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Understanding why some parasites emerge in novel host communities while

others do not has broad implications for human and wildlife health. In the

case of haemosporidian blood parasites, epidemic wild bird mortalities on

oceanic islands have been linked to Plasmodium spp., but not genera like

Haemoproteus. Indeed, Haemoproteus is absent from many oceanic islands.

By contrast, birds on continental islands share long coevolutionary histories

with both Plasmodium and Haemoproteus, and are thus ideal model systems

to elucidate eco-evolutionary endpoints associated with these parasites in

oceanic islands. Here, we examine eco-evolutionary dynamics of avian

haemosporidian in the Shola sky-island archipelago of the Western Ghats,

India. Our analyses reveal that compared to Plasmodium, Haemoproteus
lineages were highly host-specific and diversified via co-speciation with

their hosts. We show that community structure of host-generalist Plasmodium
was primarily driven by geographical factors (e.g. biogeographic barriers),

while that of host-specialist Haemoproteus was driven by host species barriers

(e.g. phylogenetic distance). Consequently, a few host species can harbour a

high diversity of Plasmodium lineages which, in turn, are capable of infecting

multiple host species. These two mechanisms can act in concert to increase

the risk of introduction, establishment, and emergence of novel Plasmodium
lineages in island systems.
1. Background
Emerging infectious diseases are considered to be one of the greatest challenges

of our times from the perspective of human and wildlife health, as well as

ecosystem function and stability [1,2]. An important driver for the dramatic

increase in disease emergence over the past several decades is the recent and

rapid spread of parasites outside their native range owing to a myriad of

factors, including global climate change and increased human-mediated trans-

port [1]. Such parasite range expansion can lead to serious epidemics in naive

host populations into which these parasites are newly introduced [3–5].

Avian haemosporidians (Apicomplexa: Haemosporida; Plasmodium and

other related genera such as Haemoproteus—hereafter avian malaria) are a glob-

ally distributed group of vector-borne blood parasites that infect a wide array

of bird taxa [6]. Avian malaria caused by Plasmodium spp. is one of the most

important emerging infectious diseases of wild bird populations globally [7–9].

Large-scale mortalities in native wild birds have been well documented owing

to the accidental introduction of Plasmodium spp. and Culex quinquefaciatus into

island bird communities which had no coevolutionary history with these parasites

(e.g. Hawaii [6,10] and New Zealand [7,8]). However, similar epidemic mortalities
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by Haemoproteus spp. have not been recognized. Indeed, while

Plasmodium spp. are cosmopolitan [11], Haemoproteus spp. only

appears to have colonized some oceanic islands systems (e.g.

Lesser Antilles [12,13]) and is absent from many others (e.g.

Hawaii, New Zealand, and French Polynesia [8,11,14]).

The reduced ability to colonize some islands by Haemo-
proteus spp. versus Plasmodium spp. and, consequently, the

lower negative consequences associated with parasite inva-

sions on native bird communities are likely driven by a

myriad of factors such as parasite specialization and avian

host/vector community composition. Previous studies indi-

cate that Plasmodium spp. are relatively generalist, infecting

a wide range of host species, whereas Haemoproteus spp. gen-

erally exhibit specialist associations and are restricted to

phylogenetically related host species [11,15–17], but this pat-

tern is not universal [14,18,19]. Such eco-evolutionary

differences likely affect the ability of generalist parasites,

like Plasmodium spp., to readily establish in island commu-

nities when introduced by natural or anthropogenic factors

[11,20]. However, the taxonomic distinctiveness of host com-

munities on islands may protect them from invasions by

specialist parasites, like Haemoproteus spp., if island commu-

nities consist of species phylogenetically distant to hosts in

the parasite’s native range. Consequently, the colonization

history of avian hosts/vectors, that is specific to each island

system, can critically affect the likelihood of colonization

by specialist parasites, such as Haemoproteus spp., but not

generalist ones, such as Plasmodium spp.

Understanding the underlying eco-evolutionary mechan-

isms that influence the colonization and maintenance of

Plasmodium spp. versus Haemoproteus spp. can help elucidate

the drivers of disease emergence in natural communities. In

this context, continental sky-islands are a fascinating model

system because they provide excellent natural laboratories

for examining parasite eco-evolutionary dynamics. Sky-

islands are isolated montane forests surrounded by a ‘sea’

of low-elevation habitat, limiting dispersal of both bird and

parasite lineages, similar to oceanic islands [21]. Thus,

sky-island bird communities may face many of the same

eco-evolutionary challenges as their oceanic counterparts.

However, sky-island bird communities, in contrast with

many oceanic counterparts, have generally shared long

coevolutionary histories with their parasites. Consequently,

the bird communities on continental sky-islands can help

elucidate the potential long-term ecological and evolutionary

endpoints for oceanic island bird communities where avian

haemosporidians have recently been introduced.

Here, we examine the eco-evolutionary dynamics of avian

haemosporidians in the sky-island archipelago of the

Western Ghats, southern India. These sky-islands (hereafter

Shola sky-islands) are high-elevation montane ecosystems

characterized by unique habitats called Sholas, a natural

mosaic of wet, tropical evergreen forests and grasslands, iso-

lated by drier lowland habitats [22]. The Shola sky-islands

harbour remarkable species diversity and endemism driven

by geographical complexity at multiple spatial scales

[22,23]. At large spatial scales (i.e. across the Western

Ghats), the deep and wide biogeographic barriers (Chaliyar,

Palghat, and Shencottah gaps; figure 1) have led to avian line-

age diversification [24,25]. At small spatial scales (i.e.

individual mountains), the steep elevational gradient contrib-

utes to colonization of sky-islands by both specialist avian

species restricted to montane habitats and generalists with a
wide elevational range. Thus, the Shola sky-islands offer an

excellent opportunity to better understand the relative impor-

tance of geographical (e.g. spatial distance and biogeographic

gaps), climatic (e.g. elevational gradients), and host species

barriers (e.g. host phylogeny and host ecology) in driving

evolution of parasite community structure.

In this study, we test whether Plasmodium spp. and Haemo-
proteus spp., owing to their varying levels of host specialization

differ in terms of: (i) host association patterns, (ii) coevolu-

tionary dynamics, (iii) genetic structure, and (iv) global

phylogenetic structure. We predict that: (i) diversity of hosts

infected by a single lineage would be greater for generalist

versus specialist parasites, (ii) generalist parasites would likely

coevolve with hosts through host-switching, while specialists

would likely co-speciate with their hosts, (iii) genetic structure

of generalist parasites would primarily be influenced by geo-

graphy, while specialists would be more affected by host

species barriers, and (iv) phylogenetic structure at global

scales would be lower for the generalist versus specialist para-

sites because geographical range tends to correlate positively

with niche breadth [26].
2. Material and methods
(a) Field and laboratory methods
Field sampling was conducted at 7–14 sites across four major

geographical regions in the southern 600 km mountain range

of the Western Ghats (at 100–2500 m.a.s.l.) (figure 1; see elec-

tronic supplementary material, table S1). Each geographical

region corresponded to the sky-island group separated by three

biogeographic barriers—Chaliyar River valley, Palghat Gap,

and Shencottah Gap. Adult birds were captured using mist-

nets during 2011–2013 and blood samples were collected from

bird’s ulnar vein in Queen’s lysis buffer, following Robin et al.
[27]. Genomic DNA was extracted using Qiagen blood and

tissue extraction kit (Qiagen, Hilden, Germany) and screened

for haemosporidian infection by amplifying 478 bp of mitochon-

drial cytochrome b gene (cytb) of avian haemosporidian parasites

[28] (details in the electronic supplementary material).

(b) Phylogenetic analyses
To assess phylogenetic relationships among the Shola sky-island

haemosporidian parasite lineages, we conducted Bayesian

phylogenetic analyses in MRBAYES [29]. Similarly, we built a

host phylogenetic tree based on cytochrome b sequence data

(1143 bp) for bird species from an earlier study [25]. To examine

parasite phylogenetic relationships at the global scale, we

obtained cytochrome b sequence data from the MalAvi database

[30] (accessed February 2018) and built Bayesian parasite

phylogenetic trees in MRBAYES [29]. We calculated rarefaction

curves of expected phylogenetic diversity for host species and

parasite lineages to ensure adequate sampling, as implemented

in R-package PDCALC [31] (details in the electronic supplementary

material). All statistical analyses were carried out in R 3.3.3 [32],

unless specifically mentioned otherwise.

(c) Host – parasite association patterns
We measured the diversity of parasite lineages infecting each

host species and diversity of hosts infected by each parasite line-

age using the Shannon diversity of interactions index (H2) [33], a

two-dimensional equivalent of the Shannon index [34]. We built

null models by randomizing the network interactions (10 000

times) while maintaining the marginal sums (i.e. sum of
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Figure 1. Map of Western Ghats. (a) Locations of sampling sites (filled circles) in four geographical regions: I (Bababudan and Banasura hills), II (Nilgiri hills),
III (Anamalai-Palni-Highwavies hills), IV (Ashambu hills), corresponding to the major sky-island group separated by three biogeographic barriers—Chaliyar gap,
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the proportion of individuals infected with Plasmodium spp. and Haemoproteus spp. in each geographical region with their 95% bootstrap confidence intervals;
(b) elevation profile of the Western Ghats along a linear transect connecting the highest elevation points in each geographical region (black transect line in a). (Online
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interactions for each species was kept constant) using R-package

VEGAN [35]. We performed two-sided tests of the network metric

value against the distribution of the null model metric values to

assess statistical significance. We quantified host specialization

for parasite lineages infecting greater than or equal to two host

species by measuring the phylospecificity index—mean phylo-

genetic distance (MPD) and standardized effect sizes of the

MPD values (SES.MPD) [36,37] using R-package PICANTE [38]

(details in the electronic supplementary material).
(d) Host – parasite coevolutionary dynamics
We visually assessed phylogenetic congruence between the host

and parasite phylogenetic trees by constructing a cophylogenetic

tanglegram using TREEMAP [39]. We then statistically tested for

host–parasite phylogenetic congruence by conducting a dis-

tance-based cophylogenetic analyses in Procrustean Approach

to Cophylogeny (PACo) [40], as implemented in R-packages

APE and VEGAN [35,41]. We also conducted an event-based cophy-

logenetic analyses, as implemented in JANE [42] and CORE-PA [43],

to determine the type and frequency of different coevolutionary

scenarios, e.g. co-speciation, duplication, host switch, sorting, or

loss of parasite lineages. While JANE assigns an a priori cost for
each evolutionary event, CORE-PA does not require a priori assign-

ment of cost values to compute a cost minimal reconstruction.

Run parameters and settings are detailed in the electronic

supplementary material.
(e) Parasite genetic structure
To test whether parasite genetic structure was influenced by host

species barriers, biogeographic gaps (figure 1), and geographical

structure within each biogeographic region, we used a hierarchical

analysis of molecular variance (AMOVA) as implemented in the

R-package HIERFSTAT [44]. We assessed the statistical significance

of each variance estimate by conducting 1000 randomizations

among species (for FHost/Total), regions within each species (for

FRegion/Host) and sampling sites within regions (for FSite/Region).

Furthermore, we tested the relative effects of geographical, cli-

matic, and host factors on parasite genetic structure using

multiple regression on distance matrices (MRM) [45], as

implemented in ECODIST [46]. The geographical factors considered

were biogeographic gaps (as a Boolean matrix) and geographical

distance (i.e. the great circle distance between sampling coordi-

nates); climatic factors included elevational distance (i.e. absolute

difference in elevation between sampling sites); host factors



royalsocietypublishing.org/journal/rspb
Proc.R.S

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 O

ct
ob

er
 2

02
2 
included host phylogenetic and host ecological distance (measured

as Gower distance between host ecological traits; [47]). Host eco-

logical data included species traits that could affect

haemosporidian infection dynamics and were collected from pub-

lished sources [48], as well as field observations by V.V.R. and

C.K.V. (see electronic supplementary material, table S9).

( f ) Global parasite phylogenetic structure
To test whether specialist versus generalist parasites were phylogen-

etically more clustered across the global haemosporidian phylogeny,

we calculated the nearest neighbour phylogenetic distance (DKN)

within Plasmodium spp. and Haemoproteus spp. lineages. We pro-

duced a null distribution of DKN values by randomizing (1000

times) tip labels across the global phylogeny and calculated the prob-

ability of obtaining a simulated DKN value � observed DKN value.

We tested the overall significance (i.e. across lineages within each

parasite genus) using the exact binomial test in R.
oc.B
286:20190439
3. Results and discussion
(a) Parasite prevalence patterns
We sampled 1177 birds belonging to 28 species (including 14

endemics), representing almost the entire Shola sky-island

bird community (except two species, see electronic sup-

plementary material, table S2) and found 24 species (490

birds) infected with haemosporidians (41.6% prevalence;

figure 1). Plasmodium spp. was found at a prevalence of

13.6% (across 19 bird species), while Haemoproteus spp. had

a prevalence of 68.9% (across 20 bird species; electronic sup-

plementary material, table S2). Haemosporidian prevalence

varied across species, with Turdus merula as a key host species

for Plasmodium spp. infection (29% prevalence) and Zosterops
palpebrosus for Haemoproteus spp. (77.1% prevalence) infec-

tion. Rarefaction analyses revealed that our sampling was

adequate to recover the observed parasite phylogenetic diver-

sity (electronic supplementary material, figure S1). Among

the 47 parasite lineages recovered, a majority of Plasmodium
spp. (10 of 18) and Haemoproteus spp. (24 of 29) lineages

were novel and unique to the Shola sky-islands (electronic

supplementary material, table S3), indicating that many

haemosporidian lineages are generally restricted to a single

biogeographic region and characterized by local diversification

as suggested by Ellis et al. [49–51].

(b) Host – parasite association patterns
Plasmodium spp. and Haemoproteus spp. differed markedly in

terms of host–parasite associations, with two Plasmodium
spp. lineages infecting a greater diversity of hosts than

expected by chance (P_MSP02: observed H2 ¼ 1.748;

expected H2 ¼ 0.806; p ¼ 0.016; P_MSP03: observed H2 ¼

2.246; expected H2 ¼ 0.795; p , 0.001; figure 2; electronic

supplementary material, table S4). However, patterns of

generalist host–parasite associations were not statistically

significant across all Plasmodium spp. lineages (binomial

p ¼ 0.058). Additionally, while host individuals were not sus-

ceptible to a greater diversity of Plasmodium spp. lineages

than expected by chance (binomial p ¼ 0.340), it is important

to note that a disproportionately high diversity of Plasmodium
spp. lineages (7 of 18) were recovered from a single host

species—T. merula (observed H2 ¼ 1.715; expected H2 ¼

0.978; p ¼ 0.046; figure 2; electronic supplementary material,

table S6). By contrast, for Haemoproteus spp., there was a
strong positive association between hosts and parasite

lineages, with 27 of 29 parasite lineages infecting a lower

diversity of hosts (binomial p , 0.001; electronic supplemen-

tary material, table S5) and 23 of 24 host species being

infected by a lower diversity of parasites than expected by

chance (binomial p , 0.001; figure 2; electronic supplementary

material, table S6).

Furthermore, phylogenetic host specificity analyses for

parasite lineages infecting multiple host species revealed

higher host specialization for Haemoproteus spp. (MPDw

mean¼ 0.132, CI ¼ 0.038, 0.248) compared to Plasmodium
spp. lineages (MPDw mean¼ 0.358, CI ¼ 0.246, 0.443). While

four of seven Haemoproteus spp. lineages showed higher phylos-

pecificity (based on their significant SES.MPD values), none of

the Plasmodium spp. lineages had higher host specificity than

expected by chance (electronic supplementary material, table

S7). Thus, Haemoproteus spp. were highly host specialized,

with most lineages infecting one or a very few phylogenetically

clustered hosts, compared to Plasmodium spp., as observed in

other biogeographic regions [11,15–17,52].

Interestingly, high prevalence and diversity of Plasmodium
spp. lineages were recovered from a single host species—

T. merula. Based on existing genetic data and plumage-

based taxonomy, T. merula is known to harbour cryptic

species diversity, with overlapping ranges of resident and

migratory races [25,53], which may explain why it was

infected by diverse haemosporidian lineages. Additionally,

T. merula harboured some widespread and pathogenic hae-

mosporidian lineages, which may underscore its role as a

potential reservoir host in the Shola sky-island bird commu-

nity. Among the eight Plasmodium spp. lineages infecting T.
merula, one was a generalist, while others were restricted to

T. merula and two lineages matched FANTAIL01 and

GRW06 (Plasmodium elongatum) (electronic supplementary

material, table S3). While FANTAIL01 is relatively less

common, GRW06 is globally widespread and often virulent

in naive bird hosts [54]. Moreover, out of the three Haemopro-
teus spp. lineages detected in T. merula, one matched and two

were 99% similar to Haemoproteus minutus, a widespread

European lineage of Turdus spp. While Haemoproteus minutus
is relatively benign for native European birds, lethal out-

breaks have been recorded for naive captive parrots in

Europe [55,56]. Previous studies have also shown that Eura-

sian blackbird and other thrushes (Turdus spp.) generally

serve as key reservoir hosts for Plasmodium spp. infections

with high prevalence and diversity in continental commu-

nities; and contribute to high spillover risk to naive host

communities when introduced to islands (such as in Azores

[57], Robinson Crusoe [58], and New Zealand [8]). Thus,

T. merula could be a potential key reservoir host in the

Western Ghats with several virulent lineages.
(c) Host – parasite coevolutionary dynamics
We found no evidence of significant cophylogenetic congru-

ence between hosts and Plasmodium spp. phylogenies (PACo,

m2 ¼ 5.297, p ¼ 0.640), but there was significant cophyloge-

netic congruence between host and Haemoproteus spp.

phylogenies (PACo, m2 ¼ 7.39, p ¼ 0.047; see also electronic

supplementary material, figures S2 and S3). Cophylogenetic

analysis with JANE revealed significant topological congru-

ence between host and Plasmodium spp. or Haemoproteus
spp. phylogenies (optimal inferred reconstruction cost lower
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Figure 2. Host association matrix for avian haemosporidians in the Shola sky-islands. (Left) Bayesian phylogenetic tree of Plasmodium spp. (blue) and Haemoproteus
spp. (red) lineages based on cytochrome b gene sequence data, with Leucocytozoon spp. as outgroups. Bayesian posterior probability support values are colour
coded. (Top) Bayesian phylogenetic tree of Shola sky-island bird species. See electronic supplementary material, tables S2 and S3 for details on tree tip
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than expected by chance; p , 0.001; electronic supplementary

material, figures S4 and S5). However, CORE-PA revealed co-

speciation for Haemoproteus spp., with inferred co-speciation

events significantly greater than expected by chance (p ¼
0.05), while other host-switching, sorting, or duplication

events did not differ significantly from random expectations.

For Plasmodium spp., none of the events occurred significantly

more than expected by chance (electronic supplementary

material, table S8).

Overall, as expected, our cophylogenetic analyses

revealed a signal of host–parasite congruence mediated by

co-speciation for specialist Haemoproteus spp., but lack of con-

gruence for the generalist Plasmodium spp. The significant

role of co-speciation versus host-switching in the evolution-

ary history of Haemoproteus spp. in the Shola sky-islands is

in contrast with previous studies that recognize host-switch-

ing as the dominant coevolutionary mechanism [59–61].

Our study suggests that coevolutionary mechanisms under-

lying diversification of avian haemosporidians are likely

more complex than has been anticipated earlier. Employing

a probabilistic approach such as approximate Bayesian com-

putation represents a useful future direction for an improved

understanding of avian haemosporidian diversification as

has been proposed recently [62].

The specialist strategy of Haemoproteus spp. and history of

co-speciation may have facilitated its diversification in the

Shola sky-island bird community. For example, three special-

ist lineages—MONCAC03, MONFAI02, and MONMER02—

showed signals of co-speciation and have co-diversified

with their endemic hosts Montecincla cachinnans, Montecincla
fairbanki, and Montecincla meridionalis, respectively (see elec-

tronic supplementary material, figure S5). Our results

further strengthen the patterns of local diversification of

avian haemosporidians observed in other tropical bird

communities [49,51]. Broadly, empirical data from other

host–parasite systems suggest that parasites tend to be

host-specialists in species-rich communities [63]. Similarly,

in the highly diverse Shola sky-island bird communities
with old host evolutionary histories and many endemic

host radiations, parasites likely benefit by establishing host-

specialized associations and diversify by co-speciation

rather than adapting a generalist strategy and having more

opportunities for host-switching, as suggested earlier [19,61].
(d) Parasite genetic structure
AMOVA revealed that parasite genetic differentiation between

host species was low for Plasmodium spp. (FHost/Total¼ 0.073,

p¼ 0.045) and high for Haemoproteus spp. (FHost/Total¼ 0.688,

p¼ 0.001; figure 3; electronic supplementary material, table

S10). We found a significant effect of biogeographic gaps,

within host species on the genetic structure of Plasmodium
spp. (FRegion/Host¼ 0.208, p¼ 0.004) but not Haemoproteus spp.
(FRegion/Host¼ 0.031, p¼ 0.464). However, there was significant

parasite genetic structure between sampling sites within biogeo-

graphic regions for both Plasmodium spp. (FSite/Region¼ 0.079,

p¼ 0.007) and Haemoproteus spp. (FSite/Region¼ 0.113, p¼
0.018; figure 3; electronic supplementary material, table S10).

Furthermore, multiple regressions on distance matrices

(MRM) analyses showed that Plasmodium spp. parasite genetic

distance was significantly associated with biogeographic gaps

(B¼ 0.229, t ¼ 4.686, p ¼ 0.003) and geographical distance

(B¼ 0.094, t¼ 4.425, p¼ 0.002) but not with host phylogenetic

(B¼ 0.020, t¼ 0.809, p¼ 0.592), ecological (B¼ 0.023, t ¼
0.656, p ¼ 0.609), or elevational distance (B¼ 20.027,

t ¼ 21.101, p ¼ 0.360; figure 3; electronic supplementary

material, table S11). Alternatively, Haemoproteus spp. parasite

genetic distance was significantly associated with host phy-

logenetic (B¼ 0.059, t¼ 18.157, p¼ 0.014), ecological (B¼
0.164, t¼ 44.794, p¼ 0.001), and elevational distance (B¼
0.053, t¼ 16.614, p ¼ 0.037), but was not affected by biogeo-

graphic gaps (B¼ 0.017, t¼ 3.114, p¼ 0.558) or geographical

distance (B¼ 0.001, t¼ 0.389, p¼ 0.909; figure 3; electronic

supplementary material, table S11).

From an eco-evolutionary perspective, parasites are intrin-

sically tied to their hosts and may be affected by host
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Figure 4. Global phylogenetic structure based on nearest neighbour phylogenetic distance (DKN). Bayesian phylogenetic trees for (a) Plasmodium spp. and (b)
Haemoproteus spp. lineages based on cytochrome b gene sequence data obtained from the MalAvi database and endemic (closed circles) and non-endemic
(open circles) lineages recovered from the Shola sky-islands. Leucocytozoon spp. were used as an outgroup. Inset shows the observed (circles) and expected
(line) nearest neighbour phylogenetic distance (DKN) for each Shola sky-island haemosporidian lineage. (Online version in colour.)
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phylogeography. Thus, given the effect of biogeographic gaps

in the Western Ghats on host phylogeographic structure, we

expected to find a similar phylogeographic structure among

the parasite lineages. Indeed, at large spatial scales, Plasmodium
spp. lineages revealed a phylogeographic structure across the

biogeographic gaps. Surprisingly, Haemoproteus spp. structure

was not affected by biogeographic gaps, suggesting that these

parasites tend to track their hosts closely and have likely colo-

nized their hosts before genetic divergence of the hosts. It was

especially surprising that even host species (e.g. Sholicola spp.

and Montecincla spp.) that showed deep genetic divergence

(approx. 4–5 Ma; [24]) across the biogeographic gaps were

infected by similar Haemoproteus spp. lineages across their

range. This could likely occur owing to differences in mutation

rates of parasites compared to their hosts. Additionally, an

open and interesting question remains regarding the role of

the dipteran vectors in facilitating dispersal of Haemoproteus
spp. lineages across the biogeographic gaps.

Within a biogeographic region, we found that Plasmodium
spp. lineages were shared more among geographically closer

hosts and did not show any host phylogenetic or ecological

constraints, coherent with their generalist strategy and a charac-

teristic that likely contributes to its role as an emerging parasite

in novel bird communities. By contrast, specialist Haemoproteus
spp. lineages were shared more among closely related hosts

(phylogenetically and ecologically), despite their geographical
isolation, a finding consistent with earlier studies [16,52].

Interestingly, Haemoproteus spp. populations were structured

by elevation compared to Plasmodium spp., indicating a higher

probability of elevational spread by Plasmodium spp., which

has critical implications from the perspective of disease

emergence in novel climatic niches.

Broadly, our results provide interesting insights into how

hosts may be analogous to islands from the perspective of para-

site colonization [64]. For instance, in the case of Plasmodium
spp., biogeographic gaps influenced parasite genetic structure,

indicating that host communities in each sky-island group

served as islands. By contrast, host phylogenetic and ecological

differences constrained the dispersal of Haemoproteus parasites,

thus characterizing each host species as islands.
(e) Global parasite phylogenetic structure
We found that phylogenetic clustering in Plasmodium spp.

lineages from the Shola sky-islands did not differ from a

random sample of lineages from the global parasite pool at the

community or lineage level (mean DKN¼ 0.533, p ¼ 0.272; two

of 18 lineages had DKN lower than expected; figure 4; electronic

supplementary material, table S12). By contrast, Haemoproteus
spp. lineages showed strong phylogenetic clustering at both

community and lineage level (mean DKN ¼ 0.281, p ¼ 0.002;

14 of 29 lineages had DKN less than expected; figure 4; electronic
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supplementary material, table S13). Overall, Haemoproteus spp.

lineages had a significantly higher chance of being clustered

compared to Plasmodium spp. lineages (b+ s.e. ¼ 1.958+0.86,

odds ratio ¼ 7.086; z ¼ 2.277, p¼ 0.023).

In line with our expectations, the generalist Plasmodium
spp. lineages were widely interspersed across their global

phylogeny, whereas specialist Haemoproteus spp. lineages

were phylogenetically more clustered. This suggests that Hae-
moproteus spp. have likely diversified in the Western Ghats,

owing to the relatively old origin [65] and the deep evolution-

ary history of Western Ghats endemic avian hosts [25] such as

Sholicola spp. and Montecincla spp., which diverged from

their most recent ancestor about 11–12 Ma and later diversi-

fied on the Shola sky-islands about 4–5 Ma [24]. The lack of

phylogenetic clustering among the Plasmodium spp. lineages

suggests that these parasites are a random sample of their

global phylogenetic pool and remain unconstrained by host

phylogeny, further highlighting their potential as emerging

parasites in novel host communities.
 6:20190439
4. Conclusion
We present one of the first comprehensive investigations of

avian haemosporidian dynamics in the Indian subcontinent

(see also [66]) by sampling almost the entire bird community

in an important biodiversity hotspot. Here, we addressed the

differential effects of geographical, climatic, and host species

barriers in shaping generalist and specialist haemosporidian

parasite community structure. Our results reveal that, in a

continental island system with long host–parasite coevolu-

tionary history, there were several novel haemosporidian

parasite lineages, endemic to the Shola sky-islands. Plasmo-
dium spp. and Haemoproteus spp. clearly differed in terms of

their host diversity, with higher host specialization in the

case of the latter but not in the former. Consequently, there

was a strong signal of co-speciation in the coevolutionary

history of Haemoproteus spp., but not in Plasmodium spp.

These parasites also differed dramatically in terms of their

emerging infectious disease risk, with sharing of generalist

Plasmodium spp. lineages among multiple host species

primarily constrained by geographical factors such as geo-

graphical proximity, whereas specialist Haemoproteus spp.

lineages were more influenced by host species factors such

as host phylogeny, host ecology, and climatic factors driven

by elevation. Critically, our analyses revealed that Plasmodium
spp. were less affected by climatic gradients (i.e. elevation),

indicating that these parasites had a higher likelihood of
elevational range expansion and were more likely to

emerge when introduced to novel environments. In the

Shola sky-islands, this is an especially troubling finding as

high-elevation habitats harbour a higher number of endemic

host species, which are also more likely to have evolved with

avian haemosporidian parasites (for example, see [8]).

Overall, our results reveal that the higher likelihood of

emergence in novel host communities by Plasmodium spp.

versus Haemoproteus spp. was likely driven by two interrelated

mechanisms. First, there are a few Plasmodium spp. lineages

that can infect a diverse array of host species without being

constrained by host phylogenetic/ecological similarity, and

thus, these lineages could emerge rapidly when introduced

into a novel host community. Second, a few host species har-

bour a high diversity of Plasmodium spp. lineages, and thus

invasion of such hosts into a novel bird community will be

associated with the introduction of multiple parasite lineages,

increasing the likelihood of spillover to native hosts. Conse-

quently, Plasmodium spp. lineages were globally widespread,

reiterating their increased potential for colonization and emer-

gence in novel host communities. Elucidating the underlying

ecological and evolutionary factors that contribute to the

rapid emergence of some parasites (e.g. Plasmodium spp.) but

not others (e.g. Haemoproteus spp.) has critical implications for

an improved understanding of emerging infectious diseases.
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