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ABSTRACT

Knowledge distillation (KD), i.e. one classifier being trained on the outputs of another classifier,
is an empirically very successful technique for knowledge transfer between classifiers. It has even
been observed that classifiers learn much faster and more reliably if trained with the outputs of
another classifier as soft labels, instead of from ground truth data. However, there has been little
or no theoretical analysis of this phenomenon. We provide the first theoretical analysis of KD in
the setting of extremely wide two layer non-linear networks in model and regime in [1, 2, 3]. We
prove results on what the student network learns and on the rate of convergence for the student
network. Intriguingly, we also confirm the lottery ticket hypothesis [4]in this model. To prove our
results, we extend the repertoire of techniques from linear systems dynamics. We give corresponding
experimental analysis that validates the theoretical results and yields additional insights.

1 Introduction

In 2014, Hinton et al. [5] made a surprising observation: they found it easier to train classifiers using the real–valued
outputs of another classifier as target values than using actual ground–truth labels. They introduced the term knowledge
distillation (or distillation for short) for this phenomenon. Since then, distillation–based training has been confirmed
robustly in several different types of neural networks [6, 7, 8]. It has been observed that optimization is generally more
well–behaved than with label-based training, and it needs less if any regularization or specific optimization tricks.
Consequently, in several fields, distillation has become a standard technique for transferring the information between
classifiers with different architectures, such as from deep to shallow neural networks or from ensembles of classifiers
to individual ones.

http://arxiv.org/abs/2003.13438v2
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While the practical benefits of distillation are beyond doubt, its theoretical justification remains almost completely
unclear 1. Existing explanations rarely go beyond qualitative statements, e.g. claiming that learning from soft labels
should be easier than learning from hard labels, or that in a multi-class setting the teacher’s output provides information
about how similar different classes are to each other. The recent paper [9] is the sole exception (as far as we are aware)
but their analysis is in the setting of linear networks.

We carry out the first theoretical analysis of distillation in the setting of a simple two–layer non–linear neural network.
Our analysis is carried out in the model underlying the exciting recent work that analyzes the dynamics of neural
networks under the so–called kernel regime, see [1, 2, 3, 10] and others. In this series of papers, it was shown that
the behaviour of training by gradient descent (GD) in the limit of very wide neural networks can be approximated by
linear system dynamics. This is dubbed the kernel regime because it was shown in [11] that a fixed kernel – the neural
tangent kernel – characterizes the behavior of fully-connected infinite width neural networks in this regime.

In the same model and regime, we prove the first theoretical results on knowledge distillation for non-linear networks.
Our framework is general enough to encompass Vapnik’s notion of privileged information and provides a unified
analysis of generalized distillation in the paradigm of machines teaching machines as in [12]. We give results on
both what is learnt by the student network (in section 2.5) and also on the speed of convergence (in section 2.6).
Intriguingly, we also confirm theoretically, the lottery ticket hypothesis [4]in this model and regime as a special case
of our analysis (in section 2.5.1. We introduce novel techniques to make possible this analysis. We also carry out
systematic experimental evaluation that confirms the theoretical analysis.

2 Problem Formulation and Main Results

Unlike most previous work which study distillation in various complex architectures, we focus our attention on a
simplified, analytically tractable, setting: the two layer non–linear model introduced in [1, 13, 2, 3]:

f(x) =
m
∑

k=1

ak√
m
σ(wT

k x), (1)

Here the weights {wk}mk=1 are variables of the network corresponding to m hidden units, σ(. ) is a real (nonlinear)
activation function and the weights {ak} are fixed. In our theoretical analysis, the student network has this form while
the teacher can be any classifier. In our experimental analysis both the teacher and student networks have this form;
the student just has many fewer nodes in the hidden layer.

We introduce a general optimization framework for knowledge transfer formulating it as a least squares optimization
problem with regularization provided by privileged knowledge. Given a dataset {(xi, yi)}ni=1 comprising of n data
samples {xi} and their corresponding labels {yi}, our framework is given by the following optimization problem

min
{wk}

∑

i

(yi − f(xi))
2 + λ

∑

i

∑

k

(

φ(k)(xi)− f (k)(xi)
)2

, (2)

where f(. ) is stated in (1) and f (k)(x) = σ(wT
k x) is the corresponding kth hidden feature of the student network.

Here, we assume a given function φ(k) for each hidden unit as privileged knowledge. We observe that (2) incorporates
this knowledge as a regularization of the original nonlinear least squares (average ℓ2 risk minimization) framework for
fitting a function to the labeled data: min

{wk}

∑

i

(yi−f(xi))
2. The coefficient λ ≥ 0 in (2) is the regularization parameter.

A special case of this setup concerns knowledge distillation where {φ(k)} are hidden features of a teacher network, i.e.

φ(k)(x) = σ(〈wteacher
k ,x〉) framing (2) as a standard student-teacher scheme for knowledge distillation.

2.1 Relation to Previous Work

To the best of our knowledge, [9] is the only previous attempt to give a theoretical analysis of distillation. In the
setting of (2), their work corresponds to λ = ∞ (pure distillation), single hidden unit (m = 1), Sigmoid activation σ
and cross-entropy replacing the square-error loss and hence leading to a convex objective. Their result concerns the
final value and is expressed in terms of the weight values. Convexity allows [9] to avoid our assumption on the initial
weights in Theorem 1 and 2, as the final solution is independent of initialization. Our result is applicable to a different
regime with a large number m of units, high expression capacity and a non-convex formulation.

1This is the reason for our title with a play on Eugene Wigner’s famous article entitled "The Unreasonable Effectiveness of
Mathematics in the Natural Sciences"
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To gain a deeper insight into the process of knowledge transfer by (2), we study the generic behavior of the gradient
descent (GD) algorithm when applied to the optimization therein. In the spirit of the analysis in [13, 1], shortly
explained in Section 3, we carry out an investigation on the dynamics for GD that answers two fundamental questions:

• What does the (student) network learn?

• How fast is the convergence by the gradient descent?

The answer to both these questions emerges from the analysis of the dynamics of GD.

2.2 General Framework

The existing analysis of dynamics for neural networks in a series of recent papers [1, 2, 3] is tied centrally to the
premise that the behaviour of GD for the optimization can be approximated by a linear dynamics of finite order. To
isolate the negligible effect of learning rate µ in GD, it is also conventional to study the case µ → 0 where GD is
alternatively represented by an ordinary differential equation (ODE), known as the gradient flow, with a continuous
"time" variable t replacing the iteration number r (being equivalent to the limit of rµ). Let us denote by f(t) the vector
of the output f(xi, t) of the network at time t. Then, the theory of linear systems with a finite order suggests the
following expression for the evolution of f(t):

f(t) = f∞ + δ(t), (3)

where f∞ is a constant and

δ(t) = u1e
−p1t + u2e

−p2t + . . .+ ude
−pdt. (4)

Here, d is the order of the linear system and complex-valued vectors u1, . . . ,um and nonzero complex values
p1, p2, . . . , pd are to be determined by the specifications of the dynamics. The constants {pj 6= 0} are called poles,
that also correspond to the singular points of the Laplace transform F(s) of f(t) (except for 0, which corresponds to
the constant f∞ in our formulation). We observe that such a representation may only have a convergence (final) value
at t → ∞ if the poles have strictly positive real parts, in which case f∞ is the final value. Moreover, the asymptotic
rate of convergence is determined by the dominating term in (4), i.e. the smallest value ℜ(pj) with a nonzero vector
uj . We observe that identifying f∞ and the dominating term responds to the aforementioned questions of interest. In
this paper, we show that these values can be calculated as the number m of hidden units increases.

2.3 Definitions

we first need to introduce a number of definitions. Let us take wk = wk(0) as the initial values of the weights and
define Hk = (σ′(wT

k xi)σ
′(wT

k xi)x
T
i xj) as the kth realization of the "associated gram matrix" where σ′ denotes the

derivative function of σ (that can be defined in the distribution sense). Further, denote by fk(0) the vector of the initial

values fk(xi) = σ(wT
k xi) of the kth unit for different data points {xi}. Finally, we define a =

∑

k

a2
k

m
.

2.4 Assumptions

Our analysis will also be built upon a number of assumptions:

Assumption 1. Nonzero eigenvalues of the matrices {Hk} are all distinct. Note that they are always strictly positive
as {Hk} are by construction positive semi-definite (psd).

Assumption 2. −1 is the eigenvalue of the matrix

T(s) =
∑

k

a2k
m

(sI+ λHk)
−1Hk

at exactly d = n × m distinct strictly negative values of s = −p1,−p2, . . . ,−pd, where pis are all different to the
eigenvalues of {Hk}, with v1,v2, . . . ,vd and u1,u2, . . . ,ud being the corresponding right and left eigenvectors.

Assumption 3. The function σ and its derivative σ′ is Lipschitz continuous.

Assumption 4. We assume m → ∞ and ‖φk − fk(0)‖ = O(1/
√
m) and ‖y −∑

k

akφk√
m

‖ = O(1). Moreover, ‖xi‖s

and aks are bounded.

3
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2.5 What does the student learn?

This result pertains to the first question above, concerning the final value of f . For this, we prove the following result:

Theorem 1. Suppose that Assumption 1-4 holds true. Then, lim
t→∞

f(t) = f∞ where

f∞ =
1

a+ λ

(

ay + λ
∑

k

akφk√
m

)

(5)

To gain a deeper insight, we specialize this result to the case where the teacher is a well-trained network with the
similar structure as in (1) with m̄ ≫ m units and coefficients {w̄l,

qāl√
m̄
}m̄l=1. In this setup, the constant q =

√

m
m̄

is a correction term and the output of the teacher at xi is exactly yi for i = 1, 2, . . . , n (e.g. by the results in [13]).
Then, the privileged knowledge is extracted by randomly selecting indices l1, l2, . . . , lm and setting wteacher

k = w̄lk

and ak = ālk . Then, Theorem 1 leads to the the following result:

Theorem 2. Suppose that the student is initialized by wk = wteacher
k , selected by the above randomized scheme and

∑

l

ā2
l

m̄
= 1. Moreover,

∑

l,i

ā2
l

m̄
σ2(w̄T

l xi) is bounded with m̄. Then, the output f after training satisfies:

n
∑

i=1

(f(xi)− yi)
2 ≤

(

1− m
m̄

)

×

C
(

λ
1+λ

)2
[

∑

i,l

q2ā2
l

m̄
σ2(w̄T

l xi)

]

log(m̄) (6)

with a probability higher than 1− 1
m10 , where C is a universal constant.

In simple words, the final error in the student will be proportional to 1 − m
m̄

, confirming the intuition that the error
grows with a smaller student.

2.5.1 Relation to Lottery Ticket Hypothesis

We further observe an interesting connection between the setup in Theorem 2 and the lottery ticket hypothesis in [4]:
When λ = 0 (no distillation), the training procedure on the student network can be interpreted as the retraining of
the randomly selected features of the teacher. This coincides with the lottery ticket setup. As such, our analysis in
Theorem 2 with λ = 0 shows that re-training in the kernel limit with a fixed fraction m/m̄ of features leads to zero
training loss, confirming the lottery ticket hypothesis.

2.6 How fast does the student learn?

Now, we turn our attention to the question of the speed of convergence, for which we have the following result:

Theorem 3. Define

f (k)∞ =
ak

λ
√
m
(y − f∞) + φk.

Under Assumption 1-4, the dynamics of f can be written as2

f(t) =

d
∑

j=1

e−pjtαju
j +Om

(

1√
m

)

where

αj =
∑

k

a2k
m

〈

vj ,Hk(pjI− λHk)
−1(f (k)∞ − f (k)(0))

〉

From the definition, αj can be interpreted as an average overlap between a combination of the label vector y and the

knowledge vectors φk, and the "spectral" structure of the data as reflected by the vectors (pjI − λHk)
−1Hkv

j . This
is a generalization of the geometric argument in [1] in par with the "data geometry" concept introduced in [9]. We will
later use this result in our experiments to improve distillation by modifying the data geometry of αj coefficients.

2We clarify that O(1/
√
m) holds in L1 sense, i.e. a(t) = b(t) +O(1/

√
m) means

∞∫

0

‖a(t)− b(t)‖2dt = O(1/
√
m).

4
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2.7 Further Remarks

The above two results have a number of implications on the distillation process. First, note that the case λ = 0
reproduces the results in []: The final value simply becomes y while the poles will become the singular values of the

matrix H =
∑

k

a2
k

m
Hk. The other extreme case of λ = ∞ corresponds pure distillation, where the effect of the first

term in (2) becomes negligible and hence the optimization boils down to individually training each hidden unit by φk .
One may then expect the solution of this case to be fk = φk. However, the conditions of the above theorems become
difficult to verify, but we shortly present experiments that numerically investigate the corresponding dynamics.

We also observe that for a finite value of λ, the final value f∞ is a weighted average, depending on the quality of

φk. Defining e = ‖f∞ − y‖ as the final error, we simply conclude that e = λ
a+λ

‖∑
k

akφk

m
− y‖, where the term

‖∑
k

akφk

m
− y‖ reflects the quality of teacher in representing the labels. Also for an imperfect teacher the error e

monotonically increases with λ, while larger λ generally has a positive effect on the speed of convergence as it shifts
the poles to become larger. For λ, this leads to a trade-off between speed and quality. The result of Theorem 1 also
stems from the probabilistic analysis of e in the lottery ticket setup.

The analysis of Theorem 3 gives us another way to assess the effect of the teacher. If the teachers have a small overlap
with the "eigen-basis" Hk(pj−λHk)

−1vj corresponding to small values of pj , then the dynamics is mainly identified
by the large poles pj , speeding up the convergence properties.

Finally, the assumption ‖φk − f (k)(0)‖ = O(1/m) can be simply satisfied in the distillation case with single hidden

layer, where we have φk(x) = σ(〈wteacher
k ,x〉) and initializing the weights of the student by that of the teacher

wk(0) = wteacher
k leads to φk = f (k)(0). We further numerically investigate the consequences of violating this

assumption.

We observe that the above elements can be simply investigated in the context of distillation with the lottery ticket
principle in [14]. This is what we mainly study in the numerical experiments.

3 Analysis and Insights

The study in [13] on the dynamics of backpropagation serves as our main source of inspiration, which we review first.
The point of departure in this work is to represent the dynamics of BP or gradient descent (GD) for the standard ℓ2
risk minimization, as in (2) and (1) with λ = 0. In this case, the associated ODE to GD reads:

dwk

dt
(t) =

ak√
m
L(wk(t))(y − f(t)), (7)

where y, f(t) are respectively the vectors of {yk} and f(xk), calculated in (1) by replacing wk = wk(t). Moreover,
the matrix L(w) consists of σ′(wTxk)xk as its kth column. While the dynamics in (7) is generally difficult to analyze,
we identify two simplifying ingredients in the study of [13]. First, it turns the attention from the dynamics of weights
to the dynamics of the function, as reflected by the following relation:

df

dt
(t) =

∑

k

ak√
m
LT
k

dwk

dt
= H(t)(y − f(t)) (8)

where Lk = Lk(t) is a short-hand notation for L(wk(t)) and H(t) =
∑

k

a2kL
T
k Lk/m. The second element in the

proof can be formulated as follows:

Kernel Hypothesis (KH): In the asymptotic case of m → ∞, the dynamics of H(t) has a negligible effect, such that
it may be replaced by H(0), resulting to a linear dynamics.

The reason for our terminology of the KH is that under this assumption, the dynamics of BP resembles that of a kernel
regularized least squares problem. The investigation in [13] further establishes KH under mild assumptions and further
notes that for random initialization of weights H(0) concentrates on its mean value, denoted by H∞.

5
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3.1 Dynamics of Knowledge Transfer

Following the methodology of [13], we proceed by providing the dynamics of the GD algorithm for the optimization
problem in (2) with λ > 0. Direct calculation of the gradient leads us to the following associated ODE for GD:

dwk

dt
= Lk

[

ak√
m
(y − f(t)) + λ(φ(k) − f (k))

]

, (9)

where Lk,y, f(t) are similar to the previous case in (7). Furthermore, f (k),φ(k) are respectively the vectors of

{f (k)(xi)}i and {φ(k)(xi)}i. We may now apply the methodology of [13] to obtain the dynamics of the features.

We also observe that unlike this work, the hidden features {f (k)} explicitly appear in the dynamics:

df (k)

dt
(t) = LT

k
dwk

dt
=

Hk(t)
[

ak√
m
(y − f(t)) + λ(φ(k) − f (k)(t))

]

, (10)

where Hk(t) = LT
k Lk and

f(t) =
∑

k

ak√
m
f (k)(t). (11)

This relation will be central in our analysis and we may slightly simplify it by introducing δ(k) = f (k) − f
(k)
∞ and

δ = f − f∞. In this case the dynamics in (10) and (11) simplifies to:

dδ(k)

dt
(t) = −Hk(t)

[

ak√
m
δ(t) + λδ(k)(t)

]

,

δ(t) =
∑

k

ak√
m
δ(k)(t). (12)

Finally, we give a more abstract view on the relation in (12) by introducing the block vector η(t) where the kth block

is given by δ(k)(t). Then, we may write (12) as

dη

dt
(t) = −H̄(t)η(t), (13)

where H̄(t) is a block matrix with Hk(t)
(

akal

m
+ λδk,l

)

as its k, l block (δk,l denotes the Kronecker delta function).

3.2 Dynamics Under Kernel Hypothesis

Now, we follow [13] by simplifying the relation in (10) under the kernel hypothesis, which in this case assumes the
matrices H̄(t) to be fixed to its initial value H̄ = H̄(0), leading again to a linear dynamics:

η(t) = e−H̄tη(0). (14)

Despite similarities with the case in [13, 1], the relation in (14) is not simple to analyze due to the asymmetry in H̄ and
the complexity of its eigen-structure. For this reason, we proceed by taking the Laplace transform of (12) (assuming
Hk = Hk(t) = Hk(0)) which after straightforward manipulations gives:

∆(k)(s) = (sI+ λHk)
−1
[

δ(k)(0)− ak√
m
Hk∆(s)

]

∆(s) = (I+T(s))−1
∑

k

(sI+ λHk)
−1δ(k)(0),

(15)

where ∆(k)(s),∆(s) are respectively the Laplace transform of δ(k)(y), δ(t). Hence, δ(t) is given by taking the
inverse Laplace transform of ∆(s). Note that by construction, ∆(s) is a rational function, which shows the finite
order of the dynamics. To find the inverse Laplace transform, we only need to find the poles of ∆(s). These poles
can only be either among the eigenvalues of Hk or the values −pk where the matrix I+T(s) becomes rank deficient.
Under Assumption 1 and 2, we may conclude that the poles are only −pk, which gives the result in Theorem 1 and
2. More details of this approach can be found in the supplement, where the kernel hypothesis for this case is also
rigorously proved.

6
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4 Experimental Results

We perform our numerical analysis on a commonly-used dataset for validating deep neural models, i.e., CIFAIR-10.
This dataset is used for the experiments in [1]. As in [1], we only look at the first two classes and set the label yi = +1
if image i belongs to the first class and yi = −1 if it belongs to the second class. The images {xi}ni=1 are normalized
such that ||xi||2 = 1 for all i = 1, . . . , n.

The weights in our model are initialized as follows:

wi ∼ N (0, k2I), ar ∼ Unif({−1, 1}), ∀r ∈ [m]. (16)

For optimization, we use (full batch) gradient descent with the learning rate η. In our experiments we set k =
10−2, η = 2× 10−4 similar to [1].

In all of our experiments we use 100 hidden neurons for the teacher network and 20 hidden neurons for the student
network.

4.1 Dynamics of knowledge transfer

In this section we study knowledge transfer and distillation in different settings. We first consider a finite regularization
in Eq. 2 by setting λ = 0.01. Figure 1 shows the dynamics of the results in different settings, i) no teacher, i.e., the
student is independently trained without access to a teacher, ii) student training, where the student is trained by both
the teacher and the true labels according to Eq. 2, and iii) the teacher, trained by only the true labels. For each setting,
we illustrate the training loss (Figure 1(a)) and the test loss (Figure 1(b)). Note that true labels are the same for the
teacher and the students. Teacher shows the best performance because of its considerably larger capacity. On the
other hand, we observe, i) for the student with access to the teacher its performance is better than the student without
access to the teacher. This corresponds to the result in Theorem 1 and the discussion in section 2.7, where the final
performance of the student is shown to be improved by the teacher. ii) the convergence rate of the optimization is
significantly faster for the student with teacher compared to the other alternatives. This confirms the prediction of
Theorem 3. This experiment implies the importance of a proper knowledge transfer to the student network via the
information from the teacher.

In the following, we study two special cases of the generic formulation in Eq. 2 where λ → 0 and λ → ∞. As
discussed in section 2.5.1, the case λ = 0 corresponds to the lottery ticket setup. Figure 2 compares these two extreme
cases with the student with λ = 0.01 and the teacher w.r.t. training loss (Figure 2(a)) and test loss (Figure 2(b)). We
observe that the student with a finite regularization (λ = 0.01) outperforms the two other students in terms of both
convergence rate (optimization speed) and the quality of the results. In particular, when the student is trained with
λ → ∞ and it is initialized with the weights of the teacher, then the generic loss in Eq. 2 equals 0. This renders the
student network to keep its weights unchanged for λ → ∞ and the performance remains equal to that of the privileged
knowledge

∑

k

ak√
m
φkwithout the label input.

4.2 Dynamics of knowledge transfer with imperfect teacher

In this section, we study the impact of the quality of the teacher on the student network. We consider the student-
teacher scenario in three different settings, i) perfect teacher where the student is initialized with the final weights
of the teacher and uses the final teacher outputs in Eq. 2, ii) imperfect teacher where the student is initialized with
the intermediate (early) weights of the teacher network and uses the respective intermediate teacher outputs in Eq. 2,
and iii) no student initialization where the student is initialized randomly but uses the final teacher outputs. In all the
settings, we assume λ = 0.01.

Figure 3 shows the results for these three settings, respectively w.r.t. training loss (Figure 3(a)) and test loss (Figure
3(b)). We observe that initializing and training the student with the perfect (fully trained) teacher yields the best results
in terms of both quality (training and test loss) and convergence rate (optimization speed). This observation verifies our
theoretical analysis on the importance of initialization of the student with fully trained teacher, as the student should
be very close to the teacher.

4.3 Kernel embedding

In order to provide the teacher and the student with more relevant information and to study the role of the data geometry,
as stated by Theorem 3, we can use properly designed kernel embeddings. Specifically, instead of using the original
features for the networks, we could first learn an optimal kernel which is highly aligned with the labels in training

7



A PREPRINT - SEPTEMBER 28, 2020
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(a) Training loss
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(b) Test loss

Figure 1: Dynamics of knowledge transfer from a teacher to the student, where the regularization parameter is set by
λ = 0.01. The student supported by the knowledge from the teacher performs significantly better than the student
with no teacher in terms of both the quality and the convergence rate of the optimization.

data, implicitly improving the combination of {αj} in Theorem 3 and then we feed the features induced by that kernel
embedding into the networks (both student and teacher).

For this purpose, we employ the method proposed in [15] that develops an algorithm to learn a new kernel from
a group of kernels according to a similarity measure between the kernels, namely centered alignment. Then, the

8
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(a) Train loss
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student finite λ
Teacher

(b) Test loss

Figure 2: Performance of the student networks with different regularisation λ. The finite regularization (i.e., λ = 0.01)
yields the best results for both training and test in terms of quality and convergence rate.

problem of learning a kernel with a maximum alignment between the input data and the labels is formulated as a
quadratic programming (QP) problem. The respective algorithm is known as alignf [15].

Let us denote by Kc the centered variant of a kernel matrix K . To obtain the optimal combination of the kernels (i.e.,
a weighted combination of some base kernels), [15] suggests the objective function to be centered alignment between

9
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(a) Train loss
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Figure 3: Dynamics of knowledge transfer with perfect and imperfect teacher w.r.t. the quality of the teacher.

the combination of the kernels and yyT , where y is the true labels vector. By restricting the weights to be non-negative,
a QP can be formulated as

minimize vTMv − 2vTa w.r.t. v ∈ RP
+ (17)

10
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P is the number of the base kernels and Mkl = 〈Kc
k,K

c
l 〉F for k, l ∈ [1, P ], and finally a is a vector wherein

ai = 〈Kc
i , yy

T 〉F for i ∈ [1, P ]. If v∗ is the solution of the QP, then the vector of kernel weights is given by [15, 16]

µ∗ = v∗/‖v∗‖ (18)

Using this algorithm we learn an optimal kernel based on seven different Gaussian kernels. Then, we need to approxi-
mate the kernel embeddings. To do so, we use the Nyström method [17]. Then we feed the approximated embeddings
to the neural networks. The results in Figure 4 clearly show that using the kernel embeddings as inputs to the neural
networks, helps both teacher and student networks in terms of training loss (Figure 4(a)) and test loss (Figure 4(b)).

4.4 Spectral analysis

Here, we investigate the overlap parameter of different networks, where we compute a simplified but conceptually
consistent variant of the overlap parameter αj in theorem 3. For a specific network, we consider the normalized
columns of matrix φ (as defined in Eq. 2) corresponding to the nonlinear outputs of the hidden neurons, and compute
the dot product of each column with the top eigenvectors of H∞, and take the average. We repeat this for all the
columns and depict the histogram. For a small value of λ, the resulting values are approximately equal to {αj} in
Theorem 3.

Figure 5 shows such histograms for two settings. In Figure 5(a) we compare the overlap parameter for two teachers,
one trained partially (imperfect teacher) and the other trained fully (perfect teacher). We observe that the overlap
parameter is larger for the teacher trained perfectly, i.e., there is more consistency between its outputs φ and the matrix
H∞. This analysis is consistent with the results in Figure 3 which demonstrates the important of fully trained (perfect)
teacher. In Figure 5(b), we show that this improvement is transferred to the student via distillation.

We confirm this point further: if the teacher learns better representations via kernels, this is also transferred by distilla-
tion to the student.

4.5 Kernel spectral analysis

Finally, we perform a similar analysis to section 4.4, where we compute the overlap parameter for a teacher (Figure
6(a)) and a student (Figure 6(b)) trained with the representations from an optimal kernel described in section 4.3. The
histograms show that the overlap parameter for a teacher trained with kernel embeddings is larger than the teacher
trained with original features. We also observe that this better overlap parameter, i.e., higher consistency between φ
and H∞, is transferred to the student trained with the same kernel representations.

5 Related Work

In its current and most widely known form, distillation was introduced by Hinton et al. [5] with the aim of compressing
neural networks. Since then, distillation has quickly gained popularity among practitioners and established its place in
deep learning folklore. It has been found to work well across a wide range of applications, including

In contrast to its empirical success, a rigorous theoretical understanding of the principles underlying the effectiveness
of distillation have largely remained a mystery. Until recently, Lopez-Paz et al. [12] was the only work that tried to
examine distillation from a theoretical perspective. It casts distillation as a form of Vapnik’s notion of learning using
privileged information, a learning setting in which additional per-instance information is available at training time but
not at test time. Their paper is more a heuristic argument for the effectiveness of distillation with repect to general-
ization error rather than a rigorous analysis. Very recently, Phuong and Lampert [9] made the first attempt to analyze
distillation in a simple model. In their setting, both the teacher and the student are linear classifiers (although the
student’s weight vector is allowed a over-parametrized representation as a product of matrices). They give conditions
under which the student’s weight vector converges (approximately) to that of the teacher and derive consequences for
generalization error. Crucially, their analysis is limited to linear networks while we analyze distillation in the context
of non-linear networks.

A series of recent papers [1, 2, 3] achieved breakthroughs in understanding how (infinitely) wide neural network
training behaves in the so-called kernel regime. In this regime, the dynamics of training by gradient descent can be
approximated by the dynamics of a linear system. In this paper, we extend the repertoire of the methods that can be
applied in such settings.

11
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(a) Train loss
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Figure 4: Dynamics of knowledge transfer with teacher trained using kernel embedding. The kernel embeddings help
both teacher and student networks in terms of training loss (Figure 4(a)) and test loss.

6 Conclusions

We give the first theoretical analysis of knowledge distillation for non–linear neural networks in the model and regime
of [1, 2, 3]. We provide results for both what is learnt by the student and on the speed of convergence. As an intriguing

12
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(a) Overlap parameter, partial vs fully trained teacher
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(b) Overlap parameter, student with imperfect and perfect teacher

Figure 5: Spectral analysis of teachers (5(a)) and students (5(b)) in different settings w.r.t. the overlap parameters.
Perfect (full) training improves the overlap compared with the imperfect (partial) training.

side result, we also confirm the "lottery ticket hypothesis" [4] in this model and regime. Our numerical studies further
confirm our theoretical findings on the role of data geometry and distillation in the final performance of student.
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(a) Overlap parameter, teacher with and without kernel
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(b) Overlap parameter, student with and without kernelized teacher

Figure 6: Spectral analysis of teachers (6(a)) and students (6(b)) in different settings w.r.t. the overlap parameters.
Using kernel embeddings improves the overlap compared with normal training.
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7 Supplementary Material

7.1 Errata

In this long version we have made few clarifications compared to the submitted version according to the following
corrections.

After (6 in paper), 1
n10 must be replaced by 1

m10 .

In Assumption 2, the number n of values pi must be changed to d = n×m.

In Assumption 3, we must also have the derivative function σ′ to be also Lipschitz.

In assumption 4, O(1/m) can be changed to O(1/
√
m). We also assume that ‖y−∑

k

akφk√
m

‖ remains bounded.

Two more assumptions ‖xi‖s and aks are bounded.

We clarify that in theorem 2, +O(1/
√
m) holds in L1 sense, i.e. a(t) = b(t)+O(1/

√
m) means

∞
∫

0

‖a(t)−b(t)‖2dt =

O(1/
√
m).

In Assumption 2, we found out that T(s) is symmetric. Hence uj = vj , but we keep the expression unchanged.

Theorem 2 also needs the assumption that
∑

k

ā2
k

m̄
‖φ̄k‖2 is bounded (it can be incorporated in C, but the theorem does

not reflect the dependency on m̄).

7.2 Notation

σmax is the largest singular value and ‖‖ means 2-norm of vectors.

7.3 Proof of Theorem 1 and 3 in Paper

We continue the discussion in (15 of paper). Note that the values s = −pi correspond to the points where det(I +
T(s)) = 0. We also observe that these values correspond to the negative of eigenvalues of the matrix H̄(t = 0). We
conclude that under assumption 2, the eigenvalues of H̄ = H̄(t = 0) are distinct and strictly positive, hence this
matrix is diagonalizable. Now, we write H̄(t) = H̄+∆H̄(t) and state the following lemma:

Lemma 1. Suppose that H̄ is a diagonalizable matrix with strictly positive eigenvalues and denote its smallest eigen-
value by p. Take ∆H̄(t) ar a matrix valued function of the continuous valiable t such that for a given fixed value of
t

q = q(t) =

sup
τ∈[0 t]

σmax(∆H̄(τ))

p
< 1

Let η(t) denote the solution to (13 in paper) with H̄(t) = H̄+∆H̄(t). Then,

t
∫

0

∥

∥

∥
η(τ) − e−H̄τη(0)

∥

∥

∥
dτ ≤ q‖η(0)‖

p(1− q)

Proof. Consider the iteration ηr+1 = T ηr that generates a sequence of function functions ηr(t) for r = 0, 1, . . .

where ηr(0) = e−H̄tη(0) and η′ = T η is the solution to

d

dt
η′(t) = −H̄η′(t)−∆H̄(t)η(t) (19)

with η′(0) = η(0), which can also be written as

η′(t) = e−H̄tη(0)−
t
∫

0

e−H̄(t−τ)∆H̄(τ)η(τ)dτ (20)

16
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We observe that T on the interval [0 t] is a contraction map under L1 norm as we have

∆η′(t) = −
t
∫

0

e−H̄(t−τ)∆H̄(τ)∆η(τ)dτ (21)

and hence by the triangle inequality on the Hilbert space of functions, we get

‖∆η′(t)‖2 ≤ sup
τ∈[0 t]

σmax(∆H̄(τ)) ×

t
∫

0

e−p(t−τ)‖∆η(τ)‖2dτ (22)

we conclude that
t
∫

0

‖∆η′(τ)‖2dt ≤

sup
τ∈[0 t]

σmax(∆H̄(τ)) ×
t
∫

0

1− e−p(t−τ)

p
‖∆η(τ)‖2

≤ q

t
∫

0

‖∆η(τ)‖2dt

which shows that T is a contraction. Then, from Banach fixed-point theorem we conclude that ηr converges uniformly
on the interval [0 t] to the fixed-point η of T , which coincides with the solution of (13 in paper). Moreover,

t
∫

0

‖η − η0(τ)‖2dτ ≤

t
∫

0

‖η1(τ) − η0(τ)‖2dτ

1− q

Now, we observe that

η1(t)− η0(t) = −
t
∫

0

e−H̄(t−τ)∆H̄(τ)e−H̄(τ)η(0)dτ

Hence,

‖η1(t)− η0(t)‖ ≤
t
∫

0

e−p(t−τ)σmax(∆H̄(τ))e−pτ‖η(0)‖dτ

≤ te−pt sup
τ∈[0 t]

σmax(∆H̄(τ))‖η(0)‖

and
t
∫

0

‖η1(τ) − η0(τ)‖dτ ≤

sup
τ∈[0 t]

σmax(∆H̄(τ))‖η(0)‖
t
∫

0

τe−pτdτ ≤ q

p
‖η(0)‖

which completes the proof.

Now, we state two results that connect σmax(∆H) to the change of wk(t):

Lemma 2. Under Assumption 3, the following relation holds:

σmax(H̄(t)) ≤
√
2

√

√

√

√λ2 +

(

∑

k

a2k
m

)2

max
k

σmax(∆Hk(t)) (23)

where ∆Hk(t) = Hk(t)−Hk(0).
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Proof. Take an arbitrary block vector η = [δk]k with ‖η‖ = 1 and note that

‖∆H̄(t)η‖2 =
∑

k

‖∆Hk(t)(
ak√
m
δ + λδk)‖2

≤ 2max
k

σ2
max(∆Hk(t))

∑

k

(

a2k
m

‖δ‖2 + λ‖δk‖2
)

= 2max
k

σ2
max(∆Hk(t))

(

‖δ‖2
∑

k

a2k
m

+ λ2

)

,

where δ =
∑

k

ak√
m
δk. We obtain the desired result by observing that

‖δ‖2 =

∥

∥

∥

∥

∥

∑

k

ak√
m
δk

∥

∥

∥

∥

∥

2

≤
(

∑

k

a2k
m

)

∑

k

‖δk‖2

=
∑

k

a2k
m

.

Next, we show

Lemma 3. We have
σmax(∆Hk(t)) ≤ L2σ2

x max
i

‖xi‖2×
‖wk(t)−wk(0)‖(‖wk(t)−wk(0)‖+ 2‖wk(0)‖)

where σx is the maximal eigenvalue of the the data matrix X = [x1 x2 . . .xn] and L is the largest of the Lipschitz
constants of σ, σ′.

Proof. Note that since ∆Hk is symmetric, we have (e.g. by eigen-decomposition)

σmax(∆Hk(t)) = max
δ|‖δ‖=1

|δT∆Hk(t)δ|

Taking an arbitrary normalized δ, we observe that

δT∆Hk(t)δ =
∣

∣‖L(wk(t))δ‖2 − ‖L(wk(0))δ‖2
∣

∣

On other hand,

L(wk(t))δ = L(wk(0))δ +
∑

i

xiσiδi,

where σi = σ′(wk(t)
Txi)− σ′(wk(0)

Txi). Hence,

δT∆Hk(t)δ ≤
∥

∥

∥

∥

∥

∑

i

xiσiδi

∥

∥

∥

∥

∥

2

+2

∥

∥

∥

∥

∥

∑

i

xiδiσi

∥

∥

∥

∥

∥

‖L(wk(0))δ‖

We also observe that
∥

∥

∥

∥

∥

∑

i

xiσiδi

∥

∥

∥

∥

∥

≤ σx

√

∑

i

δ2i σ
2
i

and from Lipschitz continuity,

σ2
i ≤ L2〈xi,wk(t)−wk(0)〉2 ≤ L2‖xi‖2‖wk(t)−wk(0)‖2

We conclude that
∥

∥

∥

∥

∥

∑

i

xiσiδi

∥

∥

∥

∥

∥

≤ Lσx‖wk(t)−wk(0)‖ ×max
i

‖xi‖

Similarly, we obtain
‖L(wk(0))δ‖ ≤ Lσx ×max

i
‖xi‖

which completes the proof.
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We finally connect the magnitude of the change wk(t)−wk(0) to δk:

Lemma 4. With the same definitions as in Lemma 3, we have

‖wk(t)−wk(0)‖ ≤ |ak|√
m
Lσxmax

i
‖xi‖

t
∫

0

‖δk(τ)‖dτ (24)

Proof. Note that

wk(t)−wk(0) = − ak√
m

t
∫

0

L(wk(τ))δk(τ)dτ

and hence

‖wk(t)−wk(0)‖ ≤ |ak|√
m

t
∫

0

‖L(wk(τ))δk(τ)‖dτ

From a similar argument as in Lemma 3, we have

‖L(wk(τ))δk(τ)‖ ≤ Lσxmax
i

‖xi‖‖δk(τ)‖

which completes the proof.

We may now proceed to the proof of Theorem 1 and 3. Define

T = {t | ∀τ ∈ [0 t]; q(τ) <
1

2
}

Note that T is nonempty as 0 ∈ T and open since q is continuous. We show that for sufficiently large m, T = [0,∞).
Otherwise T is an open interval [0 t0) where q(t0) =

1
2 . For any t ∈ T , we have from Lemma 1

A =

t
∫

0

‖η(τ)‖dτ ≤
(

1− e−pt

p
+

q

p(1− q)

)

‖η(0)‖

≤ ‖η(0)‖
p(1− q)

Denote b = max
k

|ak| and B = max
i

‖xi‖ and define

C =

√
2

p
L3σ3

Bx
3b
√

λ2 + a2

Then Lemma 2,3 and 4 give us:

q ≤ CA√
m

We conclude that

q(t) ≤ C‖η(0)‖
p(1− q(t))

√
m

Note that by Assumption 4, we have

δk(0) =
ak

(λ+ a)
√
m
(y −

∑

k

akφk√
m

)

+φk − fk(0) = O(1/
√
m)

and hence η(0) = O(1). This shows that there exists a constant C0 such that

q(t)(1 − q(t)) ≤ C0√
m
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for t ∈ T . But for large values of m this is in contradiction to q(t0) = 1/2. Hence, for such values t0 does not exist
and q(t) < 1/2 for all t. We conclude that for sufficiently large values of m we have q(t) < 3C0/

√
m for all t. Then,

according to Lemma 1 and the monotone convergence theorem, we have

∞
∫

0

∥

∥

∥
η(τ)− e−H̄τη(0)

∥

∥

∥
dτ = O(

1√
m
)

This shows that
lim
t→∞

‖η(t)− e−H̄tη(0)‖ = 0

Note that as H̄ is diagonalizable and has strictly positive eigenvalues, we get that

lim
t→∞

e−H̄tη(0) = 0,

which further leads to
lim
t→∞

η(t) = 0,

This proves Theorem 1. For Theorem 3, we see that

η(t) = e−H̄tη(0) +O(1/
√
m)

It suffices to show that the expression in Theorem 3 coincides with e−H̄tη(0). This is simple to see through the
following lemma:

Lemma 5. According to Assumption 2, the right and left eigenvectors of H̄ corresponding to pj are respectively given

by vectors ηr
j = [vj

k]k and ηl
j = [uj

k]k, where

v
j
k =

ak√
m
(pjI− λHk)

−1Hkv
j

and

u
j
k =

ak√
m
(pjI− λHk)

−1uj

Moreover, vj =
∑

k

ak√
m
v
j
k.

Proof. According to the definition of H̄, we have that

Hk(
ak√
m
v + λvj

k) = pvj
k

where v =
∑

k

ak√
m
v
j
k which gives

v
j
k =

ak√
m
(pjI− λHk)

−1Hkv

Replacing this expression in the definition of v shows that v = vj . The case for u
j
k is similarly proved.

Theorem 3 simply follows by replacing the result of Lemma 5 to the eigen-decomposition of e−H̄t:

e−H̄t =
∑

j

e−pjt | ηr
j〉〈ηl

j |

7.4 Proof of Theorem 2 in Paper

The left hand side of (6) is given by

‖f∞ − y‖ =

(

λ

λ+ a

)2
∥

∥

∥

∥

∥

∑

k

akφk√
m

− y

∥

∥

∥

∥

∥

Now note that
∑

k

akφk√
m

=
∑

k

ākφ̄kαk√
m
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where {αk ∈ {0, 1}} is a sequence of Bernoulli random variables with E[αk] =
m
m̄

. We note that

E

[

∑

k

akφk√
m

]

=
∑

k

ākφ̄k
m
m̄√

m

=
∑

k

qākφ̄k√
m̄

= y

Furthermore,

E

∥

∥

∥

∥

∥

∑

k

akφk√
m

− y

∥

∥

∥

∥

∥

2

=
∑

k

ā2k
m

‖φ̄k‖2Var(αk)

=
∑

k

ā2k
m̄

‖φ̄k‖2
(

1− m

m̄

)

Then, the Chernoff bound gives us the desired result.

7.4.1 Remark on Theorem 2 in Paper

Theorem 2 shows that the quality of knowledge distillation with the randomized scheme is proportional to 1 − m
m̄

.
This can be used to support recent results that a two-stage scheme, with knowledge being distilled to an intermediate
network with size m < m1 < m̄ and then used as a new teacher for training the student, has a better performance than
direct distillation. To support this claim, we denote α = m

m1
and β = m1

m̄
and note that according to Theorem 2, the

performance of the two-stage scheme is proportional to S1 = (1 − α)(1 − β) while the performance of the standard
approach is proportional to S2 = 1− αβ. We show that the former is smaller. For this, we note that

αβ ≤
√

αβ ≤ α+ β

2

which shows that
S1 = 1− α− β + αβ ≤ 1− αβ = S2.
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