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Abstract

We propose a mathematical programming method to deal with uncer-
tainty in the observations of a classification problem. This means that
we can deal with situations where instead of a sanipley;) we may

only have a distribution ovelx;, y;) at our disposition. In particular, we
derive a robust formulation when the uncertainty is given by a normal
distribution. This leads to Second Order Cone Programming Problems.
Our method can be applied to the problem of missing data, where it out-
performs direct imputation.

1 Introduction

Denote by(z, y) € X x) patterns with corresponding labels. The typical machine learning
formulation only deals with the case where y) are givenexactly Quite often, however,

this is not the case — for instance in the case of missing values we may be able (using a
secondary estimation procedure) to estimate the values of the missing variables, albeit with
a certain degree of uncertainty. It is therefore only natural to take the decreased reliability
of such data into account and design estimators accordingly.

What we propose in the present paper goes beyond the traditional imputation strategy where
missing values are estimated and then used as if they had actually been observed. The key
difference in what follows is that we will require that with high probability gay, ;)

pair, wherez; is drawn from a distribution of possibte;, will be estimated correctly. For

the sake of simplicity we limit ourselves to the case of binary classification (an extension
to multiclass settings is somewhat tedious yet straightforward).

The paper is organized as follows: Secfign 2 introduces linear classifiers and in particular
Support Vector Machines Furthermore, the basic concept of classification with uncertain
data is explained. We solve the equations arising in the context of normal random variables
in Sectior{ 3. This will lead to a Second Order Cone Program (SCOP). As application the
problem of classification with missing variables is described.



2 Linear Classification using Convex Optimization

Assume we haven observationgx;, y;) drawn iid (independently and identically dis-
tributed) from a distribution ovet’ x ), whereX is the set of patterns andd = {+1} are

the labels (e.g. the absence/presence of a particular object). It is our goal to find a function
f: X — Y which classifies observationsinto classest1 and—1.

2.1 Classification with Certainty

Assume thatt’ is a dot product space arfds a linear function
f(z) = sgn({w, z) +b). )

In the case of linearly separable datasets we car(find) which separates the two classes.
Unfortunately, such separation is not always possible and we need to allow for slack in the
separation of the two sets. Consider the formulation

m
minimize ; 2a
nimi ;g (2a)

subject toy; ((w,x;) +b) > 1—¢&,& >0, ||w|| < Wforalll<i<m (2b)

It is well known that this problem minimizes an upper bound on the number of errors.
The latter occur whenevets > 1, whereg; are the slack variables. The Euclidean norm

of |w|| = /(w,w), is upper bounded by a user defined const&ntThis is equivalent

to lower bounding the margin, or the separation between the two classes. The resulting
discriminant surface is called theneralized optimal hyperplane [6]. The statement of {2)

is slightly nonstandard. Typically one states the SVM optimization problem as follows [2]:

T B “
m|51vl7rbr71£|ze§||w|| + C;& (3a)
subjecttoy; ((w,x;) +b) > 1—-&.,§ >0foralll <i<m (3b)

Instead of the user defined paraméiéy the formulation|[(B) uses another parameter
For a proper choice of', W the two formulations are equivalent. For the purpose of the
present paper, howevef2?) will be much more easily amenable to modifications and to
cast the resulting problem as a second order cone program (SCOP).

2.2 Classification with Uncertainty

So far we assumed that tfe;, y;) pairs are known with certainty. We now relax this to the
assumption that we only have a distribution over thethat is(P;, ;) at our disposition
(due to a sampling procedure, missing variables, etc.). Formally P;. In this case it
makes sense to replace the constra|ntps (8b) of the optimization prqlem (2) by

subjecttoPr {y; ((w,x;) +b) > 1 =&} >k, 6 > 0,|w|| <WV1I<i<m (4)

Here we replaced the linear classification constraint by a probabilistic one, which is re-
quired to hold with probability:; € (0, 1]. This means that by choosing a valueptlose

to 1 we can find a conservative classifier which will classify even very infrequeny; )

pairs correctly. Hence; provides robustness of the estimate with respect to deviating

It is clear that unless we impose further restrictiondqnit will be difficult to solve (?7?)
efficiently. Stochastic constraint programming methods such as those proposéd by [7] may
prove useful in the general case. In the following we will consider the special cases of
gaussian uncertainty for which a mathematical programming formulation can be found.



3 Normal Distributions

For the purpose of this section we assume Pat= N (z;,Y;), i.e., x; is drawn from a
Gaussian distribution with mean and covarianc&l;. We will not require thad; has full
rank. This means that the uncertainty abeytnay be limited to individual coordinates or
to a subspace of. As we shall see, this problem can be posed as SOCP.

3.1 Robust Classification

Under the above assumptions, the probabilistic constigint (4) becomes
subject toPr {y; ((w,x;) +b) > 1 — &} > k; wherex; ~ N (x;,%;) (5a)

&>0|w|| <Wforalll <i<m (5b)
The stochastic constraint can be restated as a deterministic optimization problem
. ) S 1—z
Pr{zz Z yib + & zl} < n ©)
Oz; Oz
wherez; := —y;w'x; is a normal random variable with meapn and varianceri =

w ¥, w. Consequentlyz; —z;) /o, is a random variable with zero mean and unit variance
and we can compute the Ihs ¢f (6) by evaluating the cumulative distribution function for

normal distributions ) "
2
U) = —— e~ T ds.
Pl V2r /m

In summary,[(B) is equivalent to the condition

¢<yib+€i_1_zi) > k.

O,

which can be solved (sine&(u) is monotonic and invertible), for the argumentg@and
obtain a condition on its argument

YW xi +b) > 1= &+ 7VwiSiw. =6 (k) ()
We now proceed to deriving a mathematical programming formulation.

3.2 Second Order Cone Programming Formulation
Depending ony; we can distinguish between three different cases.

k; = 0.5: Here we obtainy; = ¢~1(0.5) = 0 and the second order cone part of the
constraint vanishes. This means that (7) reduces to the linear inequality] of (8b).
In other words, we recover the linear constraint of a standard SVM.

k; < 0.5: Herev; < 0. This means that the constraipf (7) becomes concave, which turns
the linear classification task into a hard optimization problem. However, it is not
very likely that anyone would like to impose such constraints which hold only
with low probability. After all, uncertain data requires the constraint to become
more restrictive in holding not only for a guaranteed paintbut rather for an
entire set.

k; > 0.5: Herev; > 0 and we obtain a convex second order cone constraint. In this case
(7) is convex inw. We obtain the following optimization problem:

minimize i 8a
nimi ;g (8a)

subject toy; (w ' x; +b) > 1—¢; +%-||Z§w|| and§; >0vV1<i<m (8b)
[wl <wW (8¢)



These problems can be solved efficiently by publicly available codes: recent ad-
vances in Interior point methods for convex nonlinear optimization [5] have made
such problems feasible. As a special case of convex nonlinear optimization SOCPs
have gained much attention in recent times. For a further discussion of efficient
algorithms and applications of SOCP seke [3].

3.3 Set Constraints

The same problem &S| (8) can also be obtained by considering that the uncertainty in each
datapoint is characterized by an ellipsoid

B(xi, S, 7i) = {x: (x —x;) '8 (x — x;) <77} 9)
in conjunction with the constraint
yi ((w,x) +b) >1-¢ forallx € 5; (10)

whereS; = B(x;, ¥i,7:) As beforey; = ¢~ 1(x;) for x; > 0. In other words, we have
& = 0 only when the hyperplane "x + b = 0 does not intersect the bdll(x;, ¥;, ;).

Note that this puts our optimization setting into the same category as the knowledge-based
SVM [?] and SDP for invariances?], as all three deal with the above type of constraint
). More to the point, inq] S; = S(x;, ) is a polynomial ing which describes the

set of invariance transforms af, (such as distortion or translation)?][define S; to be a
polyhedral “knowledge” set, specified by the intersection of linear constraints.

Such considerations suggest yet another optimization setting: instead of specifying a poly-
hedral setS; by constraints we can also specify it by its vertices. In particular, we may set
S; to be the convex hull of a set as in

S; = co{x;; for1 < j <m;}. (11)

By the convexity of the constraint set itself it follows that a necessary and sufficient con-
dition for (1Q) to hold is that the inequality holds for all € {x;; for1 < j < m;}.
Consequently we can repla¢e|10) by

Note that the index ranges ovgrather thart. Such a setting allows us to deal with uncer-
tainties, e.g. regarding the range of variables, which are just given by interval boundaries,
etc. The table below summarizes the five cases:

Name | SetS; | Optimization Problem

Plain SVM {x:} Quadratic Program
Knowledge Based SVM Polyhedral set Quadratic Program
Invariances trajectory of polynomial| Semidefinite Program
Normal Distribution B(x;, %, v:) Second Order Cone Program
Convex Hull co{x;; V1 <j<m;} | Quadratic Program

Clearly all the above constraints can be mixed and matched and it is likely that there will be
more additions to this table in the future. More central is the notion of stating the problems
via (1Q) as a starting point.

3.4 Worst Case Prediction

Note that if at optimalityt; > 0, the hyperplane intersects with the constraint$et=
B(x;,X;,v:). Moreover, at a later stage we will need to predict the class label to asses on
which side of the hyperplanB lies. If the hyperplane intersecB we will end up with



different predictions for points in the different half spaces. In such a scenario a worst case
prediction,y can be

(w,x) +b
Vwisw
Heresgn(z) gives us the sign of the point in the center of the ellipsoid gad— ) is

the distance of from the center. If the hyperplane intersects the ellipsoid, the worst case

prediction is then the prediction for all points which are in the opposite half space of the
center(x;). Again, using plugging: = 0.5, i.e., = 0 yields the standard predictign] (1).

y = sgn(z) sgn(|z| — ) wherey = ¢~ (k) andz = (13)

4 Missing Variables

In this section we discuss how to address the missing value problem. Key is how to obtain
estimates of the uncertainty in the missing variables. Since our optimization setting allows
for uncertainty in terms of a normal distribution we attempt to estimate the latter directly.
In other words, we assume thaly is jointly normal with mearp¥ and covariance&?.
Hence we have the following two-stage procedure to deal with missing variables:

e Estimate>V, ;¥ from incomplete data, e.g. by means of the EM algorithm.

¢ Use the conditionally normal estimatesmf;ssing|(Zobserved; ¥) iN the optimiza-
tion problem. This can then be cast in terms of a SCOP as described in the previous
section.

Note that there is nothing to prevent us from using other estimates of uncertainty and use
e.g. the polyhedral constraints subsequently. However, for the sake of simplicity we focus
on normal distributions in this paper.

4.1 Estimation of the model parameters

We now detail the computation of the mean and covariance matrices for the datapoints
which have missing values. We just sketch the results, for a detailed derivation séé e.qg. [4].

Letx € R?, wherex, € R% be the vector whose values are known, wkije € R~
be the vector consisting of missing variables. Assuming a jointly normal distributign in
with meanu and covarianc& it follows that

Xm‘xa ~ N(,um + Eangal (fL'a - ,ufa)v z)rnm - Ezngalzam)- (14)
Here we decomposed X according to(z,, ,,) into
E E m
= (:U’avlim) andX = |: Egra E(:nm :| .

Hence, knowing:, 1 we can estimate the missing variables and determine their degree of
uncertainty. One can show that [4] to obtain. the EM algorithm reads as follows:

1. Initialize X, p.
2. Estimatex,, |x, for all observations using (14).
3. Recomputé&:, i using the completed data set and go to step 2.

4.2 Robust formulation for missing values

As stated above, we model the missing variables as Gaussian random variables, with its
mean and covariance given by the model described in the previous section. The standard
practice for imputation is to discard the covariance and treat the problem as a deterministic



problem, using the mean as surrogate. But using the robust formuf(ation (8) one can as well
account for the covariance.

Let m, be number of datapoints for which all the values are available, whjlebe the
number of datapoints containing missing values. Then the optimization problem reads as
follows:

T -
minimize |wl||? + C ; & (15a)
subject toy; ((w,x;) +b) > 1—¢; V1 <i<myg (15b)
Pr{y; ((w,x;) +b) >1—-¢&} >k VYVmg+1<i<mgz+m, (15c)
§& >0 V1<i<mg+mm (15d)
[wl <W (15€)

The meanx; has two components;,; has values available, while the imputed vector is
given byx,,;, via ). The matrix; has all entries zero except those involving the the
missing values, given bg;, computed via[(14).

Proceeding as in Sectipn B.1 the robust formulation is obtained as

T i
minimize - ; 1
nimi 62||wH +0;gl (16)
subject toy; ((w,x;) +b) > 1—¢; V1<i<m,
1
yi(wix;+b0) > 1= &+ (5)IS2W] Vma +1 <0 <mg+map,
fLZO \vqgigma_"m'm
[w] <W

This is an optimization problem involving linear and second order cone constraints. It is
our hypothesis that this is robust to uncertainty in the data.

5 Experiments

Experiments were conducted to evaluate the proposed formul&®nagainst the stan-

dard imputation strategy. For this purpose we created a dataset with missing values from a
completely specified dataset of the UCI repositary [1], namely Pima=(768,x € R?),

Heart (n = 270,x € R!'3), and lonospheref = 351, x € R3*). The robust formulation

(16) was used to learn a classifier on the dataset having missing values. The resulting clas-
sifier was then used to give a worst case predicfioh (13) on the training data. The average
number of disagreements was taken as the error measure. In the following we describe the
methodology in more detail:

are you reporting training errors?

Consider a fully specified datasé, = {(x;, y;)|x; € R%,y; € {£1}1 <1 < m} having

m observations drawn froR? x {#+1}. A certain fractionr (0.5 or 0.9) of the observa-

tions were randomly chosen. For each of the chosen datapbiffts 0.5d) entries were
randomly deleted. This then creates a dataset with = 7m incomplete observations.
Assuming a conditionally normal distributiarjy, conditional mean and covariance were
estimated by the methods described in Segtioh 4.1. The robust optimization problem was
then solved for different values ef (we setx; = « to the same value for all theu,,
datapoints).

For each value of the worst case error is recorded. In our simulations for fixeshd,
10 different datasets were created, and the average worst case error is reported.



Settingx = 0.5, yields the generalized optimal hyperplane formulatiph, (2). The general-
ized optimal hyperplane will be referred to as the nominal classifier. The nominal classifier
considers the missing values are well approximated by the me@rafid there is no uncer-
tainty. The experimental results are summarized in Fighre 1. The robust classifier aimost
always outperforms the nominal classifier in the worst case sense (comparecand
robustwg.

The standard predictiofn](1)is obtained by plugging:ir= 0.5 in (I3), and the standard
misclassification error is recorded in the column tittedust The robust classifier perfor-
mance does not deteriorate in the standard misclassification sersis agreased. For
comparison the performance of the generalized optimal hyperplane on the original data
(orig) is also plotted.

The results seems to suggest that for low noise level the nominal classifier trained on im-
puted data performs as good as the robust formulation. But for high noise level the robust
formulation yields dividends in the worst case sense.

6 Conclusions

A robust classification problem was formulated to deal with noisy observations. The prob-
lem is formulated as an SOCP, assuming that the mean and covariance of the noise model
is known. In the missing data case a gaussian conditional probability model is assumed.
The model parameters are estimated by an EM algorithm. The robust formulation is then
used to construct a classifier which takes into account the covariance information. In the
worst case sense the robust classifier shows a better performance.
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Figure 1: Performance of the robust programming solution for various datasets of the UCI
database. From top to bottom: Pima, lonosphere, and Heart dataset. Left: small fraction
of data with missing variable$(%), right: large number of observations with missing
variables 90%)
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