on the lek (12:00 noon–2:00 p.m.) to cause minimum distur-
bance to the animal. We collected 150 samples in the first season of 

sampling (March 2015) and 178 samples in second season (March 
2016). Volatile extraction was optimized using season 1 samples in 
laboratory within 4 months of sampling. Optimized sampling proto-
col was used to extract season 2 samples in situ. Samples (season 1) 
were stored in −80°C till extraction, and extracts (seasons 1 and 2) 
were stored at −20°C till analysis to minimize microbial growth and 
loss of volatiles.

2.4 | Volatile extraction

Volatiles were extracted from fecal samples by three different tech-
niques—solvent extraction, solid-phase extraction, and thermal 
desorption and their relative yields (number of volatiles and con-
taminants) were assessed using gas chromatography–mass spec-
trometry (GC-MS).

2.4.1 | Solvent extraction

Solvent extraction was performed using two most widely used sol-
vents for volatile extraction (Millar & Haynes, 1998)—hexane (nonpo-
lar) and dichloromethane (DCM, midpolar). Three different exposure 
times (3, 6, and 9 hr) were used to extract volatiles from five samples 
of March 2015. Three to four blackbuck pellets from each sample col-
lection vial were ground together to obtain six replicates of 2 g each 
and immersed in approximately 5 ml solvent for each of the solvents 
and exposure times. The extracts were filtered using Whatman filter 
paper. Traces of water in the filtrate were removed using anhydrous 
sodium sulfate, and the filtrate was concentrated by evaporating the 
solvent using a slow stream of ultra-high-purity nitrogen gas. The 
concentrate was directly subjected to GC-MS analysis.

2.4.2 | Solid-phase extraction

Solid-phase extraction (SPE) was performed using preconditioned 
polydimethylsiloxane (PDMS) tubes procured from Carl Roth 
(Rotilabo®–silicone tube). PDMS tubes of 1.5 mm inner diameter 
and 3.5 mm outer diameter were cut into 5 mm pieces and soaked 

F IGURE  1 Large-scale chemical 
analysis case study system, the blackbuck, 
Antilope cervicapra. (a) Male blackbuck on 
territorial dung pile on lek. (b) Topography 
of dung piles on lek in February 2016 
with principal dung piles (filled circles, 
central—dark gray, middle—light gray, and 
peripheral—white) and sampling dung 
piles (center—1 to 13, middle—14 to 26, 
and periphery—27 to 39)
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for 4 hr in 1:1 mixture of acetonitrile and methanol. They were 
then dried using ultra-high-purity nitrogen gas and conditioned in a 
Gerstel Tube Conditioner by heating over the stream of nitrogen gas 
at 4 bar constant pressure. The entire process was repeated twice 
before using for extraction. For the extraction, two PDMS tubes 
were exposed to fecal pellets collected in each glass vial for 4 hr. 
On each day of sampling, an empty glass vial used as environmental 
control and volatiles were extracted using two tubes from this vial as 
well. The tubes were then removed and stored in labeled, sterilized 
0.5-ml amber glass vials.

2.4.3 | Thermal desorption

Thermal desorption was performed using a Gerstel Thermal 
Desorption Unit (TDU) and Cooled Injection System (CIS 4) con-
trolled by Gerstel Modular Analytical Systems Controller C506 and 
Gerstel Maestro 1 software which extracts volatiles and directly 
introduces them into a GC-MS for analysis. One fecal pellet from 
each collection vial was crushed using a sterilized spatula, and 2 g of 
the powder was added into the TDU liner by covering both the end 
of the liner with glass wool. The samples were introduced into the 
TDU at the initial temperature of 30°C using a Gerstel MultiPurpose 
Sampler (MPS). After a delay time and initial temperature of 1 min 
each at 30°C, the TDU temperature was increased to 200°C at the 
rate of 100°C/min and retained in 200°C for 10 min. Volatiles were 
desorbed from TDU and transferred to CIS at 210°C, trapped in the 
silanized glass wool liner of the CIS, and maintained at −50°C using 
liquid nitrogen. After the equilibration time of 0.20 min, the CIS was 
ramped to 220°C at the rate of 12°C/s and held at constant temper-
ature for 5 min for optimal transfer of volatiles to GC. TDU-CIS was 
also used to desorb and introduce volatiles from solvent extract/
PDMS tube into GC-MS.

2.5 | GC-MS analysis

Volatiles extracted from samples were separated and identified 
using an Agilent 7890B gas chromatograph coupled with a 5977A 
MSD mass spectrometer. An HP-5 MS column (30 m × 0.25 mm 
id, 0.25 μm film thickness) was used with helium as the carrier 
gas at a flow rate of 1 ml/min. The column oven was kept at 40°C 
for 1 min, increased to 180°C at a rate of 5°C/min, and finally in-
creased to 270°C (with a 5 min holding temperature) in the second 
ramp at 25°C/min. Samples were introduced to the GC in solvent 
vent mode, directly or through TDU, with a purge flow to split vent 
of 30 ml/min at 1.5 min and vent flow of 70 ml/min; vent pres-
sure was held at 7.07 psi for 0.01 min. The transfer line between 
the GC and MS was maintained at 250°C, whereas the source 
and quadrupole temperatures were 230 and 150°C, respectively. 
Ionization was performed in electron impact mode with ionization 
energy of 70 eV. GC-MS acquisition was performed using Agilent 
MassHunter Workstation software B.07.02.1938, and qualitative 
analysis was assessed by MassHunter Qualitative Analysis version 
B.07.00.

GC chromatograms of the different volatile extracts of replicate 
samples were compared to assess best volatile sampling method. 
Each GC chromatogram was also compared to a corresponding blank 
control to check for contaminants. Blank controls were empty steril-
ized glass vials exposed to similar environmental conditions and ex-
traction procedures as the samples. The optimized laboratory-based 
volatile sampling protocol was then tested for feasibility for large-
scale in situ sampling in season 2. Further optimization of down-
stream analysis was carried out using these samples.

Volatile analytes were identified by matching the mass spectral 
data of the peak with library spectra (NIST and personal libraries 
created from authentic standards), by comparing their relative re-
tention index using a homologous series of n-alkanes (C6–C30 hydro-
carbons, Sigma-Aldrich), by comparing their elution order and/or by 
comparing their retention time with standards. Quantity of volatiles 
extracted was approximated by the area under each peak. A known 
peak (octamethylcyclotetrasiloxane) was taken as an internal stan-
dard, and all peak areas were normalized by dividing with the peak 
areas of internal standard for SPE extracts (Kallenbach et al., 2014). 
Contaminants are removed by comparing the spectra of samples 
with corresponding controls.

2.6 | Statistical analysis

In this study, we were interested in understanding the spatial vari-
ation in volatiles from dung piles across the lek. This variation can 
either be discrete with dung piles in the center of the lek being re-
markably different from all other dung piles (like the mating behav-
ior) or gradual with a stepwise change in volatile composition from 
center to periphery. As a result, it was necessary to assess different 
statistical approaches for proper biological inference of the chemical 
data. It also gave us the opportunity to explore different statistical 
approaches used in chemical studies and arrive at the most suitable 
tools for large-scale studies in general. Three common statistical 
approaches are—(1) clustering, (2) classification, and (3) regression. 
Clustering is an unsupervised statistical approach and was used to 
look for natural clusters of territories with similar chemical compo-
sition. Classification is a supervised statistical approach for which 
we predefined our study system into zones (center, middle, and pe-
riphery, as described in sampling methods) and analyzed chemical 
variation between these zones. To observe gradual variation, we 
used regression approaches and distance of each territory from the 
center of lek was used as the parameter to note variation. To opti-
mize our protocol, we used two alternate statistical tools from each 
approach and compared their efficiencies using relevant statistics. 
The tools used were principal component analysis (PCA) and hier-
archical clustering for clustering, linear discriminate analysis (LDA) 
and random forest classification (RF) for classification, and principal 
component reduction (PCR) and random forest regression for re-
gression analysis.

Random forest is a machine learning algorithm which can be 
used to assess the importance of variables (volatiles) in classifica-
tion and regression analysis (Breiman, 2001; Ehrlinger, 2015). It 
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builds decision trees using bootstrapping from samples and creates 
a ranked variable importance list by running permutations of deci-
sion trees. Variables to be considered can be assessed based on cor-
responding variable importance scores—mean decrease in accuracy 
(for classification) and increase in mean square error (for regression). 
PCR (Jolliffe, 1982) is a dimensionality reduction approach based 
on PCA used to circumvent problems of multidimensionality in data 
such as GC-MS data. PCA is performed on the observed data ma-
trix for the explanatory variables to obtain the principal components 
(PCs), and then a subset of the PCs is selected, based on some appro-
priate criteria (e.g., variability explained), for the intended multivari-
ate analysis (e.g., multivariate regression in PCR).

Principal component analysis, hierarchical clustering, and LDA 
were performed using PAST3 software (Ryan, Hammer, Harper, & 
Paul Ryan, 2001), an open source software for statistical analysis. 
Random forest classification and regression models and PCR were 
optimized, cross-validated (10 CV), and compared using “caret” 

package (Kuhn, 2015) in R. Classification models were compared 
based on classification accuracy, and regression models were com-
pared based on root-mean-square error (RMSE).

3  | RESULTS AND DISCUSSION

3.1 | Volatile sampling

Thermal desorption was identified as the most comprehensive 
method with the highest number of volatiles and few contaminants 
(Figure 2a). It was assessed as an ideal choice for large-scale volatile 
sampling if field-collected samples can be immediately transferred 
to laboratories for ex situ extraction. It was also determined to be 
devoid of issues of volatile preservation post extraction as coupling 
with GC enabled immediate analysis of volatiles extracted by TDU. 
However, it was not suitable for the chosen case study as the crushed 
blackbuck pellets obstructed the liner of CIS risking malfunction of 

F IGURE  2 Chromatograms of 
volatiles extracted from blackbuck fecal 
pellets using different volatile sampling 
techniques. (a) Thermal desorption. (b) 
Solvent extraction using dichloromethane 
(9 hr). (c) Solvent extraction using Hexane 
(9 hr). (d) Solid-phase extraction using 
polydimethylsiloxane (PDMS). (e) Volatiles 
extracted from blank using PDMSCounts vs. Acquisition Time (min)
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the instrument. Besides, TDU is a laboratory-based technique and 
therefore requires removal of biological samples from the field. This 
was not ideal for our study as we were unable to immediately ana-
lyze the samples and fecal matter is subject to rapid microbial con-
version altering the VOC profile from that which is present in situ.

Solvent extraction was the least comprehensive method of ex-
traction in this study. Both hexane and DCM extracted very few an-
alytes despite extended periods of exposure (9 hr) with blackbuck 
fecal samples (Figure 2b,c). Even though DCM was successfully 
used to extract volatiles from urine in a previous study on captive 
blackbuck (Rajagopal et al., 2010), it was found to be not appropri-
ate for fecal samples in the current study. Solvent extraction was 
recognized as a highly sensitive technique that requires little equip-
ment and sample, albeit with the risk of degradation of the source 
sample as well as volatiles by the solvent during preparation of ex-
tracts. Maceration of the tissue for solvent extraction can also lead 
to release of chemicals not generally present in the headspace of 
the system in situ and lead to misinformation. This method was thus 
concluded to be not suitable for large-scale in situ sampling of vol-
atiles, especially for novel study systems where volatiles are previ-
ously unknown.

Solid-phase extraction using PDMS followed by thermal de-
sorption extracted many volatiles in our samples (Figure 2d), but 
the sampling PDMS tube itself produced many contaminants 
(Figure 2e), unlike TDU or solvent extraction (Figure S1). However, 
the contaminants from the PDMS tubes could be recognized by their 
mass spectral peaks and comparison with blank samples and could 
therefore be removed from analysis. PDMS was assessed as conve-
nient for large-scale in situ volatile sampling tool due to low cost of 
the material, compactness, and no requirement of equipment in the 
field collection stage. The solid phase of PDMS does not provide an 
active surface to catalyze the artefactual reaction of compounds, 
which may happen during thermal desorption directly from samples 
or when using other solid-phase extraction materials such as TENAX 
or PORAPAK. Solid-phase extraction under ambient conditions 
is therefore more likely to reflect compounds that are volatilized 
from the sample, whereas both solvent extracts and direct thermal 
desorption can include compounds which would not be volatilized 
under ambient conditions. Solid-phase extraction using PDMS also 
retains the analytes unaltered for a longer time when stored in 
−20°C (Kallenbach et al., 2014).

Our chosen method was successfully used for concurrent large-
scale in situ volatile sampling of 39 blackbuck territories on lek 
(Figure 1b) over a period of 15 days (season 2 of sampling) and 178 
volatile samples (62 central, 65 middle, and 52 peripheral) were col-
lected. For volatile preservation postextraction for long durations 
(3–4 months in this study), PDMS tubes were stored in −20°C. This 
technique is fairly sensitive and convenient for replicate sampling, as 
multiple PDMS tubes can be used to sample volatiles from same bi-
ological samples which can be stored for backup. The only potential 
drawback is that PDMS has biased affinity to volatiles of low molec-
ular weight (Kallenbach et al., 2014) and thus might underrepresent 
the volatile profile of a sample.

A thorough experimental comparison of three commonly used 
volatile sampling techniques in terms of comprehensiveness, sen-
sitivity, volatile preservation, and suitability for large-scale in situ 
sampling concludes that solid-phase extraction using PDMS along 
with thermal desorption is the most efficient and practical sam-
pling technique for large-scale study of volatiles. While other 
field-based sampling and analysis methods are available, including 
solid-phase microextraction and portable GC-MS (Kücklich et al., 
2017; Marneweck et al., 2017), these methods are both costly and 
cannot be applied for very large-scale concurrent sampling as re-
quired in this study. In particular, our method is effective for initial 
studies that can reveal major analytes within and between samples. 
However, other methods could be more suitable for detailed and/
or small-scale analyses requiring a comprehensive overview of the 
total VOC profile.

3.2 | Analysis of volatiles

Fast and efficient analysis of large number of volatiles from the 
SPE samples was performed by avoiding recursive analysis of 
same volatile in different samples using an automation protocol to 
group them. Groups were made based on retention time (RT) and 
base peak (BP) allowing a margin of error of 0.1 s in RT to account 
for peak shifts. RT, BP, and peak area of each peak in a chroma-
togram were obtained in a tabular form using Agilent MassHunter 
Workstation software. Such tables were acquired for all samples 
and corresponding controls. A PERL code (see Appendix S1) was 
used to generate a metatable of all RT-BP combinations of all peaks 
in samples and controls which was then used for RT-BP grouping, 
contamination removal, as well as for normalization of the peak 
areas with internal standards (allowed margin of error in RT, BP 
value for known contaminants, and RT-BP for internal standard are 
user provided, see Appendix S1). RT-BP combinations missing in a 
sample or control were denoted as zeros in the metatable. Three 
representatives from each RT-BP group (volatiles with same RT 
[±0.1 s as defined for this study]—BP from three different samples) 
were selected, and their mass spectra were compared with each 
other for validation of the PERL code and verified for the removal of 
the PDMS contaminants. Each RT-BP group ideally corresponds to 
a single analyte. Comparison of mass spectra revealed two kinds of 
errors—(1) different volatiles grouped in same RT-BP group (0.01%) 
and (2) same volatile grouped in different RT-BP groups (4.2%). 
These errors were low and asserted the use of RT-BP grouping as 
a useful automation tool for analysis. All contaminants were also 
successfully removed. Contaminant removal included removing 
analytes (RT-BP groups) from samples which were present in con-
trols as well as contaminants with known BP values, like silicates 
(see Appendix S1). For further analysis, the number of samples in 
which each analyte was present was calculated and analytes that 
were found in less than 5% of the total samples were eliminated to 
reduce noise. Mass spectrometer chromatogram and relative reten-
tion index (RRI) (Kováts, 1958) of one representative from each RT-
BP group was used to identify the corresponding compound.
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TABLE  1 Volatiles from blackbuck lek dung piles

Compound no. Compound name Mode of identification RRI

1 Farnesene type compound MS —

2 6-Methyl-2-heptanone MS and RRI 958

3 Diterpene 1 MS —

4 β-Citronellene MS and RRI 948

5 2-Octanone MS and RRI 997

6 2,6,6-Trimethyl-2-cyclohexene-1,4-dione MS and RRI 1,145

7 1-Pentanol MS —

8 m-Cresol MS and RRI 1,077

9 4-Heptanone MS and RRI 876

10 6-Methyl-5-heptene-2-one MS and RRI 958

11 Unidentified 1 — —

12 2-Decanone MS and RRI 1,202

13 β-Dihydroterpeneol MS and RRI 1,140

14 (E)-β-ocimene MS and RRI 1,054

15 4-Propylphenol MS and RRI 1,273

16 2,6-Lutidine MS —

17 Unidentified 2 — —

18 β-Cyclocitral MS and RRI 1,223

19 3,7-Dimethyl-2-octene MS and RRI 966

20 2-Nonanone MS and RRI 1,101

21 2,2,6-Trimethylcyclohexanone MS and RRI 1,033

22 2-Undecanone MS and RRI 1,296

23 Unidentified 3 — —

24 (Z)-β-Ocimene MS and RRI 1,045

25 Unidentified 4 — —

26 β-Caryophyllene MS and RRI 1,430

27 Hexadecane MS and RRI 1,601

28 Nonane MS and RRI 900

29 γ-Terpinene MS and RRI 1,065

30 Indole MS and RRI 1,296

31 Cis-m-menth-8-ene MS and RRI 1,030

32 2,4,7,9-Tetramethyl-5-decyne-4,7-diol MS and RRI 1,430

33 p-Menth-4(8)-ene MS and RRI 1,021

34 (2E)-3,7,11,15-Tetramethyl-2-hexadecene MS —

35 2-Methyl-1-heptene-6-one MS and RRI 972

36 Isophorone MS and RRI 1,130

37 Unidentified 5 — —

38 1a,2,5,5-Tetramethyl-trans-1a,4a,5,6,7,8-
hexahydro-gamma-chromene

MS and RRI 1,350

39 Unidentified 6 — —

40 Unidentified 7 — —

41 p-Menth-2-ene MS and RRI 1,009

42 Unidentified 8 — —

43 Trans-pinane MS and RRI 976

44 Modephene MS and RRI 1,385

(Continues)
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Compound no. Compound name Mode of identification RRI

45 Unidentified 9 — —

46 Unidentified 10 — —

47 Unidentified 11 — —

48 Pinocarvone MS and RRI 1,164

49 Menthone MS and RRI 1,156

50 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4,7a-trimethyl- MS and RRI 1,539

51 Butyl cyclohexane MS and RRI 1,037

52 Unidentified 12 — —

53 1H-Cycloprop[e]azulene, decahydro-1,1,4,7-
tetramethyl-, [1aR-(1aα,4β,4aβ,7β,7aβ,7bα)]

MS and RRI 1,371

54 2-Phenylethyl alcohol MS and RRI 1,119

55 Unidentified 13 — —

56 Unidentified 14 — —

57 Unidentified 15 — —

58 1-Cyclohexyl ethanone MS and RRI 991

59 3-Heptadecene, (Z)- MS and RRI 1,691

60 Unidentified 16 — —

61 Frontalin MS and RRI 938

62 Humulene MS and RRI 1,457

63 Unidentified 17 — —

64 Unidentified 18 — —

65 2,4-Dimethyl phenethyl alcohol MS —

66 Unidentified 19 — —

67 Trans-pinocarveol MS and RRI 1,139

68 Unidentified 20 — —

69 p-Cresol MS and RRI 1,078

70 β-Selinene MS and RRI 1,490

71 Unidentified 21 — —

72 Unidentified 22 — —

73 Unidentified 23 — —

74 2-Methyl thiophene MS and RRI 775

75 Furan-2,5-dihydro-3,4-dimethyl MS —

76 Hexyl-(E)-2-methylbut-2-enoate MS and RRI 1,278

77 2-Pentadecanone-6,10,14-trimethyl MS and RRI 1,853

78 Unidentified 24 — —

79 Acenaphthene MS and RRI 1,485

80 Copaene MS and RRI 1,373

81 2-Heptanone-4,6-dimethyl- MS and RRI 1047

82 Phenyl acetaldehyde MS and RRI 1,047

83 1,2,4,4-Tetramethylcyclopentene MS and RRI 867

84 Isomenthone MS and RRI 1,170

85 Dihydroeudesmol MS and RRI 1,666

86 Unidentified 25 — —

87 1-Hexanol MS and RRI 866

88 Cyclosativene MS and RRI 1,369

TABLE  1  (Continued)

(Continues)
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In this study, more than 200 unique analytes were detected 
and quantified out of which 100 (Table 1) were found in at least 
5% of the samples. These analytes were sorted in decreasing order 
of their abundance, and their ranks in the sorted list were used 
as their identification number. Chemical names of 68 of these 
analytes were identified (Table 1). RT-BP-based grouping and 
rank-based nomenclature of compounds ensured inclusion of all 
detected analytes for downstream comparative analysis, which 
could have otherwise been overlooked due to difficulty in iden-
tification of their chemical name. This is particularly useful for 
studies of novel organisms such as blackbuck which potentially 
have several compounds not listed in existing mass spectrum li-
braries. The developed semiautomation analysis method helped in 

reducing the interpretation time of 178 blackbuck samples (from 
season 2), each of which had more than 400 total analytes (~200 
sample volatiles and >200 PDMS-induced contaminants per sam-
ple) to roughly 170 hr (2 weeks at 12 hr per day, including chro-
matogram integration, acquiring RT-BP data, running the code, and 
cross-validation). By hand, taking even just 5 min per compound 
ID, these numbers of samples would take over 6,000 hr. This ef-
ficiency of RT-BP-based large-scale analysis of volatiles makes it 
extremely beneficial for large-scale population-level studies that 
investigate individual or genetic as well as spatial, temporal, or 
environment-induced variations in chemical signatures. The Perl 
script used in this study is applicable to data obtained from other 
GC-MS software apart from Agilent MassHunter. The input file 

Compound no. Compound name Mode of identification RRI

89 Isopropyl myristate MS and RRI 1,836

90 2-Methyl decalin MS and RRI 1,139

91 Unidentified 26 — —

92 2-Pentyl furan MS and RRI 991

93 Unidentified 27 — —

94 3,5-di-tert-Butyl-4-hydroxybenzaldehyde MS and RRI 1,772

95 Phenylethyl ketone MS and RRI 1,741

96 Unidentified 28 — —

97 Unidentified 29 — —

98 Unidentified 30 — —

99 Unidentified 31 — —

100 Unidentified 32 — —

MS, mass spectral match; RRI, relative retention index match.
Unidentified—compounds could not be identified using mass spectra and relative retention index.

TABLE  1  (Continued)

F IGURE  3 Statistical analysis using 
different clustering algorithms. (a) 
Principal component analysis (using SVD 
algorithm, 1,000 bootstraps), filled circles 
indicate samples from central (black), 
middle (dark gray), and peripheral (light 
gray) territories. Principal component 
analysis biplots (thick gray lines) for four 
most variable compounds (dark gray 
numbers) are shown (b) Hierarchical 
clustering (using Ward’s method. Euclidian 
distance. 1,000 bootstraps). Numbers in 
brackets in dendrogram represent number 
of samples from each zone. Bar plot shows 
intercluster variation in concentrations of 
the four most variable compounds
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needed for the script is a simple comma-separated file (.csv) con-
sisting of peak area, base peak, and retention time (see Appendix 
S1). This method is less sophisticated than the several existing 
freely available and open source data preprocessing programmes 
such as XCMS (Smith, Want, O’Maille, Abagyan, & Siuzdak, 2006) 
and CAMERA (Kuhl, Tautenhahn, Böttcher, Larson, & Neumann, 
2012) but has an inherent advantage in terms of simultaneous re-
moval of many known contaminants (like PDMS-derived volatiles 
in this study). While silica-based compounds have signature base 
peaks that can be fed into the Perl script for easy removal, other 
contaminants with unique retention time and base peak can also 
be easily removed with user-provided information (Appendix S1).

3.3 | Statistical analysis

Principal component analysis did not produce strong clusters with 
unscaled (Figure 3a) as well as scaled and log-transformed data 
(Figure S2), while hierarchical clustering produced three clusters, 
varying predominantly in concentration of compound 8 “meta-
cresol” (Figure 3b). High levels of meta-cresol were detected in a 
few samples from central and middle territories, whereas almost all 
samples from peripheral territories showed low concentrations of 
meta-cresol (Figure 3a,b). Overall, there was more variation between 
volatile profiles of territories within a zone (C/M/P) than between 
the zones in chemical composition. Clustering tools alone were thus 
not sufficient to convey meaningful information about spatial varia-
tion in chemical signature of blackbuck dung piles, probably due to 
individual variation being much higher than spatial variations.

Classification by LDA had high accuracy of 92.8% in sorting sam-
ples to corresponding zones (Figure 4a). Classification by random 
forest classification model had a lower efficiency (65.10%). Among 
the zones, classification accuracy was highest for central territories 
(Table 2). Compound 8 (meta-cresol) was the most important vol-
atile distinguishing between the zones (Figure 4b). Both methods 
arrived at similar results, and in first glance, LDA analysis appeared 
to be better than random forests in terms of classification accuracy. 
Accuracy checks on a test dataset using the 10 cross-validation 

method revealed that the random forest model produced consistent 
results, and the model was optimized to use 1,000 trees (ntree) and 
15 variables per try (mtry) to produce 65.10% accuracy. LDA, how-
ever, failed at 10 cross-validation possibly due to large number of zero 
values in the data, so the model could not be optimized. Jackknifing 
reduced the classification efficiency of LDA drastically to 17.42%. In 
this study, among these two methods, random forest was thus deter-
mined as a better statistical approach in terms of accuracy and con-
sistency to assess discrete spatial variation in chemical composition 
of lek. Considerable difference between the three zones in chemical 
composition corroborated the hypothesis of spatial variation in mat-
ing success of males being correlated with spatial variation in chemical 
signature of the lek. meta-cresol was again determined as the most 
important driver of this variation.

Among the two regression models, optimized random forest re-
gression model (ntree = 1,000, ntry = 5, 10 CV) explained 26.17% of 
variation in volatile composition across territories (Figure 5a). The 
margin of root-mean-square error (RMSE = 55.512 m) is very high 
(>1/5th of the distance between center and outermost territory 
on the lek) indicating a weak trend along distance from center. For 
principal component regression, PCA was used for dimensionality 
reduction and model optimization. The optimized model with four 
principal components had higher error (RMSE = 60.82273 m) than 
random forests (Figure 5b). Regression analyses detected a small but 
consistent variation in chemical composition of lek from center to 
periphery. meta-cresol was again predicted as the most important 
compound varying with distance from center (Figure 5c). Random 
forest regression method was determined as a better tool to assess 
gradual spatial variation in chemical composition of lek.

F IGURE  4 Statistical analysis using 
different classification algorithms. 
(a) Linear discriminant analysis. (b) 
Random forests—top 10 important 
volatiles distinguishing center, middle, 
and periphery based on mean decrease 
in accuracy. Filled circles in linear 
discriminate analysis scatter plot indicate 
samples from central territories (black), 
middle (dark gray), and periphery (light 
gray). Biplots (thick gray lines) for three 
most variable compounds (dark gray 
numbers) are shown

(b)(a)

15     20    25    30    35    40     
Mean decrease accuracy

C
om

po
un

d

56
30
52
95
31
23
28

6
14

8

245

8

–4.8 –3.6 –2.4 –1.2 1.2 2.4 3.6 4.8

Axis 1

–6.0

–4.8

–3.6

–2.4

–1.2

1.2

2.4

3.6

4.8

A
xi

s 
2

 6.0

TABLE  2 Classification error in optimized random forest model

Classification zone Classification error

C 0.2096774

M 0.4218750

P 0.4038462

C, center; M, middle; P, periphery.
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All statistical tools explored in this study, in consensus, indi-
cated a strong spatial variation in concentration of m-cresol that 
corresponded to spatial variation of mating success of male black-
buck in a lek. However, random forest algorithms that operate by 
construction of several decision trees were more efficient (as mea-
sured by accuracy and RMSE) than the classical ordination-based 
multivariate analysis tools used in this study. Standard multivariate 
statistics, like PCA, operate with the assumption of independence 
of data points, which does not hold true for compositional and 
interdependent data like VOCs (Ranganathan & Borges, 2011), 
as volatiles are usually scored in terms of relative proportions 
Commonly used corrective measures such as square root trans-
formations or log transformations with the addition of a constant 
(ranging from 0.01 to 0.00001) to accommodate zero data points 
could greatly alter the dataset and should be used with caution. 
Most multivariate tools also falter when the dataset consists of 
more variables than samples, that is, when total number of ana-
lytes is higher than total number of samples. Although dimension-
ality reduction approaches such as PCR can be used (like in this 
study), this approach proves ineffective if the chosen subset does 
not help in significantly reducing the number of variables. The ran-
dom forest approach is ideal for large-scale analysis of volatiles 
due to its inherent ability to deal with correlation between vari-
ables, high classification and regression efficiency, and prediction 
of variables of importance. It allows for more variables than sam-
ples and does not overfit the data (Breiman, 2001; Ranganathan 
& Borges, 2011). Large-scale studies can be affected by inherent 
noise in the system as well as manual and instrumental variations 
introduced during elucidation. Replicate sampling and analysis 
can help to track and counter such variations to a certain extent. 
Other common issues associated with large-scale studies such as 
repeated samples and nested data can be dealt with tools such 
as GLMM and random slopes (Jamil, Ozinga, Kleyer, & ter Braak, 
2013; Weiß et al., 2017). A combination of multiple statistical 

approaches catering to the study system can also help to improve 
efficiency of analysis.

4  | CONCLUSIONS

Here, we have developed a pipeline for large-scale in situ studies of 
VOCs employing solid-phase in situ extraction, thermal desorption 
coupled with GC-MS, semiautomated analysis using retention time 
and base peak, and statistical analysis using random forests. Each of 
the selected methods exhibited both advantages and drawbacks, but 
each step was selected to maximize efficiency, sensitivity, chemical 
retention and preservation, and comprehensiveness of analysis. Our 
methodology helped in analyzing about 200 samples in two weeks 
(not including the GC-MS runtime) as opposed to 7–8 months (de-
tails explained in Section 2) that would have been required to do this 
work manually. While the TDU-GC-MS instrument is specialized and 
costly, the other techniques explored are inexpensive and require 
relatively little expertise to perform. In addition, our pipeline is not 
restricted to mammals as used for the case study but could be em-
ployed with nearly any living system in land or sea (PDMS can also 
absorb chemicals in aqueous solutions). Our method was also spe-
cifically developed for large-scale, population-level studies where 
neither compounds nor sample groups may be previously known. As 
such, it can be employed in new systems that have little prerequisite 
knowledge of the natural products involved. Further studies that 
employ this method may incorporate additional steps that increase 
the effectiveness of our novel pipeline methodology.
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