
ar
X

iv
:0

90
9.

36
09

v1
  [

cs
.L

G
] 

 1
9 

Se
p 

20
09

Machine Learning manuscript No.
(will be inserted by the editor)

RandSVM: A Randomized Algorithm for training Support

Vector Machines on Large Datasets

Vinay Jethava · Krishnan Suresh · Chiranjib

Bhattacharyya · Ramesh Hariharan

Received: date / Accepted: date

Abstract We propose a randomized algorithm for training Support vector machines(SVMs)

on large datasets. By using ideas from Random projections we show that the combi-

natorial dimension of SVMs is O(log n) with high probability. This estimate of com-

binatorial dimension is used to derive an iterative algorithm, called RandSVM, which

at each step calls an existing solver to train SVMs on a randomly chosen subset of

size O(log n). The algorithm has probabilistic guarantees and is capable of training

SVMs with Kernels for both classification and regression problems. Experiments done

on synthetic and real life data sets demonstrate that the algorithm scales up existing

SVM learners, without loss of accuracy.

Keywords Support Vector Machines, Randomized Algorithms, Random Projections

Mathematics Subject Classification (2000) 68W20 · 90C25 · 90C06 · 90C90

1 Introduction

Consider a training data set D = {(xi, yi), i = 1 . . . n} where xi ∈ Rd are data points

and yi are labels. The problem of learning a linear classifier, y = sign(w⊤x+ b), where

y = {1,−1} or a linear function y = w⊤x + b when y is a scalar can be understood
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as estimating {w, b} from D. Over the years Support Vector Machines(SVMs) have

emerged as powerful tools for estimating such functions. In this paper we concentrate on

developing randomized algorithms for learning SVMs on large datasets. For a detailed

review of SVM classification and SVM regression please see [18].

To develop notation we briefly discuss the problem of training linear classifiers. The

SVM formulation for linearly separable datasets is given by [18]

minw,b
1
2 ||w||2

s.t. yi(w
⊤xi + b) ≥ 1, i = 1 . . . n

where ||w|| =
√
w⊤w, is the euclidean norm of w. The formulation has very interesting

geometric underpinnings [5]. It can be understood as computing the distance between

convex hulls of the sets {xi|yi = 1} and {xj |yj = −1}. For linearly non-separable

datasets the following formulation

C-SVM-1:

min(w,b,ξ)
1
2 ||w||2 + C

∑n
i=1 ξi

s.t. yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1 . . . n

which will be called C−SVM , again due to [18], can be used. This formulation do not

have an elegant geometric interpretation like the separable case, but one can consider

C-SVMs as computing the distance between two reduced convex hulls [5].

Both the formulations are instances of Abstract Optimization Problem(AOP) [4,3,

11]. An AOP is defined as follows:

Definition 1 (AOP) An AOP is a triple (H,<,Φ) where H is a finite set, < a

total ordering on 2H , and Φ an oracle that, for a given F ⊆ G ⊆ H, either reports

F = min<{F ′|F ′ ⊆ G} or returns a set F ′ ⊆ G with F ′ < F .

Every AOP has a combinatorial dimension associated with it; the combinatorial di-

mension captures the notion of number of free variables for that AOP. An AOP can

be solved by a randomized algorithm by selecting subsets of size greater than the com-

binatorial dimension of the problem [11]. We wish to exploit this property of AOPs to

design randomized algorithms for SVMs.

The idea is to develop an iterative algorithm where in each step one needs to solve

a SVM formulation on a small subset of the training data. Crucial to this idea is the

size of the subset which is tied to the combinatorial dimension of the SVM formulation.

To this end note that at optimality w is given by

w =
∑

i:αi>0

αiyixi, (1)

for both the separable and non-separable case. Using the α variables one can define

the set of Support vectors (SVs),

S = {xi|αi > 0} (2)

which defines w. The set S may not be unique, though w is. The combinatorial di-

mension of SVMs is given by the minimum number of SVs required to define w. More

formally

∆ = min
S

|S| (3)
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where |S| is the cardinality of the set S.

The parameter ∆ does not change with number of examples n, and is often much

less than n. Apriori the value of ∆ is not known, but for linearly separable classification

problems the following holds: 2 ≤ ∆ ≤ d+1. This follows from the observation that it

computes the distance between 2 non-overlapping convex hulls [5]. When the problem

is not linearly separable, the reduced convex hull interpretation leads to a very crude

upper bound, which is much larger than d.

The idea of iterating over randomly sampled subsets of size greater than ∆, for

training SVMs was first explored by [4,3], and the resulting algorithm was called

RandSVM. The RandSVM procedure iterates over subsets of size proportional to ∆2 ,

as shown in Algorithm 1. However as the authors noted that RandSVM is not practical

because of the following reasons. For linear classifiers the sample size is too large in

case of high dimensional data sets. For non-linear SVMs [18] the dimension of feature

space is usually unknown when using kernels. Even in this case one can obtain a very

crude upper-bound on ∆ by the reduced convex hull approach but is not really useful

as the number obtained is very large.

Algorithm 1 RandSVM(D,∆)

Require: D - Dataset
Require: ∆ - Combinatorial Dimension
1: Sample size r = 6∆2

2: Set weights w(xi) to be 1 for all examples in D. For any set A ⊆ D, let w(A) =∑
xi∈A

w(xi).

3: repeat

4: Select a sample S of size r randomly according to w.
5: Use a SVM solver to solve the smaller problem. Let the classifier obtained be C.
6: Classify the non sampled documents DS.
7: Let V be the set of misclassified documents and let v be the size of V .
8: if (w(V ) ≤ w(D)/(3∆)) then

9: Double the weights of misclassified documents.
10: end if

11: until v = 0
12: Done

This work overcomes the above problems using ideas from random projections [14,

9,1] and randomized algorithms [8,11,12]. As mentioned by the authors of RandSVM,

the biggest bottleneck in their algorithm is the value of ∆ as it is too large. The main

contribution of this work is, using ideas from random projections, the conjecture that

if RandSVM is solved using ∆ equal to O(log n), then the solution obtained is close

to optimal with high probability(Theorem 3, particularly for linearly separable and

almost separable data sets. Almost separable data sets are those which become linearly

separable when a small number of properly chosen data points are deleted from them.

The second contribution is an algorithm which, using ideas from randomized algorithms

for Linear Programming(LP), solves the SVM problem by using samples of size linear

in ∆. This work also shows that the theory can be applied to non-linear kernels. The

formulation naturally applies to regression problems.

The paper is organized as follows: Section 2 introduces the previous work, Section 3

presents the improved algorithm for classification for almost linearly separable data.

Section 4 presents the improved algorithm for the ǫ−tube regression formulation. We

present our results and conclusions in Section 5 and 6.
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2 Past Work

We begin by reviewing some results from random projections [1]. The data points in

Rd are projected into a random k dimensional subspace where k ≪ d. Then, we look

at a few algorithms which focus on large scale classification.

2.1 Random Projection

The following lemma discusses how the L2 norm of a vector is preserved when it is

projected on a random subspace.

Lemma 1 Let R = (rij) be a random d×k matrix, such that each entry (rij) is chosen

independently according to N(0, 1). For any fixed vector u ∈ Rd, and any ǫ > 0, let

u′ = RTu√
k
. Then E[||u′||2] = ||u||2 and the following bounds hold:

(1− ǫ)||u||2 ≤ ||u′||2 ≤ (1 + ǫ)||u||2

with probability at least 1− 2e(ǫ
2−ǫ3) k

4 .

The following theorem and its corollary show the change in the Euclidean distance be-

tween 2 points and the dot products when they are projected onto a lower dimensional

space [1].

Lemma 2 Let u, v ∈ Rd. Let u′ = RTu√
k

and v′ = RT v√
k

be the projections of u and v

to Rk via a random matrix R whose entries are chosen independently from N(0, 1) or

U(1, 1). Then for any ǫ > 0, the following bounds hold

(1− ǫ)||u− v||2 ≤ ||u′ − v′||2

with probability at least 1− e−(ǫ2−ǫ3)k
4 and

||u′ − v′||2 ≤ (1 + ǫ)||u− v||2

with probability at least 1− e−(ǫ2−ǫ3)k
4 .

A corollary of the above theorem shows how well the dot products are preserved upon

projection(This is a slight modification of the corollary given in [1]).

Corollary 1 Let u, v be vectors in Rd s.t. ||u|| ≤ L1, ||v|| ≤ L2 . Let R be a random

matrix whose entries are chosen independently from either N(0, 1) or U(1, 1). Define

u′ = RTu√
k

and v′ = RT v√
k
. Then for any ǫ > 0, the following bound holds

u · v − ǫ

2
(L2

1 + L2
2) ≤ u′ · v′ ≤ u · v +

ǫ

2
(L2

1 + L2
2)

with probability at least 1− 4e−ǫ2 k
8 .
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Proof For the vectors u and v, let the event E1 be

(1− ǫ)||u− v||2 ≤ ||u′ − v′||2 ≤ (1 + ǫ)||u− v||2

and E2 be

(1− ǫ)||u+ v||2 ≤ ||u′ + v′||2 ≤ (1 + ǫ)||u+ v||2

Hence, from lemma 2:

P (E1 and E2) ≥ 1− 4e−(ǫ2−ǫ3)k
4

Now,

u′ · v′ = 1

4
(||u′ + v′||2 − ||u′ − v′||2)

≤ 1

4

(
(1 + ǫ)||u′ + v′||2 − (1− ǫ)||u′ − v′||2

)

= u · v +
ǫ

2
(||u||2 + ||v||2)

⇒ u′ · v′ ≤ u · v +
ǫ

2
(L2

1 + L2
2)

The above inequality holds with probability greater than or equal to 1−2e−(ǫ2−ǫ3)k
4 .

Similarly,

u′ · v′ ≥ u · v − ǫ

2
(L2

1 + L2
2)

holds with probability greater than or equal to 1− 2e−(ǫ2−ǫ3) k
4 . ⊓⊔

2.2 Large scale classification

We look at a few algorithms which focus on large scale classification. [10] presented

a SVM formulation called Proximal SVM in which the objective is a non linear least

squares function and the inequality constraints are replaced by a system of equations.

Finding the best separating hyperplane now involves solving this system of equations.

This is done by inverting a d×d matrix, as a result of which the method is not feasible

for datasets like text for which d is very high. Also, the method involves a matrix

multiplication HTH where H is a n× (d+ 1) matrix. So the entire data matrix needs

to be kept in memory and hence the method is not scalable in terms of memory.

[15] presented an algorithm L2-SVM-MFN which uses a conjugate gradient method

to solve the SVM problem and thus does not have to perform any matrix inversion as

the previous method. Results in their paper indicate that the algorithm performs very

well for large high dimensional datasets like text. Analysis of the algorithm indicates

that it accesses the data vectors in a sequential manner and hence does not have to

keep the data matrix in main memory, making it scalable in terms of memory.

Our work is closely related to [4,3]. They propose that d be used as the combina-

torial dimension of the problem for the separable case. The dual of the SVM problem,

when the data is linearly separable, is the minimum distance between the 2 convex hulls

of the positive and negative examples. When the data is not linearly separable, these 2

hulls overlap. This can reduced to the separable case, by condensing the 2 hulls [5]. This

is done as follows. Let Z be the set of composed examples zI where zI =
xi1+...+xim

m ,
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where each xij is a distinct element of D and all the points defining a zI have the same

label and the label of zI is the same(For details on this condensation, see their paper).

In this case, we have |Z| ≤
(
n
m

)
and (m + 1) ≤ ∆ ≤ m(d+ 1). It is this aspect of the

SVM problem which was used by the authors to develop a randomized algorithm to

solve the problem, given in Algorithm 1.

The algorithm proceeds in multiple iterations, where in each iteration it picks up

a subset of the training data S, such that the size of the subset, r, is greater than

the number of support vectors. Any SVM solver can be used to train a classifier C

on the sampled subset, which is smaller than the entire data. Based on the classifier

C obtained, the sampling probabilities are changed for the training data such that in

successive iterations, the support vectors have a higher probability of selection. This

process is repeated until the number of misclassified documents v = 0. The termination

of the algorithm is guaranteed in a probabilistic fashion in [8]. The authors recommend

using m(d + 1) as an estimate of ∆. This choice of ∆ makes the subset size too large

for high dimensional datasets, making it impractical.

To overcome this problem we use ideas from random projections [14,9,1]. Consider

projecting the data points into a random k dimensional subspace where k << d. Using

this idea, we give a theoretical bound on the combinatorial dimension ∆ which is much

lesser than the original data dimension d, in the almost linearly separable case. In

practice, it has been observed that ∆ is even lower. We then apply this to make the

above algorithm scalable(without actually performing any random projection of the

data).

3 Classification

This section uses results from random projections, and randomized algorithms for linear

programming to develop a new algorithm for solving large scale SVM classification

problems. In Section 3.1, we discuss the case of linearly separable data and estimate

a the number of support vectors required such that the margin is preserved with high

probability, and show that this number is much smaller than the data dimension d,

using ideas from random projections. In Section 3.2, we look at how the analysis applies

to almost separable data and present the main result of the paper(Theorem 2). The

section ends with a discussion on the application of the theory to non-linear kernels.

In Section 3.3, we present the randomized algorithm from SVM learning.

3.1 Linearly separable data

We start with determining the dimension k of the target space such that on per-

forming a random projection to the space, the Euclidean distances and dot products

are preserved. The appendix contains a few results from random projections which

will be used in this section. For a linearly separable data set D = {(xi, yi), i =

1, . . . , n}, xi ∈ Rd, yi ∈ {+1,−1}, the C-SVM formulation is the same as C−SVM−1

with ξi = 0, i = 1 . . . n. By dividing all the constraints with ||w||, the problem can be

reformulated as follows:

C-SVM-2a:

max(ŵ,b,l) l
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s.t. yi(ŵ · xi + b̂) ≥ l, i = 1 . . . n, ||ŵ|| = 1

where ŵ = w
||w|| , b̂ = b

||w|| and l̂ = 1
||w|| . l is the margin induced by the separating

hyperplanes, that is, it is the distance between the 2 supporting hyperplanes.

The determination of k proceeds as follows. First, for any given value of k, we show

the change in the margin as a function of k when the data points are projected onto

the k dimensional subspace and the problem solved. From this, we determine the value

k(k << d) which will preserve margin with a very high probability. In a k dimensional

subspace, there are at the most k + 1 support vectors. Using the idea of orthogonal

extensions(definition appears later in this section), we prove that when the problem

is solved in the original space, using an estimate of k + 1 on the number of support

vectors, the margin is preserved with a very high probability.

Let w′ and x′i, i = 1, . . . , n be the projection of ŵ and xi, i = 1, . . . , n respectively

onto a k dimensional subspace (as in Lemma 2). The classification problem in the

projected space with the data set being D′ = {(x′i, yi), i = 1, . . . , n}, x′i ∈ Rk, yi ∈
{+1,−1} can be written as follows:

C-SVM-2b:

Maximize
(w′,b̂,l′)

l′

Subject to : yi(w
′ · x′i + b̂) ≥ l′, i = 1 . . . n, ||w′|| ≤ 1

where l′ = l(1− γ), γ is the distortion and 0 < γ < 1. The following theorem predicts,

for a given value of γ, the k such that the margin is preserved with a high probability

upon projection.

Theorem 1 Let L = max||xi||, and (w∗, b∗, l∗) be the optimal solution for C-SVM-

2a. Let R be a random d × k matrix as given in Lemma 2. Let w̃ = RT w∗

√
k

and

x′i = RT xi√
k

, i = 1, . . . , n. If k ≥ 8
γ2 (1 +

(1+L2)
2l∗ )2 log 4n

δ , 0 < γ < 1, 0 < δ < 1, then

the following bound holds on the optimal margin lP obtained by solving the problem

C-SVM-2b:

P (lP ≥ l∗(1− γ)) ≥ 1− δ

Proof From Corollary 1 of Lemma 2, we have

w∗ · xi −
ǫ

2
(1 + L2) ≤ w̃ · x′i ≤ w∗ · xi +

ǫ

2
(1 + L2)

which holds with probability at least 1−4e−ǫ2 k
8 , for some ǫ > 0. Consider some example

xi with yi = 1. Then the following holds with probability at least 1− 2e−ǫ2 k
8

w̃ · x′i + b∗ ≥ w∗ · xi −
ǫ

2
(1 + L2) + b∗ ≥ l∗ − ǫ

2
(1 + L2)

Dividing the above by ||w̃||, we have

w̃ · x′i + b∗

||w̃|| ≥ l∗ − ǫ
2 (1 + L2)

||w̃||

Note that from Lemma 1, we have
√

(1− ǫ)||w∗|| ≤ ||w̃|| ≤
√

(1 + ǫ)||w∗||, with

probability at least 1 − 2e−ǫ2 k
8 . Since ||w∗|| = 1, we have

√
1− ǫ ≤ ||w̃|| ≤

√
1 + ǫ.
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Hence

w̃ · x′i + b∗

||w̃|| ≥ l∗ − ǫ
2 (1 + L2)√
1 + ǫ

≥ (l∗ − ǫ

2
(1 + L2))(

√
1− ǫ) ≥ l∗(1− ǫ

2l∗
(1 + L2))(1− ǫ)

≥ l∗(1− ǫ− ǫ

2l∗
(1 + L2)) ≥ l∗(1− ǫ(1 +

1 + L2

2l∗
))

This holds with probability at least 1 − 4e−ǫ2 k
8 . A similar result can be derived for a

point xj for which yj = −1. The above analysis guarantees that by projecting onto a k

dimensional space, there exists at least one hyperplane ( w̃

||w̃||
, b∗

||w̃||
), which guarantees

a margin of l∗(1− γ) where

γ ≤ ǫ(1 +
1 + L2

2l∗
) (4)

with probability at least 1 − n4e−ǫ2 k
8 . The margin obtained by solving the problem

C-SVM-2b, lP can only be better than this. So the value of k is given by:

n4e
− γ2

(1+
1+L2

2l∗
)2

k
8

≤ δ ⇒ k ≥
8(1 +

(1+L2)
2l∗ )2

γ2
log

4n

δ
(5)

⊓⊔

So by randomly projecting the points onto a k dimensional subspace, the margin

is preserved with a high probability. This result is similar to the results in large scale

learning using random projections [1,2]. But there are fundamental differences between

the method proposed in this paper and the previous methods: no random projection

is actually done here, and no black box access to the data distribution is required. We

use Theorem 1 to determine an estimate on the number of support vectors such that

margin is preserved with a high probability, when the problem is solved in the original

space. This is given in Theorem 2 and is the main contribution of this section. The

theorem is based on the following fact: in a k dimensional space, the number of support

vectors is upper bounded by k+1. We show that this k+1 can be used as an estimate

of the number of support vectors in the original space such that the solution obtained

preserves the margin with a high probability. We start with the following definition.

Definition 2 (Orthogonal extension) An orthogonal extension of a (k−1)-dimensional

flat( a (k − 1) dimensional flat is a (k − 1)-dimensional affine space) hp = (wp, b),

where wp = (w1, . . . , wk), in a subspace Sk of dimension k to a d − 1-dimensional

hyperplane h = (w̃, b) in d-dimensional space, is defined as follows. Let R ∈ Rd×d

be a random projection matrix as in Lemma 2. Let R̂ ∈ Rd×k be a another random

projection matrix which consists of only the the first k columns of R. Let x̂i = RTxi

and x′i =
R̂T

√
k
xi.Let wp = (w1, . . . , wk) be the optimal hyperplane classifier with mar-

gin lP for the points x′1, . . . , x
′
n in the k dimensional subspace. Now define w̃ to be

all 0’s in the last d − k coordinates and identical to wp in the first k coordinates,

that is, w̃ = (w1, . . . , wk, 0, . . . , 0). Orthogonal extensions have the following key prop-

erty. If (wp, b) is a separator with margin lp for the projected points, then its orthog-

onal extension (w̃, b) is a separator with margin lp for the original points,that is, if

yi(wp · x′i + b) ≥ l, i = 1, . . . , n, then yi(w̃ · x̂i + b) ≥ l, i = 1, . . . , n.
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An important point to note, which will be required when extending orthogonal exten-

sions to non-linear kernels, is that dot products between the points are preserved upon

doing orthogonal projections, that is, x′Ti X′
j = x̂i

T x̂j .

Let L, l∗, γ, δ and n be as defined in Theorem 1. The following is the main result

of this section.

Theorem 2 Given k ≥ 8
γ2 (1 +

(1+L2)
2l∗ )2 log 4n

δ and n training points with maximum

norm L in d dimensional space and separable by a hyperplane with margin l∗, there
exists a subset of k′ training points x1 . . . x

′
k where k′ ≤ k and a hyperplane h satisfying

the following conditions:

1. h has margin at least l∗(1− γ) with probability at least 1− δ

2. x1 . . . x
′
k are the only training points which lie either on h1 or on h2

Proof Let w∗, b∗ denote the normal to a separating hyperplane with margin l∗, that is,
yi(w

∗ ·xi+b∗) ≥ l∗ for all xi and ||w∗|| = 1. Consider a random projection of x1, . . . , xn
to a k dimensional space and let w′, z1, . . . , zn be the projections of w∗, x1, . . . , xn,
respectively, scaled by 1/

√
k. By Theorem 1, yi(w

′ ·zi+ b∗/||w′||) ≥ l∗(1−γ) holds for

all zi with probability at least 1− δ. Let h be the orthogonal extension of (w′, b∗/||w′|)
to the full d dimensional space. Then h has margin at least l∗(1− γ), as required. This

shows the first part of the claim.

To prove the second part, consider the projected training points which lie on either

of the two supporting hyperplanes. Barring degeneracies, there are at the most k such

points. Clearly, these will be the only points which lie on the orthogonal extension h,

by definition. ⊓⊔

From the above analysis, it is seen that if k << d, then we can estimate that the

number of support vectors is k+1, and the algorithm RandSVM would take on average

O(k log n) iterations to solve the problem [4,3].

3.2 Almost separable data

In this section, we look at how the above analysis can be applied to almost separable

data sets. We call a data set almost separable if by removing a fraction κ = O( log n
n )

of the points, the data set becomes linearly separable.

The C-SVM formulation when the data is not linearly separable(and almost sepa-

rable) was given in C-SVM-1. This problem can be reformulated as follows:

Minimize(w,b,ξ)

n∑

i=1

ξi

Subject to : yi(w · xi + b) ≥ l − ξi, ξi ≥ 0, i = 1 . . . n; ||w|| ≤ 1

l

This formulation is known as the Generalized Optimal Hyperplane formulation. Here l

depends on the value of C in the C-formulation. At optimality, the margin l∗ = l. The

following theorem proves a result for almost separable data similar to the one proved

in Theorem 2 for separable data.
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Theorem 3 Given k ≥ 8
γ2 (1+

(1+L2)
2l∗ )2 log 4n

δ +κn, l∗ being the margin at optimality,

l the lower bound on l∗ as in the Generalized Optimal Hyperplane formulation and κ =

O( log n
n ), there exists a subset of k′ training points x1 . . . xk, k

′ ≤ k and a hyperplane

h satisfying the following conditions:

1. h has margin at least l(1− γ) with probability at least 1− δ

2. At the most
8(1+

(1+L2)

2l∗
)2

γ2 log 4n
δ points lie on the planes h1 or on h2

3. x1, . . . , x
′
k are the only points which define the hyperplane h, that is, they are the

support vectors of h.

Proof Let the optimal solution for the generalized optimal hyperplane formulation be

(w∗, b∗, ξ∗). w∗ =
∑

i:αi>0

αiyixi, and l∗ = 1
||w∗|| as mentioned before. The set of support

vectors can be split into to 2 disjoint sets,SV1 = {xi : αi > 0 and ξ∗i = 0}(unbounded
SVs) and SV2 = {xi : αi > 0 and ξ∗i > 0}(bounded SVs).

Now, consider removing the points in SV2 from the data set. Then the data set

becomes linearly separable with margin l∗. Using an analysis similar to Theorem 1,

and the fact that l∗ ≥ l, we have the proof for the first 2 conditions.

When all the points in SV2 are added back, at most all these points are added to

the set of support vectors and the margin does not change; this is guaranteed by the

fact that we have assumed the worst possible margin for proving conditions 1 and 2,

and any value lower than this would violate the constraints of the problem. This proves

condition 3. ⊓⊔

Hence the number of support vectors, such that the margin is preserved with high

probability, is

k+1 =
8

γ2
(1+

(1 + L2)

2l∗
)2 log

4n

δ
+κn+1 =

8

γ2
(1+

(1 + L2)

2l∗
)2 log

4n

δ
+O(log n) (6)

Using a non-linear kernel: Consider a mapping function Φ : Rd → Rd′

, d′ > d, which

maps a point xi ∈ Rd to a point zi ∈ Rd′

, where Rd′

is a Euclidean space. Let the

points z1, . . . , zn be projected onto a random k dimensional subspace as before. The

lemmas in the appendix are applicable to these random projections[2]. The orthogonal

extensions can be considered as an projection from the k dimensional space to the

Φ-space, such that the kernel function values are preserved. Then it can be shown that

Theorem 3 applies when using non-linear kernels also.

3.3 A Randomized Algorithm

The reduction in the sample size from 6d2 to 6k2 is not enough to make RandSVM

useful in practice as 6k2 is still a large number. This section presents another random-

ized algorithm which only requires that the sample size be greater than the number

of support vectors. Hence a sample size linear in k can be used in the algorithm. This

algorithm was first proposed to solve large scale LP problems [17]; it has been adapted

for solving large scale SVM problems. The
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Algorithm 2 RandSVM-1(D,k,r)

Require: D - The data set.
Require: k - The estimate of the number of support vectors.
Require: r - Sample size = ck, c > 0.
1: S = randomsubset(D, r); // Pick a random subset, S, of size r from the data set D
2: SV = svmlearn({}, S); // SV - set of support vectors obtained by solving the problem S
3: V = {x ∈ D − S|violates(x, SV )} //violator - nonsampled point not satisfying KKT

conditions

4: while (|V | > 0 and |SV | < k) do

5: R = randomsubset(V , r − |SV |); //Pick a random subset from the set of violators

6: SV ′ = svmlearn(SV,R); //SV’ - set of support vectors obtained by solving the problem

SV ∪ R
7: SV = SV ′;
8: V = {x ∈ D − (SV ∪R)|violates(x, SV )}; //Determine violators from nonsampled set

9: end while

10: return SV

Proof of Convergence: Let SV be the current set of support vectors. Condition |SV | <
k comes from Theorem 3. Hence if the condition is violated, then the algorithm termi-

nates with a solution which is near optimal with a very high probability.

Now consider the case where |SV | < k and |V | > 0. Let xi be a violator(xi is a

non-sampled point such that yi(w
Txi + b) < 1). Solving the problem with the set of

constraints as SV ∪ xi will only result, since SVM is an instance of AOP, in the in-

crease(decrease) of the objective function of the primal(dual). As there are only finite

number of basis for an AOP, the algorithm is bound to terminate; also if termina-

tion happens with the number of violators equal to zero, then the solution obtained is

optimal.

Determination of k: The value of k depends on the margin l∗ which is not available in

case of C-SVM. This can be handled only by solving for k as a function of ǫ, where ǫ is

as defined in the appendix and Theorem 1. This can be done by combining Equation 4

with Equation 6:

k ≥ 8

γ2
(1+

(1 + L2)

2l∗
)2 log

4n

δ
+O(log n) ≥ 16

γ2
(1+

(1 + L2)

2l∗
)2 log

4n

δ
) ≥ 16

ǫ2
log

4n

δ
(7)

4 Regression

Let us define a dataset D = {(xi, yi)|1 ≤ i ≤ n, xi ∈ Rd, yi ∈ R} to be linear, for a

fixed ǫ ≥ 0, if the following formulation is feasible.

SVR-1:

minw,b
1
2 ||w||2

subject to: yi − w · xi − b ≤ ǫ

w · xi + b− yi ≤ ǫ

This is the SVM regression formulation in which D is constrained to lie in a ǫ−tube.

The lagrangian is given as L(w, b, α+
i , α−

i ) = 1
2w

Tw +
∑

i α
+
i (yi − w · xi − b − ǫ) +∑

i α
−
i (w · xi + b − yi − ǫ). By KKT condition, the optimal solution will have w∗ =
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∑
i(α

+
i

∗ − α−
i

∗
)xi. The set of support vectors is union of two disjoint sets given as:

{i : α+
i

∗
> 0} ∪ {i : α−

i

∗
> 0}. We would like to develop randomized algorithms which

can solve such problems where d and n are large.

Let x′i be the projection of xi, i = 1 . . . n onto a k−dimensional subspace. The re-

gression problem in the projected space is given by

SVR-2:

minw′,b
1
2 ||w

′||2

subject to: yi − w′ · x′i − b ≤ ǫ′

w′ · x′i + b− yi ≤ ǫ′

where ǫ′ = ǫ(1 + γ); γ is the distortion. The following theorem predicts the value of

k such that the ǫ-tube is preserved, with a minor distortion, with a high probability

upon projection.

Theorem 4 Let L = max ||xi||, and (w∗, b∗), ||w|| = W be the optimal solution for

SV R − 1. Let R be a random d × k matrix as given in Lemma 2. Let w̃ = RT w∗

√
k

and

x′i =
RT xi√

k
, i = 1, . . . , n. If k ≥ 32(W 2+L2)

γ2 log 4n
δ , 0 < δ < 1, then the following bound

holds on the optimal regressor (wP , bP ) obtained by solving the problem SVR− 2:

P (|wP · x′i + bP − yi| ≤ ǫ(1 + γ)) ≥ 1− δ

Proof From Corollary 1 of Lemma 2, we have:

w∗ · xi −
ǫ1
2
(W 2 + L2) ≤ w̃ · x′i ≤ w∗ · xi +

ǫ1
2
(W 2 + L2)

which holds with probability at least 1− 4e−ǫ21
k
8 . So,

w̃ · x′i + b∗ − yi ≤ w∗ · xi + b∗ − yi +
ǫ1
2
(W 2 + L2)

≤ ǫ +
ǫ1
2
(W 2 + L2) = ǫ

(
1 +

ǫ1
2ǫ

(W 2 + L2)
)

holds with probability at least 1− 2e−ǫ21
k
8 . Similarly

yi − w̃ · x′i − b∗ ≤ ǫ+
ǫ1
2
(W 2 + L2)

holds with probability at least 1 − 2e−ǫ21
k
8 . The above analysis guarantees that upon

projection onto a k−dimensional plane, there exists (w̃, b∗) which guarantees an ǫ−tube

of ǫ(1 + γ), where

γ ≤ ǫ1
2ǫ

(W 2 + L2)

with probability at least 1− 4e−ǫ21
k
8 . So the value of k is given by:

ne
−
(

2γǫ

W2+L2

)2

k
8 ≤ δ ⇒ k ≥ 2

(
W 2 + L2

γǫ

)2

log
4n

δ
(8)

So, upon projection, there exists a regressor which preserves the ǫ-tube with a high

probability. The regressor obtained by solving SV R − 2 can only do better than this.
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Let L,W, δ, γ, n, ǫ be as defined in Theorem 4, and (w̌, b) be the orthogonal extension

of (w′, b) to Rd as in Lemma 2. Then, we get:

Theorem 5 Given k ≥ 2
(

W 2+L2

γǫ

)2

log 4n
δ and n training points with maximum norm

L in d dimensional space for which the SVR-1 problem with margin ǫ has a solution,

there exists a subset of k′ training points x1 . . . xk′ where k′ ≤ k and h = {(x, y)|y −
w · x− b = ǫ}

⋃
{(x, y)|w · x+ b− y = ǫ} satisfying the following conditions:

1. (w, b) is the solution to a SVR-1 with margin at most ǫ(1 + γ).

2. x1 . . . xk′ are the only training points which are in h.

Proof Let w∗, b∗ denote the optimal regressor for problem SVR-1 with margin ǫ, that

is, w∗ · xi+ b∗ − yi ≤ ǫ and yi−w∗ ·xi− b∗ ≤ ǫ for all xi. Let w and x′i be the random

projection of w∗ and xi as outlined in Theorem 4. Then, |w′ · x′i + b∗ − yi| ≤ ǫ(1 + γ)

with probability at least (1− δ). Let (w, b∗) be the orthogonal extension of (w′, b∗) to
the full d dimensional space.

|w · xi + b∗ − yi| = |w′ · x′i + b∗ − yi| ≤ ǫ(1 + γ)

Therefore, (w, b∗) is a solution to SVR-1 with margin at most ǫ(1 + γ).

To prove the second part, consider the projected training points which lie on h′ =
{(x′, y)|y − w′ · x′ − b∗ = ǫ(1 + γ)}

⋃
{(x′, y)|w′ · x′ + b∗ − y = ǫ(1 + γ)}. Barring

degeneracies, there are at the most k such points. Clearly, these will be the only points

which lie on the orthogonal extension h, by definition.

Consider the problem: SVR-3:

minw,ξi
1
2 ||w||2 +

∑
ξi

subject to: yi − w · xi − b ≤ ǫ+ ξi

w · xi + b− yi ≤ ǫ+ ξi, ξi ≥ 0

Analogous to the notion of almost separability in the context of classification we

define the notion of almost linear as follows: the data set D = {(xi, yi)}ni=1 is almost

linear if by removing a fraction κ = O( log n
n ) of the points, there exists a solution to the

SV R− 1 problem for some chosen ǫ > 0. The problem SV R− 3 is almost linear, if the

optimal solution (w∗, b∗, ξ∗) has the cardinality of the set {i : ξ∗i > 0} as O(log n/n).

This next theorem presents the result for almost separable data set for regression.

Theorem 6 Given k ≥ 2
(

W 2+L2

γǫ

)2

log 4n
δ +κn and n training points with maximum

norm L in d dimensional space for which the SV R − 3 problem with margin ǫ has an

almost separable optimal solution, there exists a subset of k′ training points x1 . . . x
′
k

where k′ ≤ k and h = {(x, y)|y − w · x − b = ǫ}
⋃
{(x, y)|w · x + b − y = ǫ} satisfying

the following conditions:

1. (w, b, ξ) is the solution to a hard ǫ−tube regression problem with margin ǫ(1 + γ).

2. At the most 2
(

W 2+L2

γǫ

)2

log 4n
δ points lie on the plane h.

3. x1 . . . x
′
k are the only training points which lie on h.
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Proof Let the optimal solution for the SVR-3 formulation be (w∗, b∗, ξ∗). The set

of support vectors can be split into to 2 disjoint sets,SV1 = {xi : αi > 0 and ξ∗i =

0}(unbounded SVs) and SV2 = {xi : αi > 0 and ξ∗i > 0}(bounded SVs).

Now, consider removing the points in SV2 from the data set. Then the data set

becomes linearly separable. Using an analysis similar to Theorem 4, we have the proof

for the first 2 conditions.

When all the points in SV2 are added back, at most all these points are added to

the set of support vectors and the margin ǫ(1 + γ) does not change; this is guaranteed

by the fact that we have assumed the worst possible margin for proving conditions 1

and 2, and any value lower than this would violate the constraints of the problem. This

proves condition 3.

5 Experiments

5.1 Classification

This section discusses the performance of RandSVM in practice. The experiments were

performed on 4 data sets: 3 synthetic and 1 real world. RandSVM was used with

LibSVM as the solver when using a non-linear kernel; with SVMLight for a linear

kernel. RandSVM has been compared with state of the art SVM solvers: LibSVM [7]

for non-linear kernels, and SVMPerf1 nd SVMLin2 for linear kernels.

5.1.1 Synthetic data sets

The twonorm data set is a 2 class problem where each class is drawn from a multivariate

normal distribution with unit variance. Each vector is a 20 dimensional vector. One

class has mean (a, a, . . . , a), and the other class has mean (−a,−a, . . . ,−a), where

a = 2√
20

. The ringnorm data set is a 2 class problem with each vector consisting of

20 dimensions. Each class is drawn from a multivariate normal distribution. One class

has mean 1, and covariance 4 times the identity. The other class has mean (a, a, . . . , a),

and unit covariance where a = 2√
20

.

The checkerboard data set consists of vectors in a 2 dimensional space. The points

are generated in a 4 × 4 grid. Both the classes are generated from a multivariate

uniform distribution; each point is (x1 = U(0, 4), x2 = U(0, 4)). The points are labeled

as follows - if (x1%2 = x2%2), then the point is labeled negative, else the point is

labeled positive.For each of the synthetic data sets, a training set of 10,00,000 points

and a test set of 10,000 points was generated. A smaller subset of 1,00,000 points was

chosen from training set for parameter tuning. From now on, the smaller training set

will have a subscript of 1 and the larger training set will have a subscript of 2, for

example, ringnorm 1 and ringnorm2 .

5.1.2 Real world data set

The RCV1 [16] data set consists of 804,414 documents, with each document consisting

of 47,236 features. Experiments were performed using 2 categories of the data set -

1 http://svmlight.joachims.org/
2 http://people.cs.uchicago.edu/ vikass/svmlin.html



15

Table 1 Classification: Timing and accuracy(in brackets) comparison

Category Kernel RandSVM LibSVM SVMPerf SVMLin
twonorm1 Gaussian 300 (94.98%) 8542 (96.48%) X X

twonorm2 Gaussian 437 (94.71%) - X X
ringnorm1 Gaussian 2637 (70.66%) 256 (70.31%) X X
ringnorm2 Gaussian 4982 (65.74%) 85124 (65.34%) X X
checkerboard1 Gaussian 406 (93.70%) 1568.93 (96.90%) X X
checkerboard2 Gaussian 814 (94.10%) - X X
CCAT Linear 345 (94.37%) X 148 (94.38%) 429(95.1913%)
C11 Linear 449 (96.57%) X 120 (97.53%) 295 (97.71%)

CCAT and C11. The data set was split into a training set of 7,00,000 documents and

a test set of 104,414 documents.

Table 1 shows the kernels which were used for each of the data sets. The parameters

used (σ and C for Gaussian kernels, and C for linear kernels) were obtained by tuning

using grid search.

Selection of k for RandSVM: The values of ǫ and δ were fixed to 0.2 and 0.9 respec-

tively, for all the data sets. For linearly separable data sets, k was set to (16 log(4n/δ))/ǫ2

. For the others, k was set to (32 log(4n/δ))/ǫ2.

5.1.3 Discussion of results:

Table 1 has the timing and classification accuracy comparisons. The subscripts 1 and

2 indicate that the corresponding training set sizes are 105 and 106 respectively. A

’-’ indicates that the solver did not finish execution even after a running for a day.

A ’X’ indicates that the experiment is not applicable for the corresponding solver.

The indicates that the solver used with RandSVM was SVMLight; otherwise it was

LibSVM.

The table shows that RandSVM can scale up SVM solvers for very large data sets.

Using just a small wrapper around the solvers, RandSVM has scaled up SVMLight so

that its performance is comparable to that of state of the art solvers such as SVMPerf

and SVMLin. Similarly LibSVM has been made capable of quickly solving problems

which it could not do before, even after executing for a day. In the case of ringnorm

1 dataset, the time taken by LibSVM is very small. Hence not much advantage is

gained by solving smaller sub-problems; this combined with the overheads involved

in RandSVM resulted in such a slow execution. Hence RandSVM may not always be

suited in the case of small datasets.

It is clear, from the experiments on the synthetic data sets, that the execution

times taken by RandSVM for training with 105 examples and 106 examples are not

too far apart; this is a clear indication that the algorithm scales well with the increase

in the training set size.

All the runs of RandSVM except ringnorm 1 terminated with the condition |SV | <
k being violated. Since the classification accuracies obtained by using RandSVM and

the baseline solvers are very close, it is clear that Theorem 3 holds in practice.
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Table 2 Regression results(† denote RBF kernel)

RandSVM LIBSVM SVMLight

time MSE(ρ) time MSE(ρ) time MSE(ρ)
1.(a)† 42 2.3259(0.9502) 5.61 1.8249(0.922) 21.10 2.2897(0.9509)
1.(b) 1489 1.3813(0.9727) 913.6 2.9916(0.9253) 4114.66 1.2173(0.9753)

2.(a) 201 0.0319(0.4625)
2650.3
1645.8†

0.0320(0.4600)
0.02621(0.3502)†

336.64 0.0320(0.4607)

2.(b) 327 68.24% 4459.8 68.49% 570.07 68.32%
3. 713 0.0320 (0.7894) 5671.2† 0.0315(0.769755)† 460.36 0.0317(0.7896)

5.2 Regression

The experiments were done on 1 synthetic datasets and 2 real world datasets - Forest

Cover [6] and MNIST3. RandSVM was compared with SVMLight [13] and LibSVM [7].

Table 2 gives the execution time(in seconds), mean square error(MSE) and correlation

coefficient(ρ) for ǫ−regression. A linear kernel is used unless specified. The value of k

is calculated according to k =
32 log(4n/δ)

(ǫ′)2
. A value of ǫ′ = 0.2 and δ = 0.1 is used. The

datasets are as following:

5.2.1 Synthetic:

The input attributes (x1, . . . , x10) are generated independently, each of which is dis-

tributed uniformly over [0, 1]. The target is defined by y = 10 sin(πx1x2) + 20(x3 −
0.5)+10x4 +5x5+N(0, 1). A value of ǫ = 1.0 is chosen. Two run are done for training

set size of (a) 104 and (b) 105 respectively.

5.2.2 Forest Cover:

There are 581012 records with label in {0, . . . , 6} and 54 features. The classification

problem was transformed into a regression problem as follows:

a) Predict the class labels with features scaled to [0, 1] and ǫ = 0.1.

b) Predict +1 for examples for class 2 and -1 for examples of other classes. Since class

2 is over represented, this leads to a more balanced problem. The features are scaled

to [0, 1] and a value of ǫ = 0.1 is chosen.

5.2.3 MNIST:

The data has 60000 training points and 10000 test points. There are 784 features each

in {0, . . . , 255} and 10 class labels {0, . . . , 9} which are used as target for regression

estimate. The features are scaled to [0, 1] and a value of ǫ = 0.1 and δ = 0.9 is used for

regression.

3 http://yann.lecun.com/exdb/mnist/
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6 Conclusions

A large number of learning problems can be viewed as instances of abstract optimiza-

tion problem (AOP), which has an associated combinatorial dimension ∆. An AOP

can be solved efficiently, with a high degree of accuracy, by selecting subsets of the size

of order of the combinatorial dimension of the problem. However, computing the com-

binatorial dimension of an AOP is not a trivial task. In this paper, we have used ideas

from random projections to obtain estimates to the combinatorial dimension for SVM

formulations of classification and regression tasks with extremely promising results.
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