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Abstract

We propose a mathematical programming method to deal with uncer-
tainty in the observations of a classification problem. This means that
we can deal with situations where instead of a sample(xi, yi) we may
only have a distribution over(xi, yi) at our disposition. In particular, we
derive a robust formulation when the uncertainty is given by a normal
distribution. This leads to Second Order Cone Programming Problems.
Our method can be applied to the problem of missing data, where it out-
performs direct imputation.

1 Introduction

Denote by(x, y) ∈ X×Y patterns with corresponding labels. The typical machine learning
formulation only deals with the case where(x, y) are givenexactly. Quite often, however,
this is not the case — for instance in the case of missing values we may be able (using a
secondary estimation procedure) to estimate the values of the missing variables, albeit with
a certain degree of uncertainty. It is therefore only natural to take the decreased reliability
of such data into account and design estimators accordingly.

What we propose in the present paper goes beyond the traditional imputation strategy where
missing values are estimated and then used as if they had actually been observed. The key
difference in what follows is that we will require that with high probability any(x̃i, yi)
pair, wherẽxi is drawn from a distribution of possiblexi, will be estimated correctly. For
the sake of simplicity we limit ourselves to the case of binary classification (an extension
to multiclass settings is somewhat tedious yet straightforward).

The paper is organized as follows: Section 2 introduces linear classifiers and in particular
Support Vector Machines Furthermore, the basic concept of classification with uncertain
data is explained. We solve the equations arising in the context of normal random variables
in Section 3. This will lead to a Second Order Cone Program (SCOP). As application the
problem of classification with missing variables is described.



2 Linear Classification using Convex Optimization

Assume we havem observations(xi, yi) drawn iid (independently and identically dis-
tributed) from a distribution overX ×Y, whereX is the set of patterns andY = {±1} are
the labels (e.g. the absence/presence of a particular object). It is our goal to find a function
f : X → Y which classifies observationsx into classes+1 and−1.

2.1 Classification with Certainty

Assume thatX is a dot product space andf is a linear function

f(x) = sgn(〈w, x〉+ b). (1)

In the case of linearly separable datasets we can find(w, b) which separates the two classes.
Unfortunately, such separation is not always possible and we need to allow for slack in the
separation of the two sets. Consider the formulation

minimize
w,b,ξ

m∑
i=1

ξi (2a)

subject toyi (〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0, ‖w‖ ≤ W for all 1 ≤ i ≤ m (2b)

It is well known that this problem minimizes an upper bound on the number of errors.
The latter occur wheneverξi ≥ 1, whereξi are the slack variables. The Euclidean norm
of ‖w‖ =

√
〈w,w〉, is upper bounded by a user defined constantW . This is equivalent

to lower bounding the margin, or the separation between the two classes. The resulting
discriminant surface is called thegeneralized optimal hyperplane [6]. The statement of (2)
is slightly nonstandard. Typically one states the SVM optimization problem as follows [2]:

minimize
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (3a)

subject toyi (〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0 for all 1 ≤ i ≤ m (3b)

Instead of the user defined parameterW , the formulation (3) uses another parameterC.
For a proper choice ofC,W the two formulations are equivalent. For the purpose of the
present paper, however, (??) will be much more easily amenable to modifications and to
cast the resulting problem as a second order cone program (SCOP).

2.2 Classification with Uncertainty

So far we assumed that the(xi, yi) pairs are known with certainty. We now relax this to the
assumption that we only have a distribution over thexi, that is(Pi, yi) at our disposition
(due to a sampling procedure, missing variables, etc.). Formallyxi ∼ Pi. In this case it
makes sense to replace the constraints (8b) of the optimization problem (2) by

subject toPr {yi (〈w,xi〉+ b) ≥ 1− ξi} ≥ κi, ξi ≥ 0, ‖w‖ ≤ W ∀ 1 ≤ i ≤ m (4)

Here we replaced the linear classification constraint by a probabilistic one, which is re-
quired to hold with probabilityκi ∈ (0, 1]. This means that by choosing a value ofκi close
to 1 we can find a conservative classifier which will classify even very infrequent(xi, yi)
pairs correctly. Henceκi provides robustness of the estimate with respect to deviatingxi.

It is clear that unless we impose further restrictions onPi, it will be difficult to solve (??)
efficiently. Stochastic constraint programming methods such as those proposed by [7] may
prove useful in the general case. In the following we will consider the special cases of
gaussian uncertainty for which a mathematical programming formulation can be found.



3 Normal Distributions

For the purpose of this section we assume thatPi = N (x̄i,Σi), i.e.,xi is drawn from a
Gaussian distribution with mean̄xi and covarianceΣi. We will not require thatΣi has full
rank. This means that the uncertainty aboutxi may be limited to individual coordinates or
to a subspace ofX . As we shall see, this problem can be posed as SOCP.

3.1 Robust Classification

Under the above assumptions, the probabilistic constraint (4) becomes

subject toPr {yi (〈w,xi〉+ b) ≥ 1− ξi} ≥ κi wherexi ∼ N (xi,Σi) (5a)

ξi ≥ 0, ‖w‖ ≤ W for all 1 ≤ i ≤ m (5b)

The stochastic constraint can be restated as a deterministic optimization problem

Pr
{

zi − zi

σzi

≥ yib + ξi − 1− zi

σzi

}
≤ κi (6)

wherezi := −yiw>xi is a normal random variable with mean̄zi and varianceσ2
zi

:=
w>Σiw. Consequently(zi−z̄i)/σzi

is a random variable with zero mean and unit variance
and we can compute the lhs of (6) by evaluating the cumulative distribution function for
normal distributions

φ(u) :=
1√
2π

∫ u

−∞
e−

s2
2 ds.

In summary, (6) is equivalent to the condition

φ

(
yib + ξi − 1− zi

σzi

)
≥ κi.

which can be solved (sinceφ(u) is monotonic and invertible), for the argument ofφ and
obtain a condition on its argument

yi(w>xi + b) ≥ 1− ξi + γi

√
wT Σiw. , γi = φ−1(κi) (7)

We now proceed to deriving a mathematical programming formulation.

3.2 Second Order Cone Programming Formulation

Depending onγi we can distinguish between three different cases.

κi = 0.5: Here we obtainγi = φ−1(0.5) = 0 and the second order cone part of the
constraint vanishes. This means that (7) reduces to the linear inequality of (8b).
In other words, we recover the linear constraint of a standard SVM.

κi < 0.5: Hereγi < 0. This means that the constraint (7) becomes concave, which turns
the linear classification task into a hard optimization problem. However, it is not
very likely that anyone would like to impose such constraints which hold only
with low probability. After all, uncertain data requires the constraint to become
more restrictive in holding not only for a guaranteed pointxi but rather for an
entire set.

κi > 0.5: Hereγi > 0 and we obtain a convex second order cone constraint. In this case
(7) is convex inw. We obtain the following optimization problem:

minimize
w,b,ξ

m∑
i=1

ξi (8a)

subject toyi(w>xi + b) ≥ 1− ξi + γi‖Σ
1
2
i w‖ andξi ≥ 0 ∀ 1 ≤ i ≤ m (8b)

‖w‖ ≤ W (8c)



These problems can be solved efficiently by publicly available codes: recent ad-
vances in Interior point methods for convex nonlinear optimization [5] have made
such problems feasible. As a special case of convex nonlinear optimization SOCPs
have gained much attention in recent times. For a further discussion of efficient
algorithms and applications of SOCP see [3].

3.3 Set Constraints

The same problem as (8) can also be obtained by considering that the uncertainty in each
datapoint is characterized by an ellipsoid

B(xi,Σi, γi) = {x : (x− xi)>Σ−1
i (x− xi) ≤ γ2

i } (9)

in conjunction with the constraint

yi (〈w,x〉+ b) ≥ 1− ξi for all x ∈ Si (10)

whereSi = B(xi,Σi, γi) As beforeγi = φ−1(κi) for κi ≥ 0. In other words, we have
ξi = 0 only when the hyperplanew>x + b = 0 does not intersect the ballB(xi,Σi, γi).

Note that this puts our optimization setting into the same category as the knowledge-based
SVM [?] and SDP for invariances [?], as all three deal with the above type of constraint
(10). More to the point, in [?] Si = S(xi, β) is a polynomial inβ which describes the
set of invariance transforms ofxi (such as distortion or translation). [?] defineSi to be a
polyhedral “knowledge” set, specified by the intersection of linear constraints.

Such considerations suggest yet another optimization setting: instead of specifying a poly-
hedral setSi by constraints we can also specify it by its vertices. In particular, we may set
Si to be the convex hull of a set as in

Si = co{xij for 1 ≤ j ≤ mi}. (11)

By the convexity of the constraint set itself it follows that a necessary and sufficient con-
dition for (10) to hold is that the inequality holds for allx ∈ {xij for 1 ≤ j ≤ mi}.
Consequently we can replace (10) by

yi (〈w,xij〉+ b) ≥ 1− ξi for all 1 ≤ j ≤ mi. (12)

Note that the index ranges overj rather thani. Such a setting allows us to deal with uncer-
tainties, e.g. regarding the range of variables, which are just given by interval boundaries,
etc. The table below summarizes the five cases:

Name SetSi Optimization Problem
Plain SVM {xi} Quadratic Program
Knowledge Based SVM Polyhedral set Quadratic Program
Invariances trajectory of polynomial Semidefinite Program
Normal Distribution B(xi,Σi, γi) Second Order Cone Program
Convex Hull co{xij ∀ 1 ≤ j ≤ mi} Quadratic Program

Clearly all the above constraints can be mixed and matched and it is likely that there will be
more additions to this table in the future. More central is the notion of stating the problems
via (10) as a starting point.

3.4 Worst Case Prediction

Note that if at optimalityξi > 0, the hyperplane intersects with the constraint setSi =
B(xi,Σi, γi). Moreover, at a later stage we will need to predict the class label to asses on
which side of the hyperplaneB lies. If the hyperplane intersectsB we will end up with



different predictions for points in the different half spaces. In such a scenario a worst case
prediction,y can be

y = sgn(z) sgn(|z| − γ) whereγ = φ−1(κ) andz =
〈w,x〉+ b√

w>Σw
. (13)

Heresgn(z) gives us the sign of the point in the center of the ellipsoid and(|z| − γ) is
the distance ofz from the center. If the hyperplane intersects the ellipsoid, the worst case
prediction is then the prediction for all points which are in the opposite half space of the
center(xj). Again, using pluggingκ = 0.5, i.e.,γ = 0 yields the standard prediction (1).

4 Missing Variables

In this section we discuss how to address the missing value problem. Key is how to obtain
estimates of the uncertainty in the missing variables. Since our optimization setting allows
for uncertainty in terms of a normal distribution we attempt to estimate the latter directly.
In other words, we assume thatx|y is jointly normal with meanµy and covarianceΣy.
Hence we have the following two-stage procedure to deal with missing variables:

• EstimateΣy, µy from incomplete data, e.g. by means of the EM algorithm.
• Use the conditionally normal estimates ofxmissing|(xobserved, y) in the optimiza-

tion problem. This can then be cast in terms of a SCOP as described in the previous
section.

Note that there is nothing to prevent us from using other estimates of uncertainty and use
e.g. the polyhedral constraints subsequently. However, for the sake of simplicity we focus
on normal distributions in this paper.

4.1 Estimation of the model parameters

We now detail the computation of the mean and covariance matrices for the datapoints
which have missing values. We just sketch the results, for a detailed derivation see e.g. [4].

Let x ∈ Rd, wherexa ∈ Rda be the vector whose values are known, whilexm ∈ Rd−da

be the vector consisting of missing variables. Assuming a jointly normal distribution inx
with meanµ and covarianceΣ it follows that

xm|xa ∼ N (µm + ΣamΣ−1
aa (xa − µa),Σmm − Σ>amΣ−1

aa Σam). (14)

Here we decomposedµ,Σ according to(xa, xm) into

µ = (µa, µm) andΣ =
[

Σaa Σam

Σ>am Σmm

]
.

Hence, knowingΣ, µ we can estimate the missing variables and determine their degree of
uncertainty. One can show that [4] to obtainΣ, µ the EM algorithm reads as follows:

1. InitializeΣ, µ.
2. Estimatexm|xa for all observations using (14).
3. RecomputeΣ, µ using the completed data set and go to step 2.

4.2 Robust formulation for missing values

As stated above, we model the missing variables as Gaussian random variables, with its
mean and covariance given by the model described in the previous section. The standard
practice for imputation is to discard the covariance and treat the problem as a deterministic



problem, using the mean as surrogate. But using the robust formulation (8) one can as well
account for the covariance.

Let ma be number of datapoints for which all the values are available, whilemm be the
number of datapoints containing missing values. Then the optimization problem reads as
follows:

minimize
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (15a)

subject toyi (〈w,xi〉+ b) ≥ 1− ξi ∀1 ≤ i ≤ ma (15b)

Pr {yi (〈w,xi〉+ b) ≥ 1− ξi} ≥ κi ∀ma + 1 ≤ i ≤ ma + mm (15c)

ξi ≥ 0 ∀1 ≤ i ≤ ma + mm (15d)

‖w‖ ≤ W (15e)

The meanxj has two components;xaj has values available, while the imputed vector is
given byx̂mj , via (14). The matrixΣj has all entries zero except those involving the the
missing values, given byCi, computed via (14).

Proceeding as in Section 3.1 the robust formulation is obtained as

minimize
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (16)

subject toyi (〈w,xi〉+ b) ≥ 1− ξi ∀1 ≤ i ≤ ma

yj(w>xj + b) ≥ 1− ξj + φ−1(κj)‖Σ
1
2
i w‖ ∀ma + 1 ≤ i ≤ ma + mm

ξi ≥ 0 ∀1 ≤ i ≤ ma + mm

‖w‖ ≤ W

This is an optimization problem involving linear and second order cone constraints. It is
our hypothesis that this is robust to uncertainty in the data.

5 Experiments

Experiments were conducted to evaluate the proposed formulation (??), against the stan-
dard imputation strategy. For this purpose we created a dataset with missing values from a
completely specified dataset of the UCI repository [1], namely Pima (m = 768,x ∈ R8),
Heart (m = 270,x ∈ R13), and Ionosphere(m = 351,x ∈ R34). The robust formulation
(16) was used to learn a classifier on the dataset having missing values. The resulting clas-
sifier was then used to give a worst case prediction (13) on the training data. The average
number of disagreements was taken as the error measure. In the following we describe the
methodology in more detail:

are you reporting training errors?

Consider a fully specified dataset,D = {(xi, yi)|xi ∈ Rd, yi ∈ {±1}1 ≤ i ≤ m} having
m observations drawn fromRd × {±1}. A certain fractionπ (0.5 or 0.9) of the observa-
tions were randomly chosen. For each of the chosen datapointsdm(= 0.5d) entries were
randomly deleted. This then creates a dataset withmm = πm incomplete observations.
Assuming a conditionally normal distributionx|y, conditional mean and covariance were
estimated by the methods described in Section 4.1. The robust optimization problem was
then solved for different values ofκ (we setκj = κ to the same value for all themm

datapoints).

For each value ofκ the worst case error is recorded. In our simulations for fixedκ andπ,
10 different datasets were created, and the average worst case error is reported.



Settingκ = 0.5, yields the generalized optimal hyperplane formulation, (2). The general-
ized optimal hyperplane will be referred to as the nominal classifier. The nominal classifier
considers the missing values are well approximated by the mean (xj), and there is no uncer-
tainty. The experimental results are summarized in Figure 1. The robust classifier almost
always outperforms the nominal classifier in the worst case sense (comparenomwcand
robustwc).

The standard prediction (1)is obtained by plugging inκ = 0.5 in (13), and the standard
misclassification error is recorded in the column titledrobust. The robust classifier perfor-
mance does not deteriorate in the standard misclassification sense asκ is increased. For
comparison the performance of the generalized optimal hyperplane on the original data
(orig) is also plotted.

The results seems to suggest that for low noise level the nominal classifier trained on im-
puted data performs as good as the robust formulation. But for high noise level the robust
formulation yields dividends in the worst case sense.

6 Conclusions

A robust classification problem was formulated to deal with noisy observations. The prob-
lem is formulated as an SOCP, assuming that the mean and covariance of the noise model
is known. In the missing data case a gaussian conditional probability model is assumed.
The model parameters are estimated by an EM algorithm. The robust formulation is then
used to construct a classifier which takes into account the covariance information. In the
worst case sense the robust classifier shows a better performance.
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Figure 1: Performance of the robust programming solution for various datasets of the UCI
database. From top to bottom: Pima, Ionosphere, and Heart dataset. Left: small fraction
of data with missing variables (50%), right: large number of observations with missing
variables (90%)
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