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Abstract— Double-stranded DNA (dsDNA) has been established as an efficient medium for 

charge migration, bringing it to the forefront of the field of molecular electronics as well as 

biological research. The charge migration rate is controlled by the electronic couplings 

between the two nucleobases of DNA/RNA. These electronic couplings strongly depend on 

the intermolecular geometry and orientation. Estimating these electronic couplings for all 

the possible relative geometries of molecules using the computationally demanding first-

principles calculations requires a lot of time as well as computation resources.  In this article, 

we present a Machine Learning (ML) based model to calculate the electronic coupling 

between any two bases of dsDNA/dsRNA of any length and sequence and bypass the 

computationally expensive first-principles calculations. Using the Coulomb matrix 

representation which encodes the atomic identities and coordinates of the DNA base pairs to 

prepare the input dataset, we train a feedforward neural network model. Our NN model can 

predict the electronic couplings between dsDNA base pairs with any structural orientation 

with a MAE of less than 0.014 eV. We further use the NN predicted electronic coupling values 

to compute the dsDNA/dsRNA conductance.  
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Section 1. Introduction 

 

In the past few years, the availability of large datasets along with constant improvements in 

algorithms and the unprecedented growth in computational power has driven machine learning 

(ML) to the forefront of research in almost every scientific field[1-8]. ML has been used in 

numerous theoretical works with the purpose of bypassing the computationally demanding Density 

Functional Theory (DFT) calculations[9-15]. Replacing the traditional techniques, ML has already 

been used to develop atomistic force field parameters with first-principles accuracy[10], to predict 

the models for catalysis[16] as well as to identify new materials for molecular electronics and 

predict their electrical properties[1, 17-21]. From implementation in speech recognition and image 

classification[22] to prediction of pharmaceutical properties of molecular compounds and targets 

for drug discovery[5, 23, 24], ML methods are being used in every aspect of research. Recently, 

few studies were aimed at predicting the charge migration properties of different materials using 

ML methods[1, 12, 17, 25-29]. Lederar et al.[17] predicted the electronic couplings between 

pentacene molecules in a crystal by feeding their relative orientation vectors as input to Kernel 

Ridge Regression (KRR) algorithm. Korol et al.[1]  used the DNA sequence information as input 

to NN architecture to predict its conductance. Caylak et al.[25] used a Feed Forward Neural 

Network (FFNN) optimized using genetic algorithm to predict the electronic coupling for the 

amorphous morphology of Alq3. Bag et al.[29] recently predicted the electronic coupling between 

two guanine bases using their coarse-grained representation as feature vectors. Similarly, Wang et 

al.[12] predicted the electronic coupling values of ethylene dimers by providing the input in the 

form of Coulomb matrix to Kernel Ridge Regression (KRR) algorithm. However, the electronic 

coupling between two molecules of different types has not been predicted yet in any of the works.  

 

Charge transport through DNA, the genetic material of life, has attracted a lot of attention in the 

last few years owing to its great biological as well as physical significance[30-35]. Long-range 

charge migration in DNA plays a crucial role in various biological phenomenon such as oxidative 

damage in DNA, DNA repair signaling, and mutation[31, 32, 36].  It is established that for small-

length dsDNA, charge transport is dominated by tunneling mechanism[33, 35, 37], while 

thermally-induced charge hopping mechanism takes over for long double-stranded DNA 

(dsDNA)[33, 38-40].  Experimentally, the electrical conductance of a dsDNA/dsRNA molecule 



is typically measured at room temperature and in the presence of a solvent[41-43].  Its realistic 

estimation thus needs a combination of large-scale molecular dynamics simulation with access to 

quantum probabilities of electron transfer through the molecule, which is computationally 

intensive[33, 39, 40, 44]. Many theoretical studies have been reported on dsDNA/dsRNA to 

understand their conductive properties[37-40, 42-51]. However, because of the computational 

constraints, these studies are limited to only short dsDNA/dsRNA sequences[39, 40, 44]. For 

example, to explore all the possible sequences of 12 bp long dsDNA, 124 sequences will need to 

be studied which is an implausible task if done using DFT calculations. Therefore, a faster tool 

which can be used to predict the conductance of a given dsDNA sequence of any length is required. 

 

Since the electronic coupling is the most time-consuming part of a charge transport calculation, in 

this work we use ML to bypass the DFT calculations and predict the transfer integrals between 

any two dsDNA/dsRNA nucleobases. The ML algorithms proposed earlier for modelling charge 

transport can predict transfer integrals between same entities[1, 12, 17]. However, as there are 5 

types of nucleobases in dsDNA/dsRNA, the charge can transfer between different nucleobases[39, 

40, 44]. Here, we present an NN-based model that predicts the quantum probability of electron 

transport across any base-pair in these molecules knowing only the positions of atoms which are 

directly available in an MD simulation. Capturing the dependence of electron transport on the 

relative orientation and chemistry of bases, our method can be used within any MD simulation of 

these molecules to estimate their electrical conductance. We then use our methodology to gain 

insight to various biological phenomena where we verify the validity of our approach by predicting 

the differences between conductance of dsDNA and dsRNA and from the dependence of DNA 

conductance on its length. We further explore the applications of our ML model by detection of a 

single mismatch in dsDNA sequence using NN predicted electrical properties. Since the charge 

transport in DNA occurs through base pairs in the thermally-induced hopping regime[39, 40, 44, 

52], the ability to predict the electronic coupling between any two nucleobases opens up the 

possibility to predict the conductance of a dsDNA of any length or any sequence. 

                                                             

 

 

                                                      

 



 

 

 Section 2. Methodology and Results 

 

Section 2.1 MD Simulation 

The initial structures of all the dsDNA/dsRNA were built using the NAB module of 

AmberTools18[53], which were then solvated in a TIP3P[54] water box using the xLEAP module 

of AmberTools18[53]. Appropriate number of Na+ counterions were added to the system to 

neutralize the negatively charged phosphate backbone. A combination of ff99bsc0 and OL3[55, 

56] force fields and a combination of ff99bsc0 and OL15[57, 58] force fields was used in the 

dsRNA and dsDNA simulations, respectively.  This system is then simulated using MD with the 

protocol which is described in detail in our earlier publications[39, 40, 44, 59, 60]. For the data 

analysis and the visualization of the systems, we have used Visual Molecular Dynamics 

(VMD)[61] package extensively.  

To construct an input dataset that contains information on all the base pair combinations of 

dsDNA/dsRNA, we simulate a variety of dsDNA/dsRNA sequences of different lengths as listed 

in Table 1. We simulate d-(CG)n for both dsDNA and dsRNA as well as dsRNA of sequence d-

(CGCGAnUnCGCG), where n varies from 2 to 6. The inputs from these sequences contribute to 

the length variation in input dataset. To include inputs for other base pair combinations, we 

simulate different 12 bp dsDNA and dsRNA sequences, namely, d-(AA)6, d-(AU)6, d-(CG)6 and 

d-(CC)6 for both dsDNA as well as dsRNA. We then choose 100 morphologies of dsDNA/dsRNA 

from the last 2 ns of the 100 ns MD simulated dsDNA/dsRNA trajectories and compute the transfer 

integrals for all the base pairs. We also simulate Drew-Dickerson dsDNA sequence (d-

(CGCGAATTCGCG)) with and without a single A-G mismatch[62] as shown in Fig. 5a) to 

explore the capabilities of our NN model.  

 

S. No. dsDNA Sequence dsRNA Sequence Length of Sequence 

1. d-(CGCGAATTCGCG) d-(CGCGAAUUCGCG) 12 bp  

2. d-(CGCGCGCGCGCG) d-(CGCGCGCGCGCG) 12 bp 

3. d-(AAAAAAAAAAAA) d-(AAAAAAAAAAAA) 12 bp 

4. d-(ATATATATATAT) d-(AUAUAUAUAUAU) 12 bp 

5. d-(CGCGAATTCGCG) d-(CGCGAAUUCGCG) 12 bp 



6. d-(CG)n d-(CG)n 4 bp to 12 bp 

7.                     − d-(CGCGAnUnCGCG) 12 bp to 20 bp 

 

Table 1 List of dsDNA and dsRNA simulated and used for electronic couplings calculations and 

training of the NN model.  

 

Section 2.2 Hopping charge transport mechanism 

In the Semi-Classical Marcus Hush formalism[63], the charge transport through a molecule is 

described as incoherent hopping motion of charge carriers between available  sites[39, 40]. Several 

theoretical and experimental investigations have demonstrated that the charge transport in nucleic 

acids is mediated by stacked nucleobases through strong π-π interactions[39, 40, 52, 64]. Hence, 

we consider the nucleobases as charge hopping sites and replace the backbone atoms with 

hydrogen atoms in further calculations and optimizations as shown in Fig. 1a. 

In Marcus-Hush formalism, the charge hopping rate 𝜔𝑖𝑘 from charge hopping site, 𝑖, to the hopping 

site, 𝑘, is given by 

                                                   𝜔𝑖𝑘 =
2𝜋|𝐽𝑖𝑘|2

ℎ
√

𝜋

𝜆𝑘𝐵𝑇
 exp [− 

(𝛥𝐺𝑖𝑘− 𝜆)2

4𝜆𝑘𝐵𝑇
]   (1) 

Where 𝐽𝑖𝑘 is the electronic coupling, also called transfer integral, defined as:  

                                                                 𝐽𝑖𝑘 = < ϕ𝑖|𝐻|ϕ𝑘 >    (2) 

Here ϕ𝑖 and ϕ𝑘 are diabatic wave functions localized on the sites 𝑖 and 𝑘, respectively. H is the 

Hamiltonian for the two-site system between which the charge transfer takes place. λ is the 

reorganization energy. Δ𝐺𝑖𝑘 is the free energy difference between the two sites, ℎ is the Plank’s 

constant, 𝑘𝑩 is the Boltzmann constant, and 𝑇 is the absolute temperature. 

The calculation of transfer integrals and reorganization energies were performed using density 

functional theory (DFT) which have been carried out using Gaussian 09[65] software with 

M062X/6-31g(d) level of theory. VOTCA-CTP[66] software package is used to calculate the 

transfer integral values for all possible base pairs.  

 



 

Section 2.3 Kinetic Monte Carlo (KMC) Calculations 

 

Once all the charge hopping rates are obtained for all possible base pairs, Kinetic Monte Carlo 

(KMC) method[39, 40, 66] is used to solve the probability master equation and obtain the charge 

dynamics to calculate the V-I characteristics of the DNA/RNA molecule. This is done by assigning 

a unit charge at a random hopping site, 𝑖, at initial time 𝑡 = 0. The total escape rate for the charge 

at site 𝑖 to all the possible neighbouring sites (𝑁) is given as 

𝜔𝑖 =  Σ 𝜔𝑖𝑘𝑘=1
𝑁                         (3)  

The waiting time (τ) is then calculated using 𝜔𝑖 and a uniform random number (𝑟1) between 0 and 

1, as  

τ =  −𝜔𝑖
−1 ln (𝑟1)                       (4) 

 

The site to which the charge will hop to is chosen as the one for which the expression 
𝛴𝑘𝜔𝑖𝑘

𝜔𝑖
  is 

largest and is ≤ 𝑟2, where  𝑟2 is another uniform random number between 0 and 1. The above 

condition is to ensure that the site 𝑘 is chosen with probability 
𝜔𝑖𝑘

𝜔
. After this, we update the 

position of the charge (to 𝑘) as well as the total time of the system (as t = t +  τ) and repeat the 

above process which provides the probability of finding the charge at each site. The total current 

can then be found using the following formula  

 

𝐼𝑏𝑝 =  −𝑒 [∑ (𝑃𝑏1
𝜔𝑏1𝑖 −  𝑃𝑖𝜔𝑖𝑏1

) 𝑖 + ∑ (𝑃𝑏2
𝜔𝑏2𝑖 −  𝑃𝑖𝜔𝑖𝑏2

) ]𝑖         (5) 

 

Here, e is the unit electric charge, 𝑖 stands for all the possible hopping sites which are in the 

direction of flow of current, b1 and b2 are the base stacks of base pair bp. Hence mean current is 

average over all base pairs, 𝐼 =  < 𝐼𝑏𝑝 >. 

 

Section 2.4 Training a Deep Neural Network (NN)   

 

To correctly predict the electronic couplings between different dsDNA base pairs, a descriptor is 

required which can capture the constitution, the relative positions, and the relative orientations of 



the two nucleobases. We use Coulomb matrix (𝑀𝑖𝑗) representation[25, 67, 68] to construct the 

input feature vector for a base pair which encapsulates these structural features. Since different 

dsDNA/dsRNA nucleobases have different number of atoms, we take the default matrix size 

corresponding to the base pair combination with the largest number of atoms (GG base pair), 𝑘, to 

keep the dimension of feature vectors same for all base pair combinations. For base pair 

combinations with lesser number of atoms, we add zero padding to the Coulomb matrix i.e. assign 

zero to the empty matrix elements. Hence, for a given base pair combination, the matrix element, 

𝑚𝑖𝑗, of the corresponding Coulomb matrix is defined as[25, 67, 68]: 

 

 

 1

2
𝑍𝑖

2.4 
, for 𝑖 = 𝑗 and 𝑖, 𝑗 ≤ 𝑁 

𝑚𝑖𝑗 =   𝑍𝑖𝑍𝑗

‖𝑅𝑖 − 𝑅𝑗‖
 

, for 𝑖 ≠ 𝑗 and 𝑖, 𝑗 ≤ 𝑁                        

 0 , for 𝑁 < 𝑖, 𝑗 ≤ 𝑘  

 

where, 𝑍𝑖(𝑗) is the nuclear charge of the atom 𝑖(𝑗), 𝑅𝑖(𝑗) are the atomic coordinates of the atom 

𝑖(𝑗) and 𝑁 is the number of atoms in a base pair. Since the hopping rate between two molecules 

depends on the square of the transfer integral (eq. 1), we scale the transfer integral as 𝐹 =

𝑙𝑜𝑔10[|𝐽𝑖𝑗|2].  𝐹 is further normalized to have a mean of 0 and a variance of 1. The final Coulomb 

matrix is constituted of four block square matrices, where the diagonal matrices represent the self-

interaction of the nucleobases while the off-diagonal matrices represent the inter-base interaction 

terms as shown in Fig. 1b. This matrix is then further pre-processed before being fed to the NN 

algorithm as input vector as depicted in Fig. 1c. Since the Coulomb matrix is symmetric[25], only 

the upper triangle elements of the matrix are kept for the NN algorithm. This upper triangular 

matrix is then further converted to a single-column vector input for the FFNN algorithm. We use 

scikit-learn[69] Python package for all the NN calculations. 

 



 

Fig 1 Schematic diagram to represent the process of data flow from molecular dynamics 

simulations to neural network input. a) Atomic coordinates of different base pairs are collected 

from the 100 MD-simulated-morphologies. b) For each base pair combination, Coulomb matrix is 

prepared with zero padding. c) The Coulomb matrix is then pre-processed using feature selection 

(upper triangle) and data scaling to have a mean of 0 and variance of 1 to remove the redundant 

information. d) The one-dimensional Coulomb matrix of dimension 𝑁′ =  
𝑘(𝑘+1)

2
 is then fed to a 

NN system of 3 hidden layers (100,50,10), which predicts the transfer integral values. 

 

 

 

Section 3. Results  

Section 3.1 Prediction of the Trained Neural Network (NN) 

The input dataset obtained using all the dsDNA/dsRNA sequences simulated in this work leads to 

a big dataset of ~60,000 entries. We use a feedforward neural network (FFNN) which consists of 

multiple hidden layers, each layer consisting of a finite set of neurons connected to maintain 

unidirectional flow of information[25]. The training of the neural network is done using mini-batch 

gradient descent using backpropagation algorithm. The number of layers and the number of nodes 

in each layer (usually referred to as the hyper-parameters) were optimized using grid search 

algorithm coupled with k-fold cross validation (with k=5). The search is done among the ranges 

as depicted in Table S1 of the Supplementary Information. For our dataset, NN having 3 hidden 

layers with 100, 50, 10 nodes using the training data with “sigmoid” activation function gives the 



best accuracy. The efficiency of the training was evaluated by comparing the DFT calculated 

electronic couplings and the NN predicted electronic couplings on the test set. We use Mean 

Absolute Error (MAE) to characterize the model’s accuracy and precision which is defined as,  

𝑀𝐴𝐸 =  
∑ |𝐽𝑁𝑁− 𝐽𝐷𝐹𝑇𝑀 |

𝑀
, where 𝑀 is the total number of predicted values. 

 

Fig. 2a shows that our FFNN model predicts the test set as well as the validation set with an MAE 

of 0.011 eV which is comparable to the one achieved by Lederer et. al[17]. For small molecule 

such as ethylene, Wang et al.[12] achieved an MAE of 0.004 eV, while Çaylak et al.[25] achieved 

an MAE of 0.55 for 𝑙𝑜𝑔10[|𝐽𝑖𝑗|2] for Alq3 molecules. We show in Fig. 2b that our achieved MAE 

of 0.011 eV is sufficient for prediction of accurate charge transport properties of dsDNA. We use 

a random assignment ratio of 80:10:10 for training, validation, and testing purposes, respectively. 

We then compute the I-V characteristics for 25 different morphologies of Drew-Dickerson dsDNA 

sequence chosen randomly from the 100 ns long MD simulation using both NN predicted 

electronic coupling values as well as DFT calculated electronic coupling values (Fig. 2b). Clearly, 

the trend of I-V curve as well as the order of magnitude is same for both the cases and the actual 

values of the current predicted using NN predicted couplings fall well within the error bar range 

of the current computed using DFT calculated electronic coupling values. This marks the validity 

of our approach. Fig. 2c shows the training scores for different sizes of training dataset. A training 

score of 1 refers to the perfect model which predicts accurately. The small difference between the 

training score and the cross-validation score after a training dataset size of ~15,000 shows that 

even a dataset of less than 15% entries of the dataset will also predict the transfer integral values 

with a similar accuracy. 

 

 



 

Fig. 2 NN prediction results. a) Correlation between the NN predicted values of the electronic 

coupling vs the DFT calculated electronic couplings. The green line represents the ideal case when 

NN predicts an electronic coupling matches exactly with the DFT predicted value. When given 

unknown data (not used for training) as input, the NN predicts the electronic coupling with an 

accuracy of 0.011 eV (MAE) of the actual DFT calculated value. b) I-V characteristics calculated 

for 25 different frames of Drew-Dickerson dsDNA sequence using both DFT calculated electronic 

couplings as well as NN predicted electronic coupling values. The current calculated using NN 

predicted couplings matches well with that of DFT calculated couplings. c) The accuracy score for 

the training and cross-validation for the model. An accuracy of 1 refers to the perfect model which 

predicts accurately. The small difference between the training score and the validation score after 

~15,000 training set size shows that the smaller training datasets will also predict the electronic 

couplings accurately.  

  



 

Fig. 3 NN prediction results for different base-pair combinations. Correlation between the NN 

predicted values of the electronic coupling vs the DFT calculated electronic couplings for a) AA, 

b) AT, c) TT, d) CC, e) CG and f) GG base-pairs. The MAE for all the base pairs is less than 0.014 

eV. The green lines represent the ideal case of NN predicted electronic couplings to be equal to 

DFT calculated values. 

 

 

We then predicted the electronic coupling values for all the possible base pair combinations which 

are shown in Fig. 3 and Fig. S1 of the Supplementary Information. Clearly, our NN model can 

predict the electronic couplings for each base pair coupling with a MAE less than 0.014 eV. 

Notably as shown in Fig. S1, for the base pair combinations which have very few number of test 

set data points (for example AG and GU), our NN model predicts the electronic coupling values 

with a similar MAE marking the generality and robustness of our approach.  

 

 



Section 3.2 Applications of the NN model 

 

To test the applicability of our ML model, we first reproduce known electrical properties of B-

form dsDNA and A-form dsRNA[33]. We calculate the electrical conductance of dsDNA and 

dsRNA for 2500 morphologies taken from the last 50 ns simulated trajectory using the ML 

predicted transfer integral values. Figure 4a shows the average V-I characteristics for B-form Drew 

Dickerson dsDNA and corresponding A-form dsRNA computed using DFT calculated electronic 

couplings for 100 different morphologies taken from MD simulation as well as using NN predicted 

electronic couplings for 2500 different morphologies taken from the 100 ns long MD simulation 

trajectory. Clearly, our NN model reproduces the I-V characteristics for B-DNA and A-RNA both 

qualitatively as well as quantitatively with an excellent precision. Fig 4b shows the computed 

current at 1 V for both dsDNA as well as dsRNA for 2500 frames throughout the 100 ns MD 

simulation trajectory. This graph provides the in-depth understanding of the dynamic variation of 

electrical properties of the nucleic acid as the MD simulation progresses which is computationally 

very demanding because of the involved quantum chemical calculations. The order of magnitude 

of the current is pA which is also in accordance with previously established results[33, 39]. Also, 

to check whether our approach can reproduce the well-known linear dependence of dsRNA 

conductance with length in the hopping regime[40], we calculate the electrical conductance of 

dsRNA of d-(CGCGAnUnCGCG) with n = 2 to 5 (Fig 4c). We find that the conductance decreases 

with increasing dsRNA length. These results signify the validity and the utility of our ML model 

for the prediction of electronic couplings.  

 

 

 

 

 

 

 

 

 

 



 

Fig. 4 a) A comparison of I-V characteristics for B-DNA and A-RNA using DFT calculated 

electronic couplings for 100 morphologies and using NN predicted electronic couplings for 2500 

morphologies. b) Variation of current at an applied potential bias of 1 V for B-DNA (d-

(CGCGAATTCGCG)) and A-RNA (d-(CGCGAAUUCGCG)) with 2500 MD-simulated 

snapshots. Clearly, B-DNA shows higher conductance than A-RNA which is in accordance with 

earlier results[33]. c) Value of current at 1 V for d-(CGCGAnUnCGCG) with n=2 to 5, for 2500 

MD-simulated morphologies. Clearly, as the length of the dsRNA increases, the current decreases.  

 

 

DNA mismatch and repair are fundamental evolutionary-conserved phenomena which play a key 

role in maintaining the genomic stability[70-72].  Defects in mismatch repair mechanism can lead 

to highly elevated rates of base substitution and mutations, consequently causing cancer and 

tumour [70, 71, 73]. DNA-mediated charge transfer phenomenon has been found well-suited for 

the detection of mismatch in dsDNA sequence[74, 75].  To explore the capabilities of our ML 

model, we predict the charge transport properties of a dsDNA with a single A-G base pair 

mismatch as shown in Fig. 5a. Fig. 5b shows the variation of current through the dsDNA with and 

without a mismatch at an applied potential bias of 1 V. Mismatch of a single base pair in dsDNA 

can lead to variations in its conductance[76, 77] which are fully captured using our ML approach. 

The order of magnitude of current is pA which agrees with previous established results[33, 39].  



 

 

Fig. 5 a) Schematic representation showing a single mismatch in Drew-Dickerson B-DNA 

sequence. b) The plot of current at an applied potential bias of 1 V for 2500 MD-simulated-

morphologies of both Drew-Dickerson sequence with and without base-pair mismatch using the 

NN predicted electronic couplings shows that a single mismatch can be detected using electrical 

properties of dsDNA.  

 

 

                                                   Section 4. Summary and Conclusion  

 

In conclusion, we have prepared an NN model using Coulomb Matrix that can predict the transfer 

integral between any two dsDNA/dsRNA bases from only the atomic coordinate information. This 

helps to bypass the most time-consuming DFT calculation part and calculate the dsDNA/dsRNA 

conductance of any given sequence in orders of magnitude less timescale. Our model captures the 

dependence of electronic properties of nucleobases on their relative orientation as well as their 

chemistry. Since this model depends only on the atomic coordinates of the charged entities, it can 

be easily extended to many other molecular systems such as proteins, dendrimer melts, organic 

semiconductors, and so on. We showcase the use of our NN model to reproduce well-known 

charge transport properties of dsDNA and dsRNA systems. As a direct application of our NN 



model, we show that charge transport properties of DNA can be used to detect even a single base-

pair mismatch in dsDNA systems. We believe that our robust ML model to compute the charge 

transport parameters between any two different entities will significantly advance the field of 

molecular electronics and DNA nanotechnology.  
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Section S1. Grid search for hyperparameters 

Using the training dataset (which forms 0.8 partition of the total dataset), we do a k-fold cross 

validation test, with k=5, to find the best set of hyperparameters for our FFNN. The search is 

done among the set shown in  

Table S1. 

 

Hyperparameter Grid search values 

Activation function Identity, logistic, tanh, ReLU 

Nodes and layers (100,80,10), (100,50,10), (100,20,10), (80,20) 

Alpha (coefficient of L2 regularizer) 0.1, 0.01, 0.001, 0.0001, 0.00001 

Solver Constant, invscaling, adaptive 

Learning rate Adam, sgd 

 

Table S1: Hyperparameters among which the grid search is done. The bold-faced hyperparameters 

are used for further calculations in this work. 
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Section S2. DFT calculated electronic coupling vs NN predicted electronic coupling plots for 

dsDNA/dsRNA base pairs 

In the main article, we present the validation and test sets for base pairs AA, AT, CC, CG, GG and 

TT along with their MAE. Here we plot the remaining base pairs, i.e., GU, CU, UU, AG, AC, and 

AU in figure S1. 

 

Figure S2 NN prediction results for different base-pair combinations. Correlation between the NN 

predicted values of the electronic coupling vs the DFT calculated electronic couplings for a) GU, 

b) CU, c) UU, d) AG, e) AC and f) AU base-pairs. The MAE for all the base pairs is less than 

0.010 eV. The green lines represent the ideal case of NN predicted electronic couplings to be equal 

with DFT calculated values. 

 

 


