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Abstract

Recently, word embeddings have been widely adopted across
several NLP applications. However, most word embedding
methods solely rely on linear context and do not provide a
framework for incorporating word relationships like hyper-
nym, nmod in a principled manner. In this paper, we propose
WordGCN, a Graph Convolution based word representation
learning approach which provides a framework for exploit-
ing multiple types of word relationships. WordGCN operates
at sentence as well as corpus level and allows to incorporate
dependency parse based context in an efficient manner with-
out increasing the vocabulary size. To the best of our knowl-
edge, this is the first approach which effectively incorpo-
rates word relationships via Graph Convolutional Networks
for learning word representations. Through extensive experi-
ments on various intrinsic and extrinsic tasks, we demonstrate
WordGCN’s effectiveness over existing word embedding ap-
proaches. We make WordGCN’s source code available to en-
courage reproducible research.

1 Introduction

Representing words as low dimensional real-valued vec-
tors is an effective and widely adopted technique in
NLP. Such representations capture semantic and syntac-
tic properties of words based on their usage and allow
them to generalize for unseen examples. Meaningful word
embeddings have been shown to improve performance
on several important tasks, such as named entity recog-
nition (NER) (Bengio, Courville, and Vincent 2013), pars-
ing (Socher et al. 2013), and part-of-speech (POS) tagging
(Ma and Hovy 2016). Using word embeddings for initializ-
ing Deep Neural Networks has also been found to be quite
effective (Collobert et al. 2011).

Most popular methods for learning word em-
beddings are based on the distributional hypothe-
sis, which utilizes the co-occurrence of words for
learning word representations (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014). More recently,
this approach has been extended to include syntactic
contexts (Levy and Goldberg 2014) derived from depen-
dency parse of text. Higher order dependencies have
also been exploited by (Komninos and Manandhar 2016;
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Li et al. 2018). Syntax-based embeddings encodes func-
tional similarity (in place substitutable words) rather than
topical similarity (topically related words) which provides
an advantage on certain tasks like NER. However, current
approaches incorporate syntactic context by severely ex-
panding context vocabulary which limits their scalability on
large corpora.

Incorporating relevant signals from semantic knowl-
edge sources like WordNet (Miller 1995), FrameNet
(Baker, Fillmore, and Lowe 1998), and Paraphrase
Database (PPDB) (Pavlick et al. 2015) have been shown
to improve the quality of word embeddings. Recent
works utilize them by incorporating them in a neural lan-
guage modeling objective function (Yu and Dredze 2014)
or as a post-processing step (Faruqui et al. 2014;
Mrkšić et al. 2016). Although, the existing approaches
improve the quality of word embeddings, they ignore the
directionality and types of word-relationships provided by
these sources like homonyms and hypernyms.

Recently proposed, Graph Convolutional Networks
(GCN) (Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016) have been found to be quite effec-
tive at encoding structural information in graphs. GCNs
have been successfully employed for several NLP tasks
like machine translation (Bastings et al. 2017), semantic
role labeling (Marcheggiani and Titov 2017), and event
detection (Nguyen and Grishman 2018). Information from
word co-occurrence and semantic knowledge sources can
be modeled as edges in a graph with words as nodes. Such
graphs can be effectively encoded using GCNs.

In this paper, we propose WordGCN, a novel Graph
Convolution based method, which jointly utilizes word
co-occurrence and information from semantic knowledge
sources for learning word representation. Unlike prior
works, WordGCN functions at both sentence as well as cor-
pus level and provides a framework for incorporating multi-
ple types of semantic knowledge while learning word repre-
sentation, without expanding the word vocabulary. Our con-
tributions can be summarized as follows:

1. We propose WordGCN, a novel Graph Convolution based
method for learning word embeddings by encoding rela-
tionships between words on two levels – sentence level
and corpus level.

http://arxiv.org/abs/1809.04283v1


Figure 1: Overview of WordGCN. WordGCN utilizes sentence level word co-occurrence relationships and directed semantic
information for learning word embeddings through S-GCN component. These are further improved by RF-GCN, which incor-
porates corpus level synonym relationships. Each word has two embeddings – neighborhood and target, for both components.
W and W ′ consist of target embeddings of each word in the vocabulary which is used to compute the final softmax scores.
Please refer Section 4 for details.

2. WordGCN allows to jointly utilize word co-occurrence
and different types of semantic knowledge for learning
word embeddings.

3. By experiments on multiple intrinsic and extrinsic tasks,
we demonstrate WordGCN’s effectiveness. The learned
embeddings obtain substantial improvement over the pre-
vious state-of-the-art method across all the tasks.

2 Related Work

Word Embeddings: Recently, there has been a lot of in-
terest in learning meaningful word representations. Neural
language modeling (Bengio et al. 2003) based continuous-
bag-of-words (CBOW) and skip-gram (SG) models were
proposed by (Mikolov et al. 2013). These models lead to
representations with semantic regularities and perform
well on similarity and analogy tasks without explicitly
optimizing for them. The work is further extended by
(Pennington, Socher, and Manning 2014), which explicitly
impose structural constraints through their loss function
via a matrix factorization approach based on words co-
occurrence. Other formulations for learning word embed-
dings include multi-task learning (Collobert et al. 2011) and
ranking frameworks (Ji et al. 2015).

Since then, there has been an interest in sev-
eral different aspects of word representations.
Maas et al.; Jastrzebski, Lesniak, and Czarnecki focus
on learning task specific word representations. Alternate

training of CBOW and SG models has been explored
by (Song, Lee, and Xia 2017) while several other works
explore the use of negative sampling to speed up training
(Mikolov et al. 2013). In this work, we use a more recent
approach – sampled softmax (Jean et al. 2015) to reduce
training time.

Syntax-based Embeddings: Dependency parse con-
text based word embedding are first introduced by
(Levy and Goldberg 2014). This allows encoding syn-
tactic relationships between words and gives advan-
tage on tasks where functional similarity is more
relevant than topical similarity. The inclusion of syn-
tactic context was further extended through second-
order (Komninos and Manandhar 2016) and multi-order
(Li et al. 2018) dependencies. However, in all the existing
approaches either context or target vocabulary has to
be severely increased for incorporating syntactic rela-
tionships. For instance, to learn representation for 220k
words, the context vocabulary blows to 1.3 million in
(Komninos and Manandhar 2016). In this paper, we attempt
to address this drawback by exploiting advances in encoding
graphical structures through Graph Convolution networks.

Graph Convolutional Networks: The first neural network
model on graphs is proposed by (Scarselli et al. 2009).
Graph Convolutional Networks are the generalization of
Convolutional Neural Networks (CNN) to non-euclidean



domains. Bruna et al. formulated the spectral and spa-
tial construction of GCNs which is later improved by
(Defferrard, Bresson, and Vandergheynst 2016) through
an efficient localized filter approximation. First-order
formulation of GCNs via a layer-wise propagation
rule is proposed by (Kipf and Welling 2016). A de-
tailed description of GCNs and their applications can
be found in (Bronstein et al. 2017). GCNs have been
shown to improve performance on semantic role la-
beling (Marcheggiani and Titov 2017), event detec-
tion (Nguyen and Grishman 2018), document time-
stamping (Vashishth et al. 2018), and machine translation
(Bastings et al. 2017).

Incorporating semantic knowledge sources: There have
been several methods which aim to incorporate seman-
tic knowledge source like WordNet (Miller 1995) and
PPDB (Pavlick et al. 2015) to improve the quality of word
representations (Faruqui et al. 2014; Mrkšić et al. 2016;
Alsuhaibani et al. 2018). Most approaches use pre-trained
word embeddings and use the knowledge sources as a
post-processing step. Our proposed method, WordGCN is
capable of training word embeddings from scratch as well
as incorporating semantic knowledge sources – both, during
training or as a post processing step.

3 Background: Graph Convolutional

Networks
Graph Convolutional Networks (GCNs) are an effec-
tive way to learn meaningful node representation
based on node features and the graph structure. In
this section, we will provide a brief overview of
GCNs (Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016) and its extension to directed labeled
graphs.

3.1 GCN on Undirected Graphs:

Given G = (V , E ,X ), an undirected graph, where V is the
set of nodes, E={{u, v}: if u and v have an edge}, is the set
of undirected edges and |V| = n. The input node features are
denoted by X ∈ R

n×d, where each row xv is the representa-
tion of the node v ∈ V . A single layer of GCN propagation
as defined by (Kipf and Welling 2016) is

Hk+1 = f(AHkW k+1),

where, Hk ∈ R
n×d is the hidden representation of nodes af-

ter the kth layer of GCN, A ∈ R
n×n is the adjacency matrix

of the graph, W k ∈ R
d×d is a set of learnable parameters

and f(·) is the activation function. For the first layer, we ini-
tialize H0 := X . Alternatively, we can represent one layer
of GCN as

hk+1
v = f





∑

u∈N (v)

W k+1hk
u + bk+1



 , ∀v ∈ V . (1)

where bk+1 ∈ R
d is the bias, NG(v) = {u : {u, v} ∈ E}

is the set of immediate neighbors of v, hk
u ∈ R

d is hidden
representation of node u in Hk

u .

3.2 GCN on Directed Labeled Graphs:

Given a directed graph G = (V , E ,X ), with V and X as de-
fined in section 3.1 and the set E contains directed labeled
edges, where an edge from node u to node v with label
luv is denoted by (u, v, luv). The set NG(v) = {(u, luv) :
(u, v, luv) ∈ E} is the labeled in-neighborhood set contain-
ing tuples of all nodes u from which there is an edge to v,
along with their edge labels. As the information need not
always propagate only along the direction of the edge, fol-
lowing (Marcheggiani and Titov 2017), we append E by in-
verse edges (v, u, l−1

uv ) and self-loop edges (v, v, lloop). The

embedding of a node v after kth GCN layer is thus given by:

hk+1
v = f





∑

(u,luv)∈NG(v)

(

W k
luv

· hk
u + bkluv

)



 .

where, W k
luv

∈ R
d×d and bluv

∈ R
d are learnable model

parameters.

3.3 Edge Label Gating Mechanism:

For a given task, all the edge labels might not be
equally important and might sometimes be erroneous.
To address this issue, we employ edge-wise gating
(Marcheggiani and Titov 2017; Bastings et al. 2017) in di-
rected labeled GCNs. For each node v, we assign a relevance
score gkluv

∈ R to all the edges incident on it. The score is
computed independently for each layer as:

gkluv
= σ

(

(Ŵ k
luv

)⊤ · hk
u + b̂kluv

)

, (2)

where Ŵ k
luv

∈ R
d and b̂kluv

∈ R are trainable parameters

and σ(·) here is the sigmoid function. The updated GCN
propagation rule for the kth layer can be written as

hk+1
v = f





∑

(u,luv)∈NG(v)

gkluv
×
(

W k
luv

· hk
u + bkluv

)



 .

(3)

4 WordGCN Overview

The task of learning word representations in unsupervised
setting can be formulated as follows: given a text corpus, the
aim is to learn a d-dimensional embedding for each word in
the vocabulary. For each sentence, we construct a directed
labeled sentence graph, with the set of words as nodes and
edges denoting word relationships. For instance, as shown
in Figure 1, in the sentence “Feathers of owls enable them
to hunt other birds.”, the asymmetric relation, obj between
hunt and birds is represented through a directed labeled
edge. For utilizing corpus level information like synonym,
which is inherently symmetric in nature, we construct an
undirected labeled graph with the set of nodes as the entire
word vocabulary. For example, the synonym relation be-
tween hunt and chase is represented as an undirected labeled
edge. Given the two types of graphs, WordGCN employs
directed (Marcheggiani and Titov 2017) and undirected



GCNs (Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016) for learning word representation.
We briefly describe the components of WordGCN below.

• Sentence Level GCN (S-GCN) learns word embeddings
by capturing global co-occurrence properties of words in
the corpus, available via context and dependency edges.
It also allows to incorporate other types of directed word
relationships during training.

• Retrofitting GCN (RF-GCN) further refines embeddings
learned by S-GCN by incorporating corpus level informa-
tion from semantic knowledge sources.

5 WordGCN Details

In this section, we describe the components of WordGCN
in detail. WordGCN utilizes word relationships at sen-
tence and corpus level based on their inherent na-
ture. Unlike prior works (Levy and Goldberg 2014;
Komninos and Manandhar 2016) which increase vocabu-
lary size to incorporate word relationships and multi order
dependencies, S-GCN incorporates this in a principled
manner using edge labeled GCNs. We hypothesize that this
allows us to better capture semantic and syntactic properties
of words. We validate our hypothesis in Section 7. Since
a word has different semantic properties depending upon
whether it appears as a target or neighboring word, we
keep two embeddings, namely target and neighborhood
embeddings for each word similar to (Mikolov et al. 2013).

5.1 Sentence Level GCN (S-GCN):

Sentence graph construction:
For each sentence s = (w1, w2, . . . , wn), we construct
a directed labeled sentence graph Gs = (Vs, Es), where
Vs = {w1, w2, . . . , wn}, the set of words in s and Es de-
notes directed word relationships. In WordGCN, linear con-
text, dependency parse based context and directed WordNet
relations are utilized as described below.

• Linear context edges: Since a word in simi-
lar context has similar meaning (Harris 1954;
Rumelhart, Hinton, and Williams 1988), for each word
wi in s, we construct incoming edges from words lying
in its k-length context window. The obtained edges, Econ
can be defined as

Econ = {(wi+j , wi, lcon) : j ∈ [−k, k]∩ I \{0}, ∀i ∈ [n]}.

where, lcon is the label corresponding to linear context
edges, [n] = {1, 2, . . . , n} and I is the set of integers.

• Dependency context edges: For each sentence s, we
obtain dependency parse graph (Gs

d) extracted us-
ing Stanford CoreNLP parser (Manning et al. 2014).
Prior works (Levy and Goldberg 2014;
Komninos and Manandhar 2016), utilize dependency
parse information by concatenating words with edge
labels. This severely increases the word vocabulary lim-
iting their applicability on large corpora. In WordGCN,
we incorporate this information much more efficiently

by directly including dependency edges in the sentence
graph as defined below.

Edeps = {(wj , wi, l
d
ji) : (wj , l

d
ji) ∈ NGs

d
(wi), ∀i ∈ [n]},

where, NGs
d
(wi) is the labeled in-neighborhood set of wi

w.r.t graph Gs
d .

• WordNet Edges: WordNet (Miller 1995), a large lexi-
cal database of English, provides several types of sym-
metric and asymmetric words relations which have been
used to improve word embeddings (Faruqui et al. 2014;
Alsuhaibani et al. 2018). In WordGCN, we utilize rela-
tions – hypernym, hyponym, holonym, and meronym in
S-GCN via Ewnet as defined below.

Ewnet = {(wj , wi, l
w
ji) : (wj , l

w
ji) ∈ NGw

(wi), ∀i ∈ [n]},

where, Gw is the directed WordNet relationship graph be-
tween words as provided by (Alsuhaibani et al. 2018).

In WordGCN, the edge set Es of sentence graph, Gs is de-
fined as

Es = Econ ∪ Edeps ∪ Ewnet.

For the experiments in this paper, we have used Es as
defined above. However, it can be further extended based on
the availability of other directed word relations.

Directed Graph Convolution:
On the obtained sentence graph Gs, we employ directed
GCN (Marcheggiani and Titov 2017) as defined in Section
3.2. Similar to CBOW model (Mikolov et al. 2013), we pre-
vent a word from occuring in its own context by remov-
ing self-loops from Es. Since some of the edges obtained
from automatically constructed dependency parse graph can
be erroneous, we perform edge-wise gating (Section 3.3) to
give importance to relevant edges and suppress the noisy
ones. The kth layer update rule used for updating embed-
dings of word wi is defined as

hk+1
i = f





∑

(wj ,lji)∈NGs (wi)

gklji ×
(

W k
lji

· hk
j + bklji

)



 .

where, NGs
(wi) denotes the labeled in-neighborhood set

of wi in Gs and gklji is the gating value for the edge (j, i, lji).

The updated embeddings are then used to calculate loss as
describe in Section 5.3.

5.2 Retrofitting GCN (RF-GCN):

Graph construction:
Incorporating semantic knowledge in word embeddings has
been shown to improve their quality (Faruqui et al. 2014;
Alsuhaibani et al. 2018). In WordGCN, we use syn-
onym information from Paraphrase Database (PPDB)
(Pavlick et al. 2015) and WordNet. Inspired by
(Faruqui et al. 2014), we preserve the information learned
via S-GCN by initializing target and neighborhood em-
beddings of RF-GCN by embeddings from S-GCN. For
each synonym cluster, we construct an undirected labeled
complete graph Gu = (Vu, Eu), where Vu is the set of words



in the synonym cluster, Eu is the edge list consisting of all
possible pairs as defined below.

Eu = {({wi, wj}, li∼j) : i ≤ j ≤ |Vu|, ∀wi, wj ∈ Vu}

where, li∼j is the label of the undirected edge between i
and j which can be either lppdb or lwnet corresponding to
PPDB or WordNet synonym word relationship. The above
constructed graph, can be extended for other symmetric
semantic relationships like antonym. In this paper, we focus
only on synonym relationship.

Undirected Graph Convolution:
On the constructed undirected graph Gu, we employ GCN
formulation proposed by (Kipf and Welling 2016) defined in
Section 3.1. Unlike S-GCN, we do not include edge-wise
gating as the used semantic knowledge sources are not noisy.
The embedding of word wi at kth layer is updated as

hk+1
i = σ





∑

(wj ,li∼j)∈NGu (wi)

W k+1
li∼j

hk
j + bk+1

li∼j



 .

where, NGu
(wi) = {(wj , li∼j), . . . } is the tuple contain-

ing neighbors of wi along with their labels. W k+1
li∼j

and bk+1
li∼j

are label specific trainable model parameters. The updated
embeddings are then used to calculate loss as describe in
Section 5.3.

5.3 Training Loss

Given the embedding of each word from GCN, the training
objective of WordGCN is to predict the target word given its
neighbors in the graph. Formally, we wish to maximize E
defined as

E =

|V |
∑

t=1

logP (wt|w
t
1, w

t
2 . . . w

t
Nt

).

where, wt is the target word and wt
1, w

t
2 . . . w

t
Nt

are its
neighbors in the graph. The log probability E is calculated
using the softmax function.

E =

|V |
∑

t=1



vTwt
ht − log

|V |
∑

i=1

exp(vTwi
ht)



 (4)

where, ht is the GCN output for the target word wt and vwt

is its target embedding.

The second term in Equation 4 is computationally
expensive as the summation needs to be taken over
the entire vocabulary. This can be overcome using
several approximations like noise-contrastive estimation
(Gutmann and Hyvärinen 2012) and hierarchical versions
of softmax (Morin and Bengio 2005; Mnih and Hinton ). In
WordGCN, we use sampled-softmax (Jean et al. 2015), a re-
cently proposed efficient way of estimating softmax when
the size of vocabulary is very large.

6 Experimental Setup

6.1 Dataset and Training

In our experiments, we use March 2018 English dump
of Wikipedia1 for training the models. After discarding
too long and too short sentences, we get an average sen-
tence length of nearly 20 words. The corpus consists of
57 million sentences with 1.1 billion tokens and 1 billion
syntactic dependencies extracted using Stanford CoreNLP
(Manning et al. 2014).

6.2 Baselines

For evaluating WordGCN, we compare against the following
baselines:

• Word2vec is continuous-bag-of-words model originally
proposed by (Mikolov et al. 2013).

• GloVe (Pennington, Socher, and Manning 2014), a log-
bilinear regression model which leverages global co-
occurrence statistics of corpus.

• Deps (Levy and Goldberg 2014) is a modification of skip-
gram model which uses dependency context in place of
window based context.

• EXT (Komninos and Manandhar 2016) is an extension of
(Levy and Goldberg 2014) model which utilizes second-
order dependency context features.

• Retro-fitting (Faruqui et al. 2014) is a post-processing
procedure which uses similarity constraints from sem-
natic knowledge sources.

• Counter-fitting (Mrkšić et al. 2016), a method for inject-
ing linguisitic constraints for improving word embed-
dings.

• WordGCN is the method proposed in this paper. Please
refer Section 4 for more details.

6.3 Evaluation method:

To evaluate the effectiveness of WordGCN, we compare it
against the baselines on the following intrinsic and extrinsic
benchmark tasks:
Word Similarity is the task of evalu-
ating semantic closeness between words.
Following (Komninos and Manandhar 2016;
Pennington, Socher, and Manning 2014), we evalu-
ate WordGCN on various word similarity datasets
– WS353S, WS353R (Finkelstein et al. 2001),
MTurk (Radinsky et al. ), RG65, and MEN
(Bruni, Tran, and Baroni 2014).
Concept Categorization involves grouping nominal con-
cepts into natural categories. For instance, tiger and
elephant should belong to mammal class. In our ex-
periments, we evalute on AP (Almuhareb 2006), Battig
(Baroni and Lenci 2010), BLESS (Baroni and Lenci 2011),
ESSLI datasets.
Analogy captures relational similarity between two pairs of
words. Given pairs of words a, a∗ and b, b∗, the task is to
measure the degree to which semantic relation between a

1https://dumps.wikimedia.org/enwiki/20180301/



Similarity Categorization Analogy

Method WS353S WS353R MTurk RG65 MEN AP Battig BLESS ESSLI SemEval2012

Word2vec 69.4 44.0 62.2 57.1 68.5 62.9 44.1 67.4 55.6 18.9
GloVe 68.4 44.9 61.6 56.2 67.6 58.0 40.1 68.2 59.3 16.6
Deps 71.5 42.5 58.7 67.5 58.0 65.4 44.1 68.0 55.6 22.2
EXT 68.1 42.2 61.7 61.0 63.1 52.7 34.3 69.5 62.2 19.0

WordGCN(-Sem) 74.5 42.8 62.9 75.5 66.8 62.4 44.2 70.5 64.4 18.9
WordGCN 80.3 49.2 62.9 79.3 70.2 70.9 44.6 73.0 75.6 22.5

Table 1: Evaluation on three intrinsic tasks: word similarity (spearman correlation), concept categorization (cluster purity),
and word analogy (spearman correlation). WordGCN(-Sem) denotes WordGCN without using any information from semantic
knowledge sources. Overall, WordGCN either outperforms or performs competitively compared to other existing approaches.
Please refer to Section 7.1 for more details.

and a∗ is similar to that between b and b∗. We demonstrate
results on SemEval2012 dataset.
Question Classification is the problem of categorizing
questions into different types. We use TREC dataset
(Li and Roth 2006) which comprises of six question types.
News Categorization involves identifying category of
a given document. Following (Faruqui et al. 2014), we
use document belonging to Computers:IBM and Comput-
ers:Mac from 20 Newsgroup dataset and model it as a binary
classification task.
Named Entity Recognition (NER) is a task to locate and
classify entity mentions into persons, organization, location
and miscellaneous category. We use the NeuralNER model
(Dernoncourt, Lee, and Szolovits 2017) to train and test on
CoNLL-2003 dataset (Tjong Kim Sang and De Meulder ).
Part-of-speech (POS) tagging aims at associat-
ing each word a unique tag describing its syn-
tactic role. For evaluating word embeddings we
use (Reimers and Gurevych 2017), to train and
test on Penn Treebank POS dataset as done by
(Lee, He, and Zettlemoyer ).
Co-reference Resolution (CR) involves identifying
all expressions that refer to the same entity in the
text. To inspect the effect of embeddings, we use
(Lee, He, and Zettlemoyer ) on CoNLL-2012 shared
task (Pradhan et al. ) dataset.

6.4 Hyperparameters

Our vocabulary consists of top 150k words based on their
frequency in the corpus. We observe similar trends for
(50, 100, 300, 600) dimensional embeddings and have re-
ported results for 100 dimensional embeddings. We used
Adam optimizer (Kingma and Ba 2014) with learning rate
of 0.001. Following (Mikolov et al. 2013), subsampling is
used with threshold parameter t being 10−4. Window size of
3 is used for obtaining linear context. The target and neigh-
borhood embeddings are initialized randomly using Xavier
initialization (Glorot and Bengio 2010). In GCN, ReLU is
used as the activation function.

7 Results

In this section, we attempt to answer the following ques-
tions:

Q1. Does WordGCN learn more meaningful word embedding
than existing approaches? (Section 7.1 and 7.5)

Q2. How effective is WordGCN’s embeddings on downstream
tasks? (Section 7.2)

Q3. What is the effect of ablating different components on
WordGCN’s performance? (Section 7.3)

Q4. Does WordGCN efficiently capture information from se-
matic knowledge sources? (Section 7.4)

7.1 Intrinsic Evaluation

Evaluation results on intrinsic tasks are summarized in Ta-
ble 1. For fair comparison, we also report performance
of WordGCN without using information from semantic
knowledge sources, denoted by WordGCN(-Sem). Over-
all, we find that our proposed method, WordGCN outper-
forms or performs competitive to the existing word em-
bedding approaches on most of the datasets. Linear con-
text based approaches like Word2vec and GloVe outper-
forms others on WS353R dataset as their embeddings cap-
ture more of topical similarity rather than functional sim-
ilarity. This is consistent with the observation reported in
(Levy and Goldberg 2014). On incorporating signals from
semantic knowledge sources (WordNet and PPDB), there is
significant improvement in performance across all the tasks.

7.2 Extrinsic Evaluation

In this section, we evaluate the performance of different
word embedding approaches on the downstream tasks as de-
fined in Section 6.3. Experimental results are summarized in
Table 2. Similar to Section 7.1, we also evaluate the seman-
tic knowledge deficient version of WordGCN. Overall, we
find that in four out of five tasks, WordGCN outperforms
existing word embedding approaches. Incorporating seman-
tic knowledge drastically helps in improving performance
on all the downstream tasks.

7.3 Ablation Results

For demonstrating the efficacy of WordGCN in incorpo-
rating different directed and undirected information, we
evaluate the performance of different ablated versions of
WordGCN. The results are summarized in Figure 2. We ob-
serve a substantial increase in performance across all the



Method TREC News Cat. NER POS NCR

Word2vec 90.4 66.8 85.8 94.4 70.7
GloVe 89.6 68.7 83.9 92.1 69.9
Deps 93.6 65.5 75.6 91.0 69.9
EXT 89.6 64.0 82.3 93.9 70.5

WordGCN(-Sem) 92.0 67.7 86.2 93.9 70.4
WordGCN 94.4 70.1 86.2 94.4 71.2

Table 2: Evaluation on extrinsic tasks: question classi-
fication, news categorization, named entity recognition,
parts-of-speech tagging, and neural co-reference resolution.
WordGCN outperforms all existing approaches on four out
of five tasks. Refer Section 7.2 for details.

Figure 2: Average scores on similarity and categorization
tasks. Similar trends are observed on analogy task. Dep
stands for only dependency based context in WordGCN.
Similarly Con and W stand for linear context and WordNet
information respectively. Refer Section 7.3 for details.

tasks on including dependency context and information from
semantic knowledge sources.

7.4 Evaluating incorporation of undirected
semantic knowledge

The RF-GCN component can also be used as a stan-
dalone model to fine tune pre-trained embeddings from
other models by incorporating corpus level semantic knowl-
edge. To evaluate the effectiveness of RF-GCN, we compare
it against Retro-fitting (Faruqui et al. 2014) and Counter-
fitting (Mrkšić et al. 2016) (Section 6.2). The results are
summarized in Table 3. We report average score on similar-
ity task, however, we observe similar trends across all other
tasks. We find that RF-GCN performs comparable or outper-
forms the baselines in almost all of the settings.

7.5 Qualitative Results

In this seciton we analyze some qualitative properties of
WordGCN embeddings. As shown in Table 4, WordGCN is
able to capture multiple senses of the same word. For in-
stance, we find that for most embedding methods, closest
word to bank are banking related terms like citibank, invest-

Method Retro-fitting Counter-fitting RF-GCN

Word2vec 67.5 64.2 65.4
GloVe 64.5 59.9 64.6
Deps 56.5 54.0 61.4
EXT 58.0 54.4 61.8
WordGCN(-Sem) 59.22 62.36 65.5

Table 3: Comparison of average similarity scores of RF-
GCN against other methods on incorporating semantic
knowledge in pre-trained embeddings. Refer to Section 7.4
for details.

ment whereas WordGCN is also able to capture the other
sense of bank i.e. riverbank. For the word grave, we find
WordGCN captures its sense as a part of graveyard (topi-
cal similarity) and also captures its other meaning i.e. to be
serious (functional similarity). This shows that WordGCN
captures multiple, diverse connotations of a word as well as
functional and topical similarities.

Target Word2vec GloVe Deps WordGCN

bank
hsbc banking brokerage citibank

citibank investment mortgage banking
lloyds finance banking riverbank

grave
graveyard burial tomb tomb
gravestone graves mausoleum graveyard

tomb tomb headstone serious

bow
prow barrel hoist prow
oar nose paddle stoop

rudder deck nose bend

current
changing present previous currently
existing new actual existing
original change thermal voltage

Table 4: Comparison of words close to the target word ac-
cording to different word embedding methods

8 Conclusion

In this paper, we propose WordGCN, a graph convolution
based approach for learning word representation. WordGCN
can utilize multiple types of word relationships such as lin-
ear context, syntactic context, hypernym, meronym and syn-
onym in a principled manner, through a single model. To
the best of our knowledge, this is the first model to use
graph convolution for this task. Through extensive exper-
iment on various intrinsic and extrinsic tasks, we evalu-
ate the effectiveness of WordGCN and find that it outper-
forms existing word embedding approaches. We also find
that WordGCN is able to capture multiple connotations of
a word in the learned embeddings. We make WordGCN’s
source code available to encourage reproducible research.
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