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The article employs Minimax Probability Machine (MPM) for the prediction of

the stability status of epimetamorphic rock slope. The MPM gives a worst-case

bound on the probability of misclassification of future data points. Bulk density

(d), height (H), inclination (b), cohesion (c) and internal friction angle (f) have

been used as input of the MPM. This study uses the MPM as a classification

technique. Two models {Linear Minimax Probability Machine (LMPM) and

Kernelized Minimax Probability Machine (KMPM)} have been developed. The

generalization capability of the developed models has been checked by a case

study. The experimental results demonstrate that MPM-based approaches are

promising tools for the prediction of the stability status of epimetamorphic rock

slope.

1. Introduction

The prediction of natural hazards is a challenging task due to uncertainty. Researchers

use Artificial Neural Network (ANN) for prediction of different natural hazards

(Lee & Liu 2000; Huang et al. 2003; Lui et al. 2006; Mishra et al. 2007; Pradhan & Lee

2007; Lee 2008; Adeli & Panakkat 2009). Although ANN gives reasonable

performance, it has various limitations such as black box approach, arriving at local

minima, low generalization capability, overfitting, etc. (Park & Rilett 1999; Kecman

2001). Researchers successfully adopted Adaptive Neuro Fuzzy Inference System

(ANFIS) for modelling different natural hazards (Konstantanaras et al. 2004; Bacanli
et al. 2009; Sezer et al. 2011). However, ANFIS does not give any probabilistic output.

Support Vector Machine (SVM) has been successfully adopted to model different

natural hazards (Goh & Goh 2007; Samui 2012). The SVM suffers the following

limitations:

� SVM has high computational complexity due to quadratic programming (Vap-

nik 1998).

� It has three tuning parameters {capacity factor(C), error insensitive zone (e)
and kernel parameter (Samui 2008)}. The determination of the design value of

these tuning parameters is a difficult task.
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This article examines the capability of Minimax Probability Machine (MPM) for
the determination of the stability of epimetamorphic rock slope. The failure of epi-

metamorphic rock slope is quite common due to the presence of thicker weathered

layer and extremely broken rock mass (Chen et al. 2011). Researchers use different

techniques for slope stability analysis (Fellenius 1936; Bishop 1955; Bishop &

Morgenstern 1960; Morgenstern & Price 1965; Michalowski 1994, 1995, 2002; Sah

et al. 1994; Griffiths & Lane 1999; Yang et al. 2004; Kumar & Samui 2006; Gao

2009). Fellenius (1936) used the method of slices for assessing the stability of

slopes. It was seen that this method generally provides a conservative estimate of
the factor of safety. Bishop (1955) used the method of slices in obtaining the stabil-

ity of slopes. The results obtained from this method compare very closely with the

more rigorous approaches such as the finite element method. Morgenstern and

Price (1965) attempted to satisfy all the equations of statical equilibrium in obtain-

ing the solution of the stability problem using the method of slices. They assumed

a different distribution of inter-slice forces so as to obtain the solution. It should

be mentioned that the previously available methods of slices, namely, Fellenius

(1936) and Bishop (1955) do not satisfy all the conditions of statical equilibrium.
Using the upper bound limit analysis, Michalowski (1995) presented a stability

analysis of slopes based on a translational mechanism failure mechanism. Micha-

lowski (2002) also used the upper bound theorem of limit analysis in order to

obtain the stability numbers for homogeneous slopes in the presence of pore water

Table 1. Summary of the available methods for slope stability.

Reference Brief methodology

Fellenius (1936) Fellenius assumed that the resultant of inter-slice forces acts in a
direction parallel to the base of each slice.

Taylor (1948) Taylor (1948) used the friction circle method to obtain the stability
numbers (Ns ) for homogeneous soil slopes.

Bishop (1955) Bishop (1955) used the method of slices in obtaining stability of
slopes.

Janbu (1957) This method also used the method of slices to solve the problem.
Janbu solved the problem by assuming the point of application of
the inter-slices forces.

Morgenstern and
Price (1965)

Morgenstern and Price (1965) attempted to satisfy all the equations
of statical equilibrium in obtaining the solution of the stability
problem using the method of slices.

Chen (1975) Chen (1975) used the upper bound theorem of the limit analysis to
obtain the critical heights for homogenous soil slopes.

Michalowski (1994) Michalowski (1994) also used the upper bound theorem of limit
analysis in order to obtain the stability numbers for homogenous
soil slopes.

Michalowski (1995) Using the upper bound limit analysis, Michalowski (1995) presented
a stability analysis of slopes based on a translational mechanism
failure mechanism.

Michalowski (2002) Michalowski (2002) also used the upper bound theorem of limit
analysis in order to obtain the stability numbers for homogeneous
slopes in the presence of pore water pressures as well as pseudo-
static horizontal earthquake body forces.
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pressures as well as pseudo-static horizontal earthquake body forces. The available

methods have their own limitations. Table 1 shows the summary of the available

methods for the determination of slope stability. This study uses the database col-

lected by Chen et al. (2011). The data-set contains information about bulk density
(d), height (H), inclination (b), cohesion (c) and internal friction angle (f) and the

status of slope (the status of slope means whether the slope was stable or had

failed). Table 2 shows the statistical parameters of the data-set. MPM is a discrimi-

nant classifier and it is derived from probabilistic framework (Lanckriet et al.

2002a, 2002b). It has been successfully used for solving different problems (Hoi &

Lyu 2004; Zhou et al. 2011; Zhou et al. 2013). The developed MPM has been

applied for a case study.

Details of MPM

This section will give a small description about the MPM model. More details are

given by Lanckriet et al. (2002a, b). The MPM assumes positive definite covariance

matrices for each of the two classes. Assume two random vectors x and y represent
two classes of data points. The mean and covariance of x is x and

P
xx, respectively.

The mean and covariance of y is y and
P

yy, respectively, where x; y; x; y 2 Rn andP
xx;

P
yy 2 Rn�n:

In this study, x ¼ ½d;H ; c;b;f� and y ¼ ½d;H ; c;b;f�.
The MPM uses the following optimal hyperplane that separates the data into two

classes

aTz ¼ b ða; z 2 Rn; a 6¼ 0; b 2 RÞ: ð1Þ

Lanckriet et al. (2002a) give the following mathematical formulation:

max
a;b;a 6¼0

a:

Subjected to

inf PrfaTx � bg � a

inf PrfaTy � bg � a:
ð2Þ

The above optimization problem is solved by the Lagrangian Multiplier. After

applying the Lagrangian Multiplier, the optimization problem takes the following

Table 2. Statistical parameters of the data-set.

Input variable Mean Standard deviation Skewness Kurtosis

d (kN/m3) 23.88 2.60 �0.19 1.33
H (m) 46.45 16.09 0.50 3.82
b (�) 32.67 7.60 0.17 3.90
C (kPa) 33.69 8.77 �1.35 4.70
f (�) 29.94 5.85 �0.26 1.74
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form:

max
k;a

k:

Subjected to

�bþ aTx � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT

P
xa

q

b� aTy � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT

P
ya

q
:

ð3Þ

The above optimization problem turns into (after eliminating k) the following

expression

min
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT

X
y
a

q
þ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT

X
x
a

q
:

Subjected to

aT ðx� yÞ ¼ 1: ð4Þ

The above MPM method has been adopted to predict the stability of epimetamor-

phic rock slope. To develop the MPM, 41 data-sets (see table 3) have been used as

training data-sets. The remaining 12 data-sets (see table 4) have been used as testing

data-sets. Testing data-set has been used to verify the developed MPM. The training

and testing data-sets are the same as used by Chen et al. 2011. The data-sets are nor-
malized between 0 and 1. Radial basis function has been used as kernel function. A

value of �1 is assigned to the failed rock slope while a value of þ1 is assigned to the

stable rock slope so as to make this a two-class classification problem. The MPM

program has been developed by using MATLAB.

Results and discussion

Linear MPM (LMPM) and Kernelized MPM (KMPM) have been tried to get the

best performance. The performance of training data-set is expressed in percentage

and is determined as the ratio of the number of data predicted accurately by MPM

to the total number of data in the training set. The performance of testing data-set

is expressed in percentage and is determined as the ratio of the number of data pre-

dicted accurately by MPM to the total number of data in the testing set. For train-

ing data-set, the developed LMPM correctly classified 39 data-sets. So, the training
performance is 95.12%. The developed LMPM gives 91.67% testing performance.

The performance of training and testing has been shown in table 3 and 4, respec-

tively. Table 5 shows the value of a. The value of a is greater than the training as

well as testing performance. So, the validity of a has been checked for the LMPM

model. For KMPM, the design value of width (s) of radial basis function has been

determined by the trial and error approach. Figure 1 shows the effect of s on the train-

ing performance (%). It is clear from figure 1 that the developed KMPM gives the best

performance at s ¼ 0.1. The developed KMPM gives training performance ¼ 100%
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and testing performance ¼ 100%. Tables 2 and 3 show the performance of KMPM

model. For KMPM, the value of a is given by table 4. The value of a is equal to

the performance of KMPM. Therefore, the developed KMPM validates the value of

a. The developed LMPM and KMPM have been applied on the Wangjiazhai slope

in Kaili–Sansui highway. The details of the slope are as follows (Chen et al. 2011):

d ¼ 19.8 kN/m3, H ¼ 98 m, b ¼ 26�, c ¼ 8.6 kPa and f ¼ 17.8�. The actual

Table 3. Performance of training data-set.

d (kN/m3) H (m) b (�) C (kPa) f (�)
Actual
class

Predicted
class by
LMPM

Predicted
class by
KMPM

20 10 10 8 20 �1 �1 �1
27.3 30 30 37.3 31 1 1 1
20.6 35 25 26.31 22 �1 �1 �1
21.6 50 40 6.5 19 �1 �1 �1
22.4 35 28 28.9 24 �1 �1 �1
23.2 33 30 31.2 23 �1 1 �1
26.8 26 30 37.5 32 1 1 1
27.4 42 25 38.1 31 1 1 1
21.8 50 50 32.7 27 �1 �1 �1
21.8 60 35 27.6 25 �1 �1 �1
26.5 21 30 35.4 32 1 1 1
26.5 39 35 36.1 31 1 1 1
27 69 30 35.8 32 1 1 1
27 22 25 38.4 33 1 1 1
21.4 52 50 28.8 20 �1 �1 �1
26 55 38 42.4 37 1 1 1
26 30 25 39.4 36 1 1 1
25.6 26 25 38.8 36 1 1 1
20 53 45 30.3 25 �1 �1 �1
25.8 50 30 34.7 33 1 1 1
21.8 99 35 28.8 26 �1 �1 �1
21.8 60 30 31.2 25 �1 �1 �1
24 51 30 41.5 36 1 1 1
24 50 35 40.8 35 1 1 1
20.6 70 35 27.8 27 �1 �1 �1
20.6 55 35 32.4 26 �1 �1 �1
25.8 40 27 38.2 33 1 1 1
25.8 45 25 39.4 33 1 1 1
21.1 31 40 33.5 28 �1 �1 �1
21.1 75 30 34.2 26 �1 �1 �1
26.6 52 25 42.4 37 1 1 1
26.6 42 35 44.1 38 1 1 1
26.6 60 35 40.7 35 1 1 1
25.8 40 30 41.2 35 1 �1 1
25.8 33 30 43.3 37 1 1 1
21.7 60 45 32 27 �1 �1 �1
20.6 65 40 28.5 27 �1 �1 �1
21.5 70 40 29.8 26 �1 �1 �1
26.5 36 34 42.9 38 1 1 1
20.8 45 30 15.6 20 �1 �1 �1
20.8 40 30 14.8 21 �1 �1 �1
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condition of the Wangjiazhai slope is failure. The status of the Wangjiazhai slope has

been checked by the developed LMPM and KMPM. The output of LMPM and

KMPM is �1. So, the output from LMPM and KMPM was matched with the
actual condition.

Table 4. Performance of testing data-set.

d (kN/m3) H (m) b (�) C (kPa) f (�)
Actual
class

Predicted
class by
LMPM

Predicted
class by
KMPM

19.6 58 40 29.6 23 �1 �1 �1
25.4 35 20 33 33 1 1 1
22.4 50 50 29.3 26 �1 �1 �1
26.2 30 35 41.5 36 1 1 1
26.2 36 23 42.3 36 1 �1 1
25.6 32 30 39.8 36 1 1 1
25.6 60 35 36.8 34 1 1 1
26.2 37 30 42.8 37 1 1 1
26.2 68 35 43.8 38 1 1 1
20.6 42 30 32.4 26 �1 �1 �1
26.5 54 42 41.8 36 1 1 1
20.8 53 30 15.4 21 �1 �1 �1

Table 5. Performance of the LMPM and KMPM.

Models Training performance (%) Testing performance (%) a

LMPM 95.12 91.67 96%
KMPM 100 100 100%

Figure 1. The effect of s on training performance (%).
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Conclusion

This article has proposed models based on the MPM for the prediction of the stabil-

ity of epimetamorphic rock slope. Fifty-three data-sets have been utilized to con-

struct the MPM models. Two models (LMPM and KMPM) have been developed.
The prediction of MPM matches well the actual result. The main advantage of the

developed MPM model is that it provides low bound on classification accuracy. The

performance of the KMPM is better than the LMPM model. The developed models

(LMPM and KMPM) give accurate prediction for a case study. So, it shows good

generalization capability. The developed MPM can be used to model different prob-

lems in natural hazard.
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